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Abstract
Plant-specific fasciclin-like arabinogalactan proteins (FLAs) are a subclass of the arabinogalactan proteins (AGPs) super-
family. In addition to AGP-like glycosylated regions, FLAs have conserved fasciclin (FAS) domains. Here, we identified 
220 FLA genes from seven Rosaceae species, including 38 FLA gene in pear. Based on gene structure and phylogenetic 
analysis, the Rosaceae FLA genes can be divided into four classes. The Ks and 4DTv values suggested that the PbrFLA 
gene family had undergone two whole-genome duplication events occurring at 30–45 MYA and ~ 140 MYA, respectively. 
Whole-genome duplication (WGD) and transposed duplication (TRD) events mainly drove the evolution of PbrFLA gene 
family. Most pear FLAs from pear had no intron in their genomic DNA sequences. Pear FLAs possess two highly conserved 
regions (H1 and H2) and the conserved [Tyr Phe] His ([Y/F]H) motif locating between these two regions. Based on gene 
expression analysis, most pear FLAs exhibited tissue-specific patterns. PbrFLA10, PbrFLA20, and PbrFLA21 were highly 
expressed in pollen tubes and self-pollinated styles, indicating FLAs play roles in pollen tube growth and self-incompatibility 
response. Repression of PbrFLA10/20/21 resulted in the acceleration of pear pollen tube growth. Taken together, our results 
provided information for understanding the evolution of the PbrFLA gene family and identified the key PbrFLAs genes 
regulating pollen tube growth.
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Introduction

The pollen tube is one of the fastest growing organs in flow-
ering plants, which responsible for delivering sperm cells 
through the pistil to the ovules. During its rapid growth, 
new components of the cell wall and plasma membrane are 

continuously deposited at the tip of the growing pollen tube. 
The role of different structural proteins and polysaccharides 
such as hydroxyproline-rich glycoproteins (HRGPs) are cru-
cial to maintain the integrity of the pollen tube cell wall 
(Sede et al. 2020).

HRGPs are typical cell-wall proteins that participate 
in plant growth, development and immunity (Castilleux 
et  al. 2018). The HRGP superfamily can be classified 
into three subfamilies: arabinogalactan proteins (AGPs), 
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pro-rich proteins (PRPs) and extensins (EXTs) (Wu et al. 
2020). Among the three subfamilies, AGPs have the high-
est degree of glycosylation. Previous studies speculated 
that two HRGPs (Pbr036330.1 and Pbr010506.1) might 
be related to gametophytic self-incompatibility (GSI) in 
pear (Jiao et al. 2018).

AGPs as one of the major family of glycoproteins in 
plant cell wall may function in gametophytic cell differen-
tiation, male–female interactions and pollen tube growth 
(Pereira et al. 2016; Su and Higashiyama 2018). Most of 
AGPs are predicted to be glycosylphosphatidylinositol 
(GPI) anchored which is a possible mode of release of 
AGPs to the extracellular medium where AGPs may exert 
their functions (Pereira et al. 2016). In Arabidopsis, the 
expression of AGP6 and AGP11 genes is related to the 
development of pollen grains and the start of the germina-
tion process (Coimbra et al. 2009). In tobacco, AGP com-
ponents of the stylar extracellular matrix (ECM) directly 
interact with pollen tubes (Cruz-Garcia et al. 2005). It is 
indicated that AGPs may be involved in pollen grain for-
mation, initiation of pollen grain germination and pollen 
tube guidance in the transmitting tract of pistil.

Fasciclin-like AGPs (FLAs) are one of the subfamilies 
of AGP. To date, genome-wide identification and com-
parative analysis of FLA gene families have been reported 
in many plant species, including Arabidopsis thaliana 
(Johnson et al. 2003), rice (Oryza sativa) (Ma and Zhao 
2010), wheat (Triticum aestivum) (Faik et al. 2006), cot-
ton (Gossypium hirsutum) (Huang et al. 2008), Chinese 
cabbage (Brassica rapa) (Jun and Xiaoming 2012), euca-
lypt (Eucalyptus grandis) (MacMillan et al. 2015), pop-
lar (Populus trichocarpa) (Showalter et al. 2016), textile 
hemp (Cannabis sativa) (Guerriero et  al. 2017). The 
members of the FLA proteins possess at least one fasci-
clin domains that consist of 110 to 150 amino acids (aa) 
that contain two highly conserved regions (H1 and H2) 
and one [Phe/Tyr]-His motif (Johnson et al. 2011). This 
domain has been shown to function as adhesion motifs 
in extracellular matrix (Kim et al. 2000). Most of FLAs 
also contain a GPI membrane anchor that allows anchor-
ing the FLA molecule to the cell membrane. Evidence 
from several studies indicates that FLAs are likely to be 
important during plant growth and development, such as 
fiber development (Wang et al. 2015), cell wall regenera-
tion (Showalter et al. 2016), cell-to-cell communication 
(Jun and Xiaoming 2012), glycan stabilization (Xue et al. 
2017) and in response to stresses from cold (Takahashi 
et al. 2016) and hydrogen peroxide (Zhang et al. 2015). 
Otherwise, AtFLA3 and AtFLA5 may perform function in 
pollen development and affect pollen intine formation in 
Arabidopsis (Li et al. 2010). However, the function of FLA 
in plant sexual reproduction and the development of pollen 
tube has never been reported in Rosaseae.

