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Abstract. Let (X, p) be a complete metric space and let .# be the space of all probability Borel
measures on X. We give some estimations of the upper and lower box dimensions of the typical (in the
sense of Baire category) measure in /.
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1. Introduction

In the analytic theory of the dimension of sets and measures one of the most
frequently used notions is the box dimension (called also Minkowski or entropy
dimension). For some recent results concerning box dimension see [1, 5, 6-8, 13,
17]. The early bibliographical references can be found in the monographs [2, 9, 14].
In this note we study some typical properties of the box dimension of measures.

Recall that a subset of a metric space is called of the first Baire category, if it
can be represented as a countable union of nowhere dense sets. A subset of a
complete metric space 4 is called residual, if its complement is of the first Baire
category. If the set of all elements of Z satisfying some property P is residual in Z',
then property P is called generic or typical. We also say that the typical elements
of Z has property P.

The typical properties of dimensions of sets have been investigated in [3, 5, 10,
11, 16]. Some typical (but in the sense of prevalence) properties of dimensions of
measures were established in [15]. While, the typical properties of measures in the
sense of Baire category were studied in [4]. More precisely, Genyuk proved that
for a typical probability measure on a Polish space X, the lower local dimension is
equal to 0 and the upper local dimension is equal to oo, for all x except a set of first
category. (Here by lower/upper local dimension of a measure p we mean the
lower/upper limit of logu(B(x,r))/logr as r— 0, see [12].) Further, she shows
that the Hausdorff dimension of a typical measure is equal to 0. In this note we
prove that for a typical probability measure defined on a complete metric space,
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the lower box dimension is equal to 0 whereas the upper box dimension is greater
than or equal to the smallest local upper box dimension of X. Moreover, we show
that for a typical probability measure on a complete separable metric space its
support is equal to the whole space.

2. Notation

Let (X, p) be a complete metric space and let B(x, r) denote the closed ball in X
with centre at x and radius r>0. By #(X) we denote the o-algebra of Borel
subsets of X and by .# we denote the set of all probability Borel measures on
X. As usual, for A C X the symbol A stands for the closure of A, the symbol card A
stands for the cardinality of A and for x € X the symbol 6, stands for the delta Dirac
measure supported at x.

Throughout this paper we assume that the space .# is endowed with the Fortet-
Mourier distance denoted dist and given by the formulae

dist(jur, 12) = sup{ [ s mtan) — [ g5 mtan) € 3}, (1)

for pi, pp € 4. Here & is the subset of C(X) which contains all the functions f
such that

@ <1 and |f(x) =f()| < plxy) for xyeX. (2)
It can be proved that the sequence (uy,), pn € #, is weakly convergent to a mea-
sure p € ./, if and only if

nlirrgo dist(py, 1) = 0.

It is well known that the space .# endowed with the metric dist is complete.
We recall that the lower and upper box dimensions of a set E C X are defined,

respectively, by the formulae

logN(E,r)

dim £ = liminf 3
R IR og(1/r) ©)

_ log N(E

dimE = lim sup 0g N(E, 1) (4)

r—0t log(l/r) ’
where N(E, r) is the least number of closed balls of radius r which cover the set E.
Note that if the closure of E is non-compact then dim E = dim E = co. Note also
that lower and upper box dimensions of a set are invariant under topological closure.

Remark 1. In the definition of box dimensions we can replace the number
N(E,r) by M(E,r) — the greatest possible number of disjoint closed balls of
radius r that may be found with centres in E.

Let p€ .. The quantities

dimp = lim inf{dimE : E€ #(X), w(E) > 1 — r} (5)
and
dimp = lirr(}+ inf{dimE : E€ #(X), u(E) > 1 — x} (6)

are called the lower and upper box dimension of p, respectively.
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3. Results
Theorem 1. The set
{pe M : dimp =0}
is residual in the space M .

Proof. Denote by # the set of all measures p € .# with finite supports. For
veZ we define

@n(V) = {IU,E M diSt(,u, y) < 3—k—n})

where k = card (supp v).
Let

[o¢]
9 = ﬂ@n where 9, = U Za(v).
n=1 veEF
Since for each n€ N the set &, is open and dense in the space .#, the set & is
residual. To complete the proof it is sufficient to show that dim ¢ = 0 for every
LED. Let pe 2 be given. Since p €, for every n€ N there exists a measure
v, € Z such that

dist(p, v,) < 37K, (7)
where
k(n) =cardA, and A, = suppv,.
Now define
E, = {xeX : p(x,A,) <27Kn-m,
Observe that

2 n
e >1-(3) ®
Indeed, let f(x) = max{2~*"=" — p(x,A,),0}. Since f € ¥ we have
dist(p, v,) = J

)~ | F)dut)
> 2—k(n)—nyn(An) _ 2—k(n)—nu(En). (9)
By (9) and (7) we receive

2 k(n)+n

En) = ) = 20 i) =1 ()
whence (8) follows immediately. Let x>0 be given. Using (8) one can easily
verify that there exists ng € N such that u(E) > 1 — K, where E =2, E,. We

n=no

check that dim E = 0. Indeed, set &, = 27X~ Let A, = {xy, ... , Xk(n) }- Since

E, =| | B(x;, 27k
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and E C E, for n > ny, we have N(E, ¢,) < k(n) for n = ny. Thus we have

1 E e, . log k
0 < dimE < 1mm< hmog—(n):
n—oo log(1/ey) n—oo (n+ k(n))log2
From this and (5) it follows that dim p = 0. This completes the proof. ]

Now we will formulate a result concerning the upper box dimension of the
typical measure.

