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Abstract. We analyse the large-time asymptotics of quasilinear (possibly) degenerate parabolic
systems in three cases: 1) scalar problems with con®nement by a uniformly convex potential, 2)
uncon®ned scalar equations and 3) uncon®ned systems. In particular we are interested in the rate of
decay to equilibrium or self-similar solutions. The main analytical tool is based on the analysis of the
entropy dissipation. In the scalar case this is done by proving decay of the entropy dissipation rate and
bootstrapping back to show convergence of the relative entropy to zero. As by-product, this approach
gives generalized Sobolev-inequalities, which interpolate between the Gross logarithmic Sobolev
inequality and the classical Sobolev inequality. The time decay of the solutions of the degenerate
systems is analyzed by means of a generalisation of the Nash inequality. Porous media, fast diffusion,
p-Laplace and energy transport systems are included in the considered class of problems. A
generalized CsiszaÂr±Kullback inequality allows for an estimation of the decay to equilibrium in terms
of the relative entropy.
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1. Introduction

This paper is concerned with the large-time asymptotics of solutions of
degenerate scalar parabolic convection-diffusion equations and of certain systems
of degenerate parabolic equations. In the scalar case we consider the nonlinear
Fokker±Planck equation

@u

@t
� div�urV�x� � rf �u��; �x 2 Rd; t > 0�; �1�

u�x; t � 0� � u0�x�5 0; �x 2 Rd�; �2�
where the function f and the con®ning potential V satisfy suitable assumptions
which guarantee the existence of a (unique) stationary solution u1. For
parabolicity we require f 0�u� > 0 for u > 0. We proceed, formally for the
moment, to the analysis of the main properties of (1) imposing decay conditions at
jxj � �1. The divergence form of (1) implies that the total mass is conserved at
subsequent times, �

Rd

u�x; t� dx �
�

Rd

u0�x� dx �: M:

In general, mass conservation is the only conservation law we can extract from (1).
We now de®ne the strictly convex function � by

�00�u� � f 0�u�
u

; �0�1� � 0 ; ��0� � 0:

If Vu and ��u� belong to L1�Rd�, a direct calculation shows that the entropy
functional de®ned by

E�u�t�� :�
�

Rd

�V�x�u�x; t� � ��u�x; t��� dx �3�
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is nonincreasing in time when evaluated along a solution of (1), and

dE�u�t��
dt

� ÿ
�

Rd

u�x; t� rV � �00�u�ruj j2�x; t� dx: �4�

Equation (4) measures the dissipation of entropy, and the functional

I�u�t�� :�
�

Rd

u�x; t� rV � �00�u�ruj j2�x; t� dx �5�

is usually referred to as the entropy production functional. Now, one can show that
an equilibrium solution of the evolution problem (1) is the minimizer of the
entropy functional E on the set of all admissible comparison functions

C :� u 2 L1�Rd� : u5 0;

�
Rd

u�x� dx � M

� �
:

Hence, the convergence of the solution of (1) towards the stationary solution can
be seen as a consequence of the tendency of the system to evolve towards the state
of minimal entropy.

The idea of using the time-monotonicity of the entropy of the system to
measure the distance between the solution and the equilibrium density has been
developed mainly in the framework of the kinetic theory of rare®ed gases, with a
detailed study of the spatially homogeneous Boltzmann equation [20], [21]. There,
given an initial density of mass �, momentum v and temperature T , the stationary
solution is the Maxwellian distribution function

M�;v;T�x� � ��2�T�ÿd=2
exp ÿ�xÿ v�2

2T

( )
�6�

and the corresponding entropy functional is the relative entropy well studied in
information theory

E�ujM�;v;T� �
�

Rd

u�x� log
u�x�

M�;v;T�x� dx: �7�

For this relative entropy (7), the classical Csiszar±Kullback inequality holds
[22, 48],

uÿM�;v;T

 2

L1�Rd�4 2E�ujM�;v;T�; if � �
�

Rd

M�;v;T�x� dx �
�

Rd

u�x� dx � M;

and convergence in L1 of the solution to equilibrium follows from the convergence
of the relative entropy to zero as t!1.

Recently, this method has been successfully applied to general linear Fokker±
Planck equations in [3]. There, the rate of decay in relative entropy has been
obtained from the analysis of the time decay of the entropy production. The same
procedure is at the basis of [17], [28], [56], where the rate of decay in L1 of the
solution of the porous medium/fast diffusion equation towards the self-similar
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solution has been investigated by studying an equivalent nonlinear Fokker±Planck
equation of type (1) obtained through a suitable time rescaling.

The main tool of the entropy method is to analyze the relationship between the
entropy production and its time derivative. In fact, if the system is such that, for
some � > 0

dI�u�t��
dt

� ÿ�I�u�t�� ÿ R�t�; �8�

where the remainder R�t�5 0 on Rd, we obtain coupling equation (8) with (4)

dE�u�t��
dt

� 1

�

dI�u�t��
dt

� R�t�
� �

;

which implies at once

E�u0� ÿ E�u1�4 1

�
I�u0� �9�

and

d�E�u�t�� ÿ E�u1��
dt

4 ÿ ��E�u�t�� ÿ E�u1��;

namely exponential convergence of the energy functional towards its minimum at
a rate �. Then, a Csiszar±Kullback type inequality gives exponential convergence
in L1 at a rate �=2. It is interesting to remark that (9) is a generalized Sobolev
type inequality. Thus, in addition to the exponential decay of the solution of the
diffusion-advection equation, we obtain as a by-product a proof of differential
inequalities which in several cases were unknown. A proof of the classical
logarithmic Sobolev inequality originally obtained by Gross [35] by means of the
study of the entropy decay of the solution to the linear Fokker±Planck equation can
be found in [62].

In Section 2, we study the `̀ time t!1'' behaviour of certain quasilinear
systems of n �2 N� degenerate parabolic equations in d �2 N� space dimensions
(see equations (10), (11) below for the precise form). We assume that the
nonlinearities are such that u � 0 is a steady-state solution of the system (10).

Since we have no con®nement potential in equation (10), we cannot expect to
have exponential but only algebraic time decay of the solutions to the steady state
u � 0. In order to derive the decay rate, we shall employ the entropy method in a
somewhat simpler way than for the analysis of (1). More precisely, by taking the
time derivative of the entropy, we derive an entropy inequality involving the
entropy production. Then we relate the entropy production to (a power of) the
entropy, obtaining a differential inequality which can be solved explicitly. This
relation between the entropy production and the entropy is obtained by employing
a generalized Nash inequality and making appropriate structural assumptions on
the nonlinearities a and b.

We remark that these results are valid for a large class of scalar equations and
systems, including fast diffusion, porous medium, p-Laplace equations and
energy-transport systems. The decay rates for the solutions of the scalar equations
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are the same as those of the corresponding Barenblatt±Prattle (fundamental)
solutions (see Remark 2).

