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Abstract
Studies on the interplay between morphological diversity and genomic duplication are crucial, since novel traits may have 
profound evolutionary and ecological consequences. Within the Lythraceae, Cuphea stands out as the most karyotypically 
diverse genus, exhibiting a broad distribution across contrasting ecosystems in the Neotropics such as wetlands, forests, 
savannas, and prairies, ranging from coastal regions to the central continent, and from sea level to mountainous areas, with a 
remarkable array of morphological variation in vegetative and reproductive structures. To elucidate the potential relationships 
between karyotypic diversity and morphological variability in Cuphea, we compiled a morphological database, chromosome 
numbers and a molecular phylogenetic tree to infer the phylogenetic signal of morphological traits and karyotype evolution 
in this genus. Our findings confirm the pivotal role of polyploidy in the extensive karyotypic diversification observed in 
Cuphea. Ancestral state reconstruction revealed that the ancestral chromosomal number for the genus is x = 11 and there is 
a high incidence of polyploidy in the genus, with at least 11 events of whole-genome duplication, in addition to 20 events 
of dysploidy (10 ascending and 10 descending). We found evidence to support a positive correlation between chromosome 
numbers and overall size of selected morphological traits with polyploid species showing longer floral tubes. Our investiga-
tions also revealed a potential association between polyploidy and the adaptive radiation of Cuphea during its distribution 
expansion to the North America. These results reinforce the importance of whole-genome duplication events in producing 
trait diversity and, consequently, speciation.
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Introduction

Chromosomes represent the final organizational stage of 
the nuclear genome and have relative stability throughout 
the reproductive process. Thus, changes in chromosome 

numbers serve as key mechanisms for understanding the evo-
lutionary history of a group (King 1995; Graham and Cav-
alcanti 2001; Carta et al. 2020). Polyploidy, characterized 
by the whole-genome duplication (WGD), is a widespread 
phenomenon in flowering plants (Meyers and Levin 2006; 
Wood et al. 2009). Polyploids are commonly classified into 
two major categories based on their genotypic composition: 
autopolyploids, formed by the duplication of homologous 
chromosomes, and allopolyploids, resulting from interspe-
cific hybridization followed by chromosome set duplication 
or fusion of unreduced gametes. In both cases, the nuclear 
content comprises non-homologous chromosomes (Parisod 
et al. 2010). Together with WGD, dysploidy events, which 
encompass variations in chromosome number occasionally 
induced by chromosomal fissions and/or fusions, represent 
major karyological change phenomena in plant evolutionary 
history (Escudero et al. 2014).

Considered intrinsic to plant evolution, WGD events 
are accompanied by gene loss, differential expression, or 
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neofunctionalization, promoting increased genetic and 
genomic variation (Blanc and Wolfe 2004; Soltis et  al. 
2009; Ramsey and Ramsey 2014). Polyploid individuals 
when compared to their diploid ancestors, are known for 
their enhanced adaptability to new habitats, with a greater 
capacity to occupy new ecological niches (Baniaga et al. 
2020; Otto and Whitton 2000). Although these phenomena 
typically yield individuals that initially have lower adaptive 
value than their progenitors, they are subject to natural selec-
tion that may favor a small fraction that can better adapt to 
a distinct environment (Stebbins 1971). Consequently, even 
though the phenotypic impact may be subtle, the resulting 
differences are of utmost importance for the evolutionary 
success of new polyploid lineages (Otto and Whitton 2000).

One possible consequence of polyploidy in plants is the 
fixation of mutations that can generate morphological varia-
tion. This variation is primarily characterized by an increase 
in cell size (Otto and Whitton 2000), including changes in 
stomatal size and density (Balao et al. 2011; Beaulieu et al. 
2008; Munzbergová 2009), and also affecting various veg-
etative and reproductive traits, such as larger flowers and 
seeds (Chansler et al. 2016; Griesbach 1985). Understanding 
the relationship between morphological diversity and WGD 
events is crucial, as the selection of novel morphological 
characteristics can facilitate the adaptation to new environ-
ments, leading to evolutionary and ecological consequences 
(Garbutt and Bazzaz 1983; Li et al. 2010; Chansler et al. 
2016; Soltis et al. 2016; Van de Peer et al. 2017; Gloria 
2020; Moraes et al. 2022).

