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Abstract. We consider the mean value formula for general Dirichlet series by applying the
approximate functional equation of Ramachandra’s type, and derive the sum formula for its coef-
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of absolute convergence.
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1. Introduction

In their paper [10], the first two authors studied the general divisor problem
utilizing the mean value theorem for the general Dirichlet series and gave an
improvement of Landau’s [11] and Chandrasekharan-Narashimhan’s [1] result in
some cases. The mean value theorem itself is extensively studied by many authors.
Here we only quote Perelli [17] and Matsumoto [14], where Perelli gave an
upper bound for the mean square and zero-density theorem for his ‘“general L-
functions”, and Matsumoto obtained the mean value theorem and universality
of Rankin-Selberg L-series. For the proof of their mean value theorem, Perelli
used Lavrik’s approximate functional equation, while Matsumoto employed the
reflection principle, originally due to Jutila. (See also Ivi¢ [8].)

In this paper, we shall study the mean value theorem more closely in the
critical strip, and obtain another kind of upper bound for the error term of the sum
of general divisor function. As in [10], we shall follow Ramachandra [19]-[22] to
prove a substitute for an approximate functional equation or what we call a finite
modular relation in Lemma 3 below, which is a slight modification of Lemma 2.3
of [10]. This gives us a very simple and self-contained approach to the mean value
formula of Dirichlet series. A special feature is this simplicity of the method that
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brings out a situation where the higher the power, the better the estimate. Thus, by
a more elaborate argument than in [10] we improve Theorem 3 of [10] in our
Theorem 1 (ii), which leads to an improvement of Theorem 1 of [10] as stated in
our Theorem 2. We go on further to replace the estimate by an asymptotic for-
mula (Theorems 3 and 4) when the real part is near the abscissa of absolute
convergence.

We shall confine ourselves to the case where condition (1.7) is valid. Other
cases will be considered subsequently.

We shall first fix some notation and make some assumptions.

1. Let {a,} and {b,} be two sequences of complex numbers satisfying
a, = 0(n**), b, =0(n"") (1.1)

for any € > 0, where >0 is a fixed real number.
2. Define the Dirichlet series
- an = - bn
Z(s) = — d Z(s) = — 1.2
=3 2= (12)

n=1 n

which are absolutely convergent for Rs > 1 + « by (1.1).

3. We suppose that Z(s) can be continued to a meromorphic function in any
finite strip o] < Rs <o, such that o, =« + 1 with only real poles, and satisfies the
following condition there:

Z(s) = 0(e"™) (1.3)

for some constant v = y(o1,02) > 0.
4. Suppose that Z(s) and Z(s) satisfy the functional equation

Z(s)A(s) = A1 AT Z(1 4+ a — 5)A(—s), (1.4)

where A; and A, are constants, A, > 0 and

A(s) = HF(ai + Bis) and A(s) = ﬁf(’yj + 0;s)
i=1 =1

are gamma factors with o; € R, §; > 0 (1<i<p) and 5, € R, §; > 0 (1<j<v).
We naturally assume that

5. Let

and
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In this paper, we assume throughout that

n=1+a and H>%+1 (1.7)

6. For any fixed integer k>2, we define the sequence {a;(n)} by

2 =3 4

n=1
so that

ak(n) = Z anlanz"'anm (18)

nny--ng=n
which we refer to as the general divisor function for {a,}.

For many important Dirichlet series such as the Riemann zeta-function, the
Dirichlet L-function or the Dirichlet series associated to a cusp form, the func-
tional equation (1.4) holds true with A(—s) = A(1 4+ a — s). In these cases we
have n =142 H.

Now we are in a position to state the results of this paper. Unless otherwise
specified, ¢ with or without suffix will always denote a positive constant, and &
will denote arbitrarily small constant which is not necessarily the same at each
occurrence.

