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Abstract
Aechmea distichantha Lemaire (Bromeliaceae) is an epiphytic, rupicolous or terricolous bromeliad, with a wide geographical 
distribution in the Cerrado, Chaco, and Atlantic Forest phytogeographic domains in South America. In this study, a plastidial 
DNA region and ten nuclear microsatellite markers were used to estimate the genetic diversity and population structure of 
nine populations of Aechmea distichantha from Brazil. Our results revealed that A. distichantha has low-to-moderate plas-
tidial genetic diversity and moderate-to-high nuclear genetic diversity. In addition, a high genetic structure was observed 
among the A. distichantha populations in both genomes, suggesting restricted gene flow via seed and pollen. The high genetic 
differentiation found among A. distichantha populations in different geographical locations might be a consequence of its 
mixed reproductive system and restricted gene flow. The findings of the present study, with the unique genetic composition 
of most populations, suggests that in situ conservation is the most appropriate protection measure for these plant populations.
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Introduction

The Bromeliaceae family (Poales, 3726 species; Gouda et al. 
coun. updated) is the largest of the 37 families of angio-
sperms found exclusively in the Neotropics (Givnish et al. 
2014). Its species have undergone recent adaptive radiation, 
which makes the family an interesting model for studying 
phylogeographic patterns, reproductive isolation barriers, 
and diversification in the Neotropics (Givnish et al. 2011; 
Palma-Silva and Fay 2020).

Aechmea distichantha Lem. (Fig. 1) is a bromeliad with 
a wide geographical distribution occurring in regions of 
deciduous, semi-deciduous and ombrophilous forests, in 
the Cerrado, Chaco, and Atlantic Forest phytogeographic 
domains, in Brazil, and in the northern region of Argentina, 
Bolivia, and Paraguay (Smith and Downs 1979; Martinelli 
et al. 2008; Versieux et al. 2018; Barberis et al. 2020). The 
species is an epiphytic, rupicolous or terricolous plant with 
well-developed phytotelma and short stolons (Smith and 
Downs 1979; Scrok and Varassin 2011; Alvarez et al. 2018). 
This species reproduces both sexually and asexually (clonal 
reproduction; Smith and Downs 1979; Scrok and Varas-
sin 2011; Freire et al. 2018), being self-compatible with a 
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mixed reproductive system (Scrok and Varassin 2011). The 
pollinators of A. distichantha are hummingbirds, bees, and 
butterflies (Scrok and Varassin 2011; Freire et al. 2018). 
Its inflorescence is prevailing pink except for the blueish 
petals (Smith and Downs 1979; Scrok and Varassin 2011), 
conferring it an ornamental appeal. Indeed, the species has 
been used as an ornamental plant, and since it is not com-
mercially produced, it undergoes some level of predatory 
exploitation due to illegal extraction (Santa-Rosa et  al. 
2013), which could lead to local extinction of such popula-
tions in the future.

The phytogeographic domains in which A. distichantha 
occurs (Atlantic Forest, Cerrado, and Chaco) show great 
biodiversity, despite that, these three phytogeographic 
domains have been threatened with habitat loss and high 
degree of fragmentation (Myers et al. 2000; Ganem et al. 
2013; Tomas et al. 2015). For instance, only 12.4% of the 
original coverage of the Atlantic Forest in Brazil remains 
intact (SOS Mata Atlântica and INPE 2019). In the Cerrado, 
despite the existence of laws that protect fauna, flora, and 
resources such as soil and water, more than 8% of the area 
has already changed (Alho and Martins 1995; Myers et al. 
2000), and only 1.6% is in conservation units (Oliveira and 
Marquis 2002). The humid Brazilian Chaco region has also 
suffered from intensive deforestation, especially in the last 
few decades, only 13% of its original vegetation remained 
intact (Tomas et al. 2015).

Habitat fragmentation can lead to the subdivision of natu-
ral populations, affecting genetic variation, leading to loss 
of heterozygosity and increased inbreeding, in addition to 
contributing to the extinction of populations (Brito 2009; 
Frankham et al. 2019). Studies of the diversity and genetic 
structure of natural populations allow us to propose actions 
that can reduce the genetic-demographic consequences of 
fragmentation (Kettle 2014). For this reason, the investi-
gation of these aspects in natural populations is extremely 

important for the development of conservation and manage-
ment strategies, especially for rare and endangered species, 
with few and/or small populations (Rao and Hodgkin 2002; 
Frankham et al. 2010, 2019; Hoban et al. 2020, 2021).

