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Abstract
The Aegean archipelago has long been the main research area of numerous biogeographers, plant ecologists and taxonomists 
due to its intricate palaeogeography and high environmental and topographical heterogeneity. Nevertheless, some parts of this 
archipelago are essentially unexplored and the processes driving spatial variation in species composition remain unaddressed. 
Aiming to fill these gaps, we investigated the flora and plant diversity patterns of the Northern Sporades island group, as 
well as its biogeographical relationships. The study area lies in the biogeographical region of the West Aegean islands and 
comprises 23 islands and islets. The total flora of the study area consists of 1202 infrageneric taxa, belonging to 517 genera 
and 120 families, reflecting its geographical and bioclimatic characteristics. The endemic element consists of 41 taxa (3.4% 
of the flora), eight of which are restricted to the West Aegean islands and two are single island endemics. Area emerged as 
the most important variable in shaping plant species richness, while niche-based processes played a lesser role in driving 
these patterns. Regarding the taxonomic and phylogenetic beta-diversity patterns, environmental filtering and not dispersal 
limitation seems to shape the plant assemblages of the Northern Sporades islets. Biogeographically, the Northern Sporades 
island group seems to be closer connected to the Kiklades rather than to Evvia or the adjacent mainland, due to their longer 
isolation and separate palaeogeographical history during the Quaternary.
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Introduction

Islands are biodiversity hotspots and regarded as natural 
laboratories because they provide natural sites for experi-
ments on the processes of island colonization, species 
turnover (Darwin 1859; Greuter 1995; Denslow 2001) and 
represent rather simplified real-world systems (Kueffer and 
Fernández-Palacios 2010). Nevertheless, island insularity 
differs in intensity, depending on proximity to the mainland 
(Vogiatzakis et al. 2016) and displays more research advan-
tages compared to the mainland, as ecological and evolution-
ary processes are relatively easier to detect on islands due 
to their geographical isolation (Whittaker and Fernández-
Palacios 2007). Furthermore, islets are recognized as fragile 
ecosystems on which random factors, intense environmental 
variation or human impact can shape the insular flora and 
vegetation to a great extent, particularly because of the small 
plant population size (Panitsa et al. 2006).

The Mediterranean Basin, a terrestrial biodiversity hot-
spot (Médail and Quezel 1997; Myers et al. 2000; Médail 
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and Myers 2004), is the second largest hotspot in the world 
(Critical Ecosystem Partnership Fund 2017) and it hosts ca. 
10,000 islands and islets. It is characterized by immense 
biogeographical intricacy (Médail 2017), extremely high 
diversification rates (Rundel et al. 2016) and high endemism 
(Rundel et al. 2016), due to its high topographic and climate 
heterogeneity. Most of these endemics have a very narrow 
geographical range, often restricted to single islands, moun-
tains or coastal plains, as a result of the region’s intricate 
geography and orography (Rundel et al. 2016 and refer-
ences therein), thus leading to high taxonomic beta diversity 
(Thompson 2005). The European part of the Mediterranean 
alone harbours 10% of all known higher plants (Médail and 
Quezel 1997). The Aegean archipelago is an important com-
ponent of the Mediterranean region (Triantis and Mylonas 
2009), and its more than 8000 islands and islets, the unique 
biogeographical position between Africa, Europe and Asia, 
the high levels of environmental and topographical hetero-
geneity, and a complex palaeogeographic history contribute 
to high diversity and endemism (Triantis and Mylonas 2009; 
Kougioumoutzis et al. 2017), and render it an ideal stage for 
biodiversity and biogeographical studies (Strid 1996, 2016a, 
b), especially for land-bridge, continental islands (Panitsa 
et al. 2018).

Beta diversity compared to alpha diversity, allows testing 
of different hypotheses about the processes driving species 
distributions and biodiversity (Valli et al. 2019). In addition, 
comparison of the taxonomic and phylogenetic beta diver-
sity may reveal the mechanisms that generate and maintain 
biodiversity, such as geographic isolation, environmental 
filtering and convergent adaptation (Weinstein et al. 2014). 
The use of phylogenies is commonly used in community 
ecology in order to understand the origins and histories of 
species within a community (i.e. alpha diversity) and explore 
theories about the influence of historical and ecological fac-
tors in structuring communities (Webb et al. 2002; Graham 
and Fine 2008).

The Aegean archipelago has fascinated many biogeog-
raphers, and many studies concerning the flora, endemism 
and factors affecting plant species richness in the Aegean 
Sea were conducted (e.g. Panitsa et al. 2006, 2010, 2018; 
Kallimanis et al. 2010, 2011; Kagiampaki et al. 2011; Ili-
adou et al. 2014a; Kougioumoutzis and Tiniakou 2014; Kou-
gioumoutzis et al. 2014a, b, 2017). However, most of the 
biogeographical studies on the Aegean islands have focused 
on factors influencing plant diversity and endemism, either 
separately or in comparison with other archipelagos, while 
there has been limited research on the renewed emphasis on 
understanding spatial variation in species composition, or 
beta diversity (Panitsa et al. 2008; Sfenthourakis and Panitsa 
2012; Valli et al. 2019). A better understanding of the envi-
ronmental and geographical drivers that affect beta-diversity 
patterns and the way that these relationships vary between 

regions with different ecological and evolutionary histories 
may gain insights into the processes of structuring ecologi-
cal communities (Kraft et al. 2011; Fitzpatrick et al. 2013) 
and shaping species assemblages on continental island sys-
tems (Valli et al. 2019).

However, several factors affecting the diversity and 
structure of Aegean island plant assemblages have yet to be 
addressed, such as the phylogenetic aspect of species and 
beta diversity. By incorporating phylogenetic information 
in biodiversity and biogeographical studies, the distinct 
roles of geohistorical and ecological processes in shaping 
diversity patterns and community structure may be revealed 
(Webb et al. 2002; Cavender-Bares et al. 2009; Siefert et al. 
2013; Swenson 2013; Mazel et al. 2017). Consequently, the 
evolutionary relatedness of species co-occurring within and 
across regions can be quantified, and the community phy-
logenetic structure can then be associated to niche-related, 
neutral and historical processes that mediate species coex-
istence (Cavender-Bares et al. 2009; Graham et al. 2009).

The Northern Sporades island complex seems well-suited 
to better understand the evolutionary and ecological pro-
cesses that have shaped plant assemblages within the Aegean 
archipelago, due to the morphology, the geographical isola-
tion, the limited degree of human impact mainly on small 
islets and the environmental conditions of the Northern Spo-
rades. The vegetation of the islands is mainly composed of 
evergreen sclerophyllous and phryganic plant communities, 
while halophytic and chasmophytic communities occur on 
the coasts and cliffs, respectively.