Theorem 1. Suppose that the conditions 1, 3, 4 and (1.7) of 5 hold. Then

(1) For0<o < Sy We have

( " Tra
T
|Z o+ it | df<< TZn 20H+1+E
1

(i) For 37 iy So<(l +a)(1 =5, ), we have
T
|Z(0 + i) [Pdt < T3+

—_

(iii) For (1 + a)(1 —2—7]) <o <1+ o, we have
T 0 2
N2 5 |a| (1-7%)++e
Jl |Z(o + it)] dt—TnE:]W-f—O(T’? )

The error term in (iii) is further improved for certain ranges of ¢ in Theorems
3 and 4 below, with Theorem 4 referring to the k-th power mean.

Our next theorem is concerned with the error term of ) _ a(n). Let My(x)
be the sum of residues of the function Z- ( Z0) s at all positive real poles of =~ z ( in the

strip 0 < o<1 4+ a. We put
= a(n) — Mi(x) (1.9)

n<x
and
B = inf {A|R¢(x) < x* asx — oo}
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as usual. Landau’s classical result applied to Z*(s) asserts that

ﬂk<(1+a)<l—m>. (1.10)

In the case k=2, we can improve (1.10) as follows.

Theorem 2. Let k=2. In the above notation, we have
1
ﬁk<(1+a)<1——>. (1.11)
kn

In connection with Theorem 2, we must also mention Lau’s papers [12] and
[13], where he studied the mean square of R;(x) very closely using the method of
Meurman [15].

In the proof of Theorem 2, we use the estimate of Z(s) obtained from the
Phragmén-Lindelof convexity principle. However, in certain important cases, we
know better growth estimates of the Dirichlet series on its critical line. We will
discuss such instances in the last section.

Using (1.10) and (1.11), we can improve the error term of (iii) in Theorem 1.
The method of proof is based on that of Matsumoto [14].

Theorem 3. Let (1 + a)(1 — 277+1 )<o <1+ «, then we have
r |a,|? 3(1- g ) 4=
o+ lt dl ay + 0( (n+l/2)(171+%)+1 )
A )I? Z
Theorem 4. Let k=2 and (1 + a)(1 — —) <o < 1 + a, then we have

|Zk(0+zt )*dt = Z'a" ( 3(“@)*?.

Remark 1. In the course of the proofs of Theorems 3 and 4, we only use the
pointwise estimate of Ry(x) described in (1.10) and (1.11), whereas Matsumoto
[14] employs the mean-square estimate of the corresponding error term for the
Rankin-Selberg series. Since the latter gives a better estimate than the former on
average, his result is better than the one our Theorem 3 provides in that special
case. We return to this sort of incorporation of the mean value in the estimate in
another occasion.

2. Preliminaries

We use complex variables s = o + it, w = u + iv with |¢] sufficiently large.
The Stirling formula (see e.g. Titchmarsh [24]) states that

T(o + if)| = V2nlf| 2 ¥ (1 + 0(j1| ")) (2.1)
as |t| — oo in any fixed strip 07 <o < 0,. If we write the functional equation (1.4) as

Z(s) = x(8)Z(a + 1 —s), (2.2)
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then, from (2.1), we have
Ix(s)] = A5 7|t (23)

where H and 7 are defined by (1.5) and (1.6) respectively. (The symbol f =< g
means that f > g and f < g.)
Lemma 1. We have
(n+eH)(1+a+e—a)
Z(o+it) < Jt| o= (2.4)
uniformly in —e<o<l+a+e.

Proof. In view of (1.3) we can apply the Phragmén-Lindel6f convexity principle
(see e.g. [24]), and so the assertion (2.4) follows at once from (2.2) and (2.3).

Lemma 2 (Montgomery-Vaughan’s mean value theorem [16]). If {h,} is an
infinite sequence of complex numbers such that - | n|h,,|2 is convergent, then

T+H 2 00
| dr =3 | ’(H + O(n),
T n=1

Lemma 3 (Finite form of the modular relation). Let h be a fixed positive
constant such that 1 — HTQ > 0, and let Y and M be positive parameters with

o

§ hnnflt
n=1

where c<H<T.