Numerous angiosperm families display extensive kar-
yotypic variation, and several polyploidy events, includ-
ing Asteraceae, Fabaceae, and Orchidaceae (Goldblatt 
1980; Bairiganjan and Patnaik 1989; Weiss-Schneeweiss 
et al. 2008; Doyle 2012; Hedrén et al. 2018; Senderowicz 
et al. 2021). Lythraceae, a eudicot family of Myrtales (Chase 
et al. 2016), encompasses 28 genera (Facco and Cavalcanti 
2023; Inglis et al. 2023). Among them, Cuphea is the most 
diverse, comprising around 260 species (Facco and Caval-
canti 2023). Cuphea species are herbaceous or small per-
ennial shrubs known for their substantial morphological 
variation in vegetative and reproductive organs (Fig. 1). The 
native geographical distribution of Cuphea is limited to the 
Neotropics, with accidental introductions in Africa natural-
ized and possibly in China, spanning diverse ecosystems 
such as wetlands, forests, savannas, and prairies, ranging 
from coastal regions to the central continent, and from sea 
level to mountainous areas (Facco and Cavalcanti 2023). 
Cuphea represents the most karyotypically diverse genus 
within Lythraceae, with haploid chromosome numbers rang-
ing from 6 to 86 (Graham 1992; Graham and Cavalcanti 
2001; Pozzobon et al. 2022).

Detailed taxonomic studies on Cuphea have been ongoing 
since the late twentieth century, involving taxonomic revisions 

and the description of new species (Brauner and Cavalcanti 
2018; Cavalcanti and Graham 2008; Facco 2015; Facco and 
Cavalcanti 2022, 2023; Graham 1988, 1989a, 2017, 2019a, 
2019b; Graham and Cavalcanti 2013). The advancement of 
Cuphea phylogeny, combined with available taxonomic and 
cytogenetic knowledge, provides ample opportunities for 
investigating hypotheses concerning the evolution of chromo-
some numbers. Previous studies hypothesized a potential rela-
tionship between chromosomal diversity and the taxonomic 
and morphological richness of Cuphea, indicating that the 
genus diversity may be linked to polyploidy and aneuploidy 
events (Graham and Cavalcanti 2001; Barber et al. 2010).

Thus, we conducted an investigation using a molecular 
phylogeny to: 1. Explore the evolution of chromosome num-
bers in the genus by reconstructing ancestral chromosome 
numbers; 2. Assess the presence of phylogenetic signals for 
morphological characters and karyotypes; 3. Determine pos-
sible correlations between karyotypes and leaf and floral 
morphology. Considering that Cuphea represents a widely 
distributed genus across heterogeneous ecosystems, and 
exhibits diverse morphology with a broad range of karyo-
types, we hypothesize that polyploidy events throughout its 
evolutionary history are associated with the vegetative and 
reproductive morphological variation observed in the genus.

Material and methods

Taxon sampling

The chromosome number data available for Cuphea 
species was gathered using the Chromosome Counts 

Fig. 1   Variation of interspecific flower and leaf characters in Cuphea. 
a Leaf of C. appendiculata; b leaf of C. thymoides; c flower of C. 
llavea; d flower of C. pascuorum. a Hartweg K000532885 (KEW); b 
Hatschbach K001073728 (KEW); c Davis Fl212408 (FLAS); d Har-
ley et al. K001073612 (KEW)
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Database—CCDB (2021, continuously updated) and 
the IAPT/IOPB Chromosome Data (2021, continuously 
updated). These databases provide information from vari-
ous sources, including Dollon and Hamel (1967), Graham 
(1968a, b, 1980, 1982, 1987, 1988, 1989a, 1989b, 1992), 
Graham and Cavalcanti (2001, 2007), Goldblatt (1981), 
Guha (1972), Molero et al. (2002), Ornduff (1967), and Poz-
zobon et al. (2022). A total of 104 species with reliable data 
were sampled, representing approximately 40% of the genus. 
In cases where different karyotypic counts were reported for 
the same species (3%), the highest recorded chromosome 
number was considered. Species with supernumerary chro-
mosomes were included, although the B chromosomes were 
not counted (Online Resource 1).

A morphological database was established for the 104 
Cuphea species with available chromosomal data. Morpho-
logical traits related with species environment adaptations, 
such as leaf length and width (Knight and Ackerly 2003; 
Ackerly 2004), along with reproductive biology traits, floral 
tube length was measured (Vichiato et al. 2014, Caruso et al. 
2019). These measurements were obtained from taxonomic 
revisions of the genus and other published sources (Graham 
1968a, b, 1988, 1989a, 1990, 1998, 2017; Cavalcanti and 
Graham 2008; Facco 2015; Brauner 2018) and, when neces-
sary, supplemented with images from online botanical col-
lections (eg. K, P, MO, NY, RB, R, UB, UFMT) utilizing the 
software ImageJ for accurate measurements (Rasband 2012).

Out of the 104 characterized species, sequences from 
54 species were retrieved from the Genbank database for 
constructing a phylogenetic tree. This selection, although 
representing ca. 21% of the genus, encompassed nearly all 
sections of Cuphea, with the exception of C. sect. Amazo-
niana for which karyotype data were not available in the 
literature (Graham 2019b). Geographically, the sampling 
covered the entire distribution range of the genus (Graham 
1968a, b, 1988, 1989a, 1990, 1998, 2017; Cavalcanti and 
Graham 2008; Facco 2015; Brauner 2018). Molecular mark-
ers, including the plastid spacer trnL-trnF, plastid intron 
rpl16, and nuclear spacer (rDNA) ITS (including 5.8S), were 
used for the phylogenetic analysis. Most species have at least 
one nuclear and one plastid marker. Pleurophora anomala 
(A.St.-Hil.) Koehne was chosen as the outgroup based in 
Barber et al. (2010).