The main objectives of the present study are to investigate 
and interpret the (a) taxonomic and phylogenetic alpha and 
beta-diversity patterns, (b) factors affecting island taxonomic 
and phylogenetic diversity and (c) the phytogeographical 
relationships among the studied islets and the Aegean bio-
geographical regions.

Materials and methods

The Northern Sporades islands and islets complex

The Northern Sporades island group (Fig. 1) belongs to the 
phytogeographical region of West Aegean Islands sensu 
Dimopoulos et al. (2013); this is a landmass that separated 
from the Greek mainland during the Pliocene (Dermitzakis 
1990) and according to Sakellariou and Galanidou (2017) it 
included former peninsulas that were connected to Europe 
during the Last Glacial Maximum (LGM; ca 21 kyr BP) and 
had become isolated by sea-level rise. A shallow sea sepa-
rated the Sporades ridge from the exposed land attached to 
north-western Anatolia (Sakellariou and Galanidou 2017). 
The Northern Sporades Archipelago constitutes a series of 
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stepping stones between Central Greece and north-western 
Anatolia (Sakellariou and Galanidou 2017).

Northern Sporades consist of 29 islands and islets of 
which 22 are uninhabited. Northern Sporades were declared 
as the first national marine park ‘National Marine Park of 
Alonnisos and Northern Sporades’ of Greece in 1992 (Presi-
dential Decree 519/28-5-92). Also, it is part of four over-
lapping NATURA 2000 sites, two Special Areas of Con-
servation (GR1430004 & GR1430003) and two Special 
Protection Areas (GR1430005 & GR1430009).

In the present study we focused on 23 islands and islets of 
the Northern Sporades (Fig. 1, Table 1). The largest island 
of the study area is Skopelos and the smallest one is Melissa. 
The highest elevation of the studied islands is the peak 
‘Delfoi’ of Skopelos and has a height of 682 m. Accord-
ing to Bornovas and Rondogianni-Tsiambaou (1983), the 
study area is characterized by nine geological units (Upper 
Cretaceous limestones, Upper Jurassic limestones, Triassic-
Jurassic formations, Flysch, Jurassic schist-chert formations, 

Upper Palaeozoic marine deposits, Upper Miocene marine 
deposits, Holocene alluvial deposits and Mio-Pliocene vol-
canic rocks). However, most islets are composed of lime-
stones. Except for a part of Kyra Panagia and Piperi that is 
composed of marine deposits, the largest islands (Skiathos, 
Skopelos, Alonnisos) are composed of various geological 
formations. Most islets and islands are hilly with steep cliffs 
and many caves. All islands are of continental origin as most 
of the Aegean islands, apart from Psathoura and Psathonisi, 
which are volcanic in origin.

Only the largest islands (Skiathos, Skopelos, Alonnisos) 
and Peristera are inhabited. Some of the islets are seasonally 
or constantly grazed and none is currently cultivated, but 
relicts of cultivation and human interference were observed. 
In contrast to Skiathos, Skopelos and Alonnisos that support 
permanent human population, many villages and agricul-
ture (focused on wine cultivation), grazing, cattle-raising 
and fishing are the main human activities in the studied N 
Sporades island complex. During the last years, there have 

Fig. 1  Map of the Northern Sporades islet complex. Island and islet 
numbers correspond to the following islands and islets names. 1 
Skantzoura; 2 Polemika; 3 Lahanou; 4 Kassidis; 5 Korakas; 6 Stro-
gylo Skantzouras; 7 Prasso (Paraos); 8 Skantili; 9 Kyra Panagia; 10 
Kyra (Ormos); 11 Pelerissa (Fagrou); 12 Pelagonisi; 13 Melissa; 14 
Sika; 15 Peristera; 16 Yioura; 17 Pappous; 18 Piperi; 19 Psathonisi; 
20 Psathura; 21 Skopelos; 22 Skiathos; 23 Alonnisos. StE phyto-
geographical region of Sterea Ellas; Pe phytogeographical region of 
Peloponnese; KK phytogeographical region of Kriti-Karpathos. EAe 

phytogeographical region of the East Aegean Islands; Kik phytogeo-
graphical region of the Kiklades; WAe phytogeographical region of 
the West Aegean Islands; NC phytogeographical region of North-
Central Greece; SPi phytogeographical region of South Pindos; NPi 
phytogeographical region of North Pindos; NE phytogeographical 
region of North-East Greece; EC phytogeographical region of East-
Central Greece; NAe phytogeographical region of the North Aegean 
Islands; IoI phytogeographical region of the Ionian Islands
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been great tourist pressures as well as various other human 
interventions. The study area is characterized by a Mediter-
ranean type of climate with wet winters and dry summers, 
belonging to the subhumid bioclimatic zone characterized by 
mild winters (Gouvas and Sakellarios 2011). The xerother-
mic index (Bagnouls and Gaussen 1953) indicates that the 
study area belongs to the Meso-Mediterranean zone.

Floristic data

We compiled a presence/absence island-plant matrix for the 
Sporades archipelago, containing 23 islands and islets and 
1202 plant taxa (species and subspecies), based on (1) col-
lections and field observations made by Panayotis Dimo-
poulos (UPA) and Ioannis Bazos (NKUA), who visited the 
islands together in late April 1999 and April and May 2000, 
(2) the Atlas of the Aegean Flora (Strid 2016a, b), (3) the 
Flora Hellenica Database (2019, unpublished data), (4) 
detailed floristic studies (von Halácsy 1897; Phitos 1967; 
Economidou 1969, 1973, 1975; Gustafsson and Snogerup 
1974; Snogerup et al. 1980, 1991; Liebertz 1981; Kamari 
et al. 1988; Tsimburla and Yannitsaros 1992; Lowe 1999; 
Trigas 2003; Biel 2005; Burri and Broggi 2011; Cattaneo 
and Grano 2012, 2014; Cattaneo et al. 2014), (5) the Atlas of 

the Greek Orchids (Antonopoulos and Tsiftsis 2017; Tsiftsis 
and Antonopoulos 2017) and (6) Sweden’s virtual herbarium 
(2019+). Species nomenclature, life forms, chorological 
categories and habitat categories follow Dimopoulos et al. 
(2013, 2016) and their updates included in Dimopoulos et al. 
(2018). We characterized the occurrence of ‘islet special-
ists’ according to Bergmeier and Dimopoulos (2003) and 
Snogerup and Snogerup (2004). For simplicity, the term 
“taxa” is used hereafter for both species and subspecies 
(when a species has more than one subspecies) as in Dimo-
poulos et al. (2013, 2016).

