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Abstract Lippia alba (Verbenaceae) is an aromatic

shrub recently described as a new tropical polyploid

species with five distinct chromosome numbers

(2n = 30, 38, 45, 60, and 90) with 2n = 30, 45, and 60

being the most frequent ones. Cytomixis is a cellular

process known as the migration of genetic material

mainly between meiocytes through cytoplasmic connec-

tions or cytomictic channels. This phenomenon has been

reported in various plant families such as Leguminosae,

Brassicaceae, Poaceae, Apocynaceae, Liliaceae, Ruta-

ceae, and others. The transference of genetic material

between pollen mother cells (PMCs), by cytomictic

channels, induces the formation of unbalanced and

unreduced (2n) gametes, and is considered a possible

source of aneuploid and polyploid plants. Here, we

describe for the first time, the occurrence of cytomixis in

meiotic cells of L. alba (tetraploid cytotype) analyzing

data obtained from meiotic behavior assays. In addition,

the pollen size and viability were also evaluated. A high

index of irregularities during meiosis was observed as

well as unviable pollen with heterogeneous size.

Approximately 80 % of zygotene cells showed genetic

material exchange. Considering that L. alba shows dif-

ferent chromosome numbers, the contribution of cyto-

mixis to cytotypes formation is also discussed.

Keywords Meiosis � Pollen viability � Polyploidy �
Unreduced gametes

Introduction

Cytomixis, a migration of cytoplasmatic or nuclear mate-

rials between adjacent cells, is an intricate phenomenon

well reported in plants (Lattoo et al. 2006; Singhal and

Kumar 2008; Pierre and Sousa 2011; Guan et al. 2012;

Mursalimov et al. 2013; Mursalimov and Deineko 2015).

This natural process was reported for the first time around

100 years ago by Kornicke (1901) although the phe-

nomenon was named by Gates (1911). Cytomixis was

observed in different plant groups including Pteridophyta,

Gymnosperms, Monocots, and Dicots. More specifically,

the process was mainly reported in hybrids, aneuploids,

mutants, polyploids, and apomictic individuals (de Nit-

tancourt and Grant 1964; Gottschalk 1970; Mantu and

Sharma 1983; Li et al. 2009; Pierre and Sousa 2011).

Cytomixis was most frequently observed during meiosis I

of microsporogenesis (Koul 1990; Lattoo et al. 2006;

Kumar et al. 2010). Although cytomixis is not common in

somatic cells, the phenomenon was also reported in root

tips (Jacob 1941; Sarvella 1958; Tarkowska 1960;

Kostritsyna and Soldatov 1991; Guzicka and Wozny 2005)

and tapetal cells, among others (Cooper 1952).

The transference of DNA occurs by cytoplasmatic

connections called cytomictic channels. These channels

derive from an atypical plasmodesmata structure, which

persists throughout meiosis (Risueno et al. 1969; Pierre and

Sousa 2011). The origin of cytomictic channels is still

unknown and different explanations have been described:

failure in cellular wall formation during cytokinesis (Sar-

vella 1958; Bisalpufra and Stein 1966); adjacent
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plasmodesmata fusion (Wang et al. 1998) and defects in

callose synthesis (Sheidai and Fadaei 2005; Sidorchuk

et al. 2007). In general, cytomictic channels connect two or

more cells in the same division stage (Souza and Pagliarini

1997) but some reports also indicate the exchange of

genetic materials between cells in different stages (Song

and Li 2009; Lone and Lone 2013).

Cytomixis may be influenced by stress conditions such

as physical and chemical factors (Bobak and Herich 1978;

Narain 1979; De and Sharma 1983; Dwivedi et al. 1988;

Souza and Pagliarini 1997; Bhat et al. 2006; Gulfishan

et al. 2010). Independently of its origin, cytomixis results

in serious genetic consequences. When it occurs in pollen

mother cells (PMCs) it frequently affects gametogenesis

and fertility (Mursalimov et al. 2013; Mursalimov and

Deineko 2015). Whereas the normal product of meiosis

division must possess half of the DNA of the mother cells,

the transference of genetic material between cells may

result in gametes with increased or decreased DNA content

leading to unbalanced gametes (Mursalimov and Deineko

2015). Many reports indicate the presence of unbalanced or

unreduced pollen originated from meiotic irregularities,

mainly in individuals with cytomixis (Bell 1964; Lattoo

et al. 2006; Mursalimov and Deineko 2015). In an evolu-

tionary context, cytomixis has been studied over time

(Kamra 1960) assuming an important role in new species

formation, especially by polyploidization via unreduced

gametes (Bell 1964; Falistocco et al. 1995; Lattoo et al.