Phylogenetic analyses

Sequences of each marker were aligned into independent 
matrices using the MUSCLE (Edgar 2004) on the Geneious 
platform (Biomatters, Auckland, New Zealand), and align-
ments were subsequently manually optimized. The best-
fitting nucleotide substitution model for each data matrix 
(ITS, trnL-trnF, and rpl16) was selected using JModelTest 
v.2.1.5 (Darriba et al. 2012) under the Akaike information 

criterion (AIC). The GTR + G model was found to be the 
most appropriate for all three matrices.

The matrices were then concatenated, and Bayesian infer-
ence (BI) analyses were performed using Mr. Bayes v3.2 
(Ronquist et al. 2012) implemented on CIPRES Science 
Gateway (Miller et al. 2009) for both each individual data 
matrix and the concatenated matrix. BI was performed with 
two simultaneous runs and four chains each. The Markov 
chain Monte Carlo (MCMC) parameters were set to 20 mil-
lion generations, sampling every 1000 trees. The initial 25% 
of trees were discarded as burn-in. Convergence between the 
two independent runs was checked with Tracer 1.6 (Ram-
baut et al. 2018) based on the estimated sample size value 
(> 200). Clades with a posterior probability (PP) greater than 
or equal to 0.95 were considered to have strong support; 
while, clades with PP values between 0.94 and 0.90 were 
considered moderately supported (Cummings et al. 2003; 
Erixon et al. 2003).

The resulting phylogenetic trees were generated only for 
the purpose of assessing branch support, identifying well-
supported incongruences, and validating the robustness of 
the inferred phylogenetic relationships. During this process, 
10 species were excluded from the analyses due to strongly 
supported incongruences observed among the independent 
marker trees (ITS, trnL-trnF, and rpl16), which promoted 
the occurrence of polytomies in the concatenated data tree. 
Incongruent phylogenetic patterns can be the  result  of 
hybridization, technical issues like misidentification, con-
tamination, uncertainty in phylogenetic reconstruction, 
inaccurate orthology assessment, analytical artefacts such 
as branch attraction, horizontal gene transfer, and incom-
plete lineage sorting (Guo et al. 2018; Davis and Xi 2015; 
Wendel and Doyle 1998). Thus, to scape these possibilities 
the final dataset included 44 species (approximately 17% of 
the genus) for subsequent analyses (Fig. 2).

Cytogenetics

To reconstruct changes in basic chromosomic numbers, an 
ultrametric tree including all 44 species was constructed 
using both ITS and plastid datasets, employing BEAST 
1.8.4 (Drummond et al. 2012) on CIPRES Science Gate-
way (Miller et al. 2009). The BEAUti 1.8 program was used 
to create the input files, applying the same evolutionary 
models cited above. A lognormal relaxed molecular clock 
model was applied for this analysis, following the Yule 
process prior. The MCMC parameters were set to perform 
150,000,000 generations, sampling every 1500 iterations. 
The resulting tree was evaluated using Tracer v1.6 (Rambaut 
et al. 2018), and the final tree was constructed by processing 
the post-burn-in trees using TreeAnnotator v1.10.4 (Bouc-
kaert et al. 2019).
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The reconstruction of ancestral states for chromosome 
number was performed using ChromEvol v.2 software (May-
rose et al. 2009; Glick and Mayrose 2014) implemented in 
the RASP platform (Yu et al. 2015). To accomplish this, 
we employed the ultrametric tree generated by our analysis 

and the available chromosome number data provided in 
Online Resource 1. All available models of chromosome 
number evolution in ChromEvol were evaluated to deter-
mine the best model to explain the observed variation in 
chromosome numbers. The optimal model, as determined 

Fig. 2   Consensus phylogram derived from a Bayesian inference 
analysis using nuclear (ITS) and plastidial (trnL-trnF and rpl16) 
marker data for Cuphea species. Posterior probability (PP) values are 
displayed above the branches. The current classification of species 
sections is positioned next to the scientific name and follows the fol-

lowing acronyms: ARC (C. sect. Archocuphea); BRA (C. sect. Brach-
yandra); CUP (C. sect. Cuphea); DIP (C. sect. Diploptychia); EUA 
(C. sect. Euandra); HTD (C. sect. Heterodon); LEP (C. sect. Lepto-
calyx); MEL (C. sect. Melvilla); and TRI (C. sect. Trispermum). The 
five major clades are identified by the black bars
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by the Akaike information criterion (AIC), was identified as 
CONST_RATE. The analysis encompassed 10,000 simula-
tions; while, the basic number considered for analysis was 
x = 8.

