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Abstract
The extraordinary biodiversity of tropical regions has attracted many researchers. Despite an increasing number of genome 
size (GS) estimations, those of tropic flora remain poorly explored. In this study, we applied the glycerol-preserved nuclei 
protocol for GS estimation in the field conditions of a tropical rainforest in Brunei Darussalam, northern Borneo. Samples 
were prepared in the field following this protocol and subjected to the flow cytometry analysis in the laboratory approximately 
1 month later. The glycerol-preserved nuclei protocol enabled us to perform GS estimations of thirty taxa of Euphorbiaceae 
s.l. (twenty taxa of Euphorbiaceae and ten taxa of Phyllanthaceae family, respectively), all representing first estimates of 
GS for respective taxa. We found 5.09-fold overall variation in GS, with the lowest value in Croton sp. (2C = 0.97 pg) and 
the highest value in Aporosa elmeri (2C = 4.94 pg). The vast majority of species presented very small GS (77%), while 23% 
of the species had small GS. Using available data of Euphorbiaceae s.l. from the Plant DNA C-values database, we also 
tested the correlations of GS with climate (tropical vs. temperate) and growth form (woody vs. herbaceous). Tropical taxa of 
Euphorbiaceae s.l. (incl. Euphorbiaceae s.s. and Phyllanthaceae) have significantly smaller GS values than temperate ones. 
No significant difference in GS between woody and herbaceous taxa was detected.
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Introduction

The rise of the plant flow cytometry brings many benefits 
to the community of botanists and enables the expansion 
of its knowledge. Its development represents a huge step 
forward in this sense, especially due to its simplicity, speed, 
thriftiness to plants, accuracy and efficiency (e.g. Marie and 
Brown 1993; Doležel et al. 2007; Greilhuber et al. 2007; 
Bourge et al. 2018, and references therein). Nowadays, the 
FCM method is the most common way to estimation of 
DNA-ploidy level and nuclear genome size (GS), i.e. quan-
tification of the DNA amount in cell nuclei (e.g. Doležel and 
Bartoš 2005; Doležel et al. 2007; Greilhuber et al. 2007). As 
a basic genome characteristic, GS associates with other bio-
logical traits of plant species. Over the years, GS variability 
has been shown to have significant consequences at different 
levels (see Leitch and Bennett 2007). For example, it may be 
helpful in species delimitation or hybrid identification (e.g. 
Mahelka et al. 2005; Prančl et al. 2018).

Although knowledge of the nuclear DNA amount of angi-
osperms has increased rapidly in the last decades, it remains 
underrepresented for tropical woody plants (cf. Leitch et al. 
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2019). Estimation of GS for tropical woody plants is limited 
mainly by the prerequisite of fresh plant material for FCM 
analyses (Doležel and Bartoš 2005; Greilhuber et al. 2007), 
consequently hindering investigation of samples from distant 
and remote tropical localities. Additionally, well-developed 
FCM facilities are concentrated mainly in temperate climatic 
belt of the northern hemisphere (Bennett and Leitch 2005; 
Kolář et al. 2012; Šmarda et al. 2019), while tropical regions 
that are often distant, difficult to access and with consid-
erably less developed FCM facilities remain insufficiently 
explored (cf. Leitch et al. 2019). Alternative approaches 
to substitute fresh samples include collection of seeds and 
growing plants close to the FCM facility (Suda et al. 2005), 
use of dormant seeds for DNA content estimation (Sliwin-
ska et al. 2005), analysis of desiccated (Suda and Trávníček 
2006a, b) or frozen plant tissue (e.g. Cires et al. 2009), and 
preservation of plant nuclei in ice-cold buffer with glycerol 
(Kolář et al. 2012). However, seeds of tropical woody plants 
are usually unavailable or are difficult to access. Silica-dried 
or frozen samples stained with propidium iodide yield his-
tograms with much lower resolution due to degradation of 
DNA (Nsabimana and Van Staden 2006; Suda and Trávníček 
2006a; Suda et al. 2007) and freezing also reduces the num-
ber of nuclei (Nsabimana and Van Staden 2006). Therefore, 
glycerol-treated samples seem to be a viable option for larger 
analyses. This rather neglected protocol introduced by Kolář 
et al. (2012) allows sample preparation from leaf tissue in 
field conditions and storage of samples for several weeks.