We estimated the total number of endemics (TE) of 
a single island as the sum of the taxa with a distribution 
range restricted to Greece (i.e. Greek endemics). We did not 
include single island endemics in our analyses, since most of 
the islands and islets of the Northern Sporades island com-
plex do not host such taxa (except for Skiathos and Piperi). 
The total number of plant taxa (N) and endemics (TE), as 
well as the geographical, climatic, and topographical data 
of the islands and islets of the Northern Sporades island 
complex are given in Table 1.

Table 1  Geographical and ecological information for the Northern Sporades islet complex

DM* minimum distance from nearest mainland coastline

Island nr Island name Area  (km2) Elevation (m) Longitude (E) Latitude (N) DM* (km) Endemic taxa (%) Total nr of taxa

1 Skantzoura 6.2 107 24.1 39.1 66.3 7 (2.2%) 325
2 Polemika 0.1 40 24.1 39.1 65.2 5 (3.1%) 163
3 Lahanou 0.05 20 24.1 39.1 65 1 (1.5%) 66
4 Kassidis 0.007 1 24.1 39.1 64.6 1 (3.6%) 28
5 Korakas 0.1 16 24.2 39.5 63.6 5 (3.5%) 143
6 Strogylo Skantzouras 0.02 1 24.1 39.1 64.6 1 (1.7%) 60
7 Prasso (Paraos) 0.3 40 24.1 39.1 65.4 8 (4.4%) 181
8 Skantili 0.2 25 24.1 39.0 64.8 9 (5.5%) 165
9 Kyra Panagia 24.8 302 24.1 39.3 61.4 22 (4.1%) 540
10 Kyra (Ormos) 0.009 1 24.1 39.3 62.5 0 (0%) 64
11 Pelerissa (Fagrou) 0.8 60 24.0 39.3 60.6 7 (5.1%) 138
12 Pelagonisi 0.01 1 24.0 39.3 62.1 0 (0%) 26
13 Melissa 0.004 1 24.1 39.3 64.9 1 (4.3%) 23
14 Sfika 0.05 9 24.1 39.4 65.5 3 (5.7%) 53
15 Peristera 14.2 255 24.0 39.2 50.8 7 (2.8%) 252
16 Yioura 11.1 570 24.2 39.4 70.6 27 (5.4%) 500
17 Pappous 0.08 11 24.1 39.4 68.8 2 (2.4%) 83
18 Piperi 4.251 344 24.3 39.4 84.6 7 (4.7%) 149
19 Psathonisi 0.02 2 24.2 39.5 78.5 2 (3.6%) 56
20 Psathura 0.8 12 24.2 39.5 78.9 4 (2.2%) 186
21 Skopelos 95.1 682 23.7 39.1 20.7 16 (2.2%) 742
22 Skiathos 47.4 433 23.5 39.2 4 11 (1.4%) 770
23 Alonnisos 64.1 475 23.9 39.2 41.7 18 (3.0%) 596
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Abiotic data

We obtained current climatic data (19 bioclimatic vari-
ables) from the WorldClim database (Hijmans et al. 2005) 
at a 30 s resolution. Soil variables were obtained from the 
Soil Grids 250 m database (Hengl et al. 2017; https ://www.
soilg rids.org). We used seven soil variables (i.e. pH deter-
mined in KCl) that provide predicted values for the surface 
soil layer at varying depths (0–200 cm). Elevation data were 
derived from the CGIAR-CSI data-portal (http://srtm.csi.
cgiar .org–Jarvis et al. 2008) and then were aggregated and 
resampled using functions from the ‘raster’ 2.6.7 (Hijmans 
2017) package, so as to match the resolution of the other 
environmental variables. We also constructed 16 more cli-
matic variables at the same resolution via the ‘envirem’ 1.1 
(Title and Bemmels 2018) package based on the 19 biocli-
matic variables from WorldClim. Island area was determined 
from 1:50,000 scale digital topographical maps obtained 
from the Hellenic Military Geographical Service (http://
web.gys.gr/GeoSe arch/). Geodiversity was compiled from 
the 1:500,000 scale Geological Map of Greece (Bornovas 
and Rondogianni-Tsiambaou 1983).

From this initial set of 45 predictors, only six were not 
highly correlated (Spearman rank correlation < 0.7 and 
VIF < 5; Online Resource 1—Rogerson 2001; Dormann 
et al. 2013). Multicollinearity assessment was performed 
with the ‘usdm’ 1.1.18 (Naimi et al. 2014) and ‘psych’ 
1.8.12 (Revelle 2018) R packages. All analyses and graphs 
were carried out in the R 3.5.3 (R Development Core Team 
2019).

Phylogenetic tree

Since molecular data are not available for many of the 
plant taxa occurring in the study area, in order to gener-
ate a phylogenetic tree we used the GBMB tree (Smith and 
Brown 2018), i.e. GenBank taxa with a backbone provided 
by Magallón et al. (2015) that contains 79,874 taxa. We 
appended any species that were present in our presence/
absence matrix, but were missing from the phylogeny by 
adding them next to a randomly selected congener, following 
Bruelheide et al. (2019) and Maitner et al. (2018). We did 
not add the missing taxa as polytomies to their respective 
genera, as this approach adds substantial bias to any ensuing 
analyses (Davies et al. 2012). All analyses and graphs were 
carried out in the R 3.5.3 (R Development Core Team 2019) 
using functions from the ‘ape’ 5.3 (Paradis and Schliep 
2018) and ‘phangorn’ 2.5.5 (Schliep 2011) R packages.

Land phylogenetic diversity

In order to quantify phylogenetic alpha diversity (PAD) and 
structure of island floras, we estimated PAD (sensu Faith 

1992) of the species inhabiting each of the islands and islets 
included in the present study with the ‘picante’ 1.6-2 R 
package (Kembel et al. 2010). We tested for non-random 
patterns in PAD by estimating their standardized effect size 
(SES) scores as

where Xobs is the observed score within each island and 
mean (Xnull) and standard deviation (Xnull) are the mean 
and standard deviation of a null distribution of scores gener-
ated by shuffling taxa labels of the island-by-species matrix 
999 times. We assessed the statistical significance of the 
SES scores by calculating two-tailed p values (quantiles) as

where  rankobs is the rank of the observed scores compared 
with those of their null distributions, and runs is the number 
of randomizations (Kembel et al. 2010). SES scores with 
p < 0.05 and p > 0.95 were considered as significantly lower 
and higher than expected for a given PAD value, respec-
tively. Positive SES values indicate phylogenetic overdis-
persion, whereas negative SES values indicate phylogenetic 
clustering. We calculated the standardized effect size scores 
with the ‘PhyloMeasures’ 2.1 (Tsirogiannis and Sandel 
2017) R package. The greater sensitivity of  SESPAD to more 
terminal structure makes it better suited to explore assem-
bly processes working at finer temporal and spatial scales 
(Mazel et al. 2015).