Let )\p denote the smallest local upper box dimension of X, i.e. the quantity
given by the formula

o = Xo(X) = inf{dim B(x, r) : x€X, r>0}. (10)
Theorem 2. The set
{p€ A : inf{dimE : u(E) >0} = \o}.
is residual in M .

Proof. Without any loss of generality we can assume that Ay > 0. Fix A € (0, \g)
and k>0. Let x€ X and r,e >0. By M(x,r;e) we denote the greatest possible
number of disjoint closed balls of radius ¢ that may be found with centres in the
ball B(x,r). Since dim B(x, r) > A, from (3) and Remark 1 it follows that there is
e €(0,1) such that

M(x,rye) = e (11)

For every x€X and r >0 we fix an ¢ satisfying (11) and we will denote it by
e(x,r). It is obvious that £(x, r) < 2r. Now, in the ball B(x, r) we choose the points
Yi,---,Ymu, where M = M(x, r;e(x, r)), such that

B(yi,e(x,r)) NB(yj,e(x,r)) =0 for ije{l,....M}, i#j

and we define

1
Hxr = M(‘Syl + ot byy,).

Clearly € .. By Fin we denote the family of all finite subsets of X. For given
A €Fin and r > 0, we denote by k(A) the number of elements of A and we define

1
HAr = 7775 Hx,rs
)

K.
alA,r) = gxmelgs(x, r),

MA ) ={pe M : dist(p, pa,) <a(A,r)}.
Let

M(ry= | AA,r) and gm:@mﬂe)

A €Fin
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Since for all n the sets .# ( %) are open, also the sets %,, are open. Moreover the sets
%,, are dense in .. Indeed, since Ao > 0 the space X has no isolated points. This
implies that the set of all measures of the form ps = ﬁA) > vea Ox, where A € Fin, is
dense in ./. Since dist(fia, 14 1 ) Lthe set 7, = U, {1, 11 A €Fin} is also
dense in .#/. As #,, C 9,, the 'set %1 is dense in .#. Recall that Ha - and, conse-
quently, .#(r) and %,, were constructed for fixed A € (0, \y) and x> 0. Now, for
such A and x we define

= ﬁ G, (12)

The set %(\, ) is residual in the space .#, because for each m€ N the set 4, is
open and dense in ./.

Claim. If p€%(\, k) and E € #(X) be such that u(E) > k then dimE > \.

Indeed, let u€%(\, k) and E € #(X). Since dimE = dimE, where E is the
closure of E, we can assume that E is a closed set. From (12) it follows that for
every me N there exist an integer number n > m and a set A € Fin such that

diSt(:u) Ha, l/n) < Oé(A, %)
Define

2 1
E.={x€X:p(x,E) <c}, where c:a<A,>.
K n

Let f(x) = max{c — p(x, E),0}. Since f € & we have

dist(se, i, 1/n) = fo (%) dpal(x) = Lf (%) dpa,1/n(x) = cpl(E) = cpin,1/n(Ee)-

This implies that

1 1 1 1
E.) = p(E) —~dist(p, jia 1jn) > 5 ——a (A, = | > k.
pia () > (E) — st i 110) > ca< ) L

From the definition of the measure pi4 , it follows that there exists x €A such that
fix,1/n(Ec) > k. In turn, this implies that at least xM points from the set
{»1,.-.,yu} belongs to E.. Consequently

(ee(e3)) = 3 (sse(+3)
M| E. e x, — = —kM\|x, —; €| x, —
n 2 n n

and by (11) we obtain

(o)) (1))

. l l .
Since ¢ < 35( , n), we receive

M(E, %5(}6, %)) > %n(e(x, %))A (13)
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Since &(x, 1) in (13) can be arbitrary small, we have

— logM(E log(3 ke
dimE:limsupiog (’8>> i 70‘%(2’% )

> = 14
-0+ —log(e) 0+ —log(e/3) (14)

which completes the proof of the Claim.

Now, let (\,) be an increasing sequence of positive numbers convergent to Ao
and let (k,) be a decreasing sequence of positive numbers convergent to 0. Then
the set

oo

G =%\, i)

n=1
is residual in .# and
inf{dimE : u(E) >0} > X
for p€%. This completes the proof. O
From Theorem 2 follows immediately

Corollary 1. For the typical measure ji in M we have dim i = )Xo, where X is
given by (10).