Pear, one of the typical GSI plant in Rosaceae fruit 
trees, is widely cultivated all over the world (Wu et al. 
2013). In this study, we have identified 220 FLA family 
genes from pear and other six species of Rosaceae, and 
performed comprehensive analysis on their evolution-
ary history. Moreover, the expression patterns of Pbr-
FLA10/20/21 in reproductive tissues were investigated 
to speculate their functional roles in pollen tube growth. 
Suppressing the expression of PbrFLA10/20/21 resulted 
in the acceleration of pollen tube growth in pear. Overall, 
the identification and bioinformatic analysis of FLAs in 
pear will open the way for studying their biological func-
tions in pollen tube growth and development as well as 
evolutionary history.

Materials and methods

Plant materials

Pear (Pyrus bretschneideri, ‘Dangshansuli’ variety) trees 
grown in Fruit Experimental Yard of Nanjing Agricultural 
University, China were used in this study. Root (from seed-
ling), leaf (from bearing tree), fruit (mature fruit), different 
developmental stages of pollen tubes, the styles (on the day 
of flowering) and the styles with different pollination were 
collected and frozen immediately in liquid nitrogen and 
stored at −80 °C. Anthers of the ‘Dangshansuli’ variety were 
collected and dried for one day and then stored in silica gel at 
−20 °C. Pollen grains were cultured in sealed tube with liq-
uid medium at 24 °C for hydration, germination and growth. 
The medium components were 0.5 mM Ca(NO3)2, 1.5 mM 
H3BO3, 450 mM sucrose, 15% (w/v) PEG4000 and 25 mM 
2-(N-morpholino) ethanesulfonic acid hydrate, with pH 
6.0–6.5 (pH was adjusted with KOH). Pollen tubes longer 
than their diameters were considered germinated. The length 
of pollen tubes was measured by Image-Pro software, with 
approximately 150 pollen tubes measured for length. A great 
number of pollen grains (0.3 g mature dry pollen per sample) 
were cultured for different time and used for RNA isolating. 
The different developmental stages of pollen tubes, mature 
pollen grains (MP) with 0 min post-cultured, hydrated pollen 
grains (HP) with 40 min post-cultured, growing pollen tubes 
(PT) with 6 h post-cultured and stopped-growth pollen tubes 
(SPT) with 15 h post-cultured, were immediately frozen in 
liquid nitrogen and kept at -80 °C for RNA extractions (Zhou 
et al. 2016). As for the styles with different pollination, we 
collected the styles of the ‘Dangshansuli’ variety at 24 h 
after self-pollination (SP) and cross-pollination with ‘Cuig-
uan’ variety (CP), respectively. The styles of ‘Dangshansuli’ 
variety without pollination as control (UP). The pistils were 
isolated and stored in liquid nitrogen.
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Whole‑genome identification of FLA genes in seven 
species of Rosaceae

The genome sequences of seven species of Rosaceae were 
downloaded from each genome project (Online Resource 
4). Then, the 21 protein sequences of identified AtF-
LAs were obtained (Schultz et al. 2002). Subsequently, 
the alignment file for the fasciclin domain (PF02469) 
obtained from the Pfam database (https://​pfam.​sanger.​ac.​
uk/) (Finn et al. 2010) was used to build a hidden Markov 
model (HMM) file. Then, a HMM search was conducted 
against the seven species of Rosaceae protein database 
by using HMMER3 software (Eddy 2011). Furthermore, 
NCBI Batch CD-Search (https://​www.​ncbi.​nlm.​nih.​gov/​
Struc​ture/​bwrpsb/​bwrpsb.​cgi) (Marchler-Bauer et  al. 
2015, 2017) was used to retain the candidate protein 
sequences based on the existence of the fasciclin domain 
(smart00554, cl02663, pfam02469). Subsequently, the GPI 
anchor was identified by big-PI Plant Predictor (https://​
mendel.​imp.​ac.​at/​sat/​gpi/​gpi_​server.​html) (Eisenhaber 
et al. 1999). The ExPASy (https://​web.​expasy.​org/​compu​
te_​pi) was used to predict the pI (isoelectric point) and 
MW (molecular weight).

Phylogenetic analysis of the FLA genes

Maximum-likelihood (ML) phylogenetic tree was con-
structed with all 241 full-length FLA protein sequences 
of seven Rosaceae species and Arabidopsis by IQ-TREE 
(Trifinopoulos et al. 2016). The best-fit substitution model 
VT + F + R7 was determined by ModelFinde (Kalyaana-
moorthy et al. 2017), and the bootstrap values were 1000. 
Evolview (version 2) (Zhang et al. 2012a, b), an online visu-
alization tool, was used to beautify phylogenetic tree.