There are many ways to study the genetic structure of 
populations and verify the degree of variability that exists. 
Plastid DNA (cpDNA) sequences have been very useful to 
study the diversity and genetic structure of natural popula-
tions, as well as to obtain estimates of phylogenetic rela-
tionships between different plant species (Turchetto-Zolet 
et al. 2012; Fava et al. 2021). Plastid DNA is maternally 
transmitted in most angiosperms, including Bromeliaceae 
(Ennos 1994; Wagner et al. 2015). This molecule tends to 
evolve at a very slow pace in relation to the rearrangement of 
genes and primary sequences, in addition to not undergoing 
recombination (Hartl and Clark 2010). Furthermore, with 
sequencing efforts, sufficient genetic variation can be found 
for phylogenetic approaches in individuals within a par-
ticular species (Avise 2009). Among the various molecular 
markers currently available, microsatellite or SSR (Simple 
Sequence Repeats) markers also are shown to be a powerful 
tool for the analysis of genetic diversity in natural plant pop-
ulations (Vieira et al. 2016; Allendorf 2017). Microsatellites 
are codominant markers, usually isolated from non-coding 
and species-specific regions. These markers can be used to 
help elucidate several questions related to taxonomy, pater-
nity, genetic structure of populations, comparison between 
species, mating system, gene flow, ecological specialization, 
and colonization capacity of populations (Boneh et al. 2003; 
Vieira et al. 2016; Allendorf 2017).

In the past two decades, SSR markers have been suc-
cessfully used in studies regarding genetic diversity, gene 
flow, population structure, and hybridization for at least 47 
bromeliad species, which still represents only ca. 1.3% of 
the Bromeliaceae species (see supplementary Table 1 for 
details). Here, we used one plastidial DNA region and ten 

Fig. 1   Individuals of Aech-
mea distichantha from Fecho 
dos Morros population, Porto 
Murtinho city, Mato Grosso do 
Sul state, Brazil. a Flowering 
adult individuals; b inflores-
cence detail. Photographs: FMR 
Godoy
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microsatellite loci to estimate the genetic diversity and popu-
lation structure of A. distichantha. We aimed to (1) evaluate 
the genetic diversity across populations and (2) infer the 
genetic structure of natural populations of A. distichantha. 
The findings of the present study may be utilized in conser-
vation efforts on this species.

Material and methods

Population sampling and DNA extraction

We sampled 137 individuals from A. distichantha, from nine 
populations distributed in fragments of Cerrado, Chaco, 
and Atlantic Forest, from 20 to 2160 m elevation (Table 1; 
Fig. 2). The distance between these populations ranged from 
27 to 1410 km. The ATSP, ITRJ, and IGRJ populations cur-
rently occur in conservation units, whereas the FMMS, 
RCMS, CAMG, LOPR, SBSC, and IRRS populations are 
unprotected (see Table 1 for population codes). To avoid 
errors in taxonomic identification, only flowering individuals 
were collected. To avoid sampling specimens from the same 
clonal origin, the plants were collected at a minimum dis-
tance of 10 m. Sampling consisted of collecting a fragment 
of leaf from each individual, cutting it into small pieces, 
and storing it in silica gel for dehydration until laboratory 
procedures. Total genomic DNA was extracted as described 
by Tel-Zur et al. (1999). DNA extractions were quantified on 
1.5% agarose gel, stained with GelRed (Biotum, Hayward, 
California, USA), and compared with λ phage DNA.

Molecular markers, sequencing and genotyping

We used one cpDNA region and ten nuclear microsatel-
lite loci (nrSSR) to investigate the genetic diversity and 
population structure of A. distichantha. The matK gene was 

selected based on the extent of its polymorphism and was 
amplified and sequenced in 50 individuals from nine popula-
tions of A. distichantha (Tables 1, 2). For the amplification 
and sequencing of the matK gene, we used the matK5 F 
(Crayn et al. 2000), BROM1 R, BROmatK 860 F (Schulte 
et al. 2005), and trnK2 R primers (Johnson and Soltis 1995).

The matK gene was amplified by the polymerase chain 
reaction (PCR) using a Veriti 96-Well Thermal Cycler 
(Applied Biosystems), in a total volume of 30 μL containing 
10 ng of DNA template, 1X GoTaq buffer, 1.5 mM MgCl2, 
0.25 mM dNTP mix, 1 mM forward and reverse primers, and 
0.5 U GoTaq DNA polymerase (Bioline, London, UK). PCR 
was conducted using the following parameters: initial dena-
turation at 95 °C for 3 min, followed by 30 cycles of 94 °C 
for 30 s, 48 °C for 30 s, 72 °C for 30 s, and a final extension 
of 10 min at 72 °C. The PCR products were sent to Macro-
gen (Seoul, Korea) for both forward and reverse sequenc-
ing. The sequences were visualized, edited, and manually 
verified using Geneious version 10.2.3 (http://​www.​genei​
ous.​com, Kearse et al. 2012). Sequence alignment followed 
the MUSCLE algorithm with default parameters and was 
manually checked for ambiguous alignments. Mononucleo-
tide repeats were removed because of uncertain homology, 
and indels longer than one base pair were recorded as single 
characters. Sequence data of both plastid regions of matK 
were concatenated for subsequent analyses. The A. dis-
tichantha sequences generated in this study were deposited 
in GenBank (accession numbers MZ224176 - MZ224225, 
MZ224226 - MZ224275).