The aim of this study was to apply the glycerol-preserved 
nuclei protocol (Kolář et al. 2012) for GS estimation of 
selected tropical woods in Brunei Darussalam, northern 
Borneo. Specifically, we focused on tree species of Euphor-
biaceae s.l. because: (1) it is one of the most common fami-
lies at the studied locality (Hédl et al. 2009); (2) no previous 
GS values were available for the majority of tropical taxa of 
this family (Leitch et al. 2019); (3) variation of chromosome 
numbers including polyploidy was observed (Hans 1973); 
and finally, (4) most sampled species were represented by 
trees of lower heights allowing ease of leaf collection. Using 
our data and available records from the Plant DNA C-values 
database (Leitch et al. 2019), we tested whether (1) tropical 
species of Euphorbiaceae s.l. have smaller GS than temper-
ate ones, and (2) woody species of Euphorbiaceae s.l. have 
smaller GS than herbaceous ones.

Materials and methods

Plant material

Plant material was collected in the lowland mixed diptero-
carp tropical rainforest in the Temburong District of Brunei 
Darussalam (northern Borneo, Southeast Asia) in February 

2015 at Kuala Belalong Field Studies Centre (KBFSC, 4° 
32′ 48″ N, 115° 9′ 28″ E), a research field station of Uni-
versiti Brunei Darussalam (UBD). A total of 87 individuals 
(accessions) belonging to 34 taxa of the Euphorbiaceae and 
Phyllanthaceae families (21 and 13 species, respectively) 
were investigated (see Online Resource 3). The herbarium 
specimens are deposited in the Herbarium of the Palacký 
University in Olomouc (OL).

Flow cytometric standards (i.e., Zea mays L. ‘CE-777’, 
Secale cereale L. ‘Daňkovské’ and Vicia faba L. ‘Inovec’) 
were grown from seeds at the KBFSC. As their germination 
rate was rather low and the plants were rotting in hyper-
humid conditions (up to 99% air humidity), Musa borneensis 
var. flavida (M. Hotta) Häkkinen & Meekiong growing in 
the area of KBFSC was also used as secondary reference 
standard.

Sample preparation and preservation

Samples were prepared following the simplified two-step 
protocol using Otto‘s buffers (Otto 1990; Doležel et al. 
2007), modified for analysis of glycerol-preserved samples 
(Kolář et al. 2012). Briefly, ca. 0.5 cm2 of fresh leaf tissue 
and an appropriate amount of the internal standard were 
chopped with a razor blade in a Petri dish (Galbraith et al. 
1983) containing 500 μl of ice-cold Otto I buffer (0.1 M cit-
ric acid, 0.5% Tween-20). Zea mays ‘CE-777’, 2C = 5.43 pg 
(Lysák and Doležel 1998) served as a primary standard, 
GS values of the other references were calibrated against 
Zea mays, i.e. Musa borneensis var. flavida (2C = 1.50 pg), 
Secale cereale ‘Daňkovské’ (2C = 15.43  pg) and Vicia 
faba ‘Inovec’ (2C = 25.85 pg). The solution was filtered 
through a 42-μm nylon mesh, mixed with 500 μl of 85% 
glycerol, gently shaken and stored in a freezer at approxi-
mately − 18 °C for a week (except for a 1-day transport to 
the Czech Republic when reusable cooling Polar Packs were 
used). For each accession, samples were prepared at least 
three times, usually with two different standards, resulting 
in 285 samples. For Musa, six samples were prepared with 
Zea mays ‘CE-777’ to calculate its GS. Before FCM analy-
sis, samples were centrifuged for 3 min at 1090×g and after 
the supernatant was removed, the pellet was re-suspended 
in 100 μl of ice-cold Otto I buffer. After the 15 min incuba-
tion at room temperature, 1 ml of fresh Otto II buffer (0.4 M 
 Na2HPO4·12H2O) was added. Then, the solution was supple-
mented with RNase and stained with propidium iodide (both 
at a concentration of 50 μg/ml; Sigma-Aldrich, St Louis, 
MO, USA). Finally, samples were run on the flow cytometer 
after 10 min of incubation at room temperature.
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Genome size estimation