Chromosomal localization and synteny, Ka, Ks 
and 4DTv analysis of FLA

Five duplication events, whole-genome duplication (WGD)/
segmental duplication, singleton duplication (SD), tandem 
duplication (TD), proximal duplication (PD), and transposed 
duplication (TRD), of gene pairs among the seven species 
of Rosaceae were identified by using the DupGen_finder 
pipeline (Qiao et al. 2019). Kaks_calculator 2.0 (Wang et al. 
2010) was used to calculate the Ka, Ks substitution rates 
with the Yang and Nielsen method (YN method). ParaAT 
2.0 (Zhang et al. 2012a, b) was used to calculate corrected 
4DTv values of FLA with the Hasegawa, Kishino and Yano 
method (HKY method) (Hasegawa et al. 1985). The density 
plot of the distribution of Ks and 4DTv values was plotted 
using ggplot2 package in R.

Gene structure, conserved motifs and multiple 
sequence alignment analysis of the pear FLA genes

Gene structural information for PbrFLA genes was obtained 
from the pear genome database and displayed using TBtools 
software (Chen et al. 2020). Conserved motifs of the genes 
were analyzed by the Multiple EM for Motif Elicitation 
(MEME) program (Liu et  al. 2016) with the following 
parameters: optimum motif width was set to 30–70, and the 
maximum number of motifs was set to identify 15 motifs. 
Multiple sequence alignments corresponding to conserved 
motifs characteristic of the PbrFLA proteins were deter-
mined by Jalview with muscle method (Waterhouse et al. 
2009).

Expression pattern analysis of PbrFLA genes 
by transcriptome sequencing

RNA-seq data of pear pollen (PRJNA299117) were acquired 
from Sequence Read Archive database (SRA, https://​www.​
ncbi.​nlm.​nih.​gov/​sra). Clean reads were obtained by fastp 
software (Chen et al. 2018a, b). Hisat2 (Kim et al. 2015) was 
used to align clean reads to the reference genome, and fea-
tureCounts (Liao et al. 2014) was used to estimate transcript 
abundance levels. The transcripts per million (TPM) values 
were used to measure the expression levels of the PbrFLA 
genes. The RNA-seq expression profile of pear styles with 
different pollination (https://​figsh​are.​com/s/​49b94​f0fc5​
ff1d9​26afe) was obtained from the previous study (Shi et al. 
2017). Then, the expression levels were transformed from 
fragments per kilobase million (FPKM) to TPM using R 
code. The pheatmap, a function in R, was used to plot heat-
maps based the TPM values of each PbrFLA genes with 
normalization method of Z-score standardization.

Quantitative real‑time PCR analysis (qRT‑PCR)

The expression patterns of the PbrFLA genes were analyzed 
by qRT-PCR analysis. Total RNA was extracted using Plant 
Total RNA Isolation Kit Plus (FOREGENE Co. Ltd.). Then, 
the total RNA was adjusted to the same concentration, and 
based on the adjusted RNA, first-strand cDNA was synthe-
sized by using TransScript One-Step gDNA Removal and 
cDNA Synthesis SuperMix (TransGen Biotech Co. Ltd.). 
The specific primers were designed by using NCBI online 
software (https://​www.​ncbi.​nlm.​nih.​gov/​tools/​primer-​
blast), which amplified 38 PbrFLA gene sequences (Online 
Resource 13). qRT-PCR analysis was performed by using 
the LightCycler 480 SYBR GREEN I Master (Roche). A 
20 μl mixed reaction system was performed, each contained 
with 150 ng of template cDNA, 0.5 μM of each pair primers 
and 10 μl of LightCycler 480 SYBR GREEN I Master. All 
reactions were performed in 96-well plates and each cDNA 
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sample had three replicates. qRT-PCR procedure was set as 
follows: first 5 min at 95 °C for pre-incubation, 55 cycles at 
95 °C for 3 s, 60 °C for 10 s, and 72 °C for 30 s, and then 
3 min at 72 °C for extension. Finally, the step of fluorescence 
signal data collection was carried out at 60 °C. Pyrus UBQ 
was used as the internal control genes (Chen et al. 2015). 
The data were analyzed by LightCycler 480 Software v1.5.0 
(Roche) using the 2−ΔΔCT method (Livak and Schmittgen 
2001). The expression data were analyzed and graphed by R.