In the second part of the paper, we shall perform rigorously the program we
outlined above, ®nding conditions on f and V that imply exponential convergence
in relative entropy. One of these conditions on the potential V concerns the growth
at in®nity. Indeed, we require uniform convexity. The case of a subquadratic growth
of V�x� (like jxj�; � < 2) has been recently investigated in [63] for the linear case
f �u� � u. A polynomial decay of the solution towards equilibrium, provided
suf®ciently many moments of the initial datum are ®nite, was shown there.

Section 4 deals with a proof of new generalized Csiszar±Kullback type
inequalities, i.e. estimates for the L1-distance of two functions in terms of their
relative entropy. Classical entropies are de®ned in terms of a convex function  ,
with  �1� � 0, by the formula

L�u1ju2� �
�

Rn

 
u1

u2

� �
u2 dx

where 04 u1; u2 2 L1 and
�

u1 �
�

u2. For these entropies, the theory is well
understood [3]. In our case, we will consider as relative entropy the difference
E�u� ÿ E�u1� between the entropies (3) of a general function u 2 C and the
function u1, minimizer of the entropy functional E on the set C.

The analysis of CsiszaÂr±Kullback inequalities allows us to obtain an explicit
rate of decay in L1 for all the aforementioned problems.

Finally, in Section 5 we introduce extensions of the entropy dissipation method
to fourth-order parabolic equations. Here, two main examples will be discussed.
The ®rst one refers to a parabolic equation which arose initially as a scaling limit
in the study of interface ¯uctuations in a certain spin system [14], while the second
one is the surface-tension-dominated-equation of thin-®lms [11]. Open problems
linked to this last equation are brie¯y discussed.

2. Degenerate Quasilinear Parabolic Systems
Without Con®nement

The goal of this section is to show the algebraic time decay of solutions of the
following system of n �2 N� degenerate parabolic equations in d �2 N� space
dimensions:

@tb�u� ÿ div a�u;ru� � f �u� in Rd � �0;1�; �10�
b�u��; 0�� � b�u0� in Rd: �11�

Here a��; �� is a matrix-valued function with n rows and d columns, and ru stands
for the Jacobian of the n-dimensional vector ®eld u, i.e. �ru�ij � @ui

@xj
. The

divergence of a matrix-®eld is de®ned in the usual way, i.e. it is the vector whose
j-th component is the scalar divergence of the j-th matrix column.

Our assumptions on the nonlinearities are such that the trivial (zero) solution is
a solution of the steady-state system. As already mentioned in the introduction,
since we have no con®nement potential in equation (10), we cannot expect to have
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exponential but only algebraic time decay of the solutions to 0. In this context we
also refer to Section 3.2 of this paper, where connections between con®ned and
uncon®ned problems are outlined.

Now we specify our assumptions on the nonlinear functions b�u� and a�u; z�:
(HA1) The function b : Rn ! Rn with b�0� � 0 is strictly monotone and a

gradient, i.e. there exists a function � 2 C1�Rn� with b � r�, ��0� � 0, and
constants �; B > 0, m > 0 such that for all u; v 2 Rn,

�juÿ vj1�1=m 4 �b�u� ÿ b�v�� � �uÿ v�4Bjuÿ vj1�1=m:

(HA2) The function a : Rn � Rn�d ! Rn�d is continuous in Rn � Rn�d and
elliptic in the sense

�a�u; z1� ÿ a�u; z2�� � �z1 ÿ z2�5�jz1 ÿ z2jp

for all u 2 Rn; z1; z2 2 Rn�d, with constants � > 0 and p5 2.
(HA3) The function f : Rn ! Rn satis®es

f �u� � u4 0; j f �u�j4Ce�b�u��;
for all u 2 Rn, where the function e is the Legendre transform of �, i.e.

e�b�u�� � b�u� � uÿ ��u�; u 2 Rn: �12�
The `̀ �'' product of matrices in (HA2) is de®ned as sum over both indices of
products of equally indexed matrix elements, i.e. A � B :� trace�ABT�, where `̀ T ''

stands for matrix transposition.
The initial datum satis®es
(HA4) e�b�u0�� 2 L1�Rd� with measurable u0.
Systems of equations like (10)±(11) arise in a variety of physical situations. For

example, they describe the evolution of a ¯uid in non-Newtonian ®ltration or the
water ¯ow through porous media (see [44] and the references therein). In this
context, often single equations with n � 1 are considered (see [47]). Systems of
equations with n > 1 arise, for instance, in non-equilibrium thermodynamics [23],
semiconductor modeling [24], [37] and alloy solidi®cation processes [36].

The porous medium equation �m > 1� or the fast diffusion equation
�0 < m < 1�

@t�u1=m� ÿ�u � 0; u > 0;

are included in (10). Furthermore, the p-Laplace equation

@tuÿ div�jrujpÿ2ru� � 0

is also included. Notice that the corresponding functions b�u� and a�u; z� satisfy
the conditions (HA1) and (HA2).

The existence of (global) weak solutions of (10)±(11) in bounded domains
subject to mixed Dirichlet±Neumann boundary conditions has been shown by
Alt and Luckhaus in [2] (also see [42]). They obtained an existence result for
elliptic-parabolic systems, that is, assuming the function b to be only monotone
(instead of strictly monotone). This result has been extended in different directions

6 J. A. Carrillo et al.



by various authors, for instance under more general assumptions on a�u; z� or
b�u0� [1], [30], [43]. No existence result seems to be available for the whole space
problem.

The uniqueness of weak solutions (always in bounded domains) in the case of a
single equation has been ®rst shown in [2] under the additional assumption
@tb�u� 2 L1. This condition could be removed by Otto in [55]. In the case of
systems of equations, uniqueness results seem to be available only for functions
a�u; z� � Az� g�u� (see [2], [39]).

The plan of this section is as follows. In Section 2.2 we show the algebraic
decay in time of the solutions. The main result of this chapter is Theorem 3. The
proof is based on generalized Nash inequalities which we prove in Section 2.1.
Section 2.3 is devoted to the time decay for the energy-transport system which
arises in non-equilibrium thermodynamics and semiconductor modeling.

2.1. Generalized Nash inequalities. The classical Nash inequality reads as
follows [4, 15, 53]: There exists a constant ÿ > 0 such that for all w 2 L1�Rd� \
H1�Rd�,

kwk1�2=d

L2 4ÿkwk2=d

L1 krwkL2 : �13�
For the degenerate parabolic system (10)±(11) under the assumption (HA1)
however, it is more natural to work in the space L1�1=m instead of L2. We shall call
the corresponding inequality generalized Nash inequality:

Lemma 1. Let m > 1=2, d 2 N and p 2 �1;1� such that

p >
d�m� 1�

dm� m� 1
:

Then there exists a constant ÿ > 0 only depending on d;m and p such that for all
w 2 W1;p�Rd� with jwj1=m 2 L1�Rd�:

kwk1��
L1�1=m 4ÿk jwj1=mk�m

L1 krwkL p ; �14�
where

� � dpm� �m� 1��pÿ d�
dpm2

> 0:

The classical Nash inequality (13) is obtained for m � 1 and p � 2.

Proof. The generalized Nash inequality is a consequence of the Gagliardo±
Nirenberg and the HoÈlder inequality. This is not very surprising since there are
close relations between the Sobolev, the Gagliardo±Nirenberg and the Nash
inequality [4].