The absolute DNA content (genome size, GS; Greilhu-
ber et al. 2005) was estimated by flow cytometry using a 
BD Accuri C6 flow cytometer (BD Biosciences, San Jose, 
CA, USA) equipped with a blue laser (488 nm, 20 mW, 
BD Accuri™; BD Biosciences, San Jose, CA, USA). The 
fluorescence intensity of 5000 particles was recorded. 
Gates were set at positions 40,000–70,000 (of the total of 
16,000,000 channels available) in all histograms to remove 
background noise. Genome size (2C-value; Greilhuber 
et al. 2005) was calculated by multiplying the 2C-value 
of the standard with the mean sample peak position/mean 
standard peak position ratio. Percentual variation between 
genome sizes of one accession established by FCM analysis 
(see above) was calculated as the (highest 2C-value–lowest 
2C-value)/mean of 2C-values of all samples × 100 (Online 
Resource 1). The conversion from picograms (pg) to base 
pairs (bp) followed Doležel et al. (2003), using formula 1 pg 
DNA = 978 Mbp.

Statistical analysis

Descriptive statistics of GS (i.e. mean and standard devia-
tion of the mean) were calculated for each taxon. Because 
the data were not normally distributed, differences in 
GS between families were tested using a nonparametric 
Kruskal–Wallis test. In addition, using our data supple-
mented with available data of Euphorbiaceae and Phyl-
lanthaceae from the Plant DNA C-values Database (Leitch 
et al. 2019; Online Resource 2), differences in the varia-
tion of GS for tropical versus temperate species (based on 
phytogeographical affiliation of species’ primary range) and 
woody versus herbaceous species were also tested using a 
nonparametric Kruskal–Wallis test. All analyses were per-
formed both with and without outliers using NCSS 9 (Hintze 
2013). Outliers were defined as exceeding the formula box-
plot edge ± 3* interquartile range.

Results

Quality and error rate of the method

Using the protocol of glycerol-preserved nuclei (Kolář 
et al. 2012), flow cytometric analyses yielded histograms 
with distinct peaks in 79.30%, i.e. in 226 out of 285 pre-
pared samples (Online Resource 1), therefore, we were able 
to determine GS values for 73 out of 87 plant individuals 
representing 30 out of 34 collected species. With a few 
exceptions, the measurement quality, as given by the coef-
ficients of variation (CVs) of G1 peaks, was good. CV val-
ues ranged from 0.81 to 6.89% (mean 2.40 ± 0.93%, median 

2.28%) and from 0.87 to 5.82% (mean 2.82 ± 1.04%, median 
2.69%) for the standard and sample peak, respectively (for 
illustrative histograms see Fig. 1). The differences between 
lowest and highest flow cytometry run for one accession 
ranged between 0.17% in Hancea eucausta (Airy Shaw) 
S.E.C.Sierra, Kulju & Welzen and 7.82% in Elateriosper-
mum tapos Blume (mean 3.59 ± 2.86%, median 3.20%). For 
most of the taxa (often viscous samples), it was impossible 
to meet a between-day fluctuation of < 2% (Doležel et al. 
2007) and thus a higher between-day fluctuation thresh-
old was considered acceptable (< 5%). However, for a few 
samples this threshold has been slightly exceeded (Online 
Resource 1).

GS estimations of Euphorbiaceae s.l.