Antisense oligo deoxynucleotide experiment

Both phosphorothioate antisense oligo deoxynucleotide (as-
ODN) and sense control (s-ODN) were designed using RNA 
fold Web Server (http://​rna.​tbi.​univie.​ac.​at/​cgi-​bin/​RNAfo​
ld.​cgi). Soligo software was used to calculate efficient can-
didate as-ODN sequences for suitable target regions (http://​
sfold.​wadsw​orth.​org/​soligo.​pl). The antisense oligonucleo-
tide experiment was performed as previously described 
(Moutinho et al. 2001; Chen et al. 2018a, b). The length of 
the pollen tubes was measured using a Leica DM6B micro-
scope with LASX software. The length of at least 100 pollen 
tubes was measured on each condition. The sequences of 
oligonucleotide primers are listed in Online Resource 13.

Construction of gene co‑expression network

To investigate the regulatory network between target genes 
and transcription factors (TFs), random forest regression was 
estimated for each gene based on the TFs as inputs using 
the GENIE3 package in Python3 with default parameters 
(Huynh-Thu et al. 2010). By the GENIE3 algorithm, we 
calculated the connectivity between target genes and TFs 
based on the RNA-seq data (different development of pollen 
tubes and different pollinated styles). For each co-expressed 
gene pair, the value of connectivity > 0.005 was extracted 
(Ramirez-Gonzalez et al. 2018). Networks were visualized 
by using Cytoscape software (Maere et al. 2005).

Statistical analysis

All experimental data were analyzed by t.test() function in 
R. Two groups of samples were compared using Student’s 
t-test.

Results

Whole‑genome characterization and classification 
of the FLA genes in seven Rosaceae species

Most FLA proteins have low overall similarity among 
plant (He et  al. 2019); therefore, it is difficult to find 

family members using Basic Local Alignment Search Tool 
(BLAST) searches. In order to comprehensively identify the 
candidate FLA genes in pear genome, we searched for pro-
teins with the fasciclin domain across the whole-genome 
sequence of pear. The seed file of fasciclin (FAS) (PF02469) 
from Pfam (http://​pfam.​janel​ia.​org/) was used to obtain the 
hidden Markov model (HMM) sequence file; then, HMM 
searches were performed in HMMER3.0 software against 
the pear protein database (http://​pearg​enome.​njau.​edu.​cn/). 
A total of 41 candidate PbrFLA proteins were identified. 
To further verify the reliability of candidate FLA proteins, 
NCBI Batch CD-Search was used to detect the completeness 
of fasciclin domain of candidate proteins. As a result, three 
candidate proteins without FAS domain were removed. Con-
sequently, a total of 38 non-redundant and complete FLA 
proteins were identified in pear genome for further analy-
sis. To distinguish members of the FLA family, we named 
each of PbrFLA genes from PbrFLA1 to PbrFLA38, based 
on their order on the chromosomes (Online Resource 6). 
Among these 38 PbrFLA genes, 30 genes could be mapped 
on chromosomes, and eight genes on the unanchored 
scaffolds.

Using the same strategies, we identified 33, 28, 33, 37, 
31 and 20 FLA genes from apple (Malus domestica), peach 
(Prunus persica), Chinese plum (Prunus mume), sweet 
cherry (Prunus avium), strawberry (Fragaria vesca) and 
black raspberry (Rubus occidentalis) genomes, respec-
tively (Online Resource 4). The lengths of the FLAs pro-
tein sequences ranged from 100 to 1197 amino acids. The 
molecular weights and protein isoelectric points (PI) were 
ranged from 11.02 to 126.24 kD and 4.11 to 11.10, respec-
tively (Online Resource 6).

To clarify the evolutionary relationship of FLA family in 
seven Rosaceae species and 21 identified protein sequences 
of Arabidopsis (Schultz et al. 2002), a ML phylogenic tree 
for the putative FLA proteins was inferred. Based on the 
classification of subfamilies in Arabidopsis, a total of 241 
FLA proteins from eight species were phylogenetically cat-
egorized into four groups, namely class I, class II, class III 
and class IV. Most FLA genes were contained in class IV 
(96 of 241), followed by class III (70 of 241), class I (60 of 
241) and class II (15 of 241) (Fig. 1, Online Resource 5). 
Presence and number of fasciclin domains and GPI were 
also used to interpret the classification (Online Resource 
6). As previously described, members of class I possess 
a single fasciclin domain and most (81.48%) have GPI 
anchored signal. The smallest group is class II and mem-
bers contain two fasciclin domains (except Ro07_G07830 
and MD07G1214900) but have no C-terminal GPI anchor 
site. Members of subclass III have either one to five fas-
ciclin domains, and most (70.97%) have a C-terminal GPI 

http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi
http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi
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anchor site. The remaining FLA proteins constitute subclass 
IV, which contains FLAs that are quite distantly related to 
the other FLAs and which have no consistent pattern in the 
number of fasciclin domains or the presence of a GPI signal.