We analysed ten microsatellite loci from 137 individu-
als from eight sampled populations of A. distichantha 
(Tables 1, 2). Ten microsatellite markers have been pre-
viously designed for other bromeliads species: Aechmea 
caudata Lindm. (Ac55; Goetze et al. 2013), A. coelestis 
É.Morren (Ao06; Abondanza 2012), Ananas comosus (L.) 
Merr. (Acom_71.3 and Acom_82.8; Wöhrmann and Weising 

Table 1   Information on the nine sampled populations of Aechmea distichantha from Brazil

PD  Phytogeographic domains; States: MS  Mato Grosso do Sul, SP  São Paulo, MG  Minas Gerais, RJ  Rio de Janeiro, PR  Paraná, SC  Santa Cata-
rina, RS  Rio Grande do Sul; Phytogeographic domains: CH  Chaco, CE  Cerrado and AF  Atlantic Forest

Population codes Locality/state Site Lat S Long W PD Altitude (m) Voucher

FMMS Porto Murtinho/MS Fecho dos Morros 21°27′ 57°55′ CH 140 COR15747
RCMS Porto Murtinho/MS Retiro Conceição Farm 21°42′ 57°53′ CH 80 COR15775
ATSP Atibaia/SP Pedra Grande 23°10′ 46°31′ CE 1324 UEC48720
CAMG Caldas/MG Pedra Branca 21°57′ 46°22′ AF 1334 COR17551
ITRJ Itatiaia/RJ Parque Nacional de Itatiaia 22°22′ 44°43′ AF 2160 COR17550
IGRJ Angra dos Reis/RJ Ilha Grande 23°09′ 44°08′ AF 20 RBR44218
LOPR Londrina/PR Campo das Pedras 23°38′ 51°5′ AF 712 MBM16275
SBSC São Bento do Sul/SC Parque Florestal do SAMAE 26°14′ 49°21′ AF 827 FURB49381
IRRS Iraí/RS Parque Municipal de Águas 

Termais de Iraí
27°11′ 53°14′ AF 237 HAS36072

http://www.geneious.com
http://www.geneious.com
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2011), Orthophytum ophiuroides Louzada & Wand. (Op30 
and Op77A; Aoki-Gonçalves et al. 2014), Pitcairnia albiflos 

Herb. (PaD07 and PaZ01; Paggi et al. 2008), P. geyskesii 
L.B.Sm. (Pit5; Sarthou et al. 2003), and Vriesea gigantea 

Fig. 2   Current geographical distribution of Aechmea distichantha and 
locations of the sampled populations of this study. The green circles 
represent the species occurrence sites and each red circle represents 
a sampling location for the populations (identified by their specific 

initial, for abbreviations, see Table  1). The records of the species 
occurrence points were obtained from the online databases of GBIF 
(https://​www.​gbif.​org/) and SpeciesLink (http://​splink.​cria.​org.​br/)

Table 2   The estimated 
diversity indexes for plastid 
DNA (cpDNA = matK) and ten 
nuclear microsatellites (nrSSR) 
of Aechmea distichantha 

N Number of samples, S  number of polymorphic sites, h  haplotype diversity, π  nucleotide diversity, 
NH  number of haplotypes,  A number of alleles, AP  private alleles, RS  allelic richness, HO  observed hete-
rozygosity, HE  expected heterozygosity and FIS  inbreeding coefficient. For population abbreviation names, 
see Table 1
*Inbreeding coefficient (FIS) differed significantly from the Hardy–Weinberg equilibrium (HWE) at 
*P < 0.001