First, let w 2 D�Rd� and r 2 �1;1� with 1=m < r < 1� 1=m. Then there
exists a constant G > 0 only depending on d; p and r such that the Gagliardo±
Nirenberg inequality holds:

kwkL1�1=m 4Gkrwk�L pkwk1ÿ�
Lr ; �15�

Entropy Dissipation Methods for Degenerate Parabolic Problems 7



where

� �
m

m� 1
ÿ 1

r
1

p
ÿ 1

r
ÿ 1

d

:

It is easy to check that the inequality p > d�m� 1�=�dm� m� 1� implies
0 < � < 1.

For all v 2 L1�Rd� \ Lm�1�Rd�, the HoÈlder inequality

kvkL rm 4 kvk�L1kvk1ÿ�
Lm�1

holds, where

� � m� 1ÿ rm

rm2
:

The inequalities 1=m < r < 1� 1=m imply 0 < � < 1. Taking v � jwj1=m
we

obtain

kwkLr 4 k jwj1=mk�m
L1 kwk1ÿ�

L1�1=m :

Substituting the Lr norm of w in (15), we conclude

kwk1=�ÿ�1ÿ���1ÿ��=�
L1�1=m 4G1=�k jwj1=mk�m�1ÿ��=�

L1 krwkLp :

Since

1

�
ÿ �1ÿ ���1ÿ ��

�
� 1� � 1ÿ �

�
� 1� dpm� �m� 1��pÿ d�

dpm2
� 1� �;

we obtain the Nash inequality (14) for all w 2 D�Rd�. The assertion then follows
from a density argument. &

2.2. Long-time behavior of the solutions. We introduce our notion of weak
solution of the system (10)±(11), see [2]. We call u 2 Lp�0; T ; W1;p�Rd�� a weak
solution of (10)±(11) on the time interval �0; T�, if b�u� 2 L1�0; T ; L1�Rd��,
@tb�u� 2 Lp0 �0; T ; Wÿ1;p0 �Rd��, a�u;ru� 2 Lp0 ��0;T� � Rd�, u satis®es (10) in the
distributional sense and the initial condition (11) is satis®ed in the weak sense, i.e.�T

0

h@tb�u�;widt �
�T

0

�
Rd

�b�u� ÿ b�u0�� � @tw dx dt � 0

for all smooth function w such that w�x;T� � 0 for all x 2 Rd. Here,
p0 � p=�pÿ 1�.

Later we need an auxiliary result for integration by parts in time:

Lemma 2. Let u be a weak solution of (10)±(11). Furthermore, let (HA4) hold.
Then e�b�u�� 2 L1�0; T ; L1�Rd�� and for almost all t 2 �0;T� the following
formula holds:�

Rd

e�b�u�t���dxÿ
�

Rd

e�b�u0��dx �
�t

0

h@tb�u�; uidt:

Here h:; :i denotes the duality bracket between W1;p�Rd� and Wÿ1;p0 �Rd�.

8 J. A. Carrillo et al.



The proof of this result is almost exactly as in [2, Lemma 1.5]. Since
h@tb�u�; ui 2 L1�0; T� the entropy

H�t� �
�

Rd

e�b�u�x; t���dx �16�

is actually well de®ned for all t 2 �0;T � and absolutely continuous on �0;T �.
The main result of this subsection is the following theorem.

Theorem 3. Let the hypotheses (HA1)±(HA4) hold and

m >
1

2
; p >

d�m� 1�
dm� 1

:

Let u be a weak solution of the system (10)±(11) for t 2 �0;1� with

b�u� 2 L1�0;1; L1�Rd��:
Then there exist constants C1, C2, C3 > 0 only depending on �, �, B, �0, d, m, n,
and p with

�0 � kb�u0�kL1�0;1;L1�Rd��

such that for almost all t > 0,

H�t�4 �H�0�ÿ� � �C1t�ÿ1=�; �17�
ku�t�kL1�1=m 4C2�H�0�ÿ� � �C1t�ÿm=��m�1�; �18�

and if m > 1,

ku�t�kL1 4C3�H�0�ÿ� � �C1t�ÿ�mÿ1�=�m; �19�
where

� � dm�pÿ 1� � pÿ d

dm
> 0: �20�

Proof. The proof is divided into several steps.

Step 1: Entropy inequality. Using equation (10) and conditions (HA2)±(HA3),
we obtain for 0 < s < t (see Lemma 2),

H�t� ÿ H�s� �
�t

s

h@tb�u�; uid�

� ÿ
�t

s

�
Rd

a�u;ru� � ru dx d� �
�t

s

�
Rd

f �u� � u dx d�

4 ÿ �
�t

s

kru���kp
L p d�: �21�

The condition (HA1) yields b�u� � u5�juj1�1=m
for all u 2 Rn. Therefore, for

all i � 1; . . . ; n,

k jui�t�j1=mkL1 4 k ju�t�j1=mkL1 4 �1=��kb�u�t��kL1 4 b0=�;

Entropy Dissipation Methods for Degenerate Parabolic Problems 9



where b0 � supt> 0kb�u�t��kL1�Rd�. Since p satis®es the hypotheses of Lemma 1,
we can apply the generalized Nash inequality (14):

kui�t�k1��
L1�1=m 4ÿ�b0=���mkrui�t�kL p ;

and hence

ku�t�k1��
L1�1=m �

Xn

i�1

kui�t�kL1�1=m

 !1��

4 n�ÿ�b0=���m
Xn

i�1

krui�t�kL p � C0kru�t�kL p ;

where

C0 � n�ÿ�b0=���m:

Employing the above inequality in (21) we obtain

H�t� ÿ H�s�4 ÿ �C
ÿp
0

�t

s

ku���kp�1���
L1�1=m d�:

Step 2: Relation between the entropy and kukL1�1=m . In order to relate the L1�1=m

norm of u��� to H��� we use the condition (HA1). Then, for all u 2 Rn,

e�b�u�� �
�1

0

�b�u� ÿ b��u�� � u d�

�
�1

0

�b�u� ÿ b��u�� � �uÿ �u� d�

1ÿ �

4B

�1

0

juÿ �uj1�1=m d�

1ÿ � �
mB

m� 1
juj1�1=m: �22�

Therefore

H���4 mB

m� 1
ku���k1�1=m

L1�1=m ;

which yields

H�t� ÿ H�s�4 ÿ C1

�t

s

H���mp�1���=�1�m�
d�;

where

C1 � �C
ÿp
0

m� 1

mB

� �mp�1���=�m�1�
:

This implies

dH

dt
4 ÿ C1H1��

10 J. A. Carrillo et al.



for almost all t > 0, where � > 0 is given by (20). Notice that � > 0 if and only if
p > d�m� 1�=�dm� 1�. The above differential inequality immediately implies
(17). The decay (18) is obtained from condition (HA1) and (22):

H�t�5 m�

m� 1
ku�t�k1�1=m

L1�1=m for almost all t > 0;

with C2 � ��m� 1�=m��m=�m�1�
.