Synteny analysis reveals the dates and driving 
forces for evolution of the FLA gene family

Duplication events have contributed to the evolution of novel 
functions, such as the production of floral structures, induc-
tion of disease resistance, and adaptation to stress (Panchy 
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et al. 2016). To investigate the origin of FLA family genes, 
we analyzed five modes of gene duplication, whole-genome 
duplication (WGD), tandem duplication (TD), proximal 
duplication (PD), transposed duplication (TRD) and dis-
persed duplication (DSD), in seven Rosaceae species and 
identified their contributions to the expansion of the FLA 
gene family. A total of 267 duplicated gene pairs were found 
in seven Rosaceae species, with the maximum number of 
gene pairs derived from DSDs (168 gene pairs), followed by 
TRDs (33 gene pairs), WGDs (31 gene pairs), TDs (27 gene 
pairs) and PDs (8 gene pairs) (Table 1). Although a high 
frequency of DSD-genes was detected, we should not ignore 
the important roles of other types of single-gene duplication 
such as WGD and TRD in the expansion of the PbrFLA 
gene family. Notably, the percentage of gene pairs retained 
following WGD duplication in pear (20.97%) and apple 
(23.91%) was higher than that in peach (2.94%), strawberry 
(3.23%), Japanese apricot (5.56%), sweet cherry (5.26%), 
and black raspberry (5.00%).

To reveal the evolutionary routes of the FLA gene fam-
ily, we evaluated distribution of the FLA genes on the 
chromosomes and both inter- and intra-genomic synteny 
analyses within seven Rosaceae species. The landscape 
of 454 inter-species collinear orthologous FLA gene pairs 
among Rosaceae species presented in Fig.  2, suggest-
ing the strong homology of FLA genes in Rosaceae spe-
cies. Further, we detected six genes (FvH4_2g30720.1, 
MD08G1134300, MD15G1109400, Pav_sc0003562.1_
g160.1.mk, Prupe.1G461700.1.p, Ro02_G04573) that have 
collinear relationship with PbrFLA10 and seven genes 
(FvH4_2g30720.1, MD08G1134300, MD08G1131800, 
MD15G1109400 ,  Pav_sc0003562.1_g160.1 .mk , 
Prupe.1G461700.1.p, Ro02_G04573) that have collinear 
relationship with PbrFLA20 (Online Resource 9). After that, 
intra-genomic collinearity of five duplication events was also 
investigated in each species, and 62 pairs were found in pear, 
46 pairs in apple, 34 pairs in peach, 38 pairs in sweet cherry, 
36 pairs in Japanese apricot, 31 pairs in strawberry, and 20 
pairs in black raspberry (Fig. 3, Table 1). The chromosome 
localization of collinear orthologous FLA gene pairs was 
detected (Fig. 3). In pear and apple, the gene pairs were 

mainly distributed on chromosomes 3 and 15. In pear and 
apple, the gene pairs were mainly distributed on chromo-
somes 3 and 15. In Japanese apricot, the gene pairs were 
mainly distributed on chromosomes 1. In the rest of the four 
species, the gene pairs were mainly distributed on chromo-
somes 6. Thus, the FLA of the seven Rosaceae species was 
distributed unevenly on chromosomes.

The Ks value is used to estimate the evolutionary history 
of WGD events (Blanc and Wolfe 2004). In this study, there 
were two peaks with Ks value at approximately 0.15–0.30 
and 1.5–1.8 in pear and apple, respectively (Fig. 4b). In 
detail, nine WGD-pairs of pear and seven WGD-pairs of 
apple fell in the range from about 0.15 to 0.30. Simultane-
ously, three WGD-pairs of pear and three WGD-pairs of 
apple mapped to the region with values from about 1.5 to 
1.8 (Online Resource 8). Furthermore, the recent WGD 
event with 4DTv (four-fold degenerate site transversion) 
of ∼0.08 and an ancient WGD event with 4DTv of ∼0.5 
(Wu et al. 2013). From the distribution of 4DTv (Fig. 4b, 
Online Resource 8), there were two peaks with a 4DTv value 
at approximately 0.08 and 0.5 in pear and apple, respec-
tively. This result further supported the conclusions of Ks 
analysis, which indicated the FLA gene family had under-
gone two WGD events in pear and apple. By combining 
Ks and 4DTv analysis, we concluded that six (PbrFLA26-
PbrFLA12, PbrFLA12-PbrFLA31, PbrFLA16-PbrFLA19, 
MD09G1119100-MD17G1110000, MD13G1028200-
MD16G1031100, MD03G1179200-MD11G1198600) and 
three WGD-pairs (PbrFLA20-PbrFLA11, MD03G1114600-
MD04G1100000, MD08G1134300-MD15G1109400) were 
duplicated during the recent and ancient WGD duplica-
tion event, respectively. The Ka/Ks value equals to one 
showed neutral evolution, positive selection when the Ka/
Ks value is greater than one, and purifying selection when 
the Ka/Ks value is lower than one (Yang 2007). Except 
Pav_sc0000094.1_g360.1.br-Pav_sc0000094.1_g390.1.br, 
Pav_sc0001106.1_g220.1.mk-Pav_sc0006377.1_g040.1.mk, 
Pav_sc0001009.1_g520.1.br-Pav_sc0001640.1_g210.1.br, 
most Ka/Ks ratios of the FLA gene pairs were lower than 
one demonstrating FLA primarily evolved under purifying 
selection (Fig. 4a, Online Resource 8).