In total, GS estimates for 73 plant individuals belonging to 
30 taxa of Euphorbiaceae s.l., 20 taxa of Euphorbiaceae and 
10 taxa of Phyllanthaceae, were determined (Table 1). For 
all sampled species, these are the first estimation of GS as 
no previous C-values were available.

Among the investigated species, GS varied 5.09-fold with 
an average of 2.46 pg (Fig. 2). The lowest GS was obtained 
for Croton sp. (2C = 0.97 ± 0.01 pg) and the highest one was 
for Aporosa elmeri Merr. (2C = 4.94 ± 0.11 pg). Accord-
ing to the GS categories defined by Leitch et al. (1998), 
76.67% of the taxa have a very small GS (i.e. ≤ 1.4 pg/1C) 
and 23.33% have a small GS (i.e. ≤ 3.5 pg/1C, Table 1). 
No species with intermediate, large or very large GS were 
detected. Also, no significant difference of GS among fami-
lies (χ2 = 1.716, P = 0.190; without outliers: χ2 = 2.371, 
P = 0.124; Fig. 2) was found. Within a species which has 
more individuals sampled, the GS variation fell within a 
narrow range (0.59–6.46%). Only in Macaranga hypoleuca 
(Rchb.f. & Zoll.) Müll.Arg., the variation of 14.01% was 
detected (see Table 1; Online Resource 1).

No GS data were obtained for four species, namely 
Aporosa falcifera Hook.f., Antidesma neurocarpum Miq., 
Antidesma sp. and Neoscortechinia kingii Pax & K.Hoffm 
(for more details see Online Resource 1).

Differences in GS in tropical versus temperate 
and woody versus herbaceous species

To test the differences in GS based on climate (tropical vs. 
temperate) and growth form (woody vs. herbaceous), availa-
ble data from the Plant DNA C-values Database (Leitch et al. 
2019) were used (see Online Resource 2). The comparison 
of GS between tropical and temperate species of Euphorbi-
aceae s.l. showed a significant difference with tropical taxa 
having smaller GS values (χ2 = 8.562, P = 0.003; without 
outliers (not significant): χ2 = 2.506, P = 0.113; Fig. 3a). In 
contrast, no statistically significant differences were detected 
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in GS between woody and herbaceous species (χ2 = 2.029, 
P = 0.154; without outliers: χ2 = 2.300, P = 0.130; Fig. 3b). 
Considering the phylogeny of investigated taxa, we were 
able to test the variation in GS only among genera of the 
family Euphorbiaceae as the family Phyllanthaceae is in data 
set represented only by tropical, woody species (Fig. 3a, b) 
and no data for temperate and herbaceous taxa were avail-
able (Leitch et al. 2019). Within the Euphorbiaceae s.s., 
tropical taxa have significantly smaller GS (χ2 = 9.700, 
P = 0.002; without outliers: χ2 = 4.283, P = 0.038; Fig. 3a), 
whereas there is no significant difference based on growth 
form (χ2 = 2.417, P = 0.120; without outliers χ2 = 2.812, 
P = 0.094; Fig. 3b).

Discussion

Application of glycerol‑preserved nuclei protocol 
in tropical rainforest

In this study, we investigated the GS values of selected tropi-
cal woods using the preservation of nuclear suspensions in 
ice-cold buffer with glycerol solution (Kolář et al. 2012). 
This methodological approach of sample preparation can be 
quite easily performed in the field and additionally, it allows 
long-term sample storage in the frozen state. Importantly, it 
provides estimates of nuclear DNA content that are highly 
comparable to those obtained using fresh material (Kolář 

Fig. 1  Illustrative flow cyto-
metric histograms and side 
scatter/fluorescence graphs of 
a Aporosa grandistipula Merr. 
(tree ID 07), b Neoscortechinia 
sumatrensis S.Moore (tree ID 
66) and c Macaranga bancana 
Müll.Arg. (tree ID 95) analysed 
with Musa borneensis var. 
flavida (b, c) or Zea mays ‘CE-
777’ (a), as the internal refer-
ence (marked as *). CVs (%) of 
G1 peaks of Sample/Standard 
are 1.68/1.23 (a), 5.08/3.02 (b) 
and 2.07/2.88 (c)
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et al. 2012). Although this method has been used for estima-
tion of GS in laboratory conditions (Magauer et al. 2014; 
Frajman et al. 2015), it has only been field-tested by Kolář 
et al. (2012).