2006).

Lippia alba (Verbenaceae), an important aromatic shrub

used in Brazilian folk medicine, is characterized by various

chemotypes as well as large phenotypic plasticity and

genome variation (Pierre et al. 2011; Reis et al. 2014;

Viccini et al. 2014). A recent study published by Reis et al.

2014 indicates the occurrence of a putative polyploid

complex naturally formed in this species with diploids

(2n = 30; 64 individuals), aneuploid (2n = 38; one indi-

vidual), triploids (2n = 45; 16 individuals), tetraploids

(2n = 60; 24 individuals), and one hexaploid individual

(2n = 90), collected in 14 states of the five major geo-

graphical regions of Brazil (North, Northeast, Center-West,

Southeast, and South). The authors hypothesized an

autopolyploid origin of each chromosome number by uni-

lateral and bilateral crossing between cytotypes via unre-

duced gametes. Nevertheless, the mechanism involved in

the formation of unreduced pollen is still unclear and

presents an interesting point to be elucidated, which could

help understand the origin of the cytotypes.

Here, we describe, for the first time, the cytomixis

phenomenon in microsporogenesis of L. alba, one possible

mechanism associated with the formation of unreduced

gametes.

Materials and methods

Biological material

The tetraploid accession of L. alba (BGEN-92,

2n = 4x = 60) was cultivated in standard conditions at the

Plant Experimental Station of the Universidade Federal de

Juiz de Fora (UFJF), Brazil. Flower buds were collected in

the morning and immediately fixed in cold ethanol: acetic

acid solution 3:1 (v/v) for a minimum of 24 h.

Meiotic preparation

Slides were prepared by squash technique. The anthers

were excised from the flower buds in a drop of 45 % acetic

acid, squashed using a coverslip and stained with 5 %

acetocarmine. Chromosomal abnormalities of different

meiotic stage cells (zygotene, metaphase I, anaphase I,

metaphase II, anaphase II, and telophase II) were quantified

considering at least 100 cells per stage. The images were

registered using the CellSens software (Olympus).

Pollen viability

Pollen viability was investigated according to Heslop-

Harrison and Heslop-Harrison (1970) with minor modifi-

cations. Mature and fresh anthers were excised and stained

with fluorescein diacetate dissolved in acetone (2 mg/mL)

combined with 10 % sucrose for 30 min. The fluorescent

pollen were considered viable and the non-fluorescent ones

as unviable. At least 1000 pollen grains were analyzed

using a BX 51 microscope (Olympus) with appropriate

filter. The diameter of ca. 100 grains was measured. The

images were digitalized using the CellSens software

(Olympus).

Results and discussion

Here, we describe for the first time the cytomixis phe-

nomenon in a tetraploid individual of L. alba. In this

accession, the process occurs specifically in prophase I and

among meiocytes only during the zygotene stage (Fig. 1a–

f). Approximately 80 % of zygotene cells showed an

exchange of genetic material (Table 1). Although previous

reports revealed that this species showed a high index of

irregularities during meiosis and unviable pollen (mainly in

polyploid cytotypes), no event of cytomixis has been

observed so far (Brandão et al. 2005; Pierre et al. 2011;

Reis et al. 2014). In our study, in addition to cytomictic

cells observed at zygotene stage, the analysis of meiotic

behavior revealed a high percentage of irregularities at
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subsequent stages of prophase I: precocious migration and

lost chromosomes (metaphase I); laggard chromosomes,

chromosome bridge and multipolar anaphase (anaphase I);

chromosomal losses (metaphase II); late migration (ana-

phase II); dyads, triads, polyads and micronuclei (telophase

II) (Table 1).