Y < |t°, M < || for some constant c. For s = o+ it, (0 < o < 1 + ), we have
Z(s)=S—1 — L+ 0(|f| ™), (2.5)
where
s n /)
S= Z;e , (2.6)
n=
I = LJ r (1 + Y) Yy (s + w) <Z b,,n_l_““*”') dw (2.7)
i) e h w’
[o] < (logl)? n<M
1 d
bh=-— F(l + Y) Yx(s +w) (S et ) 28 (2g)
27i ) we—o—c h w
I < (togle)? n>M
and A is an arbitrarily large constant.
Proof. It is well-known that
1 dz
e =—| P4+, 2.9
s ), D0+ 29)

where ¢ > 0, x > 0, and the path of integration (c) means the vertical line from
¢ — ioo to ¢ + ico. Now suppose that ¢ > 1 + a. Putting x = (n/Y)", z=w/h in
(2.9), multiplying both sides by a,n~* and summing over n, we have

i%exp(—(u/Y)h) _ ! JC F(l+%)YWZ(S+W)d7W~ (2.10)

n=1 2mi (c)
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We truncate the line of integration at |v| = (log|#|)?. By using the Stirling
formula (2.1), the integrals along the half lines with |v| > (log|t|)* are estimated as
O(|t|™) for any large positive constant A. In the remaining integral, we move the
line of integration to u = —¢ — ¢, encountering the simple pole of the integrand at
w = 0 with residue Z(s). Note that because of the assumption on % and o, we can
take a small number € > 0 such that R(1 +%) = 1 — %= > 0, so that there are no
poles of I other than 0 in the rectangle in question, and that since the height of this
rectangle is log?|t|, no poles of Z(s + w) are inside thereof. The integral on the
horizontal segment —o — e <u<c, |v| = (log|t|)* is also estimated by O(|¢| ™).
Hence we get

S=2Z(s)+1+0({™),

where

1 w dw
I =— I'1+—-)Y"z —
27riJ u=—o-c ( + h) (s +w) w

Jo] < (togle))?

To transform the integral /, we substitute the functional equation (2.2) for Z(s).
Noting that the resulting series » -, b,n~+2=5=%) ig absolutely convergent and
dividing this series into two parts at n = M, we get

_ 1 w w —1l—a+s+w dw
I‘zmj F(1+h)Y X(s+w)<2bnn )

u=—0—¢ w
le] < (logle))2 n<M

1 ) 4
+— F(l _~_%> YWX(S—l—W) (Z bnnl(x+.\+w> _W

27‘[‘[ u=—0—=¢ w
Jo] < (togl)2 n>M

=1 +1D,

say. The second integral I; equals I, itself in our assertion. For I; we move the
line of integration back to u = —e&, the integral on the horizontal lines being
estimated by O(|f|™). Hence I} = I, + O(|t| ). This completes the proof of
Lemma 3. O

3. Proof of Theorem 1

We consider the upper bounds of the mean square of Z(s) in the first place. Since
T T
J \Z(o + it)|*dr <<J (ISP + [L]” + 1)) dr + 1, (3.1)
1 1
it is enough to compute the mean squares of S, I; and I, over the segment
T <t<2T on account of the well-known device of dividing the interval [1, 7] in

the union of subintervals 277, 27%+17],
Applying Lemma 2 to the expression (2.6) of S, we get

2T 00 2
L |SPdr =" 'Z;l exp(—2(n/Y)") (T + O(n))

n=1

DD

n<Y n>Y

= Sl + S27
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say. Since exp(—(n/Y)") = 0(1) for n<Y, and exp(—(n/Y)") = O((Y/n)™) for
n > Y where [ is any fixed positive integer, we have

S < Z |an|2n72a(T +n) < Zn2(1720+5(T + n)

n<Y n<Y
- Tyl+2a—20+s + Y2+2a—20+5 if 0<o< %+ a,
T + y?>+2a-20te if J+a<o<l+a,

and

hl

Y

S2 < ZHZ()/72J+E <_> (T + n)
n>Y h

< Tyl+2a—20+s + Y2+20_20+€.