Several tropical plants from Papua New Guinea were 
also involved in the study of Kolář et al. (2012), includ-
ing five species of the family Euphorbiaceae, with accept-
able histograms using ice-cold glycerol solution in all but 
one species (Macaranga fallacina Pax & K.Hoffm.). In 
contrast, we obtained satisfactory results for all 10 Maca-
ranga species sampled. However, several limitations of 
this approach for estimation of GS in the field remain. 
Firstly, a low temperature (− 18 °C) is required for sam-
ples in glycerol to remain as liquid (Kolář et al. 2012), 

which requires equipment (e.g. freezer) that is not always 
available in the field conditions. Second, sample prepa-
ration with internal standard requires prior knowledge 
about approximate GS to avoid overlapping of sample and 
standard peaks, and too long distance between sample and 
standard peaks (Doležel and Bartoš 2005; Doležel et al. 
2007). Alternatively, samples can be prepared with several 
standards. Third, plants commonly used as internal stand-
ards in temperate belt (e.g. Doležel et al. 2007) could have 
considerably low germinability and growth in hyper-humid 
tropical climate as shown in our example. This problem 
can be solved by preparing a new set of standards for local 
non-laboratory conditions. Despite these limitations, the 

Table 1  Summary of the nuclear DNA content in the studied tropical, woody taxa of Euphorbiaceae s.l

The values are given as the mean and standard deviation of the GS (2C-value; Greilhuber et  al. 2005) and holoploid GS (1C-value, 1  pg 
DNA = 978 Mbp; Doležel et  al. (2003)). Family: Euph Euphorbiaceae, Phyl Phyllanthaceae, N  total number of analysed individuals, GS cat-
egory: genome size categories according to Leitch et al. (1998): 1 very small (≤ 1.4 pg/1C), 2 small (≤ 3.4 pg/1C)

Family Taxon N 2C (pg) mean ± SD 1C (pg) 1C (Mbp) GS category

Phyl Aporosa bullatissima Airy Shaw 2 1.8423 ± 0.0608 0.9212 900.88 1
Phyl Aporosa elmeri Merr. 1 4.9358 2.4679 2413.61 2
Phyl Aporosa grandistipula Merr. 3 1.8787 ± 0.0581 0.9394 918.68 1
Phyl Aporosa nitida Merr. 3 2.1015 ± 0.0459 1.0508 1027.63 1
Phyl Baccaurea deflexa Müll.Arg. 1 2.2565 1.1282 1103.41 1
Phyl Baccaurea racemosa Müll.Arg. 3 2.7794 ± 0.0084 1.3897 1359.15 1
Phyl Baccaurea tetrandra Müll.Arg. 1 2.7443 1.3722 1341.98 1
Phyl Breynia coronata Hook.f. 1 3.0491 1.5245 1491.01 2
Euph Croton sp. 3 0.9756 ± 0.0087 0.4878 477.07 1
Euph Elateriospermum tapos Blume 2 1.3629 ± 0.0301 0.6815 666.47 1
Euph Endospermum diadenum (Miq.) Airy Shaw 5 4.5281 ± 0.0706 2.2640 2241.22 2
Phyl Glochidion glomerulatum Boerl 1 2.2029 1.1014 1077.21 1
Phyl Glochidion superbum Baill. 3 4.4446 ± 0.0654 2.2223 2173.40 2
Euph Hancea eucausta (Airy Shaw) S.E.C.Sierra, Kulju & Welzen 3 3.9706 ± 0.0928 1.9853 1941.63 2
Euph Macaranga aëtheadenia Airy Shaw 1 1.9965 0.9983 976.31 1
Euph Macaranga bancana Müll.Arg. 3 2.4998 ± 0.0462 1.2499 1222.38 1
Euph Macaranga beccariana Merr. 1 2.4254 1.2127 1186.04 1
Euph Macaranga hullettii King ex Hook.f. 4 2.5050 ± 0.0111 1.2525 1224.92 1
Euph Macaranga hypoleuca Müll.Arg. 1 2.0928 1.0464 1023.38 1