Step 3: Decay rate in L1. In order to derive the decay rate (19), we employ the
estimate (18) and the HoÈlder inequality

kwkLm 4 kwk1ÿ1=m2

Lm�1 kwk1=m2

L1 ;

applied to w � jui�t�j1=m
, to obtain

ku�t�kL1 �
Xn

i�1

kui�t�kL1 4 �b0=��1=m
Xn

i�1

kui�t�k1ÿ1=m2

L1�1=m

4 n1=m2�b0=��1=mku�t�k1ÿ1=m2

L1�1=m 4C3�H�0�ÿ� � �C1t�ÿ�mÿ1�=�m;

where

C3 � n1=m2�b0=��1=m
C

1ÿ1=m2

2 : &

This proves the theorem.

Remark 1. The most serious restriction of Theorem 3 is the uniform
boundedness of b�u�t�� in L1�Rd�. In the following two important cases suf®cient
assumptions can be given:

(1) Let the solution u�t� � �u1�t�; . . . ; un�t�� of (10)±(11) satisfy ui�t�5 0 for
almost all t > 0, i � 1; . . . ; n, and assume

bi�u�5 0;
Xn

j�1

fj�u�4 0 for all u � �u1; . . . ; un� with uk 5 0; i; k � 1; . . . ; n

Also let b�u0� 2 L1�Rd�.
(2) n � 1 (scalar case) and b�u0� 2 L1�Rd�.
If (1) or (2) holds then b�u� 2 L1�0;1; L1�Rd�� for the solution u � u�t� of

(10)±(11). In the case (1) it is suf®cient for the proof to add the rows of (10) and to
integrate (formally) over Rd:

kb�u�t��kL1�Rd� �
Xn

j�1

�
Rd

bj�u�t��dx

�
Xd

j�1

�
Rd

f �u�t��dx� kb�u0�kL1�Rd�

4 kb�u0�kL1�Rd�:
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To be more precise, use a regularization of the characteristic function on the ball
BR�0� with center 0 and radius R as test function in the weak formulation of (10). It
is not dif®cult to see that one obtains for R!1:

kb�u�t��kL1�Rd� � lim
R!1
kb�u�t��kL1�BR�0��4 kb�u0�kL1�Rd�:

In the scalar case (2) we take a non-decreasing regularization S of the sign
function (with  > 0 the regularization parameter) such that sign ÿS ! 0 as
 ! 0 in L1�Rd� and multiply Eq. (10) by S�b�u�t���. Integration by parts and the
limit  ! 0 give the desired result.

Remark 2. We consider examples for n � 1 (single equation) with
b�u� � juj1=mÿ1

u, a�u; z� � jzjpÿ2
z:

1. Heat equation (m � 1; p � 2): Let u0 2 L1�Rd� \ L2�Rd�. Then

ku�t�kL2 � tÿd=4 as t!1:
More precisely, we have

ku�t�kL2 4
C2ku0kL2

�1� 2C1ku0k4=d

L2 t�d=4
;

which is sharper for large t than the usual estimate ku�t�kL2 4 ku0kL2 (see, for
instance, [58]).

2. Porous medium equation (m > 1; p � 2): Let u0 2 L1
��Rd� \ L1�1=m�Rd�.

Then

ku�t�kL1 � tÿd�mÿ1�=�dm�2ÿd� as t!1: �23�
This estimate is sharp in the sense that the Barenblatt±Prattle solution has the same
decay rate. Indeed, the Barenblatt±Prattle solution

V�t; x� � tÿdk C ÿ mÿ 1

2m

jxj
tk

� �2
" #

�

 !1=�mÿ1�
�24�

with k � 1=�2� d�mÿ 1�� and C > 0 solves the equation

@tV � �Vm in Rd; �25�
with V�0; x� � D ��x�, where D is a constant depending on C. Thus U � Vm solves
the equation (10) with the special choice of the nonlinear functions a and b given
above. An easy calculation shows

kU�t�kL1 � tÿdk�mÿ1� � tÿd�mÿ1�=�dm�2ÿd� as t!1:
We also refer to [16], [28] for related results.

3. Fast diffusion equation (m < 1; p � 2): Let u0 2 L1
��Rd� \ L1�1=m�Rd� and

assume m > max�1=2; 1ÿ 2=d�. Then

ku�t�kL1�1=m � tÿdm2=�dm�2ÿd��m�1� as t!1: �26�
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The Barenblatt±Prattle solution V (see (24)) solves the fast diffusion equation
(25) for m > 1ÿ 2=d, and the function U � Vm satis®es

kU�t�kL1�1=m � tÿm2dk=�m�1� � tÿdm2=�dm�2ÿd��m�1� as t!1:
This decay rate is the same as derived above for the solution u (also see [16], [28]).

The condition m > max�1=2; 1ÿ 2=d� is weaker than the condition derived by
Otto [56], i.e. m > d=�d � 2� and m5 1ÿ 1=d, if and only if d 5 3. For d � 2,
both conditions give the restriction m > 1=2.

4. p-Laplace equation (m � 1; p5 2): Let u0 2 L1�Rd� \ L2�Rd�. Then

ku�t�kL2 � tÿd=�2d�pÿ2��2p� as t!1:
The function

U�t; x� � tÿd� C ÿ pÿ 2

p

jxj
t�

� �p=�pÿ1�" #
�

 !�pÿ1�=�pÿ2�

with � � 1=�d�pÿ 2� � p� and C > 0 solves the p-Laplace equation with
U�0; x� � D ��x� where, again, D is a constant which depends on C. This function
satis®es

kU�t�kL2 � tÿd�=2 � tÿd=�2d�pÿ2��2p� as t!1;
which is the same decay rate as above. For related results, see, e.g., [43].

Remark 3. The rates of decay of the solution u�t� of the equation

@t�u1=m� � �u in Rd

to the Barenblatt±Prattle solution U�t� with the same mass in L1�Rd� have been
recently obtained in [17], [28], [56] by spatial-temporal rescaling techniques
(cf. Section 3.2). For instance, from [17, Thm. 6.1] we have the estimate

ku�t�1=m ÿ U�t�1=mkL1 � tÿ1=��dm�2mÿd� as t!1;
for m > 1, whereas for 1ÿ 1=d < m < 1 (and d � 2; 3; 4, m 6� 1

2
) [28, Thm. 1.2]:

ku�t� ÿ U�t�kL1 � tÿ�1ÿd�1ÿm��=�dm�2ÿd� as t!1:
Using the triangle inequality and Remark 2 we can only conclude the same rate

for u�t� ÿ U�t� as for u�t� itself (i.e. the rate (23) in L1 for m > 1 and the rate (26)

in L1�1
m for max 1

2
; 1ÿ 2

d

ÿ �
< m < 1). Clearly, these rates are not sharp.

We do not obtain the same results on the time decay of the difference
u�t� ÿ U�t� as in [17], [28], [56] since we do not control the entropy dissipation
rate. However, our method is simpler and valid for a very large class of problems.