Population cpDNA nrSSR

N S h π NH Haplotypes N A AP RS HO HE FIS

FMMS 3 1 0.667 0.0004 2 5;6 19 50 7 2.54 0.458 0.528 0.136*
RCMS 1 0 1.000 0.0000 1 6 6 35 5 2.99 0.605 0.648 0.075
ATSP 6 4 0.800 0.0011 4 1;2;3;4 22 75 16 3.48 0.526 0.696 0.250*
CAMG 8 3 0.464 0.0005 3 1;12;13 18 65 16 3.16 0.492 0.612 0.155*
ITRJ 7 0 0.000 0.0000 1 10 17 33 3 2.35 0.232 0.461 0.306*
IGRJ 7 13 0.667 0.0038 3 7;8;9 15 65 16 3.52 0.490 0.731 0.358*
LOPR 8 2 0.250 0.0003 2 6;14 20 64 14 3.09 0.499 0.644 0.210*
SBSC 3 0 0.000 0.0000 1 15 – – – – – – –
IRRS 7 0 0.000 0.0000 1 5 20 35 2 2.46 0.439 0.539 0.214*
TOTAL 50 23 0.428 0.0007 15 – 137 53 – 2.95 0.468 0.607 –

https://www.gbif.org/
http://splink.cria.org.br/
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Gaudich. (VgC01; Palma-Silva et al. 2007). The loci were 
previously tested and optimized for cross-amplification in 
A. distichantha by Godoy et al. (2019). The SSR loci ampli-
fications were conducted according to Godoy et al. (2019).

The PCR products were verified on a 1.5% agarose 
gel stained with GelRed and subsequently genotyped in a 
3500xL DNA Analyzer automated sequencer (Applied Bio-
systems) with standard-size GeneScan 500 LIZ (Applied 
Biosystems). The number and size range of the alleles were 
determined using GeneMaker software version DEMO 
(SoftGenetics, State College, Pennsylvania, USA).

Molecular data analysis: plastidial DNA analysis

For cpDNA, we used the software Arlequin version 3.5 
(Excoffier et al. 2005) to estimate haplotype (h), nucleo-
tide (π) diversity (Nei 1987), number of haplotypes (NH), 
and number of polymorphic sites (S). Polymorphisms in 
the matK marker sequences were used to construct differ-
ent haplotypes. A haplotype network was built based on the 
cpDNA, using Network software version 4.6.1.1 (available at 
http://​www.​fluxu​sengi​neeri​ng.​com), and the median-joining 
method (Bandelt et al. 1999) was used to estimate the evo-
lutionary relationships between haplotypes.

We examined the genetic structure of the populations 
using “Clustering with linked loci” implemented in Bayes-
ian clustering analysis (BAPS) 6.0 (Corander et al. 2013). To 
determine the most probable number of genetic groups (K), 
we performed ten algorithm repetitions for each K, from 1 to 
9, using default software parameters. We evaluated the popu-
lation structure using FST values calculated using the Arle-
quin software. We also carried out an analysis of molecular 
variance (AMOVA) to examine the partitioning of plastid 
genetic diversity within and between populations using the 
Arlequin software with 10,000 permutations.

Nuclear microsatellite analysis: genetic diversity 
and population structure

We estimated the number of alleles (A), private alleles (AP), 
allelic richness (RS), observed heterozygosity (HO), expected 
heterozygosity (HE), and inbreeding coefficient (FIS) (Weir 
and Cockerham 1984), using the programs Arlequin, FSTAT 
version 2.9.3.2 (Goudet 1995), and Microsatellite analyzer 
(MSA) 4.05 (Dieringer and Schlötterer 2003). Departures 
from the Hardy–Weinberg equilibrium (HWE) were identi-
fied in GenePop, Web version 4.2 (Raymond and Rousset 
2006).

AMOVA was performed to examine the partition of 
nuclear genetic diversity within and between populations 

in Arlequin with 10,000 permutations. To investigate 
the occurrence of population structure, we performed a 
Bayesian clustering algorithm implemented in Structure 
software, version 2.3.3 (Pritchard et al. 2000). For each 
K (from 1 to 10), we performed 10 replicates, using the 
admixture model, assuming independent allele frequen-
cies, with a burn-in period of 100,000 and a run length 
of 500,000 to confirm the stabilization of summary sta-
tistics (Pritchard et al. 2000). We determined the most 
likely number of populations, K, by using the ΔK method 
described by Evanno et al. (2005), in Structure Harvester 
version 0.6.94 (Earl and von Holdt 2012).

To determine whether divergence among populations is 
an effect of isolation by distance, we tested the correlation 
between geographical and genetic distance matrices (FST/
(1 − FST) with a standardized Mantel test (Sokal and Rohlf 
1995) using GenePop Web. Recent migration events were 
estimated in BayesAss 3.04 (Wilson and Rannala 2003). 
Samples were run for 1.0 × 108 interactions with a 10% 
burn-in, sampling every 1,000 interactions and using a 
60% increase for the allele frequencies and mixing param-
eters of inbreeding coefficients. In order to assess whether 
there has been a recent reduction in the size of populations 
of A. distichantha, we used the Bottleneck software ver-
sion 1.2.02 (Cornuet and Luikart 1996; Piry et al. 1999). 
Significance of the results was determined using the Wil-
coxon one-tailed test with 10,000 iterations (Cornuet and 
Luikart 1996). The SMM models “stepwise mutation 
model” and TPM “two-phase model” were used because 
they are more suitable for microsatellite markers—with 
95% single-step mutations, 5% multiple-step mutations, 
and variance among 12 steps (Piry et al. 1999).