These estimates imply that

27 5 TY1+2(Y72U+5 4 Y2+2(172(7+6 if 0< o< %‘i‘ a,
J |S]"dr < (3.2)

. 1 y2t2a-20+e if %-1- a<o<l+a.

Next we consider the mean square of /;. By (2.7) and the Cauchy-Schwarz
inequality, we infer that
dw
w

I < (J .
Io < (gl
2
)

; ( J
u=—¢
[v] < (logl])?
hence we have
E b,1n717a+s+w

2T 2T
J |11 |2dl < Y25T27]2(05)HJ J
T u=—¢ )2 T <M

[ol < (log|1]

2
w

h

F(l + )wa(s+w)

Z bnnflfaJrerw

ns<M

2
dt dv.

By Lemma 2, we can see that the inner integral szr is bounded from above by
< Z |bn|2n—2—2a+20—25(T + n)

ns<M
{T+M2H if 0<o<i,
(E+1)M>7 if l<o<l+a
Hence we have
rT {(T+M2ff) if 0<o<i,

I Pde < T#1720H% , 3.3
T|1| (L+1)M>* if l<o<l+oa (3:3)
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As for the mean square of I, we can similarly derive that

b n—l—a+s+w
E n

n>M

2T 2T 2
J |12|2dt < Y—2J—2ET27]+28H J dr dv
T u: o—

T

[v] < (log]r)?

T
Y—20T2r]+5 —11).
< (i +1)

Here we dlstlngmsh three cases. In the first case 0 < o< 2, choosing M = Tz
and Y = TTs, we have

2T
J |Z(O’+ it)|2dt < T27](17#'ﬂ)+€ + T27]72(7H+1+8. (34)
T
In the second case % < o< %—i— «, we choose ¥ = Tli_]n, M = TH_T"a, and get
2T
J Z (U+lt)| dt < T -+, (3.5)
T

In the third case %—I— a < o<1+ a, we take Yand M in the same way as in the
second case. This gives us

2T
JT Z(0 + if)|Pdt < T + > -18) (3.6)

Thus the assertions (i) and (ii) of Theorem 1 follow immediately from (3.4), (3.5)
and (3.6).

Now we turn to the proof of (iii) of Theorem 1. We follow the method of Ivi¢
[8]. (See also [14].)

Suppose that

(1+0¢)<1—%7><0<1+a. (3.7)

Let

o =267 - (£

n<L

where L is a parameter which is chosen later It is easily seen that

Z nchrlt

n<L

T T
J Z(o + it)|*dt = J
2 2

dt + 0<JT If (o + it)|dt>. (3.3)
2

By Lemma 2, the first term on the right-hand side of (3.8) is evaluated as

T 2 ‘
St =1y b s o S
JZ n<LnU+” n<L <n<L

_ TZ ‘a;f + O(TL1+2a—20+8) + 0(L2+2a_20+6).
n=1 h
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We consider the second term on the right-hand side of (3.8). For that purpose, we
apply Lemma 8.3 of [8] to get

Itaté—a

T 2T 1 I+a+6— (l+o¢)(l—2—")
J If (0 + if)|dt < j V((l+a)<1——>+iz))d:+1
2 1 2n

o—(1+a)(1 21”)

2T 1+ati— (l+a)(172L])
X J (1 + o+ 6+ir)|dt+ 1

1

for any 6 > 0. By using (ii) of Theorem 1 and Lemma 2 again, we see that the first
integral on the right-hand side is estimated as

< TV 4 TI¢ +L’L7(1+a)+€

On the other hand, noting that f(1 + a + & +it) = >, h(n)n~(Heto+i) with
h(n) = O(n***), and using the Cauchy-Schwarz inequality and Lemma 2, we see
that the second integral on the right-hand side is estimated as

< T%((T/L)% + 1)L—5.