2.3. Example: the energy-transport model. In this subsection we show how
our methods can be applied to the energy-transport equations, which form a system
of strongly coupled, quasilinear parabolic equations for a charged ¯uid or gas,
exposed to an electric ®eld. They arise originally from non-equilibrium thermo-
dynamics and are used in many applications of charged particle transport, for
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instance in semiconductor theory [24], in electro-chemistry [26], and alloy
solidi®cation processes [36]. In order to simplify the presentation, we consider a
gas consisting only of negatively charged particles with particle density �, internal
energy density �, chemical potential �, and temperature T . We assume that the
self-consistent electric potential is negligible compared to the externally given
potential V � V�x�. Setting

u � �u1; u2� � ��=T ;ÿ1=T� and b�u� � �b1�u�; b2�u�� � ��; ��;
the initial-value problem reads as follows [23]:

@tb1�u� ÿ div J1 � 0 in Rd; �27�
J1 � L11�u��ru1 � u2rV� � L12�u�ru2; �28�

@tb2�u� ÿ div J2 � ÿJ1 � rV ; �29�
J2 � L21�u��ru1 � u2rV� � L22�u�ru2; �30�

b�u�0�� � b�u0� in Rd: �31�
The variables u1, u2 are called entropy variables, J1 is the particle current density
and J2 is the energy current density.

We impose the following assumptions on the nonlinear functions:
(HB1) Let (HA1) with n � 2 and m5 1 hold.
(HB2) The matrix �Lij� with Lij : R2 ! R is symmetric, uniformly positive

de®nite and bounded: X2

i; j�1

Lij�u�zizj 5�jzj2; jLij�u�j4A;

for all u; z 2 R2, for some �;A > 0.
(HB3) e�b�u0�� 2 L1�Rd� with u0 measurable, and b�u0� 2 L1�Rd�,

V 2 L1�Rd�.
The functions e and H are de®ned as in the previous section (see (12) and (16)).
We refer to the paper [23] for a discussion of the above hypotheses. The

existence of weak solutions to (27)±(31) subject to mixed Dirichlet±Neumann
boundary conditions in bounded domains is shown in [23] under the assumption
m � 1.

We obtain the following decay rate:

Theorem 4. Let u be a global weak solution to (27)±(31) with ��t� � b1�u�t��
5 0 and ��t� � b2�u�t��5 0 for a.e. t > 0 and assume (HB1)±(HB3). Then

ku�t�kL1�1=m 4C4tÿdm2=�dm�2ÿd��m�1� as t!1:
Remark 4. The non-negativity of the particle density ��t� and of the internal

energy density ��t� is necessary for a physically reasonable solution.

Proof. We cannot apply Theorem 3 directly since the right-hand side of the
energy equation (29) may not be dissipative. However, employing the dual entropy
variables

w1 � u1 � u2V ; w2 � u2;
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the system (27)±(30) can be written in symmetrized form:

@tb1�u� ÿ div �D11rw1 � D12rw2� � 0; �32�
@t�b2�u� ÿ b1�u�V� ÿ div �D21rw1 � D22rw2� � 0; �33�

where the new diffusion coef®cients are given by

D11 � L11; D12 � D21 � L12 ÿ VL11; D22 � L22 ÿ 2VL12 � V2L11:

The matrix �Dij� is also uniformly positive de®nite. We immediately conclude the
uniform L1 bounds for b1 and b2:

kb1�u�t��kL1 4 kb1�u0�kL1 <1;
kb2�u�t��kL1 4 kVkL1kb1�u�t��kL1 � kb2�u�t�� ÿ b1�u�t��VkL1

4 kVkL1kb1�u0�kL1 � kb2�u0� ÿ b1�u0�VkL1 :

A calculation shows that for t > s,

H�t� ÿ H�s� �
�t

s

h@tb�u�; uid�

�
�t

s

h@tb1�u�;w1i � h@t�b2�u� ÿ b1�u�V�;w2i� �d�

� ÿ
�t

s

�
Rd

X2

i; j�1

Dijrwi � rwj dx d�4 ÿ �
�t

s

krwk2
L2 d�;

where � > 0 depends on kVkL1 . Using the generalized Nash inequality (14) we
obtain for i � 1; 2;

kwik1��
L1�1=m 4ÿk jwij1=mkm�

L1 krwikL2 4C:

Here, � > 0 and ÿ > 0 are given by Lemma 1 and the L1 norm of jw1j1=m
is

uniformly bounded since, by assumption (HB1),

k jw1j1=mkL1 4 c�k ju1j1=mkL1 � kVk1=m
L1 k ju2j1=mkL1�

4 c�kb1�u�kL1 � kVk1=m
L1 kb2�u�kL1�4 c;

where c > 0 denotes henceforth a constant independent of t. Therefore we obtain

kwik1��
L1�1=m 4 ckrwikL2

and hence

H�t� ÿ H�s�4 ÿ c

�t

s

kwk2�1���
L1�1=m :

The assumption (HB1) and the de®nition of w yield

H�t�4 cku�t�k1�1=m

L1�1=m 4 ckw�t�k1�1=m

L1�1=m

and

H�t�5 cku�t�k1�1=m

L1�1=m ;
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so that we can conclude

dH

dt
�t�4 ÿ cH2m�1���=�m�1�4 ÿ cku�t�k2�1���

L1�1=m :

The assertion of the theorem follows.

Remark 5. We remark that the somewhat `unphysical' result T !1 stems
from the assumption (HB1) on the constitutive relations � � ���; T�, � � ���; T�
(which itself is physically doubtful) and from the lack of temperature relaxation in
our model.

3. Asymptotic Behavior of Degenerate Scalar Parabolic
Equations and Generalized Sobolev Inequalities

The main objectives of this section are, ®rst, to study the asymptotic behavior
of certain degenerate scalar parabolic equations both in bounded domains with no-
¯ux boundary conditions and in Rd (with con®nement) and, second, to establish
generalized Sobolev inequalities. Both aims will be accomplished using the
entropy method. This method has been applied successfully in the linear case
(general linear Fokker±Planck equations see [3], [16]) and in the porous medium/
fast diffusion cases [17], [28], [56]. In this section we extend these results to a
more general class of parabolic equations.

Consider the Cauchy problem for the general nonlinear Fokker±Planck equation

@u

@t
� div �urV�x� � rf �u��; �x 2 
; t > 0�; �34�

u�x; t � 0� � u0�x�5 0; �x 2 
� �35�
supplemented by a decay condition at jxj � 1 if 
 � Rd or by a zero out¯ux
condition on @ 
 if 
 is bounded. We assume for the moment (further assumptions
will be imposed in the course of the analysis)

(HD1) 
 � Rd is either a smooth, bounded domain or 
 � Rd.
(HD2) u0 2 L1�
�, u0 5 0 and

�

 u0�x� dx �: M 2 �0;1�.

and
(HV1) If 
 � Rd, then V 2 W1;1

loc �Rd�, and if 
 is bounded, then V 2 W1;1�
�.
(HV2) If 
 � Rd, then 8A 2 R: fxjV�x�4Ag is bounded.
(HV3) inf
V � 0.

as well as
(HF1) f : R�0 ! R is continuous, strictly increasing and f �0� � 0.
(HF2) f jR� 2 C3�R��.
(HF3) The function h, de®ned by

h�u� :�
�u

1

f 0�s�
s

ds; u 2 �0;1�;
belongs to L1

loc��0;1��. Then

� : �0;1� ! R; ��u� �
�u

0

h�s� ds

is well-de®ned with �0�u� � h�u� for all u 2 R�.
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Remark 6. In case of 
 � Rd assumption (HV2) is, e.g., satis®ed for uniformly
convex functions V which will be of distinctive importance later on. Furthermore
(HV2) implies V�x� ! 1 as jxj ! 1.