Pollen versus seed flow

To estimate the relative contribution of pollen versus seed 
flow to total gene flow, we applied the following formula 
from Ennos (1994):

where FST(b) and FST(m) are the levels of population differ-
entiation calculated using biparentally (nrSSR) and mater-
nally (cpDNA) inherited markers, respectively. The calcu-
lation of the pollen/seed flow ratio presented here assumes 
that maternal inheritance of plastid DNA is a rule in A. dis-
tichantha, as in most other angiosperms (Ennos et al. 1999).

Pollen flow/seed flow =

(

1

F
ST(b)

− 1

)

− 2

(

1

F
ST(m)

− 1

)

(

1

F
ST(m)

− 1

)

http://www.fluxusengineering.com
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Results

Plastid genetic diversity and population structure

Amplification of the matK gene resulted in sequences 
with a length of 1580 bp, with 23 polymorphic sites (nine 

transitions, nine transversions, and five indels). Fifteen 
haplotypes were found in the 50 analysed A. distichan-
tha individuals, ranging from one to four per population 
(Table 2; Fig. 3a). Haplotypic diversity ranged from zero 
(in three populations) to 1.000, and nucleotide diversity 
ranged from zero (in four populations) to 0.0038 (Table 2).

Fig. 3   Haplotypes of cpDNA (gene matK) are identified by numbers 
and colours. a Haplotypes present in the populations of Aechmea dis-
tichantha analysed in this study, each population is represented by a 

star (for abbreviations, see Table 1); b Median‐joining network of the 
found haplotypes and the number of mutations between them, the size 
of the circles is proportional to their frequency
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The cpDNA network built with the “median-joining” 
method revealed the relationship between the 15 haplo-
types observed in the natural populations of A. distichan-
tha (Fig.  3b). Most haplotypes were separated by one 
mutational step; however, some haplotypes were separated 
by more mutational steps, such as H6 and H14 (two muta-
tional steps), H10 and H11 (three mutational steps), and 
H7 and H15 (seven mutational steps). The network showed 
that H11 was the central haplotype and was present only 
in the CAMG population. H5 and H6 haplotypes were the 
most frequent, and the only haplotypes shared between 
different populations: FMMS and IRRS shared the H5 
haplotype, and FMMS, RCMS, and LOPR shared the H6 
haplotype (Fig. 3b).

Bayesian clustering analysis (BAPS) of cpDNA 
sequences revealed a high genetic structure with six 
clusters (K = 6) in the nine sampled populations of A. 
distichantha (Fig. 4a). The defined groups recovered the 
patterns observed in the haplotype network, in which the 
most distant haplotypes were grouped (Fig. 3b). AMOVA 
showed that 80.25 of the genetic variation occurred due to 
differences between populations, indicating a significant 
and high genetic structure (FST = 0.80, P < 0.001; Table 3) 
for the plastidial genome.

Nuclear genetic diversity and population structure

The sampled populations of A. distichantha showed moder-
ate to high levels of genetic diversity at the ten microsat-
ellite loci (Table 2). The number of alleles per population 
ranged from 33 (ITRJ) to 75 (ATSP), and the allelic richness 
from 2.35 (ITRJ) to 3.51 (IGRJ). Two to 16 private alleles 
were found in the sampled populations—two in the IRRS 
population, three in the ITRJ, five in the RCMS, seven in 
the FMMS, and 14 in the LOPR population. Three popu-
lations had 16 private alleles (ATSP, CAMG, and IGRJ; 

Fig. 4   Clustering analyses of genomic variation across the range of 
Aechmea distichantha populations. a Indicates the results for BAPS, 
with optimal partition of six clusters; b indicates the results for  

STRU​CTU​RE, with optimal K = 8. Individuals were arranged by pop-
ulation. Distinct colours represent distinct genetic clusters (for abbre-
viations, see Table 1)

Table 3   Analysis of molecular variance (AMOVA) using cpDNA 
(matK) and ten nuclear microsatellites (nrSSRs)

Source of variation Percentage of 
variation

FST P value

cpDNA
 Among populations 80.25 0.80 P < 0.001
 Within populations 19.75

nrSSR
 Among populations 24.77 0.24 P < 0.001
 Within populations 75.22
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Table 2). The observed and expected heterozygosity ranged 
from 0.232 to 0.605, and 0.461 to 0.731, respectively. With 
the exception of the RCMS population, all the other seven 
populations deviated significantly from the Hardy–Wein-
berg Equilibrium, showing a deficit of heterozygotes, with 
the inbreeding coefficient (FIS) ranging from 0.075 to 0.358 
(Table 2). Gene flow posterior probabilities rates, estimated 
in BayesAss, indicated no contemporary migration events 
among populations, except for a small percentage (14%) of 
ATSP migrants found in the RCMS population (Table 4).