Phylogenetic signal

In order to examine potential associations between the evo-
lutionary history of the genus and the distribution of mor-
phological characteristics, as well as karyotypes, phyloge-
netic signal analyses were employed. To accomplish this, 
we used our ultrametric tree and the morphological traits 
investigated included the minimum and maximum measure-
ments of leaf length and width, and floral tube length. Sub-
sequently, Pagel’s λ coefficient (Pagel 1999) was estimated 
for each selected trait using the 'phylosig' function on the 
'phytools' package v1.9-16 (Revell 2012). Pagel’s λ repre-
sents a measure of phylogenetic signal, indicating the extent 
to which the evolutionary history accounts for the observed 
distribution of traits among the terminal taxa. Furthermore, 
this function conducts a hypothesis test to assess the statisti-
cal significance of the obtained lambda values. That means, 
if closely related species resembles each other more closely 
than expected by chance alone. The lambda values range 
from 0 to 1, where 0 indicates that trait evolution is inde-
pendent of phylogeny, while 1 signifies the maximum degree 
of phylogenetic signal, e.g., trait evolution follows the exact 
pattern of the phylogenetic tree (Münkemüller et al. 2012).

These analyses were instrumental in evaluating whether 
the potential correlations between morphological traits and 
karyotypes could be attributed to the evolutionary history of 
the group, rather than implying a causative relationship. If 
both the morphological and cytogenetic datasets exhibit sig-
nificant phylogenetic signal, it becomes challenging to ascer-
tain whether the observed correlation arose due to ancestral 
traits shared among descendants (indirect relationship, mere 
causality) or whether it is a consequence of recent inde-
pendent events, such as genomic structural changes (e.g., 
polyploidy) in terminal nodes, thereby enhancing adaptive 
processes that favor the fixation of morphological traits. 
Conversely, if no phylogenetic signal is detected in one of 
the datasets, any putative correlation cannot be explained by 
indirect factors such as the conservation of ancestral traits 
and is more likely to possess a cause-and-effect relationship 
between morphological traits and karyotypes.

The mapping of morphological characters into the ultra-
metric tree was executed utilizing the 'contMap' function 
on the 'phytools' package v1.9-16 (Revell 2012). This func-
tion, proposed by Revell (2012), facilitates the visualization 
of ancestral estimations for continuous characters through 
maximum likelihood (Schluter et al. 1997), interpolating 
states along branches utilizing the equation outlined in 
Felsenstein (1985). In the context of this study, its utility 

lies in examining whether the characters demonstrating phy-
logenetic signal in Cuphea exhibit a congruent topological 
distribution when compared to ancestral genomic alteration 
events related to chromosome numbers. The analyses for 
ascertaining the phylogenetic signal and character mapping 
within morphological datasets were executed using R soft-
ware (R Core Team 2023).

Statistical analyses

The normality of the variables was verified using the Sha-
piro–Wilk test. Non-normal distributions were observed 
across all attribute sets, thus, nonparametric tests were 
performed. The analyses were undertaken in two distinct 
manners to investigate potential correlations between ploidy 
levels and the observed variables. To this end, the species 
were examined separately within two groups: diploids alone 
(59 spp.) and diploids combined with polyploids (104 spp.), 
following a similar approach to that employed by Moraes 
et al. (2022). In this context, both ascending and descend-
ing dysploidies were taken into consideration. The diploid 
group encompassed species with n = 6 to n = 12; whereas, 
the polyploid group encompassed species with n = 13 to 
n = 56. Spearman test was used to proceed with the cor-
relation analyses between the chromosome number and 
morphological variables. Mann–Whitney test was applied 
to evaluate the potential differences between two morpho-
logical datasets, namely diploids (D) and polyploids (P). The 
statistical analyses were conducted using the R software (R 
Core Team 2023).

Results

Phylogenetic analyses

Our final phylogram, based on three markers (ITS, trnL-
trnF, and rpl16) and derived from Bayesian Inference 
(Fig. 2), provides good support for five primary clades 
within Cuphea (clade 1, PP = 1.0; clade 2, PP = 1.0; clade 
3, PP = 0.98; clade 4, PP = 1.0; clade 5, PP = 1.0) that were 
found in previous phylogenetic studies conducted by Gra-
ham et al. (2006), Graham and Cavalcanti (2007). Despite 
our smaller sample size, our analysis demonstrated a good 
resolution (Fig. 2).

According to Koehne (1903) classification, the first 
divergent lineage corresponds to C. subg. Cuphea (clade 
1, PP = 1.0), including a species from C. subg. Bracteola-
tae sect. Brachyandra (C. circaeoides Sm. ex Sims) nested 
among the other taxa. Consequently, C. subg. Cuphea may 
be found to be non-monophyletic, as well as its two sections, 
C. sect. Cupheaand C. sect. Archocuphea, which are also not 
monophyletic. Together, clades 2, 3 and 5 represent C. subg. 
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Bracteolatae and display moderate support (PP = 0.93). 
However, the sections C. sect. Brachyandra, C. sect. Diplop-
tychia, C. sect. Heterodon, C. sect. Leptocalix, and C. sect. 
Melvilla, are also non-monophyletic. Notably, only C. sect. 
Trispermum is confirmed to be monophyletic as part of clade 
3. A significant observation is the presence of a clade com-
posed solely of North American species (clade 5). Here, we 
contribute to this clade by including C. salicifolia Schltdl. 
& Cham.