Table 1   Numbers of FLA gene pairs from different duplication events in seven Rosaceae intra-genomics

Fragaria vesca Malus 
domestica

Prunus avium Pyrus bretsch-
neideri

Prunus mume Prunus persica Rubus occi-
dentalis

SUM

DSD 24 23 29 31 24 22 15 168
WGD 1 11 2 13 2 1 1 31
TRD 3 8 2 10 4 3 3 33
TD 1 4 5 4 6 7 0 27
PD 2 0 0 4 0 1 1 8
SUM 31 46 38 62 36 34 20 267
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Gene structural and conserved motif analysis 
of PbrFLA

Gene structure analysis provides valuable information to 
interpret the phylogenetic relationship of members within 
gene family (Li et al. 2009). To identify gene structures 
and evolutionary trajectories of FLA genes in pear, we 
investigated exon–intron compositions of the 38 PbrFLAs. 

Analysis of the genomic DNA sequences showed that none 
of the PbrFLAs contained intron except that PbrFLA12, 
PbrFLA19 and PbrFLA29 had one intron (Fig. 5a). As pre-
viously reported that introns in FLA genes were lost during 
plant evolution, especially from green algae to land plants 
(He et al. 2019). Most members (79%) of class III had two 
untranslated regions (UTR), whereas no UTR regions were 
detected from other three classes except PbrFLA14 and 
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PbrFLA30 (Fig. 5a), suggesting that PbrFLAs in class III 
might have unique and significant biological functions.

To further provide information to understand the 
sequence and structure of PbrFLA proteins in pear, MEME 
tool was used to predict the conserved motifs of PbrFLA 
proteins. A total of 15 conserved motifs were identified in 
our study, named from motif 1 to motif 15 (Online Resource 
7). As shown in Fig. 5b, most of members of PbrFLA pro-
tein contained conserved motifs 1, 4, 6 and 8, while the 
others were unique to one or few classes. For example, all 
members of class I contained both motifs 1, 4 and 6; motifs 
10 were present only in class II; except for PbrFLA11 and 
PbrFLA12, the N-terminal and C-terminal of all proteins 
had motif 1 and motif 8 in class III, respectively; class IV 
was clearly less closely related to the other subclasses, and 
motifs 2, 5, 7, 9, 14 and 15 were unique to this class. It is 
noteworthy that all genes except for class IV had motif 4, 
suggesting that motif 4 was critical for class I, class II and 
class III members function.

Multiple sequence alignment of the putative fascic-
lin domains in 38 PbrFLA proteins were conducted using 
Jalview software. The predicted fasciclin domains of PbrF-
LAs possess two highly conserved regions (H1 and H2) of 
approximately 10 amino acids each, and the [Tyr Phe] His 
([Y/F]H) motif locating between these two regions (Online 
Resource 1). The Thr residue in the H1 region is highly 

conserved and the other conserved residues such as Val/Ile/
Leu and Asn/Asp that may play a role in maintaining the 
structure of the fasciclin domain and/or cell adhesion (Kim 
et al. 2000). Small hydrophobic amino acids, such as Leu, 
Val and Ile, are abundant in the H2 region. In the [Y/F]H 
motif, His and Pro residues are also relatively conserved. 
In most cases, H1 and H2 also contain some other con-
served residues, such as Val, Ile and Leu. There are about 
105 amino acids between H1 and H2. On the contrary, the 
similarity of amino acid sequence between H1 and H2 is 
low, though some residues, such as Gly, Asn, Thr and Ser, 
are found to be conserved in most PbrFLAs.

Expression patterns of the PbrFLA family

The expression patterns of PbrFLAs were investigated in six 
different tissues of pear by qRT-PCR. Except PbrFLA12/15/35 
which showed no expression in any of the six different tissues, 
35 PbrFLAs exhibited obviously tissue-specific patterns and 
were mainly expressed in pollen, root and stem (Fig. 6a). Of 
note, PbrFLAs in class III were preferentially expressed in 
the pollen compared to other classes (Fig. 6d). Meanwhile, 
PbrFLA10/20/21 presented a relatively higher expression level 
in pollen (Online Resource 10). Subsequently, RNA-seq data 
were utilized to analyze the expression patterns of PbrFLA 
during different stages of pollen tube and different pollinated 
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styles of pear (Zhou et al. 2016; Shi et al. 2017). As shown 
in Online Resource 2, the heatmap of the PbrFLA genes 
expression levels was hierarchically, and 23 (60.53%) PbrF-
LAs were expressed in pollinated pistil, and 25 (66.79%) were 
expressed in pollen, indicating the significant role of PbrFLAs 
in male–female interactions and growth of pollen tube. Nota-
bly, the three genes (PbrFLA10/20/21) have high expression 
in self-pollinated style (SP) and in stop growing pollen tube 
(STP) (Fig. 7, Online Resource 11, Online Resource 12). To 
verify the reliability of the RNA-seq data, nine PbrFLA genes 
were selected to conduct a qRT-PCR experiment to investigate 
the expression levels in growing pollen tubes and styles after 
pollination, respectively. The expression levels of most Pbr-
FLA genes were consistent with the RNA-seq data (Fig. 7).