Fig. 1 Meiotic irregularities in a tetraploid accession of Lippia alba.

a–f cytomixis among PMCs at zygotene stage cell; g PMC with

micronucleus; h multipolar anaphase I with chromosome loss;

i multipolar anaphase I with chromosome bridge and chromosome

losses; j anaphase I with lagging chromosomes; k triad; l dyad;

m viable pollen; n unviable pollen with reduced size; o unviable

pollen with irregular shape. Black arrows indicate micronuclei;

asterisk indicates empty PMC after transference of chromatin; white

arrow indicates chromosome bridge; arrowheads indicate chromo-

some losses. Bar 5 lm (a–l); bar 10 lm (m–o)
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Many studies reported the formation of cytomictic

channels in PMCs, mainly in prophase I (Falistocco et al.

1995; Wang et al. 2002; Bellucci et al. 2003; Sidorchuk

et al. 2004; Imeri-Buiza 2007; Negron-Ortiz 2007; Song

and Li 2009). However, species such as Nicotiana taba-

cum, Chlorophytum comosum, Medicago sativa, and Me-

conopsis aculeate showed communications between nuclei

in interphase, in different stages of meiosis I and rarely in

meiosis II (Bellucci et al. 2003; Lattoo et al. 2006; Singhal

and Kumar 2008; Guan et al. 2012; Mursalimov et al.

2013). In the individual investigated here, cytomixis pro-

cess involved from two to 16 adjacent cells and the

cytomictic channels varied in length and number (Fig. 1a–

f). In some cases the nuclei migration resulted in almost

empty cells and others apparently showed twice the amount

of DNA content (Fig. 1f). After chromatin transfer, the

receptor cell frequently shows condensed micronucleus and

unorganized chromatin (Fig. 1a). The migration of chro-

matin from one cell to another directly interferes with its

function and development. The increase or reduction of

DNA content in PMCs may cause problems in

microsporogenesis and consequently failure in the forma-

tion of balanced gametes (Bellucci et al. 2003; Singhal and

Kumar 2008; Ferreira et al. 2009; Kumar et al. 2010). The

most common abnormalities observed were condensed

micronucleus, desynapsis, chromosome stickiness, incor-

rect pairing, unequal segregation, laggard chromosomes,

precocious migration, and chromosome bridge (Lattoo

et al. 2006) as was observed in a tetraploid accession of L.

alba investigated here (Table 1; Fig. 1g). All of these

abnormalities can result in unreduced or unbalanced

gametes (Bretagnolle and Thompson 1995).

The frequency of cytomixis can vary within the same

species with different ploidy levels (Lavia et al. 2011;

Guan et al. 2012). Jeelani et al. (2011), for example,

observed different cytomixis indices in diploid and tetra-

ploid cytotypes of Silene conoidea, S. edgeworthii, and S.

vulgaris (Caryophyllaceae). In Ranunculus hirtellus (Ra-

nunculaceae) the tetraploid individuals showed transfers of

chromatin and abnormal microsporogenesis, while diploids

exhibited normal meiosis (Kumar and Singhal 2011). In L.

alba, up to now, only the tetraploid cytotype showed

chromatin migration in PMCs.

Cytomixis is usually observed in plants with some level

of genetic, physiological, or biochemical instability such as

haploids, triploids, hybrids, mutants, aneuploids, and apo-

micts individuals (De Nittancourt and Grant 1964; Gott-

schalk 1970; Mantu and Sharma 1983). In L. alba, meiotic

instability, genome restructuring, and chromosome rear-

rangements were already reported in polyploids (Reis et al.

2014). Genomic rearrangements are common in neopoly-

ploids and tend to stabilize after successive generations of

karyotype ‘‘adjustment’’ (Soltis and Soltis 2009; Chester

et al. 2010, 2013; Lipman et al. 2013). This nuclear

restructuring is an adaptation to the new conditions

imposed by the increase of DNA content (Chester et al.

2013). Therefore, for these individuals, considering that

cytomixis allows a large scale of DNA losses and addition,

this process can help genome adjustments, accelerating the

adaptation/stability of new polyploids.