Cytogenetics

The retrieved chromosomal numbers exhibit a range from 
n = 6 (C. lanceolata W.T.Aiton) to n = 56 (C. retroscabra 
S.Watson), being n = 8 and n = 16 the most frequent (18 and 
19 species respectively) (Fig. 3). Within Cuphea, the major-
ity of chromosomal numbers are multiples of eight, suggest-
ing a basic chromosomal number of x = 8. However, ances-
tral state reconstruction of chromosomal numbers revealed 
that the ancestral chromosomal number for the genus is 
x = 11 (n = 11–87.09%; n = 8–7.37%; Online Resources 2, 
3 and 4). This number is primarily supported by its preva-
lence as the common karyotype in clades C1 and C2, which 
represent the earliest diverging lineages in the genus phylog-
eny (Fig. 4). Conversely, chromosomal numbers multiples 
of eight are more frequently observed in clades C3, C4, and 
C5, which contain most species with available molecular 
and chromosomal data. Chromosome numbers close to 
n = 8 largely originate from a descending dysploidy event 
in clade 10 (Fig. 4; n = 8–100%, Online Resources 2, 3 and 
4), which represents the most recent common ancestor of 
C3 + C4 + C5. 

The examination of ancestral karyotypes in Cuphea 
reveals a high incidence of polyploidy in the genus, with 
at least 11 events of whole-genome duplication occurring 
in clades 23 (C4, Fig. 4; n = 8–35.46%; n = 14–32.82%, 
Online Resources 2, 3 and 4), 29 (C5, Fig. 4; n = 16–81.49%, 

n = 8–18.51%; Online Resources 2, 3 and 4), and 37 (C5, 
Fig. 4; n = 8–54.19%, n = 8–45.81%; Online Resources 2, 
3 and 4). Additionally, polyploidy events are observed in 
terminal taxa such as C. pseudosilene Griseb., C. parsonsia 
(L.) R.Br. ex Steud., C. thymoides Cham. & Schltdl., C. hys-
sopifolia Kunth, C. spectabilis S.A.Graham, C. aequipetala 
Cav., C. appendiculata Benth., C. schumannii Koehne, and 
C. salicifolia Schltdl. & Cham (Fig. 4). The North American 
clade (C5) accounted for approximately 59% of the poly-
ploidy events in the genus; while, C4 and C3 accounted for 
41% of the events.

Dysploidy, characterized by changes in chromosomal 
numbers, also occurs recurrently in the group. Specifically, 
10 events of ascending dysploidy were identified in clades 
14 and 43, as well as in terminal taxa such as C. melvilla 
Lindl., C. pseudosilene Griseb., C. bustamanta Lex., C. 
spectabilis S.A.Graham, C. tolucana Peyr., C. appendicu-
lata Benth., C. paucipetala S.A.Graham, and C. salicifolia 
Schltdl. & Cham. Furthermore, 10 occurrences of descend-
ing dysploidy were observed within the genus in clades 
10, 20, 23, 24, 34, as well as in terminal taxa such as C. 
gaumeri Koehne, C. denticulata Kunth, C. avigera B.L.Rob. 
& Seaton, C. aequipetala Cav., and C. lutea Rose ex Koehne. 
Lastly, a diploidization event was noted in clade 34 (C5, 
Fig. 4; n = 7–100%, Online Resources 3 and 4).

Overall, it is apparent that alterations in chromosomal 
numbers in Cuphea primarily occur closer to the terminal 
branches of the phylogeny. The tree’s backbone consists of 
clades with the most recent common ancestor possessing 
n = 8 or n = 11 chromosomes. Additionally, these events are 
not clustered to specific clades but are dispersed across all 
major clades (Fig. 4).

Phylogenetic signal

The analyses demonstrated that, apart from maximum leaf 
width, all other morphological characteristics sampled 

Fig. 3   Frequency and distri-
bution of the chromosomal 
numbers retrieved from the 
Chromosome Counts Data-
base—CCDB and IAPT/IOPB 
Chromosome Data
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in this study exhibited significant phylogenetic signal 
(λ = 0.73–0.45; p < 0.05) (Table 1). However, the chro-
mosomal data exhibit no phylogenetic signal (λ < 0.05). 