Regression analysis of alpha diversity

In order to explore the effect of key biological, geographical 
and climatic variables on species richness of the Sporades 
archipelago, we modelled the determinants of taxonomic (N 
and TE) and phylogenetic  (PADN and  PADTE) island diver-
sity by running a best subset regression analysis (Burnham 
and Anderson 2002).

A value of 1 was added to TE before  log10-transformation, 
because zero values were reported for some islands (Brunet 
and Medellín 2001). Most of the variables had frequency 
distributions that were strongly positively skewed. Hence, 
the variables were  log10-transformed to normalize their dis-
tribution so that they could be compared with bivariate and 
multivariate regression methods without heteroscedastic 
biases and improve the linearity of the relationships in the 
regression models. A goodness-of-fit test (Shapiro–Wilk 
and Kolmogorov–Smirnov with 95% level of confidence) 
to a normal distribution was used to confirm that each trans-
formed variable was successfully transformed to an approxi-
mately normal distribution. We compared the models using 

(1)SES =
X
obs

−mean
(

X
null

)

s.d.
(

X
null

)

(2)p values =
rank

obs

runs + 1

https://www.soilgrids.org
https://www.soilgrids.org
http://srtm.csi.cgiar.org
http://srtm.csi.cgiar.org
http://web.gys.gr/GeoSearch/
http://web.gys.gr/GeoSearch/
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R2 values as a measure of their goodness-of-fit. As the mod-
els have the same number of fitted parameters, the R2 values 
are directly comparable, without any modification (Triantis 
et al. 2003, 2005).

We used Akaike’s Information Criterion (AIC) to identify 
the minimum adequate models. This process also allowed 
calculating the relative importance of each explanatory vari-
able, which captured the percentage of variation explained 
by each factor when the other factors were held constant. 
The variance inflator factors (VIF) were below 2.5, thus indi-
cating that multicollinearity was not a problem in any of our 
obtained models. By fitting the full model, the total adjusted 
coefficient of multiple determination (R2

adj) was assessed.
All analyses and graphs were carried out in the R 3.5.3 

(R Development Core Team 2019) using core functions and 
functions from the leaps (Lumley 2009) package.

Generalized dissimilarity modelling

We used generalized dissimilarity modelling (GDM; Fer-
rier et al. 2007) to model pairwise plant community com-
positional dissimilarity between all the islands and islets 
included in our analysis as a response to environmental and 
spatial variables. Taxonomic and phylogenetic beta diversity 
(TBD and PBD, respectively) and their components were 
computed using the ‘betapart’ 1.3 package (Baselga and 
Orme 2012).

In the GDM framework, a group of curvilinear mono-
tonic functions is used to regress species turnover along 
environmental gradients, consequently identifying the non-
linear relationship between ecological and environmental 
dissimilarity (Fitzpatrick et al. 2013). The significance of 
all variables was assessed through a Monte Carlo permuta-
tion test (999 repetitions; Manion et al. 2018). Hence, we 
were able to identify the most significant predictor variables. 
We extracted for each of these variables the fitted I-spline 
(a curvilinear line expressing the relationship between spe-
cies turnover and each predictor—each I-spline has three 
coefficients). We then plotted the I-splines to investigate 
the magnitude and rate of beta diversity variation along the 
most significant predictor variables. We used the sum of the 
I-spline’s coefficients [it defines the proportion of composi-
tional turnover explained by that variable and is determined 
by the maximum height of its I-spline (Ferrier et al. 2007; 
Fitzpatrick et al. 2013)] in order to quantify the magnitude of 
turnover along each gradient. Model fit was assessed via per-
cent deviance explained by the model (Manion et al. 2018). 
The relative importance of each gradient in driving species 
turnover was explained as the percent change in deviance 
explained by the full model and the deviance explained by 
a model fit with that variable permuted (999 permutations; 
Manion et al. 2018). All GDM analyses were performed 

with the ‘gdm’ 1.3.7 (Manion et al. 2018) R package in the 
R 3.5.3 (R Core Development Team 2019).

Phytogeographical relationships

In order to investigate the phytogeographical relationships 
among the islands and islets constituting the Sporades archi-
pelago, we used the TBD and PBD dissimilarity matrices of 
their respective turnover component, since it is least affected 
by variations in species richness (Baselga and Orme 2012), 
following the framework of Kreft and Jetz (2010). We then 
applied the unweighted pair-group method using the arith-
metic averages (UPGMA) linkage method within a hier-
archical clustering scheme, as recommended by Kreft and 
Jetz (2010). Finally, in order to identify distinct clusters of 
biogeographical affinities we used the Kelley–Gardner–Sut-
cliffe (KGS) penalty function, which maximizes differences 
between groups and cohesiveness within groups based on 
the respective compositional dissimilarity matrix (Kelley 
et al. 1996).

Sørensen’s index (Sørensen 1948): Cs = 2j/(a + b), where, 
j = the number of taxa common to both islets, a = the num-
ber of taxa recorded from islet 1, b = the number of taxa 
recorded from islet 2, was used for each pair of islets and 
islands, to calculate taxonomic similarity between Northern 
Sporades islands and islets.

Based on a presence/absence matrix of the endemic taxa 
occurring on the Northern Sporades island complex and the 
phytogeographical regions of Greece, we carried out a hier-
archical cluster analysis in order to measure geographic iso-
lation among floristic regions of Greece. Euclidean distances 
were computed and the Ward method (Ward 1963) was used 
to create groups, where the variance within the groups is 
minimized. The outputs were hierarchical dendrograms, 
using Statistica software (StatSoft Inc. 2001).

Results

Flora

The vascular flora of the Northern Sporades island complex 
comprises 1202 taxa (Online Resource 2), belonging to 517 
genera and 120 families. Twenty-two taxa are Pteridophytes, 
six are Gymnosperms and 1174 are Angiosperms (Online 
Resource 3).

About one-third (31.6%) of the taxa found on the North-
ern Sporades belong to three families: Fabaceae (136 taxa), 
Asteraceae (122 taxa) and Poaceae (122 taxa). Also, well 
represented are the families Brassicaceae (50 taxa), Lami-
aceae (49 taxa), Apiaceae (45 taxa), Caryophyllaceae (41 
taxa) and Orchidaceae (39 taxa). The most genus-rich fami-
lies of the Northern Sporades flora are Asteraceae (11.6% 
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of all genera), followed by Poaceae (10.8% of all genera), 
Fabaceae and Brassicaceae (6% of all genera).