Hence we have, by taking L =T,

T
J f (o + ir)|dr < T T
2

Since 2 + 2a — 20 <n(1 — 17;) + % under the condition (3.7), we conclude that

T 0 2
J Z(o+ i)t =T |“’;(|, + O(T" T itey
2 n=1 n
for o in this range. This completes the proof of (iii) of Theorem 1.

4. Proof of Theorem 2

Let ¢o = 1 + o + . We make use of the standard truncated Perron formula,
which asserts that for 0 < T'<x,

S a(n) == J ' zk<s)’§ds+o(xcor1)+0(x6). @.1)

n<x 27” co—iT

We move the line of integration in the above integral to some o = oy, which is

not a pole of Z(s) and 4) <oo<(1 4 ) (1 — —) By the theorem of residues
we obtain o
> a(n) x) + 1y + I, + O(x°T ™) + O(x%) (4.2)
n<x

Where M (x) is the sum of residues of the function ZS< L at all possible poles of
= in the interval o9 < o<1+ «, and I, (resp. I,) denotes the horizontal (resp.
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vertical) integral. For these integrals we have

1 co+iT s 1 ago—iT s
I :J Z¥(s )xd —I—J Zk(s))ids

27Ti oo+iT S 27T'l co—iT S
:0(xC°T71) + O(x"OTk”( )~ ‘*5) (4.3)
by (2.4), while
1 oo+iT s
= —J zk (s) )ids
27’” oo—iT S
o o [ . kdf
=0(x7™)+ 0 x™ |Z(c70 +it)|" —|. (4.4)

In the integral of the error term for I, we factor the integrand |Z|* into |Z|** and
|z | to which we apply (2.4) and (ii) in Theorem 1 respectively. Thus we get

I = O 1+) (45)

We may duly write M(x) instead of M;(x), since the contribution from
possible poles in the interval 0 < o <oy is O(x?).
Hence from (4.1)—(4.3), (4.5) and the above remark we conclude that

> a(n) X) + 0T ") + O(x T —TD -1+, (4.6)
n<x
Taking T = xlz_n”, we get
Z“k X) + 0( <1+a)(17,%n>+e)’
n<x
whence we conclude the assertion of Theorem 2.
Example 1 (Rankin-Selberg series). Let f(z) = Y o0, ¢(n)e*™™ be a cusp form

of weight « for the full modular group, and let Z(s) be the Rankin-Selberg series
defined by

o0

00
an
Z L2

n=1

for Ms > 1, where the coefficients a, are given by
a, = n*(l‘ﬂfl) Z m2(H,71) |c(n/m2)|2.
m?|n

In [23], Rankin proved that Z(s) can be continued as a meromorphic function over
the whole plane with a simple pole at s = 1, satisfying the functional equation

A(s)Z(s) = 2m) " 2A(1 — 5)Z(1 —5)
with

A(s) =T(s)I'(s+r —1).
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In our notation, we have « =0, H =4 and n = 2. Using the Landau estimate
(1.10), Rankin derived his famous result:

Zan = Cx + 0(x*P)
n<x

where C is some constant. Regarding the general divisor problem for a,, Theorem 2

gives us
Zak x) + O(x'~ )
n<x
for k=2.
Example 2. Let« > Oand let Z(s) = {(s)¢(s — ) = >0, U‘;lf’ ,(Rs > 1+ a),

where o4(n) = >_,,d* is a sum of a-th powers of positive divisors of n. From the

functional equation of the Riemann zeta-function, we see that Z(s) satisfies
AS)Z(s) = A1+ a—$)Z(1 +a —s)

with A(s) = T'(s/2)I'((s — «)/2), whence we have H =2 and 7 = 1 + « in this

case.

Let ai(n) = an_”nk:n 0q(n1) - - - 0q(m) denote the general diyisor function for
0q(n) and let My(x) the sum of residues of the function @xs at s =1 and
s = 1+ a. We note that M;(x) = C(IITT))C'*“' + ¢(1 — a)x. Then Landau’s result
(1.10) and our Theorem 2 give

> " 0u(n) = Mi(x) + O(x*+7), (4.7)

n<x

and

> a(n) (x) + O(x*1%), (4.8)

n<x

for k=2 (see also (4.2) of [1]). These bounds are the same as in [10] since
1 = 1 4 « in this case.