Remark 7. a) Throughout this paper we shall be concerned with non-negative
solutions u of (34), (35).

b) Canonical examples for f are f �u� � um with m 2 �0;1�.
c) The function h can be interpreted as the enthalpy function in semiconductor

modeling or as the pressure in the study of the evolution of a gas density in a
porous medium.

d) Since f is strictly increasing the enthalpy h is so, too. Therefore, h is a
homeomorphism from �0;1� onto the open interval �inf h; sup h� � �h�0��,
h�1�� where in accordance with the de®nition of h the inequalities
ÿ14 h�0�� < 0 < h�1�41 hold.

e) Since h is strictly increasing, the function � is strictly convex (�0 � h).
f) By a trivial calculation

��u� � u h�u� ÿ f �u�; for all u 2 R�:

g) It is easy to verify that min � � ��1� < 0 and lims!1��s� � 1. From the
convexity of � we deduce: There is s� 2 �1;1� such that � is decreasing and non-
positive on �0; 1�, increasing and non-positive on �1; s��, and increasing and non-
negative on �s�;1�.

We shall be concerned with certain `̀ generalized solutions'' of (34), (35):

De®nition 1. Assume (HD1), (HD2), (HV1)±(HV3), (HF1)±(HF3). Then,
u : �0;1�� 
ÿ!R is a generalized solution of (34)±(35) iff

1. u 2 L1�
� �0;T�� for any T > 0.
2. If 
 � Rd, then rf �u� 2 L1

loc�Rd � Rt : Rd� and
if 
 is bounded, then �rf �u��j
��0;T� 2 L1�
� �0;T� : Rd�, for any T 2 R�.

3. For all test functions � 2 C1c �Rd
x � Rt� with supp��� \ �@
� f0g� � ; we

have

ÿ
�




u0�x���x; 0� dxÿ
�


�Rt

u
@ �

@ t

� �
�x; �� dxd�

�
�


�Rt

urV �rf �u�� � �x; ��r��x; �� dxd� � 0:

Remark 8. If 
 is bounded, then the involved test functions correspond to zero
out-¯ux boundary conditions

n�x� � �urV �rf �u���x; t� � 0; �x 2 @
; t > 0�;
where n�x� is the outward unit vector of @ 
 at x.

This section is organized as follows. First, we study the stationary states of the
equation (34). Then we analyze the relation with other nonlinear diffusion
problems through time-dependent rescalings. Subsection 1.3 is devoted to the
study of the asymptotic behavior for equation (34) in bounded domains with zero
out-¯ux boundary conditions. Then we shall prove the main result of this section
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about generalized Sobolev inequalities. Finally, we deduce the existence of a weak
solution and we analyze its asymptotic behavior for equation (34) in Rd.

3.1. Equilibrium solutions. We consider stationary solutions of (34) in 

which satisfy

urV�x� � rf �u� � 0;

�



u dx � M: �36�
We wish to re-construct u from (36) now. The intuitive way to proceed is to replace
rf �u� in (36) by urh�u� and to cancel u from the resulting equation. One obtains
r�V � h�u�� � 0 such that

V�x� � h�u�x�� � C; 8x 2 
; �37�
for some C 2 R.

This argumentation, however, has a gap which concerns the cancellation of u.
For the sake of simplicity we only consider continuous u here.

1) The cancellation of u is rigorously justi®ed only if u > 0 in 
. As a
consequence, equation (37) is a priori equivalent to equation (36) if and only if
only strictly positive solutions are encountered. Indeed, if (36) has a solution u
which is strictly positive, then u will satisfy (37) for some C 2 R. Furthermore if
the L1-norm of u solving (36) is prescribed, then C is ± according to the fact that h
is strictly increasing ± unique. We conclude: (36) has at most one strictly positive
solution of a prescribed L1-norm.

2) In many cases also non strictly positive solutions of (36) are of importance.
But for such u the open set fx : u�x� > 0g may have several components. The
derivation of (37) is valid on each of these components then and several,
component-dependent constants C 2 R may arise.

3) Let us now consider (37) for prescribed C 2 R. Then the value u�x� is
uniquely determined only for C ÿ V 2 �h�0��; h�1��. In this case, u�x� �
hÿ1�C ÿ V�x��, where hÿ1 : �h�0��; h�1�� ! �0;1� is the inverse function of
h. No problems arise here if h�0�� � ÿ1 and h�1� � 1. However, if
h�0�� > ÿ1 or h�1� <1, the range of the function C ÿ V may exceed
�h�0��; h�1��. In this case (37) makes no sense anymore.

The questions `̀ Why are strictly positive solutions (if they exist) of (36)
distinguished?'' and `̀ How to proceed if C ÿ V exceeds the range �h�0��; h�1��
of h?'' can be settled at once by passing from equation (36) to a variational
formulation. (This procedure has been succesfully employed for non-linear drift-
diffusion models [50] where similiar dif®culties with thermal equilibrium
solutions arose [64], [65].)

We introduce the energy functional corresponding to the stationary problem,
namely

De®nition 2. Assume (HD1), (HF1)±(HF3). Let V : 
! R be measurable and
non-negative. Let

E : L1
��
� ! R [ f1g;

E�u� �
�




�Vu� ���u���x� dxÿ
�




�ÿ�u�x�� dx; �ÿ�u� 2 L1�
�;
1; else;

8<:
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where L1
��
� � fu 2 L1�
� : u5 0g.

Remark 9. As usual, we denote the non-negative (non-positive) part of a real-
valued function g by g� (gÿ), i.e. g � g� ÿ gÿ and jgj � g� � gÿ.

Remark 10. Clearly, E�u� <1 iff Vu 2 L1�
� and ��u� 2 L1�
�. Further-
more, if E�u� <1, then

E�u� �
�




�Vu� ��u�� dx:

Next we introduce

De®nition 3. Assume (HD1), (HV1)±(HV3), (HF1)±(HF3). A function
u1;M 2 L1�
� is an equilibrium solution of (34), (35) iff u1;M is a minimizer
of E in

C :� u 2 L1
��
� :

�



u�x� dx � M

� �
:

Remark 11. The De®nition 3 of an equlilibrium solution explicitly refers to the
mass M of the initial condition. This convention simpli®es the forthcoming
presentation.

As we shall see soon (Lemma 6) we have under rather natural additional
assumptions existence and uniqueness of a minimizer of E in C. Before entering
the proof and the assumptions a few comments will clarify the situation in
advance.