Therophytes predominate and make up 45.7% of the 
flora followed by hemicryptophytes and geophytes (Online 
Resource 3). The Mediterranean chorological category 
comprises 740 taxa (61.6%); within this group the circum-
Mediterranean element predominates (406 taxa), while the 
East Mediterranean, Mediterranean-SW Asian and Medi-
terranean-European elements participate in almost equal 
proportions (8%, 7.8% and 9.4% respectively), highlight-
ing the geographical position and climatic characteristics 
of the study area. The widely distributed taxa (27.7%) con-
tribute significantly to the flora of the Northern Sporades; 
the Boreal, European and Circumtemperate elements are 
represented by few species (Online Resource 3). Balkan 
taxa are rather few, while the endemics, the most interest-
ing chorological element from a phytogeographical point of 
view, represent 3.4% of the total flora (41 taxa).

The alien flora of the Northern Sporades comprises 41 
taxa (3.4%) belonging to 33 genera and 23 families. The neo-
phytes amount to 78% of the Northern Sporades alien flora 
(Arianoutsou et al. 2010; Dimopoulos et al. 2013, 2016). 
On the other hand, 5 alien taxa (Carpobrotus edulis, Morus 
nigra, Paspalum distichum, Raphanus sativus and Xanthium 
spinosum) occur also in small islets of the study area.

Eight islet specialists (Allium commutatum, Anthemis 
werneri, Atriplex recurva, Brassica cretica subsp. aegaea, 
Elytrigia sartorii, Malva arborea, Medicago arborea and 
Trigonella corniculata subsp. rechingeri—Runemark 1969; 
Snogerup and Snogerup 1987, 2004; Bergmeier and Dimo-
poulos 2003; Strid 2016a) are present in 22 of 23 islands 
and islets of the Northern Sporades (except of Kyra Panagia) 
and are found on cliffs, rocks and coastal habitats (habitat 
preferences as in Dimopoulos et al. 2013, 2016). More than 
one-third (37.5%) of the islet specialists are endemic ele-
ments and the remaining 62.5% are Mediterranean and East 
Mediterranean elements.

Endemism

The endemic element consists of 41 taxa making up 3.4% of 
its total flora, eight of them are endemic to the West Aegean 
islands and are found on 16 of 23 islets and islands.

The family and genus richest in endemic species are 
Asteraceae (10 taxa—8.2%—Online Resource 3) and Cam-
panula (6 taxa—66.7%), respectively. The most common of 
them are Campanula boreosporadum, Scutellaria sporadum 
and Campanula scopelia. Alonnisos, Yioura (6 WAe endem-
ics, respectively) and Kyra Panagia (5 WAe endemics) are 
the islands richest in WAe endemics. Moreover, two single 
island endemics exist in the Northern Sporades, Campanula 
sciathia and Campanula rechingeri found on Skiathos and 
Piperi, respectively.

More than two third (Online Resource 3; 73.1%) of the 
endemic flora are chamaephytes and hemicryptophytes and 
the endemism of the islets and islands ranges from 0 to 5.7% 
(Table 1).

Nearly one-third of the endemic taxa (36.6%) found on 
the Northern Sporades correspond to one or two phytogeo-
graphical areas. Seven of 33 endemic taxa (21.2%) are bire-
gional endemics, most of them originating from the phy-
togeographical region of the Kiklades (Kik—Campanula 
reiseri, Erysimum senoneri subsp. senoneri and Fritillaria 
ehrhartii) and the East Aegean Islands (EAe—Centaurea 
rechingeri and Linum gyaricum subsp. gyaricum) followed 
by those originating from the phytogeographical regions of 
the North Aegean Islands (NAe—Malcolmia macrocalyx 
subsp. macrocalyx) and East-Central Greece (EC—Verbas-
cum aphentulium).

Phylogenetic tree

A phylogenetic tree was generated for the 1202 native plant 
taxa based on the recently published phylogeny of seed 
plants by Smith and Brown (2018—Online Resource 4). 
Only 72 taxa (5.99%) could not be added in the GMBM 
tree, which was subsequently pruned, to contain only the 
native taxa present in the Sporades archipelago.

Island taxonomic and phylogenetic diversity

Most of the Sporades island floras show a tendency towards 
phylogenetic clustering (56.5% and 87% for the endemic and 
native plant communities, respectively; most communities 
were non-significantly clustered or over-dispersed; Online 
Resource 1). Four and five endemic and native island plant 
assemblages, respectively, showed significant phylogenetic 
clustering (SES ≤ − 1.96 and p > 0.95), while only one native 
island plant community (Skiathos) was significantly phylo-
genetically over-dispersed (SES ≥ 1.96 and p < 0.05).

Area (A), Thornthwaite aridity index (AIT) and pH were 
retained in the optimal model for N, while A together with 
AIT, annual potential evapotranspiration (PET) and precipi-
tation seasonality (PS) were retained in the optimal model 
for TE (Table 2). As for both the phylogenetic diversity met-
rics, all six independent variables were retained in the opti-
mal models (Table 2). Area emerged as the most important 
predictor for both the taxonomic diversity metrics, while 
climate factors and more specifically, PS and PET, were the 
main drivers of the endemic and native phylogenetic diver-
sity, respectively (Table 2).

Generalized dissimilarity modelling

The GDM models explained 35.6–62.1% of devi-
ance. (Lower values were observed for PBD than for 
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TBD—Table 3) The most important gradient for all met-
rics was area, followed by pH (Figs. 2, 3, 4). Geography 
explained a small fraction of the deviance for all diversity 
metrics (Fig. 3).

The fitted functions describing the turnover rate and mag-
nitude along each gradient were nonlinear; the turnover rate 
varied with position along gradients and was greatest at the 
high and low end of the pH and area gradient, respectively 
(Fig. 4). More specifically, the island plant communities dif-
fered significantly even at areas ca. 1 km2 and their composi-
tion continued to change with a rapid, but less abrupt trend 
until the 25 km2 threshold (Fig. 4). Soil and climate factors 
had a more profound effect on the endemic plant communi-
ties, which was more pronounced in TBD rather than PBD 
(Fig. 4).