2 2.4134 ± 0.0066 1.2067 1180.17 1
Euph Macaranga lowii King ex Hook.f. 3 1.3738 ± 0.0239 0.6869 671.81 1
Euph Macaranga praestans Airy Shaw 2 1.4431 ± 0.0192 0.7216 705.68 1
Euph Macaranga sp. 1 2.5162 1.2581 12304.40 1
Euph Macaranga trachyphylla Airy Shaw 4 2.5485 ± 0.0382 1.2743 1246.22 1
Euph Macaranga umbrosa S.J.Davies 3 2.4817 ± 0.0296 1.2408 1213.54 1
Euph Mallotus korthalsii Müll.Arg. 3 1.6077 ± 0.0225 0.8039 786.17 1
Euph Mallotus wrayi King ex Hook.f. 3 2.0182 ± 0.0383 1.0091 986.90 1
Euph Moultonianthus leembruggianus (Boerl. & Koord.) Steenis 3 1.1547 ± 0.0065 0.5773 564.64 1
Euph Neoscortechinia sumatrensis S.Moore 3 1.1005 ± 0.0248 0.5503 538.17 1
Euph Pimeleodendron griffithianum (Müll.Arg.) Hook.f. 1 3.4892 1.7446 1706.23 2
Euph Trigonostemon detritiferus R.I.Milne 3 3.2220 ± 0.0154 1.6110 1575.53 2
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protocol proved to be efficient in our case and can be used 
for large scale studies of GS in the tropics.

Genome size and polyploidy in Euphorbiaceae s.l. 
from Brunei Darussalam

According to the GS categories defined by Leitch et al. 
(1998), all analysed species have a very small or small GS 
(Table 1). Similarly, very small or small GS were reported 
for other tropical taxa of Euphorbiaceae s.l., except of Hura 
crepitans L. with intermediate GS (Leitch et al. 2019; Online 
Resource 2). Combining our GS values together with data 
from the Plant C-values database (Leitch et al. 2019), we 
found tropical species to have significantly smaller GS than 
temperate ones (Fig. 3a). On the other hand, an assumed 
smaller GS among woody species compared to herbs were 
not confirmed (Fig. 3b). Generally, woody angiosperms have 
been predicted to possess a small GS with lower variance in 
comparison to herbaceous species (e.g. Ohri 2005; Beaulieu 
et al. 2008; Ohri 2015). Likewise, small GS varying more or 
less within a narrow range have been found within tropical 
hardwood (Ohri and Kumar 1986; Ohri 2002). In woody 
plants, larger GS may have a negative impact on the size of 
cambial cells and mechanical properties of woody tissues 
(Darlington 1937; Stebbins 1938, 1950) or on the size and 
density of stomata needed to transpiration and stomatal con-
ductance (Beaulieu et al. 2008). Unfortunately, the knowl-
edge of GS in woody angiosperms (and especially tropical 
ones) is still very sketchy (Leitch et al. 2019) and exten-
sive studies except few (e.g. Chen et al. 2014) are almost 

lacking. An investigation of GS variation within the tree 
family Fagaceae revealed a small GS among its genera and 
detected larger GS within tropical groups in comparison to 
their temperate relatives (Chen et al. 2014) which is quite 
contrary to the situation we report here for Euphorbiaceae.