For a better result than (4.7), confer Pétermann [18]. See also Walfisz [25] for
the case v = 1.

Example 3. Landau considers the shifted divisor problem in the last section of
[11]. While Landau restricts to the positive values of parameters, we allow the
parameters assume all integer values in order to stress the usage of Theorem 2. For

that purpose we must deal with the more general Dirichlet series Z(s) = > >, i\’—
and Z(s) = 3.°° | & which are connected by the functional equation (1.4). We note

n=1 g S

that by a slight m0d1ﬁcat10n of arguments the assertion of Theorem 2 holds true if
we assume n' ¢ < \, < n'*¢ and n'F <« p, < n'tE.

Let Zy(s;z,h) be the function defined by

o8 eZm’hv
ZO(S7 e h) - ) ‘U + Z|s

04240
for Ms > 1. The function Zy(s;z,h) can be continued to the whole s plane as a
holomorphic function when # is not an integer, and as a meromorphic function
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with a simple pole at s =1 when 4 is an integer, respectively. Moreover it is
known that Zy(s; z, k) satisfies the functional equation

. 1 —
F(%)Zo(s; z,h) = ¢ gt <TS>ZO(1 —s,h,—2).
Let m=>=2 be an integer and zy,...,2m, h1, ..., hy, be real numbers. We set
00 Cn
Z(s) = Zo(s;21,h1)Zo (8522, h2) = Zo(83 2y him) = ;)\7

In this case we have o = 0, 7 =%, H = m. Let M;(x) denote the residue of 26 ys

s
at s = 1. The Landau’s result asserts that

E Cp = E 627rt(h101+-~~+h,,,v,,,)

A <x I(U1+Z])"'<Unx+1rrx)‘<x

= M, (x) + O(xlog" ' x), (4.9)
while our Theorem 2 asserts that
Z Cn] “ e an —

)\n]"')\nk <x } Hf:] H:il(u,;,-+z;)’<x

= My (x) 4+ O(x" =) (4.10)

eZ'/ri Zf:l Z:":l hivy

for k=2, which gives a little sharper estimate when we apply (4.9) replaced m with
km. In other words, if we consider the parameters

Llye v+ 5819225+ 5225+ +5Zmsy -+ -5 Zm
e N ——
k k k
for k=2 from a given set of parameters z;,2p, ..., 2y, OUr €rTOr estimate super-

sedes Landau’s results in 1915.
We also refer to Chandrasekharan-Narashimhan [4] for the related topics.

5. Proof of Theorems 3 and 4

We follow the method of [14]. Recalling the situation in §1, we see that the
partial sum of a, can be written as

Zan = Zx'”ij(logx) + R(x)

n<x
with
R(x) < x’*¢, (5.1)
Z(s)

where p; are the poles of =~ in 0 < 0<1+ « and P;(x) are certain polynomials
of x. We assume for the present that

1
§+a<ﬂ<l+o¢. (5.2)
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Let

Fx(s) =Z(s) = Y%,

n<X

for 0 > 1 4+ a with X > 0 to be chosen later. We have by partial summation

o =i { (32 )1~ [ ) e
[ (Z_ £7P(log €) - ZXﬂij<logx> +R(E) -~ ROX) )

= —Z—P log X)X"~* —1—2 2Q, (log X)X"—*

— > Pi(log X)X"* = R(X)X "+ JOO R(&)E1dE,
j X

where Qj(x) are certain polynomials of x. From the inequality (5.1) and the
assumption (5.2), we can see that the above expression of Fx(s) is valid in the
wider region o > 3. Therefore, for § < ¢ < 1 4+ a, we have

Fx(s) = SJ R(E1dE+ O(X"7) + O(|s| ' Xt
X
hence
2T
J |Fx(o + it)[*dr < T x2(1te-o)te L px2(0-0)+e 4 g
T
with

J = J ) J " REORMm)En) JT (0 + 1) (n/€)"dr d€ d.