AMOVA for nrSSR (Table 3) showed a high genetic 
structure (FST = 0.24, P < 0.001), revealing that the larg-
est proportion of genetic variation was due to differences 
within populations (75.22%) rather than between popula-
tions (24.77%) (Table 3). Bayesian analysis of structure 
identified eight genetic groups (K = 8; Figs. 4b, 5), and a 
major genetic group was observed for most populations, 
indicating low gene flow among populations. Some indi-
viduals of the FMMS population showed a high probability 
of belonging to a group other than that represented by their 

locality (the predominant group in RCMS), which can prob-
ably be attributed to migrants between these two popula-
tions. The IGRJ population presented two genetic groups, 
whereas the populations geographically close to the LOPR 
and IRRS were grouped, demonstrating gene flow between 
them (Fig. 4b). However, the Mantel test was not significant 
(r2 = 0.0046, P = 0.059), showing no association between 
genetic and geographical distances, indicating the absence of 
isolation by distance among the sampled locations. Accord-
ing to the TPM and SMM models, no significant increase 
in heterozygosity was found in the Wilcoxon (Bottleneck) 
tests, indicating that the populations of A. distichantha did 
not experience a recent or strong bottleneck event.

Pollen versus seed flow

Based on the estimated FST values obtained from the molec-
ular analysis of variance among populations—plastid (0.80) 
and nuclear (0.24)—we estimated the ratio of pollen and 
seed flow, which was 10.66, suggesting that gene flow via 

Table 4   Estimates of the 
distribution of recent migration 
rates, calculated with BayesAss. 
For population abbreviation 
names, see Table 1

Bold values represent the proportion of non-migrant individuals in a population (values > 10%)

Source population Recipient population

FMMS RCMS ATSP CAMG ITRJ IGRJ LOPR IRRS

FMMS 0.892 0.0124 0.0294 0.0123 0.0168 0.0124 0.0123 0.0124
RCMS 0.0443 0.6907 0.1455 0.0239 0.0239 0.0239 0.0238 0.024
ATSP 0.0112 0.0111 0.9217 0.0113 0.0114 0.0111 0.0111 0.0111
CAMG 0.0128 0.0129 0.0129 0.9082 0.0131 0.0128 0.0145 0.0129
ITRJ 0.0136 0.0134 0.0138 0.0148 0.9031 0.0138 0.0139 0.0135
IGRJ 0.0144 0.0147 0.0146 0.0145 0.0145 0.8979 0.0145 0.0149
LOPR 0.0119 0.0119 0.0119 0.0143 0.0119 0.0119 0.9127 0.0134
IRRS 0.0122 0.0119 0.013 0.0145 0.015 0.0123 0.0157 0.9054

Fig. 5   Magnitude of ΔK from 
structuring analysis as a func-
tion of K (mean ± SD over 10 
replicates), calculated according 
to the ΔK method, proposed 
by Evanno et al. (2005), for 
Aechmea distichantha nuclear 
microsatellite data. The modal 
value of these distributions indi-
cates the true K or the highest 
level of structuring, here, there 
are eight genetic clusters
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pollen in A. distichantha was more than tenfold greater than 
that via seeds.

Discussion

In this study, we investigated the genetic diversity and popu-
lation structure of A. distichantha, a species with a wide geo-
graphical distribution, in the Cerrado, Chaco, and Atlantic 
Forest phytogeographic domains. Genetic analysis based on 
plastidial DNA revealed low-to-moderate genetic diversity 
within the populations. For the nuclear genome, our study 
showed moderate-to-high genetic diversity within popula-
tions. A high genetic structure was observed among the 
populations of A. distichantha for both genomes and gene 
flow via pollen was ten times more efficient than via seeds.

Genetic diversity

The genetic diversity indices from low to moderate (cpDNA) 
and from moderate to high (nrSSR) in the populations of A. 
distichantha may be related to its life history including sex-
ual and asexual reproductive system, which can be consid-
ered advantageous in different situations, especially in spe-
cies occupation and permanence in different environments 
(Karasawa 2009; Gütschow-Bento et al. 2010; Scrok and 
Varassin 2011). Furthermore, cpDNA is maternally trans-
mitted in most angiosperms, including Bromeliaceae (Ennos 
1994; Wagner et al. 2015). This molecule tends to evolve at a 
very slow pace in relation to the rearrangement of genes and 
primary sequences, in addition to not undergoing recombi-
nation. Several bromeliads of the genus Aechmea also show 
this pattern: A. calyculata (É.Morren) Baker (Goetze et al. 
2016), A. blumenavii Reitz, A. caudata, A. comata Baker, 
A. kleinii Reitz, A. winkleri Reitz (Goetze et al. 2017), A. 
kertesziae Reitz (Goetze et al. 2018), A. nudicaulis Griseb. 
(Meireles and Manos 2018).