One can expect ± and it will turn out that this is indeed justi®ed ± that the
minimizer of E in C satis®es the corresponding Euler±Lagrange equations,

V�x� � h�U�x;C�� � C; if 0 < U�x;C�;
V�x� � h�U�x;C��5C; if U�x;C� � 0; �38�

i.e.

min
u2C

E�u� � E�U�:;C��;

where C 2 R and U�:;C� 2 C. The ®rst question is: Does C 2 R exist such that
U�:;C� 2 C, i.e.

�

 U�x;C� dx � M (non-negativity and measurability of U�:;C�

is obvious)? To answer this question let us remark that the (in)equality (38) allows
for an explicit representation of U�x;C�,

U�x;C� :� �hÿ1�C ÿ V�x��; �39�
with the `̀ generalized'' inverse �hÿ1

�hÿ1 : R! �0;1�; �hÿ1��� �
0; �4 h�0��;

hÿ1���; h�0�� < � < h�1�;
1; h�1�4�:

8<:
One immediately veri®es that ± for all C 2 R ± the function x 7!U�x;C� is

measurable with

04U�x;C�41:
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Hence the quantity

M�C� :�
�




U�x;C� dx 2 �0;1�
is well-de®ned for all C 2 R. We have to impose the additional assumption

(HV4) If 
 � Rd and h�0�� � ÿ1, then there is C 2 R with
U�x;C� 2 L1�Rd�.

Remark 12. a) There is no necessity to impose a condition like (HV4) for
bounded 
 or if h�0�� > ÿ1, because in these cases the function U�x;C� will be
compactly supported (due to (HV3)) and bounded for any C < h�1�.

b) (HV4) is a condition on f as well as on V . If we, e.g., consider in case of

 � Rd a potential V�x� � � jxj2 � � jxj� for some �; �; � > 0, and f �u� � um,
m > 0, then (HV4) will be equivalent to the dimension-dependent restriction

d ÿmax f2; �g
d

< m:

Remark 13. A minimization procedure similiar to `̀ E ! min in C'' can be
found in [51]. In that paper no con®ning potential is involved and different
interaction potentials are considered. The requirements on f are closely related to
the ones presented here. In particular the need to impose an assumption like (HF4)
arises.

The following continuity and monotonicity properties of the mapping
M : C 7!M�C� are of importance. Let us introduce

C� :� supfC 2 R : U�x;C� 2 L1�
�g:
We have C� 2 �h�0��; h�1�� and C� � h�1� if 
 is bounded or if
h�0�� > ÿ1.

a) M is increasing.
b) limC!ÿ1M�C� � 0, limC!1M�C� � 1.
c) M�C� � 0 for all C 2 �ÿ1; h�0���.
d) M�C� � 1 for all C 2 �C�;1�.
e) M is continuous and strictly increasing on �h�0��;C��.
f) If h�0�� 2 R, then M is continuous at h�0�� with M�h�0��� � 0.
We introduce

�M � limC!C�M�C�:
It is clear that �M may depend on 
, we will eventually denote it by �M�
�. Let us
distinguish several cases depending on h�0�� and h�1�.

1. Case I: h�0�� � ÿ1 and h�1� � 1. (Example: h�u� � u log�u� which
corresponds to f �u� � u.) In this case we have �hÿ1 � hÿ1 and U�x;C� solves (37).
We deduce from the properties of M that �M � 1, i.e. there exists a unique
�C 2 �h�0��;C�� such that M��C� � M. We set u1;M :� U�x; �C�.

2. Case II: ÿ1 < h�0�� and h�1� � 1. (Examples: h�u� � �umÿ1 ÿ 1�=�1ÿ
�1=m��, 1 < m, which corresponds to f �u� � um.) We easily deduce �M � 1.
Hence there is a unique �C 2 �h�0��; h�1�� such that M��C� � M. As in Case I we
set u1;M :� U�x; �C�.
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3. Case III: h�0�� � ÿ1 and h�1� <1. (Examples: h�u� � �umÿ1 ÿ 1�=
�1ÿ �1=m��, 0 < m < 1, which corresponds to f �u� � um.) If �M > M (or, more
speci®cally, �M � 1), then there is a unique �C 2 �ÿ1;C�� with M��C� � M. In
case of existence we set u1;M � U�x; �C�.

4. Case IV: ÿ1 < h�0�� and h�1� <1. Similar arguments as in the two
previous cases ensure the existence of a unique equilibrium solution u1;M with
mass M if 0 < M < �M � limC!C�M�C�.

Summarizing the discussion outlined so far we shall impose the additional
assumption

(HV5) M < �M�
� � limC!C�M�C�.
Remark 14. If h�0�� > ÿ1 one may work with a functional different from E.

Consider ~��u� � ��u� ÿ h�0��u. We observe that ~��u�5 0. Let us de®ne
~E : L1

��
� ! R [ f1g by

~E�u� �
�




�Vu� ~��u���x� dx:

Of course, ~E�u� ÿ E�u� � ÿh�0��M.
It remains to verify that u1;M is indeed the unique minimizer of E in C. The

proof of this result heavily relies on the following inequality which involves the
relative entropy functional

E�:ju1;M� : L1
��
� ! �0;1�;

E�uju1;M� �
�




���u� ÿ ��u1;M� ÿ �0�u1;M��uÿ u1;M���x� dx;

where we implicitly make use of the fact that u1;M�x� belongs for all x 2 
 to the
domain of �0 and due to convexity,

��u� ÿ ��u1;M� ÿ �0�u1;M��uÿ u1;M��x�5 0

for all x 2 
 such that the integral in the de®nition of E�:ju1;M� has a well-de®ned
value in �0;1�.

The key estimate is

Proposition 5. Assume (HD1), (HV1)±(HV5), (HF1)±(HF3). Furthermore,
assume

E�u1;M� <1:
Then, for all u 2 C,

E�u� ÿ E�u1;M�5E�uju1;M�; �40�
where equality holds for all u 2 C iff

V�x� � h�u1;M�x�� � C; for almost all x 2 
:

Proof. Obviously there is nothing to prove in case E�u� � 1. Hence assume
E�u� <1. We observe

V�x� � h�u1;M�x�� � C if u1;M�x� > 0;

V�x� � h�0��5C if u1;M�x� � 0:
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Furthermore, E�u� <1 implies Vu;��u� 2 L1�
�. Since E�u1;M� <1 is
assumed, we also have Vu1;��u1;M� 2 L1�
�. Let us now prove that these
assumptions imply E�uju1;M� <1.