X JX

. . . . . . 3 T2
Since the innermost integral in J is O(min(T 7m)), we see that

s 00 n+n/T |
J<T j |R<n>|n“j IR(€)[€ " de dn

X n—n/T
o e dgdn
e IRl | Rl
X B [log(&/n)]
<T?X*P~20% 1og T.
Hence we have
2T
J |FX(O'+ lt)|2dt < T—lx2(1+a—o)+6 4 T2+EX2(‘6_U>+E (53)
T

in the range B < o < 1+ a.
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By applying Lemma 2 to the sum ),y a,n”*, we also have

J Zan o—it dt = TZ|an|2 —20+0<Z|an|2 1- 20)

n<X n<X n<X

|an|2n720 + 0(7X2a720+1+€ + X2+2a72a+6). (54>

NgE

=T

/|
-

From (5.3), (5.4) and the Cauchy-Schwarz inequality, we finally obtain
2T 00

J |Z(U + il)|2dl _ TZ |an|2n72o + 0(TX20720+1+5 +X2+2a720+5)
T

n=1

+ O(T71X2(1+117(7)+€ + T2+8X2([37(7)+E)
+ 0((T +X2(1+Oz—0)+6)%
% (T71X2(1+(170')+8 T2+€X2(3 J)Jrs)%) (55)

Under the conditions 7 < X, T < X' % and T3 « X2(2+20=6-9) the error terms
on the right-hand side of (5.5) become O(X?(1+a=2)+<),
Now we restrict the range of o to (1 +a + 3)/2<0 < 1 4+ a and choose

X = T,
Thus from (5.5), we have

2T
J 2o+ i)fdi =T JanPn + o(T),
T n=1

We can take 8= (1 + «a)(1 —
the assertion of Theorem 3.

Under the assumption of Theorem 4, we can take 5 = (1 + «)(1 — k_n) by
Theorem 2, which gives the assertion of Theorem 4.

(We note that the above choice of [ satisfies the condition (5.2) in both cases.)

pre] /2) from Landau’s result (1.10). This gives

Remark 2. As remarked in the Introduction, we only used the pointwise
estimate of Ry(x) here. Of course, the mean square estimate for Ri(x) is known
for the Riemann zeta-function and other important Dirichlet series (see e.g.
Chandrasekharan-Narashimhan [3]). However, it is not known for the most general
Dirichlet series at present.

6. Supplemental Discussion and Other Remarks

In the proof of Theorem 2, we have used the growth estimates of Z(s) obtained
from Phragmén-Lindelof’s convexity principle. We have no other tools to improve
(2.4) at present in the most general case. But in some of the important cases, we
know better growth estimates for Z(s) on the critical line. Thus it is possible to get
better result than Theorem 2 in these cases. In fact, this problem had been
discussed under the assumptions of growth condition and certain upper bound for
higher power moments (see Theorem 3 and Section 5 in [10] for details).
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6.1. Incorporating Better Growth Estimates. Here we shall assume only the
growth condition and restrict ourselves to the case k=2. Let o be a real number
such that

sy <<t (1-5;)
and )¢ be a positive number such that
Z(oo + it) < ) 6.1)
as |t| — oo. According to Lemma 1, we can assume A <n(1 —{3%).

Proposition 1. Let Ry (x) be the function defined by (1.9). Under the conditon
(6.1), we have

(14+a) (1 1 - I )
Ri(x) < x ] (BT (6.2)
for k=2.