The moderate-to-high genetic diversity in A. distichan-
tha (nrSSR) also suggests that its populations have not yet 
been affected by habitat fragmentation or intense illegal 
removal, and that genetic diversity within populations is 
not strongly affected by genetic drift, although the phyto-
geographic domains in which the species occurs—Cer-
rado, Chaco and Atlantic Forest—have suffered a long his-
tory of natural fragmentation (Ribeiro et al. 2009; Ganem 
et al. 2013; Tomas et al. 2015).

All populations, except RCMS, deviated significantly 
from HWE (Table 2) because of the high proportion of 
homozygotes, probably due to both self-fertilization and 
biparental inbreeding. Aechmea distichantha is a self-
compatible species (Scrok and Varassin 2011; Freire 
et al. 2018) with a mixed reproductive system; that is, 

the species exhibits sexual reproduction with facultative 
self-fertilization (Scrok and Varassin 2011), which may 
enhance crossing between relatives.

Genetic structure and gene flow

We found a high genetic structure among the populations 
of A. distichantha for cpDNA and nrSSR (FST = 0.80 and 
0.24, respectively), with most populations presenting only 
a single or few exclusive haplotypes (Fig. 3a, Table 3). 
These results suggest low gene flow and genetic connec-
tivity among populations, which agrees with the absence 
of contemporary migration events between populations, as 
shown in the BayesAss analysis, evidencing high differen-
tiation among populations. The high genetic structure and 
moderate haplotypic diversity suggest low gene flow for 
both markers, and consequently, limited dispersion of both 
pollen and seeds. Habitat fragmentation may be associated 
with reduced gene flow (Maciel et al. 2019). Aechmea dis-
tichantha, which occurs in environments that have suffered 
a long history of natural fragmentation (Ribeiro et al. 2009; 
Ganem et al. 2013; Tomas et al. 2015), showed reduced gene 
flow among its populations and, consequently, high genetic 
structure. These population structure values have already 
been described for other bromeliads of mixed mating sys-
tems (Barbará et al. 2009; Palma-Silva et al. 2009; Dantas-
Queiroz et al. 2021; Mota et al. 2020).

A high plastidial genetic structure was also observed with 
the BAPS analysis, suggesting the existence of six genetic 
groups and demonstrating a high subdivision of A. dis-
tichantha populations (Fig. 4a). Similarly, the results from 
the Bayesian analysis revealed eight nuclear genetic groups 
and a low degree of admixture between the groups, also indi-
cating a high population genetic structure (Fig. 4a). West-
ern populations (FMMS, RCMS, LOPR, and IRRS) were 
grouped, whereas Eastern populations presented different 
genetic groups for the plastidial genome. Some populations 
in the West, although geographically distant from each other, 
shared the same genetic group (Fig. 4). This was also con-
firmed by the absence of isolation by distance between the 
populations of A. distichantha, detected by the Mantel test 
(r2 = 0.0046, P = 0.059). We found haplotypes and private 
alleles in all populations (Table 2), corroborating the high 
genetic structure and low gene flow among populations, as 
noted by the low number of migrants per generation between 
populations (Barton and Slatkin 1986; Szpiech and Rosen-
berg 2011). It was not possible to detect recent or strong 
bottleneck events in A. distichantha, reflecting a constant 
size of the studied populations over time. The absence of a 
recent bottleneck, high genetic structure among populations, 
and high levels of genetic diversity found in A. distichan-
tha suggest that the populations were founded by geneti-
cally diverse individuals. Similar results have been reported 
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for other bromeliads, including A. kertesziae (Goetze et al. 
2018), Pitcairnia flammea Lindl. (Mota et al. 2020), Vriesea 
incurvata Gaudich. (Aguiar-Melo et al. 2019), and V. reitzii 
Leme & A.F.Costa (Soares et al. 2018).