Functional analysis of candidate PbrFLA genes 
in pear pollen tube growth

In order to confirm the contribution of PbrFLA10/20/21 
to pear pollen tube growth, we applied antisense oligo 

deoxynucleotide (ODN) technique (Mizuta and Higashiy-
ama 2014; Chen et al. 2018a, b) in pear pollen. As shown 
in Fig.  8c, comparing the negative control sense ODN 
(s-ODN), antisense ODN (as-ODN) was able to downregu-
late the expression levels of PbrFLA10/20/21. The specific 
knockdown of PbrFLA10, PbrFLA20 and PbrFLA21 led to 
a significant acceleration in pollen tube length comparing to 
the control groups (control, cytofectin and s-ODN) (Fig. 8a, 
Fig. 8b). It is suggested that pear pollen tube growth might 
be regulated by PbrFLA10, PbrFLA20 and PbrFLA21.

Gene co‑expression network analysis

To further investigate the expression regulation of the Pbr-
FLA10, PbrFLA20 and PbrFLA21 in pear, a co-expres-
sion network of the FLA genes was constructed. First, we 
obtained all the transcription factors (TFs) in pear from 
PlantTFDB (http://​plant​tfdb.​cbi.​pku.​edu.​cn/). Then, based 
on the RNA-seq data, we calculated co-expression relation-
ship between the target genes (PbrFLA10/20/21) and TFs by 
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GENIE3 algorithm that exploits variable importance scores 
derived from random forests to identify the regulators of 
each target gene (Huynh-Thu et al. 2010). 50 pairs between 
PbrFLA10/20/21 and TFs have co-expression relationships 
(Online Resource 14). Gene pairs were used to construct 
the co-expression network (Online Resource 3). As a result, 
there were seven, five and four TFs that revealed a strong co-
expression relationship with PbrFLA10, PbrFLA20 and Pbr-
FLA21, respectively. According to the connectivity values, 
Pbr005306.1 (C2H2), Pbr000646.1 (EIL) and Pbr001365.1 
(MYB_related) have the strongest co-expression correlation 
with PbrFLA10, PbrFLA20 and PbrFLA21, respectively.

Discussion

As crucial role of the plant cell development, some mem-
bers of the FLA gene family have been extensively stud-
ied in plants. However, there have been few such efforts to 
annotate the FLA gene family in Rosaseae. In this study, we 
have identified 220 FLA genes which encoded a conserved 
fasciclin domain in pear and other six species of Rosaceae. 

Except for black raspberry, the number of FLA genes in the 
Rosaceae was much higher than those reported in Arabi-
dopsis thaliana. According to the classification of FLAs in 
Arabidopsis (Johnson et al. 2003), phylogenetic analysis 
classified the Rosaceae FLA proteins into four subgroups 
(class I, class II, class III and class IV), suggesting that the 
evolution of different subfamilies was relatively independ-
ent. Previous studies have reported that class III genes may 
play crucial roles in strong growth tissues, such as male 
gametophyte (He et al. 2019). For example, AtFLA3 was 
involved in microspore development, and its knock-down 
plants showed reduced female fertility (Li et  al. 2010). 
MTR1 regulates male reproductive development in rice (Tan 
et al. 2012). AtFLA1 might play an important role in root 
development (Johnson et al. 2011).

WGD event, important for plant adaptability in stress, 
is an extreme mechanism of gene duplication that leads to 
a sudden increase in both genome size and the entire gene 
set (Panchy et al. 2016). TRD event is presumed to arise 
through distantly transposed duplications occurred by DNA-
based or RNA-based mechanisms, and is significant for plant 
to obtain new functions or to partition existing functions 
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Fig. 7   qRT-PCR and RNA-seq data analysis of the PbrFLA genes 
in different developmental stages of pear pollen tubes and the styles 
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of RNA-seq; the left y-axis represents the relative expression levels. 
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of ancestral genes (Wang et al. 2012). DSD events happen 
through unpredictable and random patterns by mechanisms 
that remain unclear, generating two gene copies that are 
neither neighboring nor collinear (Ganko et al. 2007). In 
this study, although a high frequency of DSD-genes was 
detected, WGD and TRD events were also the crucial 
force of expansion for FLAs in the seven Rosaceae species. 
Especially, WGD duplication played an important role in 
the expansion of the FLA gene family in pear and apple. 
Based on previous reports in our lab, the genome of pear and 
apple has undergone two rounds of duplications: the recent 
WGD duplication occurred approximately 30–45 MYA 
(Ks ~ 0.15–0.30) in pear and apple, while the ancient WGD 
from γ triplication event occurred approximately ~ 140 MYA 
(Ks ~ 1.5–1.8) (Wu et al. 2013). Our results of Ks and 4DTv 
values of FLA paralogs showed that the FLA gene family 
had undergone the two WGD/segmental duplication events, 
suggesting that FLA gene family was of early origin and dif-
ferentiated by adaptation to different types of environment 
in the evolution process in pear and apple. The Ka/Ks ratios 
of all duplicated FLA pairs were less than one (except three 
gene pairs in sweet cherry), which implied that the FLA is 
mainly undergoing purifying selection.