Proof. Now we imitate the proof of Theorem 2. Indeed, we use (6.1) instead of
(2.4) in the evaluation of the integral on the horizontal and vertical line (cf. (4.3),
(4.4)). Thus we get

I < xo—1 _|_x¢ToTk/\0*1 (6.3)
and
I, < x°0 4 xOTk=Dho+2n(1—)~1+e (6.4)

Hence we have
Rk(x) < xltotep—l 4 e +xaoT(k—2)A0+2n( —li—(’n)—l-&-a'
The choice T = x(1=00)/(k=2)Xo+20(1-£5)) gives the desired result. Ul
Here are some examples.

Example 4 (The L-function associated with a cusp form). Let f(z) =
S a(n)e*™™, (3z > 0) be a holomorphic cusp form of weight  for the full
modular group. Define the (normalized) Dirichlet series attached to f by

Ly(s) = i dln)

PEE)
n:ln

where a(n) = a(n)n=("~1/2, The Dirichlet series L¢(s) satisfy the functional
equation

k+1

-1 i
D("5=+5)Lyls) = (~1) ) "D (5= = s ) Ly (1 - 9),
so that we have a« =0, n =1 and H = 2. It is known that

Le(1/2 +ir) < |17 (log|1])*/°
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(see Good [5]), while the Phragmén-Lindelof convexity principle gives us the
bound < |t|l/ 2T We can take oy = 1 /2 and Ao = 1/3 in Proposition 1 and get
Ri(x) < x'77

for k=2.

Example 5 (The Dedekind zeta-function of a number field). Let K be an
algebraic number field of degree n>2. The Dedekind zeta-function is defined by

Grls) = D g = Do (s> )

n=1

where the summation runs over all non-zero integral ideals in K and a, is the
number of integral ideals with norm n. Let r; and r, be the number of real and
complex places respectively, so that n = r; 4+ 2r,. Let D be the discriminant of K.
The functional equation for (x(s) may be written as

A(s)Ck(s) = A TA(L = 5)¢k (1~ 5)
where
A(s) =T(s/2)"T'(s)”
and
A =2 gD,
In our notation, we have « = 0, n = n/2 and H = n. Heath-Brown [6] proved that
Ck(1/2+it) < 17 (1=1)

for any fixed £ > 0. Thus we can apply Proposition 1 with op = 1/2 and \g = n/6
to get

Ri(x) < X'
for k=2.

6.2. Incorporating Better Mean Value Results. We dealt with the quite
general Dirichlet series in Theorems 3 and 4. In certain special cases, better esti-
mates for the mean value are also known. For example, we take Z(s) = (s)%. It is
known that

EK®+”WWZ§£3T+OUZ”b§H

for 1/2 < o < 1 (see Ivi¢ [19]), which is better than Theorem 3.
Next we consider the higher power moments of the Riemann zeta-function. Let
k>=2. From Theorem 4, we have

T 00 2
LN 4k doi(n)
Jl (Clo+in)[*ar =7 2
n=1

- 4 0(T3k(17(7)/(k+17k0')+€)
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for 1 — 21—k < 0 < 1 where di(n) is the so-called generalized divisor function. In
certain range of o, this gives us a better estimate than Theorem 8.5 in Ivi¢ [8]. For
example, it is stated in that theorem that

T d4 )
J |C(0—|—lt)| di=T E + o(T(11-80)/6+¢)
1

for 3 < o < 1. So our result is better in (5 +V73)/16 < o < 1.
Recently, A. Ivi¢ pointed out the possibilities of improving our results for the
higher power moments of the Riemann zeta-function (see his forthcoming paper).
Chandrasekharan-Narashimhan [2] obtained the mean square estimate for
the Dedekind zeta function of an algebraic number field K. In the notation in
Example 6 above, they showed

n(lf) 1 .
r szlmzﬂ o(T = ), 1f(7>17%7
J [k (0 + it) *dr = O(Tlog" T), ifo=1-1
1
o(T"'=") 1og" T), if 1<o<1-1
On the other hand, our Theorem 3 gives us
(n+1)(1-0)
J ICk (0 + if)dr = TZ——%—O( - >)
for l—m < o < 1. Hence our theorem is superior to theirs in the range
2n>—n— g;r(\n/izl§22n+2 <o< 1.
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