Table 2  Summary statistics for 
predictive models of N, TE, 
 PADN and  PADTE, regarding 
alpha diversity with A, AIT, 
PET, pH, PS and PWM as 
proposed by the best subset 
regression

All independent variables and TE were  log10-transformed. The adjusted R2 (total variance explained by 
each model-R2

adj), the p value, Akaike’s Information Criterion (AIC), the estimate (Est.), the significance 
(p), the Bonferroni-corrected p values (pBon), as well as the relative importance (rw) of each significant pre-
dictor of the best subset regression are reported. A area  (km2); AIT Thornthwaite aridity index; PET annual 
potential evapotranspiration (mm/year); PS precipitation seasonality; PWM precipitation of the year’s wet-
test quarter. pH soil pH; N total number of plant taxa; TE total number of Greek endemic plant taxa; PADN 
island phylogenetic alpha diversity of the native plant taxa; PADTE island phylogenetic alpha diversity of 
the Greek endemic plant taxa

Est. T p pBon AIC R2
adj rw F p value

N − 18.9 0.91 – 71.9 < 0.001
 Intercept 25.28 2.34 – – –
 A 0.32 14.45 0.00 0.00 97.07
 pH − 2.21 − 1.55 0.14 0.41 1.41
 AIT − 11.31 − 2.07 0.05 0.16 1.52

TE 7.17 0.81 – 24.6 <0.001
 Intercept 41.83 2.80 – – –
 PS 2.26 1.06 0.31 1.00 4.53
 PET − 5.36 − 1.85 0.08 0.32 2.65
 AIT − 15.39 − 2.12 0.048 0.19 3.40
 A 0.29 9.42 0.00 0.00 89.43

PADN 68.7 0.69 – 9.31 < 0.001
 Intercept − 805.41 − 4.05 – – –
 PWM 90.38 2.69 0.02 0.12 7.91
 PS − 15.14 − 1.01 0.33 1.00 21.34
 PET 115.80 4.55 0.00 0.00 46.84
 AIT 158.38 3.75 0.00 0.00 9.66
 pH 19.34 1.57 0.14 0.84 8.74
 A − 0.66 − 3.52 0.00 0.00 5.51

PADTE 52.8 0.46 – 4.16 < 0.05
 Intercept − 139.18 − 0.99 – – –
 PWM 26.32 1.11 0.28 1.00 4.56
 PS 35.21 3.32 0.00 0.00 37.28
 PET 35.38 1.97 0.07 0.42 7.43
 AIT − 47.91 − 1.61 0.13 0.78 15.38
 pH 13.47 1.55 0.14 0.84 6.85
 A − 0.30 − 2.28 0.04 0.24 28.50

Table 3  Deviance explained for 
the phylogenetic and taxonomic 
beta-diversity patterns of the 
native and endemic plant taxa 
occurring on the 23 islands 
considered

PBD phylogenetic beta diver-
sity; TBD taxonomic beta diver-
sity

Metric Taxa % Deviance 
explained

TBD Native 62.1
Endemic 45.8

PBD Native 62.0
Endemic 35.6
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Phytogeographical relationships

The floristic relationships between the islets studied 
expressed by Sørensen’s index revealed that the individual 
islet floras differ from each other from 15.8 to 97.1%.

The floristic independence of the islets and their floristic 
diversity are illustrated by the fact that 28.6% of the taxa 
occur on only one of the 23 studied islets and islands. None 
of the taxa was common to 23 islets and islands, while only 
10 taxa (0.8%) were found on at least 19 islets and islands.

Among the islets and islands of the Northern Sporades, 
hierarchical cluster analysis based on the taxonomic diver-
sity (Online Resource 3) and phylogenetic diversity of Greek 
endemic taxa (Online Resource 3) show different levels of 
clustering and divided them into 5 and 4 distinct groups, 
respectively.

Hierarchical cluster analysis (Fig. 5) revealed that West 
Aegean Islands (WAe) were clearly clustered with Kiklades 
(KiK) and East Aegean islands (EAe) and are distant from 
the other floristic regions based on the distribution of the 
Greek endemic taxa.

Discussion

Flora

Fabaceae, Asteraceae and Poaceae comprise nearly one-
third of the taxa occurring in the Northern Sporades island 
complex and are among those best-adapted to the ecologi-
cal conditions of the Mediterranean area as is confirmed by 
many floristic studies on Greek islands (e.g. Panitsa et al. 
2003; Kougioumoutzis et al. 2012a; Iliadou et al. 2014a, b). 
The high percentage of therophytes (45.7%; Online Resource 
3) in conjunction with the high percentage of Mediterranean 
(61.6%; Online Resource 3) and leguminous taxa (11.3%) 
reflect the Mediterranean character of the Northern Sporades 
flora, indicating human-induced disturbances, like grazing 
and cattle, in Mediterranean ecosystems (Panitsa et al. 2003; 
Kougioumoutzis et al. 2014b). At present, the natural eco-
systems of the Northern Sporades are not endangered by 
the invasion of alien taxa (3.4%; Online Resource 3) which 
range below the percentage recorded for the entire Greek 
flora (c. 5% according to Arianoutsou et al. 2010; c. 3.8% 

Fig. 2  The relative importance 
of each predictor variable in 
driving beta diversity. GeoDIST 
Geographical distance between 
the islands; PWM precipitation 
of the year’s wettest quar-
ter; PBD phylogenetic beta 
diversity; TBD taxonomic beta 
diversity
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according to Dimopoulos et al. 2013, 2016). The vast major-
ity (87.8%) of the alien taxa are found only on the 3 largest, 
inhabited islands of Skiathos, Skopelos and Alonnisos that 
are most affected by human impact (tourism, grazing, fires, 
cultivation, etc.).

The islet specialists, known from various archipelagos 
around the world, occur mainly on small, low, uninhabited 
islets exclusively on cliffs, rocks and coastal habitats. The 
‘islet phenomenon’ was first described from the Aegean, 
where the islet specialists constitute a characteristic phy-
togeographical element (Rechinger and Rechinger-Moser 
1951). The islet specialists occur on 22 of the 23 islands 
and islets of the Northern Sporades (Online Resource 5), 
their distribution is restricted to the Aegean floristic regions 
(Runemark 1969; Snogerup and Snogerup 1987, 2004; Berg-
meier and Dimopoulos 2003) and they play an important 
role in the floristic composition of islet vegetation (Panitsa 
and Tzanoudakis 2010) as a consequence of reduced com-
petition among species, founder and isolation effects, and 
random eliminations by reproductive drift (Runemark 1969; 
Bergmeier and Dimopoulos 2003).

Endemism

The patterns of plant endemism richness we observed in 
Northern Sporades are similar to those occurring in Greece 
in general (Georghiou and Delipetrou 2010; Dimopoulos 
et al. 2013, 2016), at the family and genus level. Most of the 
endemic taxa present in the study area are chamaephytes and 
hemicryptophytes, scattered mainly in the numerous steep 
cliffs, rocks and coastal habitats, which very often harbour 
endemic taxa (Kypriotakis and Tzanoudakis 2001; Trigas 
et al. 2008; Panitsa and Kontopanou 2017).