However, we cannot conclusively confirm the variation 
of GS within woody and herbaceous taxa since our results 
may be affected by the limited available dataset. We assume 
that a detailed study of the GS variation of both families 
(especially of the Euphorbiaceae s.s.) will lead to a better 
understanding of the GS evolution among various growth 

Fig. 2  Comparison of the genome size variation between the inves-
tigated species of Euphorbiaceae (20 taxa/54 individuals) and Phyl-
lanthaceae (10 taxa/19 individuals) family, respectively. Dots within 
boxplots symbolize each individual species. Rectangles define the 
25th and 75th percentiles, horizontal lines show median values, 
whiskers are 10–90 percentiles and black dots show extreme values

Fig. 3  Boxplots indicating variation of the genome size (a) among 
temperate (36 species: all Euphorbiaceae s.s.) and tropical (47 spe-
cies: 32 Euphorbiaceae s.s. and 15 Phyllanthaceae), (b)  among her-
baceous (31 species: all Euphorbiaceae s.s.) and woody (53 species: 
38 Euphorbiaceae s.s. and 15 Phyllanthaceae) taxa, respectively. 
Except our data, additional GS values (53 records) from the Plant 
DNA C-values database (Leitch et al. 2019) were also used (Online 
Resource 2). Rectangles define the 25th and 75th percentiles, hori-
zontal lines show median values, whiskers are 10–90 percentiles and 
dots show extreme values
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forms (incl. lianas, climbers or succulents) and across biotic 
zones. Especially for tropical, woody plants, which are not 
so much explored, it would greatly improve our knowl-
edge. For example, GS study of tropical genus Dalbergia 
L.f. detected higher DNA amount within shrubs and woody 
climbers in comparison to their relative tree species (Hire-
math and Nagasampige 2004).

From a global perspective, the lowest polyploid frequen-
cies are found in the tropical and subtropical biomes (espe-
cially in tropical and subtropical moist broadleaf forests; 
Rice et al. 2019). Moreover, polyploids are considerably less 
frequent among perennial woods, which can be explained by 
different ecological and historical factors (Stebbins 1971). 
Nevertheless, the frequency of polyploidy among woody 
taxa still remains largely unknown, especially among tropi-
cal species. For example, no evidence of polyploidy was 
detected within the tree family Fagaceae (Chen et al. 2014). 
However, even among tropical woody species the occur-
rence of polyploidy has been documented, e.g. in Diptero-
carpaceae (Ng et al. 2016), Fabaceae (Tosso et al. 2016; 
Donkpegan et al. 2017), Melastomataceae (Renner 1989; 
Almeda 1993; Brito et al. 2016) and Myrtaceae (Costa and 
Forni-Martins 2006).

According to our GS data, the occurrence of polyploidy 
can be considered in two analysed genera, Aporosa Blume 
and Glochidion J.R.Forst. & G.Forst., both from Phyllan-
thaceae family. In Aporosa, four species were analysed with 
one of them possessing twice as high GS value (Table 2) 
than the others. Unfortunately, almost no chromosomal data 
were published for this genus. Only chromosome counts are 
available for two Aporosa species from India, both with 
2n = 52 (Mehra and Hans 1969; Elumalai 2013). For the 
family Phyllanthaceae, x = 13 appears to be the base chro-
mosome number (e.g. Hans 1973; Webster 1994). Based on 
that, the published chromosome data correspond to tetra-
ploids, which suggest the involvement of polyploidy in its 
evolution. Moreover, Aporosa belongs to the sister clade of 
the genus Bischofia Blume (Wurdack et al. 2004; Hoffmann 

et al. 2006), in which whole genome duplication (WGD) 
was discovered (Cai et al. 2017), indicating the possibil-
ity of polyploidy occurrence also in Aporosa. Similarly, in 
the genus Glochidion, one of the two analysed taxa pos-
sessed twice as high GS value as the other one (Table 2). 
For several Indian Glochidion species, chromosome num-
bers 2n = 52 were counted (Mehra and Hans 1969), likewise 
corresponding to tetraploids. Additionally, the incidence of 
WGD was recorded within the genus Sauropus Blume (Cai 
et al. 2017), the sister clade of the genus Glochidion (Wur-
dack et al. 2004; Hoffmann et al. 2006; Kathriarachchi et al. 
2006), thus polyploidy could be more frequent among the 
members of the Sauropus clade. In addition, for Chinese G. 
puberum (L.) Hutch., 2n = 64 was reported (Hsu et al. 1994), 
indicating the occurrence of other chromosomal variations 
(aneuploidy, different basic chromosome number etc.). How-
ever, detailed study involving investigation of chromosome 
numbers is required for elucidation of GS evolution and pos-
sible polyploidy occurrence in Phyllanthaceae.