Therefore, any observed correlation between morphology 
and karyotypes cannot be attributed to indirect factors such 
as the retention of ancestral characters. By observing the 

Fig. 4   Reconstruction of chromosome numbers in the genus Cuphea. 
The colors filling the circles represent the most probable ancestral 
chromosome number at each node of the tree. The numbers inside 
the circles identify the nodes of the tree. The recorded chromosome 

number changes are represented by squares with P↑ polyploidy; Dip↓ 
diploidization; D↑ ascending Dysploidy; D↓ descending dysploidy, 
*Cuphea node. **North American clade node
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mapping of morphological traits into the phylogenetic tree 
topology, it is noted that species displaying the greatest 
lengths of floral tubes and the largest leaves are situated 
within the North American clade, as well as clade C2. Con-
trariwise, the smallest values are predominantly observed in 
clades C1 and C4 (Fig. 5).

Statistical analyses

The results obtained from the correlation tests indicate a 
statistically significant relationship between chromosomal 
numbers and certain morphological characteristics in 
Cuphea (ρ = 0.22–0.32). Analysis of the data with all ploidy 
species revealed a positive correlation between the chromo-
somal number and the minimum leaf length, as well as the 

minimum and maximum lengths of the floral tube. How-
ever, when considering only diploid species, no correlation 
was observed between the floral traits and the chromosomal 
number (Table 2). Furthermore, our investigation revealed 
significant variations in the length of the floral tube between 
polyploid and diploid species. Specifically, polyploid spe-
cies exhibited longer floral tubes when compared to diploid 
species (Table 3; Fig. 6).

Discussion

Our research confirmed that the chromosomal evolution of 
the genus Cuphea exhibits multiple independent polyploidy 
events, and the pivotal role of WGD and dysploidy in the 
extensive karyotypic variation observed. We found phylo-
genetic signal for some morphological features but not for 
chromosome numbers, so the correlations found cannot be 
explained by conservation of ancestral traits and is more 
likely to possess a cause-and-effect relationship. There is 
compelling evidence suggesting that the evolution of floral 
tube and leaf sizes has been influenced by the occurrence 
of WGD events, as evidenced by a positive correlation with 
higher chromosomal numbers. The North American clade 
within Cuphea represents a noteworthy model for potential 
future deliberations regarding the contribution of polyploidy 
to adaptive radiations.

This study aimed to examine the potential relationship 
between karyotypic evolution and morphological charac-
ter variation in Cuphea. The presence of different chro-
mosome numbers within the genus can be attributed to 
events of WGD accompanied by chromosomal rearrange-
ments, including descending and ascending dysploidy and 
subsequent diploidization (Lysák and Schubert 2013). 
Our findings demonstrate that polyploidy and dysploidy 

Table 1   Phylogenetic signal for 
morphological characteristics 
and chromosome number in 
Cuphea 

The signal is described based 
on the Pagel's lambda (λ) value. 
The bolded numbers are consid-
ered significant
Lmax maximum leaf length; Lmin 
minimum leaf length; Wmax 
maximum leaf width; Wmin 
minimum leaf width; Tmax max-
imum floral tube length; Tmin 
minimum floral tube length. n 
Chromosome number

Trait λ p

n  < 0.05 1
Lmin 0.73 0.0001
Lmax 0.59 0.0030
Wmin 1.00 0.0003
Wmax 0.49 0.0600
Tmin 0.45 0.0020
Tmax 0.46 0.0008

Fig. 5   Mapping of all leaf and flower morphological traits that exhib-
ited phylogenetic signal in Cuphea. a Maximum floral tube length; 
b minimum floral tube length; c maximum leaf length; d minimum 

floral tube length; e minimum leaf width. The values a 4.5–40, b 
3.5–25, c 8–140, d 2–70 and e 0.5–34 represent the range of sizes 
sampled in millimeters
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events played a crucial role in the karyotypic diversifica-
tion of Cuphea, with 20% of the studied species exhibiting 
polyploidy events in terminal branches. This prevalence of 
polyploidy in terminal branches is an uncommon occurrence 
among angiosperms but has been observed in select genera 
such as Opuntia (Cactaceae, Majure et al. 2012), Epiden-
drum (Orchidaceae, Cordeiro et al. 2022), Turnera (Passiflo-
raceae, Solis Nefa et al. 2022), Ulex (Fabaceae, Bellot et al. 
2023), and Hieracium (Asteraceae, Krahulcová et al. 2009).

We were able to confirm several dysploidy events in the 
evolutionary history of Cuphea. Dysploidy has been pro-
posed as one of the primary forces triggering karyotypic var-
iation in plants (Carta et al. 2018), as observed in Asteraceae 
(Mas de Xaxars et al. 2016) and Marantaceae (Winterfeld 
et al. 2020). Changes in chromosomal numbers created by 
dysploidy events persist longer through evolutionary time 
compared to polyploid changes (Escudero et al. 2014), it 
may explain the high number of dysploidy events found in 
our analysis. We found at least nine ascending or descend-
ing events in terminal clades, indicating that they could be 
related to speciation as described to Artemisia L. (Aster-
aceae, Mas de Xaxars et al. 2016), Reichardia Roth (Aster-
aceae, Cho et al. 2022) Chamaecrista Moench (Fabaceae, 
Braz et al. 2024), and Passiflora L. (Passifloraceae, Sader 
et al. 2019), playing a crucial role in the diversification (De 
Storme and Mason 2014).