The endemism rate of the Northern Sporades (3.4%) is 
relatively low compared to the total endemic flora of West 
Aegean islands (c. 9.5% according to Dimopoulos et al. 
2013, 2016). However, the endemism rate of WAe is due to 
the inclusion of Evvia. Evvia is the second-richest Aegean 
island in terms of single island endemics (40 taxa), is charac-
terized by three centres of endemism (the serpentine regions 
of N Evvia, Mt Dirphis and Mt Ochi) and hosts 175 Greek 
endemic elements (Trigas and Iatrou 2006; Trigas et al. 
2008). Moreover, the long-lasting separation of Evvia from 
the Northern Sporades (Sakellariou and Galanidou 2016), 

Fig. 3  The proportion of total 
deviance explained attributable 
purely to area (grey), purely to 
geography (black) and purely to 
soil (beige) for each beta-diver-
sity metric. PBD phylogenetic 
beta diversity; TBD taxonomic-
beta diversity



Taxonomic and phylogenetic patterns in Northern Sporades

1 3

Page 11 of 17 28

in combination with its large size, mountainous landscape 
and environmental complexity explain why Evvia seems to 
be biogeographically separated from Northern Sporades, 
corroborated by the rather low number of WAe endemics 
occurring on those islands and islets. This is in line with 
the fact that the endemism rate grew larger the more distant 
islands and islets were from the adjacent mainland (Table 1); 

small islets generally exhibited higher endemism rates than 
the larger islands.

The only single island endemic of Skiathos is the schiz-
oendemic and obligate chasmophyte Campanula sciathia 
that belongs to the section Quinqueloculares (Boiss.) Phitos. 
The section’s taxa and their distributional patterns (Cam-
panula cymaea near Kymi, Campanula constantinii on Mt 

Fig. 4  GDM-fitted I-splines (partial regression fits) for variables sig-
nificantly associated with endemic (red line) and native (green line) 
phylogenetic beta diversity, endemic (blue line) and native (purple 
line) taxonomic beta diversity in the Northern Sporades. The maxi-
mum height reached by each curve indicates the total amount of 

turnover associated with that variable, holding all other variables con-
stant. The shape of each function indicates the variation of turnover 
rate along the gradient. AIT Thornthwaite aridity index; PET annual 
potential evapotranspiration; PBD phylogenetic beta diversity; TBD 
taxonomic beta diversity
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Dirphis and Campanula scopelia found on Skopelos and 
Kyra Panagia) have emerged as a result of the region’s pal-
aeogeographical history (Phitos 1965; Eddie and Ingrouille 
1999; Crowl et al. 2015).

Island taxonomic and phylogenetic diversity

Island diversity patterns

Area emerged as the most important variable shaping taxo-
nomic plant diversity (Table 2), while niche-based processes 
played a lesser role in driving these patterns. This phenom-
enon is also observed in other Aegean island complexes 
and biogeographical regions, where niche-based processes 
play a lesser role in shaping the geographical distribution 
and species richness patterns of the Aegean island plant 
communities (Panitsa et al. 2010; Kagiampaki et al. 2011; 
Kallimanis et al. 2011; Kougioumoutzis and Tiniakou 2014; 
Kougioumoutzis et al. 2017). On the other hand, island phy-
logenetic diversity is predominantly determined by climate, 
implying that the region’s spatial configuration plays a minor 
role in shaping these diversity patterns, a phenomenon also 
observed in oceanic archipelagos as well (Cabral et  al. 
2014). This concurs with the presence of niche conservatism 
in Mediterranean ecosystems (Rundel et al. 2016; Skeels 
and Cardillo 2017) and with the fact that most endemics 

occurring in the Aegean seem to use the same ecological 
niche (Kallimanis et al. 2011).

Most island and islet floras showed a general tendency for 
phylogenetic clustering. Nevertheless, Skiathos was the sole 
exception to this rule, suggesting that the relative importance 
of different processes shaping species composition varies 
among the Northern Sporades islands. More specifically, 
phylogenetic clustering could be due to either increased 
island isolation, in situ speciation or strong environmental 
filtering (e.g. Webb et al. 2002; Weigelt et al. 2015). On the 
other hand, phylogenetic overdispersion could arise from 
competitive exclusion of closely related species or environ-
mental filtering across multiple habitats on a given island 
(e.g. Cavender-Bares et al. 2009). The phylogenetic over-
dispersion observed in Skiathos, the largest island in our 
study system and the one closer to the adjacent mainland, 
could be due to reduced environmental filtering, since larger 
islands tend to be topographically and environmentally more 
complex and thus provide more opportunities for the estab-
lishment and long-term survival of different clades with dif-
ferent niche requirements (Parent and Crespi 2006; Cardillo 
et al. 2008). Skiathos’ flora may have also been enriched 
with migrating lineages from adjacent mainland regions, 
due to its longer-lasting connection with Evvia and Sterea 
Ellas during Pleistocene glacial periods. Putative refugia 
tend to be phylogenetically over-dispersed (e.g. Kooyman 
et al. 2011, 2013), a phenomenon recently highlighted for 
some forest communities in mainland Greece (Mastrogianni 
et al. 2019).

Beta‑diversity patterns and affecting factors

The Mediterranean region’s intricate geography and orogra-
phy (Rundel et al. 2016 and references therein) have resulted 
in high taxonomic beta diversity (Thompson 2005), a phe-
nomenon apparent in our study area as well, since most 
Northern Sporades islands and islets have very few endemic 
species in common (floristic differences range: 15.8–97.1%). 
The palaeogeographical history of Northern Sporades and 
the subsequent sea-level and island area changes may have 
resulted in reduced species dispersal, thus promoting isola-
tion and high beta diversity among the island plant commu-
nities, which could be the result of differential allopatric spe-
ciation and extinction (e.g. Campanula sciathia, C. scopelia, 
C. rechingeri and other taxa belonging to the section Quin-
queloculares (Boiss.) Phitos). Moreover, the responses of 
endemic PBD were consistently smaller than those of TBD. 
This implies that phylogenetically close relatives have prob-
ably been responsible for the spatial variation in Northern 
Sporades plant diversity.

Beta-diversity patterns at a global scale are better pre-
dicted by topographical heterogeneity as expressed by 
elevation rather than biotic transitions (e.g. Peixoto et al. 