Based on the study of Hans (1970), polyploidy was also 
observed within the genus Antidesma L. belonging to the 
Phyllanthaceae family. Unfortunately, we were unable to 
obtain any information about the GS of two sampled spe-
cies of Antidesma, since all measurements failed.

Furthermore, the GS values for more than one species 
were also acquired for Baccaurea, Macaranga and Mal-
lotus. Within the Baccaurea and Mallotus genera, only 
minor differences in GS (0.54 pg and 0.43 pg, respectively) 
were detected between sampled species, correspond-
ing to intraspecific variation (Šmarda and Bureš 2010). 
In Macaranga, all species had very similar GS (mean 
2C = 2.43 ± 0.20 pg; Table 1), with the exception of M. 
praestans Airy Shaw and M. lowii King ex Hook.f., which 
possessed a lower GS value (2C = 1.42 pg and 2C = 1.49 pg, 
respectively). These two species are the only studied taxa 
belonging to Macaranga sect. Pseudorottlera (Rchb.f. & 
Zoll. ex Zoll.) Pax & K.Hoffm., a basal sister lineage to the 
rest of Macaranga species (Kulju et al. 2007), suggesting the 

Table 2  The genera with 
the expected occurrence of 
polyploidy based on obtained 
GS estimations

For each taxon, the GS (2C-value), estimated DNA-ploidy level and the calculated monoploid GS (1Cx 
value; Greilhuber et al. 2005) are given
*Estimate based on 2C-value, whereas the lower value was assumed as diploid
**Calculated according to estimated ploidy level

Taxon 2C (pg) mean ± SD Estimated DNA-ploidy 
level*

1Cx (pg)**

Aporosa bullatissima 1.8423 ± 0.0430 2 0.92
Aporosa elmeri 4.9358 6 0.82
Aporosa grandistipula 1.8787 ± 0.0474 2 0.93
Aporosa nitida 2.1015 ± 0.0374 2 1.05
Glochidion glomerulatum 2.2029 2 1.10
Glochidion superbum 4.4446 ± 0.0533 4 1.11
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possible different base chromosome number. Unfortunately, 
no published chromosomal data are available for sampled 
taxa. Only for several Indian and one Hawaiian species, 
identical diploid chromosome number 2n = 22 was previ-
ously counted (Miller and Webster 1966; Mehra and Hans 
1969; Devar 1981). In addition, in Macaranga hypoleuca, 
we detected the variation of 14% among analysed individu-
als, indicating the chromosome number variation.

Conclusion

In conclusion, this study shows the applicability of glycerol-
treated nuclear suspension (Kolář et al. 2012) for GS estima-
tion in field conditions. For the first time, we determined GS 
for 20 taxa of Euphorbiaceae and 10 taxa of Phyllanthaceae 
family, respectively. Very small or small GS were deter-
mined in all studied taxa. Compared with the available data 
in Leitch et al. (2019), tropical species of Euphorbiaceae 
possessed smaller GS than temperate ones. No significant 
difference was detected between woody and herbaceous 
species. A comprehensive study, including a chromosome 
number investigation, will lead to better understanding 
of GS evolution of this group, and it will provide further 
insight into the variation of GS between various growth 
forms and across biomes. With a great range of life forms 
and almost cosmopolitan distribution (Webster 2014), the 
family Euphorbiaceae best fits to such kind of study. Fur-
thermore, it will also contribute to the knowledge of GS 
in tropical woody angiosperms as it is abundant in tropical 
regions (Webster 2014).
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