Our phylogenetic analysis exhibited higher resolution 
compared to that of Barber et al. (2010), who chose not to 
concatenate the matrices of plastidial and nuclear markers. 
By excluding taxa that caused significant incongruence 
between the matrices, we were able to produce a concat-
enated analysis with robust branch supports. The incongru-
ences observed may have arisen from past hybridization and 
introgression events, retention of ancestral polymorphism 
(Pessoa et al. 2022), technical issues as misidentification, 

Table 2   Analysis of correlations performed using the Spearman test

The ‘D’ set represents the results obtained using only diploid spe-
cies data; while, the ‘D + P’ set refers to the results obtained after 
the addition of polyploid species. The bold data shows the significant 
correlations (p ≤ 0.05)
Lmax maximum leaf length; Lmin minimum leaf length; Wmax maxi-
mum leaf width; Wmin minimum leaf width; Tmax maximum floral 
tube length; Tmin minimum floral tube length

Variable D + P D

ρ p ρ p

Lmin 0.2216 0.0237 0.3261 0.0117
Lmax 0.1269 0.1991 0.2321 0.0768
Wmin 0.1169 0.2373 0.2550 0.0512
Wmax − 0.0260 0.7932 0.1814 0.1691
Tmin 0.2103 0.0321 − 0.1989 0.1310
Tmax 0.2812 0.0088 − 0.0227 0.8643

Table 3   Results of the Mann–
Whitney test comparing diploid 
and polyploid species

The bold data indicate the sets 
that exhibited a significant dif-
ference (p ≤ 0.05) in ranking 
between the two samples
Lmin minimum leaf length; Lmax 
maximum leaf length; Wmin 
minimum leaf width; Wmax 
maximum leaf width; Tmin mini-
mum floral tube length; Tmax 
maximum floral tube length

Dataset W p

Lmin 1120 0.1731
Lmax 1226 0.5073
Wmin 1240.5 0.5691
Wmax 1452 0.4149
Tmin 876.5 0.0030
Tmax 860.5 0.0021

Fig. 6   Comparison of the data-
sets from maximum floral tube 
length (a) and minimum floral 
tube length (b) among diploid 
(D) and polyploid (P) species in 
Cuphea 
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contamination, horizontal gene transfer, and incomplete lin-
eage sorting (Wendel and Doyle 1998; Davis and Xi 2015; 
Guo et al. 2018).

Notably, we confirmed the presence of a clade comprising 
solely North American endemic species (Clade 5; Fig. 2). 
These species belong to the second center of diversifica-
tion within the genus and are predominantly found in the 
dry subtropical forests of the southern Mexican mountain 
ranges, known for their remarkable biodiversity and richness 
of endemic species (Marshall and Liebherr 2001; Morrone 
2014; Montano-Arias et al. 2018). This clade had been pre-
viously identified by Barber et al. (2010), who differenti-
ated it based on its larger flowers and seeds compared to 
taxa originating from South America. Our analyses align 
with these previous observations as this clade encompasses 
species with larger floral and leaf measurements. Addition-
ally, this clade accounts for 59% of the identified polyploidy 
events within the genus.

Although autopolyploidy was also previously recorded 
to Cuphea in natural conditions (Gathman and Ray 1987), 
one of the main phenomena related to the origin of polyploid 
species is hybridization (allopolyploidy) (Soltis and Soltis 
2009). Hybrids have been described for Cuphea since the 
only completed taxonomic monograph of the genus (Koehne 
1903), furthermore significant efforts have been made to 
produce hybrids with economic potential (Gathman and Ray 
1987). However, most of these hybrids are not fertile due to 
meiotic irregularities, nevertheless, the uncommon fertile 
hybrids display greater vigor and can have morphologi-
cal differences (Ray et al. 1988). Gathman and Ray (1987) 
indicates that when hybridization happens between closely 
related species with genomes that are little differentiated, 
with close chromosome homology, diploidization occurs 
quite rapidly. The occurrence of fertile hybrids in Cuphea 
suggests a potential mechanism underlying the remarkable 
presence of polyploids within the genus (Robertson et al. 
2010; Bertier et al. 2013; Alix et al. 2017; Morales-Briones 
et al. 2018).

Overall, we did not detect significant phylogenetic sig-
nal in the variation of chromosome numbers (Table 1). This 
is consistent with the reconstructed karyotypic evolution 
(Fig. 3), which indicates recent and rapid diversification 
of chromosome numbers in Cuphea, with most dysploidy 
and polyploidy events occurring near the terminal branches. 
Our results stand against the common pattern observed in 
angiosperms, where karyotypes distribution exhibit phylo-
genetic signal (Carta et al. 2018). But, it is important to 
highlight that clade 5 include most of the WDG events and 
perhaps new analysis restricted to this clade may provide 
opposite results. WGD and dysploidy phenomena are known 
to induce meiotic failures (Bomblies et al. 2015). Meiotic 
adaptations can lead to high karyotypic diversity among 
closely related species (Haiduk and Baker 1982) which may 

provide a non-clear phylogenetic organization, as evidenced 
in Cuphea.