Remark 2. A result similar to Theorem 2 concerning the box and packing di-
mensions of the typical compact subsets of a complete metric space X were
obtained in [11]. It was proved that if the space of all nonempty compact subsets
of X is equipped with the Hausdorff metric then the typical compact set has the
upper box and packing dimensions at least Ao, where ) is given by (10).

Theorem 3. Assume that (X, p) is a complete separable metric space. Then
the set

{pe A : supp =X}
is residual in M.

Proof. Let (x,) be a sequence of elements of X such that for each ny the
subsequence (x,), -, is dense in X. Let P be the set of all real sequences p =
(Pn), e n such that p, >0 for all neN and >~ 7, p, = 1. For each p € P we define
a measure jip by pp = > o Ppdx,. For peP and n€ N we define

neN

I .
olp.n) =2, min P

A n(p) = {pe A : dist(p, pp) < o(p,n)}.
Let

Ay= ) Au(p) and o = ﬁ&/n.
peP n=1

Since for each n € N the set .7, is dense and open in the space .#, the set .o/ is
residual in .#. Let € .o/. We check that supp = X. Fix a point ye X and a
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number r€(0,1). Let i and n be integers such that p(x;,y) <r/2 and n >
max{i,2/r}. Take a measure ji, € .o7, such that

diSt(/J/“LLp) <a(p,n). (15)
Since the function f(x) = max{r/2 — p(x, x;),0} belongs to the set ¥, we have

i) > [ 100 aiao) = [ 500 > Lglu) = S1e(B(5.5) ).

As pp(x;) = p;, the last inequality implies

u(B(w3)) = 2aisto ). (16)

Since a(p,n) < %pi < 4 pi, inequalities (15) and (16) give

r 2 . 2
M<B<xi> 5)) > pi = _dist(p, pp) > pi — —a(p,n) = 0.

From this and inequality p(x;,y) <r/2 it follows that p(B(y,r)) > 0. Since y e X
and r > 0 were arbitrary, this shows that supp i = X. The proof is completed.  []

From Theorem 3 it follows immediately

Corollary 2. Let (X, p) be a complete separable metric space. Then for a
typical measure p in M we have

dimE =dimX and dimE = dimX,
for every E € B(X) such that u(E) = 1.

References

[1] Brown G, Yin Q (1997) Box dimension for graphs of fractal functions. Proc Edinburg Math Soc
40: 331-344
[2] Falconer KJ (1997) Techniques in Fractal Geometry. Chichester: Wiley
[3] Feng D (1997) Category and dimension of compact subset of R". Chinese Sci Bull 42: 1680—-1683
[4] Genyuk J (1997/1998) A typical measure typically has no local dimension. Real Anal Exchange
23: 525-537
[5] Gruber PM (1989) Dimension and structure of typical compact sets, continua and curves. Monatsh
Math 108: 149-164
[6] Hofbauer F (1996) The box dimension of completely invariant subsets for expanding piecewise
monotone transformations. Monatsh Math 121: 199-211
[7] Hu H (1998) Box dimensions and topological pressure for some expanding maps. Comm Math
Phys 191: 397-407
[8] Jaffard S (1998) Sur la dimension de boit des graphes. CR Acad Sci Paris Sér I Math 326: 555-560
[9] Mattila P (1995) Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability.
Cambridge: Univ Press
[10] Myjak J, Rudnicki R (2001) On the typical structure of compact sets. Arch Math 76: 119-126
[11] Myjak J, Rudnicki R (2000) Box and packing dimensions of typical compact sets. Monatsh Math
131: 223-226
[12] Olsen L (1995) A multifractal formalism. Adv in Math 116: 82-196
[13] Orzechowski ME (1998) A lower bound of the box-couting dimension of crossing in fractal
percolation. Stochastic Process Appl 74: 53—65
[14] Pesin YB (1997) Dimension Theory in Dynamical Systems. Contemporary Views and Applica-
tions. Chicago: Univ of Chicago Press



150 J. Myjak and R. Rudnicki: On the Box Dimension of Typical Measures

[15] Sauer T, Yorke JA (1998) Are the dimensions of sets and its image equal under typical smooth
functions. Ergodic Theory Dynamical Systems 17: 531-546

[16] Schmeling J, Winkler R (1995) Typical dimension of the graph of certain functions. Monatsh
Math 119: 303-320

Authors’ addresses: J. Myjak, Dipartimento die Matematica Pura ed Applicata, Universita di L’ Aquila,
67100 L’ Aquila, Italy, and WMS AGH al. Mickiiwicza 30, 30059 Krakéw, Poland, e-mail: myjak@
univaq.it; R. Rudnicki, Institute of Mathematics, Polish Academy of Sciences and Institute of Mathe-
matics, Silesian University, Bankowa 14, 40007 Katowice, Poland, e-mail: rudnicki @us.edu.pl