Our analysis revealed that, in A. distichantha, gene flow 
via pollen is more than tenfold greater than that via seeds 
(10.66), which indicates restricted seed dispersion and shows 
the importance and efficiency of its pollinators. This pattern 
is commonly seen in bromeliads (Palma-Silva et al. 2009; 
Paggi et al. 2010; Goetze et al. 2018; Vicente-Silva et al. 
2022). Aechmea distichantha presents zoochory seed disper-
sal, being carried out mainly by birds, as in most species of 
the genus Aechmea (Bonnet and Queiroz 2006; Lenzi et al. 
2006; Goetze et al. 2018). The inefficiency in seed dispersal 
may have made it difficult to maintain the gene flow between 
their populations, something also observed in A. kertesziae, 
in which the high genetic structure found showed evidence 
of seed dispersal barriers (Goetze et al. 2018). This pattern 
differs from that found in a similar study with V. incurvata, 
in which a high gene flow between populations was reported, 
being equally effective through pollen and seeds, in this 
case, the anemochoric seed dispersal may have favoured the 
long-distance dispersal events, facilitating gene flow among 
populations, and keeping their connection with a high num-
ber of migrants (Aguiar-Melo et al. 2019). Several aspects 
of species biology, as well as ecological relationships and 
environmental conditions, can interfere in the gene flow 
both via pollen and seeds, thus, this issue should be better 
investigated in Bromeliaceae. Studies of the reproductive 
biology of A. distichantha have shown that hummingbirds, 
bees, and butterflies can pollinate the species. Although self-
compatible, this species also has great reproductive success, 
especially when exposed to sun light and in individuals with 
larger inflorescences (Scrok and Varassin 2011; Freire et al. 
2018). Thus, its pollinating agents play a fundamental role 
not only in gene dispersal but also in the formation of viable 
seeds, contributing to the maintenance of moderate to high 
levels of genetic diversity in the species.

The FMMS and RCMS populations of A. distichantha 
are located in humid Chaco, Western Brazil, on the border 
with Paraguay. This region is considered to be one of the 
most threatened ecoregions in Brazil, as native vegetation 
has been heavily replaced by pastures cultivated for live-
stock (Tomas et al. 2015). Recent estimates show a great 
reduction in the original vegetation, with only 13% remain-
ing (Tomas et al. 2015). Therefore, species associated with 
this environment may present a restricted and fragmented 
distribution accompanying Chaco Forest remnants, as is the 
case for A. distichantha. The CAMG, IGRJ, ITRJ, SBSC, 
and IRRS populations were found in mixed rainforests, the 
LOPR population was found in semi-deciduous forests, and 

the ATSP population was found in semi-deciduous seasonal 
forests. The populations occur in different phytogeographic 
domains, but their distribution is not related to the groups 
formed by nuclear and plastid genome analysis. In addition, 
no apparent geographical barrier isolates the groups and the 
observed disjunction may reflect a historical pattern of vari-
ance, as was also observed in populations of A. calyculata 
(Goetze et al. 2016).

Conservation implications

Data on genetic diversity and population structure can con-
tribute to the planning of effective conservation actions to 
guarantee the population persistence (Frankham et al. 2010, 
2019). In the case of A. distichantha, the use of data from 
plastid and nuclear DNA markers is essential for conserva-
tion programmes, since it is threatened by potential preda-
tory exploitation—due to its ornamental value (Santa-Rosa 
et al. 2013)—and by the fragmentation and loss of its natural 
habitat (Cerrado, Chaco, and Atlantic Forest; Ribeiro et al. 
2009; Ganem et al. 2013; Tomas et al. 2015).

The ATSP, CAMG, and ITRJ populations have 16 pri-
vate alleles each, therefore, they deserve special attention 
in any conservation measures. A greater diversity and fre-
quency of haplotypes occur in these populations, which may 
be related to the fact that two of them are currently found 
in conservation units (Fig. 2, Table 3). Some studies have 
shown that populations that occur within protected areas 
tend to have higher rates of genetic diversity, as is the case 
for the Dicksoniaceae species, for which Montagna et al. 
(2012) found a greater genetic diversity inside conservation 
units of Dicksonia sellowiana Hook. populations, evidenc-
ing the importance of the units, both for conservation of 
the genetic diversity and for research on the topic of plant 
genetic resources use and conservation. Considering the 
obtained results, we suggest monitoring and in situ conser-
vation of ATSP, CAMG and ITRJ populations, to maintain 
the observed genetic diversity, mainly considering the high 
population structure.

Conclusions

Our results showed that the populations of A. distichan-
tha still retain moderate to high levels of genetic diversity, 
but with high genetic structure. The fact that it is a spe-
cies with a mixed reproductive system probably contributes 
to this diversity. The gene flow via pollen was ten times 
greater than via seed, showing the importance of pollinators 
who significantly contribute to the genetic connectivity of 
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populations and to the maintenance of the genetic diversity. 
Clonal vegetative propagation may also be responsible for 
preserving the genotypes in the populations. Regarding the 
conservation of A. distichantha, in situ monitoring and con-
servation of ITRJ and IRRS populations are recommended, 
mainly because they have low genetic diversity, which would 
be an impediment to adaptation in the face of future envi-
ronmental changes.
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