As outlined above, cytomixis is a potential mechanism

to generate meiotic instability and to form abnormal

gametes. Thus, the chromatin transfer between adjacent

PMCs can result in unreduced or unbalanced gametes that

could contribute to the formation of aneuploids and poly-

ploid individuals (Bell 1964; Lattoo et al. 2006). It is well

known that polyploidy is the major driver of speciation in

plants (Masterson 1994; Soltis et al. 2003; Mittelbach et al.

2007; Soltis et al. 2009; Soltis and Soltis 2009; Jiao et al.

2011), and cytomixis might be one of mechanisms that

contributes to the formation of new polyploids via unre-

duced gametes (Bretagnolle and Thompson 1995; Falis-

tocco et al. 1995; Ramsey and Schemske 1998; Ghaffari

2006; Lattoo et al. 2006). Several papers reported the

formation of viable 2n pollen in cytomictic plants and also

that cytomixis was directly associated with the formation

of new cytotypes (Falistocco et al. 1995; Zhou 2003;

Ghaffari 2006; Lattoo et al. 2006; Negron-Ortiz 2007;

Singhal and Kumar 2008; Song and Li 2009; Singhal et al.

2011; Mursalimov and Deineko 2015).

In general, unreduced pollen grains show larger volume

and diameter than haploid ones. On the other hand, cyto-

mixis can also produce pollen grains with reduced size

(pollen with less DNA) (Ramsey and Schemske 2002;

Ramanna and Jacobsen 2003; Soltis et al. 2004; Larrosa

et al. 2012). In wild potatoes (Solanum tuberosum), for

Table 1 Meiotic irregularities

observed at different stages in a

tetraploid accession of L. alba

Abnormalities Number of cells Total % Stages

Cytomixis 135 167 81 Zygotene

Precocious migration, lost chromosomes 78 107 73 Metaphase I

Laggard chromosomes, bridge, multipolar anaphase 53 113 47 Anaphase I

Chromosomal losses 100 100 100 Metaphase II

Late migration, lost chromosomes 89 107 83 Anaphase II

Dyads, triads, polyads, micronuclei 96 109 88 Telophase II
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example, the authors suggested that pollen grains larger

and smaller than the average size formed diploids and

aneuploids gametes contributing to the formation of new

hybrids (Larrosa et al. 2012). In our results with L. alba,

the fluorescein diacetate test revealed a high percentage of

unviable pollen (ca. 87 % of 1069 grains analyzed).

Moreover, most of the pollen grains showed irregular shape

and heterogeneous size (Fig. 1m–o). A large variation was

also observed in pollen diameters both for viable (from

7.65 to 65.44 lm) and unviable (from 4.87 to 54.84 lm)

ones (Fig. 2), suggesting the existence of variation in the

DNA content of pollen grains (Ramsey and Schemske

2002; Ramanna and Jacobsen 2003; Larrosa et al. 2012).

In L. alba complex, a hypothesis to explain the forma-

tion of different cytotypes involves unilateral and bilateral

crossings via unreduced pollen (Reis et al. 2014). We

suggest that the irregularities at telophase II (dyad, triad,

and polyads) observed in our data constitute an evidence of

unreduced and unbalanced pollen formation. According to

the hypothesis of polyploid complex formation, the tetra-

ploid individuals can originate hexaploids (6x = 90) via

union of unreduced and reduced gametes

(n = 60 ? n = 30) (Fig. 3). Triploid individuals

(3x = 45) could be a result of crossing involving reduced

gametes between diploids and tetraploids cytotypes

(n = 15 ? n = 30) (Fig. 3). In addition, aneuploid indi-

vidual might be formed by unbalanced gametes with ane-

uploid chromosome numbers, as observed in the individual

with 38 chromosomes (Fig. 3; Reis et al. 2014). In L. alba,

giant pollen (possibly with somatic DNA amount) were

previously quantified and the authors suggested that they

were a consequence of dyads and triads observed in

meiosis (Reis et al. 2014). Here, we also observed pollen

grains that were bigger and smaller than those previously

reported for L. alba (Pierre et al. 2011), giving an addi-

tional evidence to aneuploid gametes formation.

Although additional studies should be conducted in a

higher number of cytotypes to evaluate the occurrence of

cytomixis in the species, the present data open a new

perspective to better understand the reproductive biology

and the origin of the polyploid complex in L. alba.
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