Fig. 5  Hierarchical cluster analysis (linkage method: Ward’s method. 
Euclidean distances) showing floristic relations among floristic 
regions of Greece, based on the distribution of endemic taxa. StE flo-
ristic region of Sterea Ellas; Pe floristic region of Peloponnese; KK 
floristic region of Kriti-Karpathos; EAe floristic region of the East 
Aegean Islands; Kik floristic region of the Kiklades; WAe floristic 
region of the West Aegean Islands; NC floristic region of North-Cen-
tral Greece; SPi floristic region of South Pindos; NPi floristic region 
of North Pindos; NE floristic region of North-East Greece; EC floris-
tic region of East-Central Greece; NAe floristic region of the North 
Aegean Islands; IoI floristic region of the Ionian Islands
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2017), while in the Mediterranean, these patterns seem to 
be driven by climatic factors as well (e.g. Molina-Venegas 
et al. 2017; Xystrakis et al. 2019). This concurs with our 
results, since PBD and TBD patterns are mainly shaped 
by area and several environmental gradients, such as PET, 
AIT and PWM (Figs. 2, 3, 4). As in the Ionian archipelago 
(Valli et al. 2019), geographical distance only plays a minor 
role in establishing the beta-diversity patterns (Figs. 2, 3, 
4), pointing out that dispersal filtering is not the dominant 
process regarding the assembly of the Northern Sporades 
island flora. This is in line with previous works stating that 
climate has also contributed to the biogeographical config-
uration of the Aegean archipelago (Kougioumoutzis et al. 
2014a, 2017; Kougioumoutzis and Tiniakou 2014). This is 
also in harmony with the fact that nearly 40% of the pre-
sent Aegean flora (excluding the endemics) has reached the 
Aegean Islands owing to human action in prehistoric or early 
historic times (Greuter 1979).

The presence of these human-dispersed species may 
explain the lesser part dispersal limitation has in shaping 
the PBD patterns of the Northern Sporades island complex.

Phytogeographical relationships

Our results on phytogeographical relations are based on the 
analysis of the Greek endemic taxa for two reasons: (1) when 
we ran the analysis based on the total number of taxa (i.e. 
the native taxa), the results were similar, yet the trends not 
so obvious as those obtained from the Greek endemics and 
more importantly, (2) when dealing with phytogeographical 
issues in the Aegean, only these taxa, rather than the whole 
flora, are phytogeographically meaningful and informative 
(Greuter 1975).

Most of the island and islet pairs showed rather high 
floristic dissimilarity, with the notable exception of Yioura 
and Kyra Panagia. The flora of these islands is very sim-
ilar and is probably the result of their long-lasting isola-
tion from the other Northern Sporades islands and islets 
(Kamari et al. 1988; Snogerup 1991; Snogerup et al. 1991). 
The vast majority of taxa occurring on Yioura and Kyra 
Panagia are relicts of different age which may have survived 
on these two islands due to the long-lasting isolation that 
may have hindered the arrival and establishment of competi-
tors (Snogerup 1991). The high floristic similarity between 
Yioura and Kyra Panagia is in harmony with the land con-
nection between these two islands since the late Messinian, 
c. 4.5 Mya (Kamari et al. 1988—Online Resource 3).

Hierarchical cluster analyses based on the taxonomic and 
phylogenetic diversity of Greek endemics (Online Resource 
3) divided the Northern Sporades into distinct groups 
clearly based on area and elevation of the islets and islands, 
as these factors according to Kallimanis et al. (2011) and 

Kougioumoutzis et al. (2017), are the major drivers of plant 
diversity patterns in the Aegean area.

West Aegean islands (WAe) were grouped with Kiklades 
(Kik) and East Aegean islands (EAe) based on the distri-
bution of Greek endemic taxa. On the other hand, Evvia 
which is phytogeographically very well separated from the 
Northern Sporades clusters together with Sterea Ellas and 
Peloponnisos.

According to Georghiou and Delipetrou (2010), the 
Northern Sporades show higher phytogeographical affini-
ties to the adjacent mainland regions of Sterea Ellas, East-
Central Greece and the Peloponnese (StE, EC and Pe, 
respectively) and then with the phytogeographical region of 
the Kiklades (Kik). According to our results, seven taxa are 
biregional endemics [i.e. taxa useful for inferring phytogeo-
graphical relationships in the Aegean (Kougioumoutzis et al. 
2012a, 2012b, 2014b, 2015)] and three of them—namely 
Campanula reiseri, Erysimum senoneri subsp. senoneri and 
Fritillaria ehrhartii—are exclusively found in WAe and Kik, 
two occur exclusively in WAe and EAe (Centaurea rech-
ingeri and Linum gyaricum subsp. gyaricum), while only 
one occurs either in NAe or EC.

Therefore, we argue that the Northern Sporades seem 
to be closer connected to Kik and EAe rather than to StE, 
EC and Pe as previously suggested for the entire WAe phy-
togeographical region (Georghiou and Delipetrou 2010), 
which was probably heavily influenced by the inclusion of 
Evvia—an entity entirely different from the Northern Spo-
rades island complex in biogeographical terms (Kougiou-
moutzis et al. 2017).

Our results thus lend weight to the hypothesis that the 
Northern Sporades (along with Skyros) seem to be closer 
connected to the Kiklades rather than to Evvia or the adja-
cent mainland, due to their longer isolation and separate pal-
aeogeographical history during the Quaternary (Sakellariou 
and Galanidou 2017; Simaiakis et al. 2017). These results 
are also in accordance with the findings of Kougioumoutzis 
et  al. (2017) that two main distributional and (palaeo-) 
geographical barriers exist in the Aegean Archipelago: the 
Mid-Aegean trench and the North Aegean Trough that limit 
the phytogeographical connections between the Northern 
Sporades with Kriti and North Aegean islands, respectively.
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Information on Electronic Supplementary Mate-
rial

Online Resource 1. Abbreviations and correlation matrix of all the abi-
otic variables included in the analyses. Standardized effect scores of 
the phylogenetic alpha diversity for each island and islet included in 
the analyses. Dissimilarity matrix based on Sørensen’s index.
Online Resource 2. List of species occurring in the Northern Sporades 
islands and islets complex.
Online Resource 3. a Numbers of vascular plant taxa in the flora of the 
Northern Sporades islet complex. b Life forms in the total (1202 taxa) 
and the endemic (41 taxa) native flora of the Northern Sporades islet 
complex. c Chorological spectrum of the native flora of the Northern 
Sporades island complex. d Families with Greek-, WAe- and Single-
Island endemics and degree of endemism. e Hierarchical cluster anal-
ysis showing floristic relations between the Northern Sporades islet 
complex based on the phylogenetic diversity (PBD) of Greek endemic 
taxa. f Hierarchical cluster analysis showing floristic relations between 
the Northern Sporades islet complex based on the taxonomic diversity 
(TBD) of Greek endemic taxa.
Online Resource 4. The phylogenetic tree of the species included in our 
analyses based on the GBMB phylogenetic tree published by Smith & 
Brown (2018).
Online Resource 5. Plant species of special biogeographical interest.
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