In general, the gene expression patterns can provide 
important clues to predict the gene function. Except for the 
function of AtFLA3 and MTR1 in reproductive organs and 
AtFLA1 in root. AtFLA8 and AtFLA10, two class III FLAs, 
are specifically expressed during seed development (Costa 
et al. 2019). Some EgrFLAs were also highly expressed 
in stems (MacMillan et al. 2015). In our study, qRT-PCR 
expression profiling was conducted to explore PbrFLA 
gene expression patterns in six different tissues. This result 
indicated that most PbrFLA transcripts were detected in 
transcriptional abundance in root and pollen, suggesting 
these genes might have important roles in tissues undergo-
ing growth. Comparing other tissues, 10 PbrFLAs that most 
belonged to class III were differentially high expressed in the 
pollen, suggesting class III of FLAs might be related to the 
development of reproductive organs.

Previous study reported that FLAs containing single-FAS 
domain may have conserved roles in secondary cell wall 
biology and properties (MacMillan et al. 2015). In Arabi-
dopsis, AtFLA3, which also contains a single-FAS domain 
and only one region of arabinogalactan addition sites (a class 
III AtFLA), was required for cellulose deposition in the 
intine layer of pollen grain (Li et al. 2010). The phylogenic 
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tree and conserved motifs showed that PbrFLA10, Pbr-
FLA20 and PbrFLA21 were grouped into the same subclass 
with AtFLA3 (Fig. 1), contained highly conserved domains 
(Fig. 5) and shared similar gene structure and protein lengths 
(Table 2). Thus, we explored their expression patterns in 
differently stages of pollen tubes and in styles with different 
states of pollination. PbrFLA10, PbrFLA20 and PbrFLA21 
were abundantly expressed in the self-pollinated styles (SP) 
and stop growing pollen tubes (STP) (Fig. 7). Repression of 
PbrFLA10/20/21 resulted in the acceleration of pear pollen 
tube growth. Based on previous researches that FLA func-
tion exists a genetic redundancy (MacMillan et al. 2010). We 
speculated that PbrFLA10/20/21 might be functional redun-
dancy and play roles in pollen tube growth by affecting cel-
lulose deposition. The high expression of PbrFLA10/20/21 
seems to be involved in fundamental self-incompatibility 
response mechanisms. More detailed analyses are required 
to confirm what types of metabolism are affected and if full 
loss of function of the PbrFLA10/20/21 locus will lead to a 
more severe defect on pollen tube function.

MYB, C2H2 and EIL transcription factors play important 
roles in reproductive tissues development. In Arabidopsis 
thaliana, AtMYB26 (Steiner-Lange et al. 2003), AtMYB103 
(Higginson et al. 2003), AtMYB32 (Preston et al. 2003) and 
AtMYB80 (Phan et al. 2011) are reported to be involved 
in regulation of anther or pollen development. In apple, 
MdMYB39L is a key role in sorbitol‐modulated stamen 
development and pollen tube growth by regulating its down-
stream target genes (Meng et al. 2018). In Chinese cabbage, 
BcMF20, a C2H2-type zinc-finger transcription factor, may 
transcriptionally regulate tapetal-specific genes involved in 
pollen wall development, which then regulate pollen wall 
material secretion and subsequent wall development and 
tapetal programmed cell death (Han et al. 2018). In tobacco, 
TEIL (Tobacco EIN3-Like) gene is a tobacco homologue of 
Arabidopsis Ethylene Insensitive 3 (EIN3) and participates 
in the regulation of flower shape development (Hibi et al. 
2007). Combined with the connectivity values of the gene 
co-expression analysis (Online Resource 3, Online Resource 
14), we predicted that Pbr005306.1 (C2H2), Pbr000646.1 
(EIL) and Pbr001365.1 (MYB_related) were the most 
likely to regulate PbrFLA10, PbrFLA20 and PbrFLA21, 
respectively.

Conclusion

In conclusion, this work presented the phylogenetic rela-
tionships, evolutionary history, and expression patterns 
of PbrFLA family genes. Functional validation indicated 
that PbrFLA10/20/21 could affect the growth of pear pol-
len tubes, suggesting their important roles in the growth 
of the pear pollen tube. This work was able to help us Ta
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to understand the evolution of the FLA gene family and 
provided a foundation for future molecular biology on 
FLA genes during pollen tube growth.
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