Conversely, we observed significant phylogenetic signal 
in the morphological characteristics of the genus (Table 1), 
indicating that closely related species share similar sizes of 
vegetative and reproductive organs. This pattern is expected 
as morphological characters tends to correspond to the phy-
logeny (Fougère-Danezan et al. 2010). Correlations between 
WGD events and specific morphological characters have 
been well-documented in the literature (Balao et al. 2011; 
Beaulieu et al. 2008; Munzbergová 2009). Previous studies 
in the genus also suggested a relationship between floral tube 
size and increased chromosome number in certain sections, 
such as C. sect. Melvilla (Graham 1980). However, a com-
prehensive analysis integrating phylogenetic, cytogenetic, 
and statistical approaches is not available for this taxon.

Our sampling effectively represented the discrepancy in 
floral morphologies within the genus (vide Graham 1990, 
1998, 2017; Cavalcanti and Graham 2008; Facco 2015), as 
well as the variation in chromosome numbers. Based on our 
data, we were able to confirm that polyploid Cuphea spe-
cies possess longer floral tubes (Fig. 6). Furthermore, there 
is a positive correlation between chromosome numbers and 
floral tube lengths (Table 2), supporting the hypothesis sug-
gested by Graham (1980). This correlation is consistent with 
observations made by Carta et al. (2018) for angiosperms in 
general, where smaller chromosome numbers are associated 
with smaller flowers.

The production of flowers with longer floral tubes may 
entail trade-offs, such as increased water and nutrient 
demands and higher carbon allocation (Teixido and Val-
ladares 2014). Bigger flowers are more expensive because 
of the high demand of energy needed for their production, 
development, and to keep then physiologically active (Patiño 
and Grace 2002; Galen 1999). In Cuphea some species of 
longer flower tubes are known to be pollinated by hum-
mingbirds (Melazzo and Oliveira 2012; Feinsinger 1978). 
Ornithophilous flowers are characterized by low sugar con-
centration and high nectar volume (Reed Haisworth and 
Wolf 1976). Nevertheless, polyploids are known to exhibit 
enhanced ecological tolerance and adaptive potential (Balao 
et al. 2011), often accompanied by apomictic reproductive 
mechanisms that support further population expansion and 
establishment. Additionally, the fixation of larger floral char-
acteristics throughout evolutionary processes may be linked 
to the ability of these flowers to attract more pollinators, sug-
gesting a potential positive selective pressure (Galen 1999). 
However, environmental conditions can neutralize selective 
pressure of pollinators (Caruso et al. 2019).

WGD phenomena can also contribute to variations in 
vegetative organs, with polyploid plants often exhibiting 
larger leaf sizes and higher stomatal densities (Otto and 
Whitton 2000; Beaulieu et al. 2008). It is important to note 
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that multiple selective pressures can influence the devel-
opment of these characters (Givnish 1987). However, our 
study revealed a clear positive correlation between chromo-
some numbers and leaf length (represented by minimal leaf 
length) in the genus, similar to the relationship observed 
with reproductive characters (Table 2). As individuals can 
have leaves of different sizes, minimum length recognizes 
better species with bigger leaves from the ones with smaller 
leaves. Furthermore, the absence of phylogenetic signal 
for karyotypes (Table 1) excludes the possibility of these 
correlations being explained by the retention of ancestral 
characters.

Considering that WGD phenomena serve as facilitators 
of speciation and evolution in plants (Alix et al. 2017), the 
polyploidy events in Cuphea may have enabled and driven 
the emergence and fixation of longer floral tubes and larger 
leaves as crucial mechanisms during the adaptive radiation 
of the genus, when expanding its distribution northward 
on the American continent, given that Cuphea has likely 
a South America origin (Inglis et al. 2023). Therefore, the 
colonization of new North American niches may have been 
facilitated by WGD events and subsequent chromosomal 
rearrangements.

Conclusions

We found evidence to support a positive correlation between 
chromosome numbers and overall size of selected mor-
phological traits with polyploid species showing longer 
floral tubes. Our investigations also revealed a potential 
association between polyploidy and the adaptive radiation 
of Cuphea during its distribution expansion to the North 
America. These results reinforce the importance of whole-
genome duplication events in producing trait diversity and, 
consequently, speciation. We propose that further studies be 
undertaken, focusing on this clade, to gain deeper insights 
into the role of polyploidy in Cuphea diversification. A 
comprehensive analysis, encompassing genome size data, 
physiological and anatomical information, and an expanded 
phylogenetic framework, holds promise for elucidating the 
mechanisms by which polyploidy may have facilitated the 
diversification of Cuphea.
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