It suf®cies to prove �0�u1;M�u;�0�u1;M�u1;M 2 L1�
�. This is trivial
whenever �0�0�� � h�0�� > ÿ1. In case of h�0�� � ÿ1 we have
V � �0�u1;M� � C such that �0�u1;M� � C ÿ V and �0�u1;M�u � Cuÿ Vu 2
L1�
�, �0�u1;M�u1;M � Cu1;M ÿ Vu1;M 2 L1�
�. This settles E�uju1;M� <1.
Next we calculate

E�u� ÿ E�u1;M� ÿ E�uju1;M�
�
�




�V�x�u�x� � ��u�x�� ÿ V�x�u1;M�x� ÿ ��u1;M�x��
ÿ ��u�x�� � ��u1;M�x�� � �0�u1;M�x���u�x� ÿ u1;M�x��� dx

�
�




�V�x� � h�u1;M�x����u�x� ÿ u1;M�x��dx

�
�

u1;M>0

�V�x� � h�u1;M�x����u�x� ÿ u1;M�x��dx

�
�

u1;M�0

�V�x� � h�u1;M�x����u�x� ÿ u1;M�x�� dx

�
�

u1;M>0

C�u�x� ÿ u1;M�x��dx�
�

u1;M�0

�V�x� � h�u1;M�x���u�x� dx

5C

�
u1;M>0

�u�x� ÿ u1;M�x�� dx� C

�
u1;M�0

u�x� dx

� C

�
u1;M>0

�u�x� ÿ u1;M�x�� dx� C

�
u1;M�0

�u�x� ÿ u1;M�x�� dx

� C

�



�u�x� ÿ u1;M�x�� dx � 0:

The veri®cation of the statement concerning equality is left to the reader. &

Remark 15. If h�0�� � ÿ1, then one has for all x 2 
 the identity V�x��
h�u1;M�x�� � C. Hence in this case the inequality of Proposition 5 is an equality.

Remark 16. a) The assumption E�u1;M� <1 is essential for the forthcoming
analysis which concerns to a large extent the convergence of E�u�t�� to E�u1;M�
as t!1.

b) In case of bounded 
 we trivially have E�u1;M� <1.
d) For 
 � Rd, E�u1;M� <1 can be seen as a condition on the growth of

u1;M locally and at jxj � 1.
e) If 
 � Rd, if V�x� � � jxj2 � � jxj�, �; �; � > 0, and if f �u� � um, m > 0,

then E�u1;M� <1 iff
d

d �maxf2; �g < m:

We shall henceforth assume
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(HV6) If 
 � Rd, then E�u1;�� <1 for � 2 �0; �M�.
Proposition 5 contains the essential information to prove

Lemma 6. Assume (HD1), (HV1)±(HV6), (HF1)±(HF3). Then u1;M is the
unique minimizer of E in C and, by de®nition, the unique equilibrium solution of
(34), (35).

Proof. Since E is strictly convex there is at most one minimizer of E in C.
Hence it suf®cies to prove E�u1;M�4E�u� for all u 2 C. This inequality is trivial
whenever E�u� � 1. Therefore we assume E�u� <1 henceforth. In this case we
obtain from (40) the estimate E�u�5E�u1;M� � E�uju1;M� which gives due to
the non-negativity of E�uju1;M� the required estimate E�u�5E�u1;M� &

For later reference we need two monotonicity properties of the functional E:

Lemma 7. Assume (HD1), (HF1)±(HF3). Let V : 
! R be measurable and
non-negative. Assume furthermore
� u0 2 L1

��
� and �un�n2N is a sequence in L1
��
�.� E�u0� <1.

� un 4 u0, for all n 2 N.
Then E�un� <1 for all n 2 N, and if un�x� ! v�x� as n!1 for almost all
x 2 
, then v 2 L1

��
�, E�v� <1 and E�v� � limn!1E�un�.
Proof. Due to the positivity of V we have Vun 4Vu0 2 L1�
� for all n 2 N.

Hence
�

�Vun��x� dx4

�

�Vu0��x� dx. We recall that � is decreasing and non-

positive on �0; 1�, increasing and non-positive on �1; s�� and increasing and non-
negative on �s�;1�. Hence, j�j is increasing on �0; 1� [ �s�;1�. We set


1
0 :� fu0 4 1g; 
2

0 :� f1 < u0 < s�g; 
3
0 :� fs�4 u0g;

and obtain for each n 2 N:
If x 2 
1

0, then j��un�x��j4 j��u0�x��j;
If x 2 
2

0, then j��un�x��j4 j��1�j;
If x 2 
3

0, then j��un�x��j4maxfj��u0�x��j; j��1�jg.
Furthermore, both 
2

0 and 
3
0 have ®nite measure such that we can conclude

j��un�j4 j��u0�jind
1
0
� j��1�j ind
2

0
�maxfj��u0�j; j��1�jg ind
3

0
2 L1�
�:

�41�
Hence j��un�j 2 L1�
� and therefore E�un� <1.

Now assume un�x� ! v�x� as n!1 for almost all x 2 
. By Lebesgue's
dominated convergence theorem we obtain

�

�Vv��x� dx � limn!1

�

�Vun��x� dx

4
�

�Vu0��x� dx <1. We obtain E�v� <1 and E�v� � limn!1E�un� from

Lebesgue's dominated convergence theorem. &

Lemma 8. Assume (HD1), (HF1)±(HF3). Let V : 
! R be measurable and
non-negative. Assume furthermore
� u0 2 L1

��
� and �un�n2N is a sequence in L1
��
�.

� un 4 un�1 4 u0, for all n 2 N.
� limn!1un�x� � u0�x� for almost all x 2 
.
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Then
a) limn!1

�

�Vun��x� dx � �
�Vu0��x� dx 2 R� [ f1g.

b) limn!1
�

 ���un��x� dx � �
 ���u0��x� dx 2 R� [ f1g.

c) limn!1
�

 �ÿ�un��x� dx � �
 �ÿ�u0��x� dx 2 R� [ f1g.

d) If
�

 �ÿ�u0��x� dx <1, then

�

 �ÿ�un��x� dx <1 for all n 2 N, and

lim
n!1E�un� � E�u0�:

Proof. a) follows from the non-negativity of V and from the monotone
convergence theorem.

b) We observe: �� is increasing. Hence b) follows from the monotone con-
vergence theorem.

c) We set as in the proof of Lemma 7


1
0 :� fu0 4 1g; 
2

0 :� f1 < u0 < s�g; 
3
0 :� fs�4 u0g:

Since 
0
2 has bounded measure and since �ÿ�u0� is bounded on 
2

0, we obtain

lim
n!1

�

2

0

�ÿ�un��x� dx �
�


2
0

�ÿ�u0��x� dx

from Lebesgue's dominated convergence theorem. Clearly,

lim
n!1

�

3

0

�ÿ�un��x� dx �
�


3
0

�ÿ�u0��x� dx � 0; 8n 2 N:

Since �ÿ is increasing on �0; 1� we obtain

lim
n!1

�

1

0

�ÿ�un��x� dx �
�


1
0

�ÿ�u0��x� dx

from the monotone convergence theorem.
d) We have for all n 2 N,�


2
0

�ÿ�un��x� dx4 j��1�jmeas�
2
0� <1;�


1
0

�ÿ�un��x� dx4
�


1
0

�ÿ�u0��x� dx <1:

limn!1E�un� � E�u0� follows from a), b), c). &

3.2. Time dependent scalings, 
 � Rd. Time dependent scalings have been
studied in [17], [28] establishing a connection between the asymptotic behavior of
equations (34) and the general ®ltration equation

@v

@t
� �f �v�; �x 2 Rd; t > 0�: �42�

In fact, the results in [17] show that if f 0 is homogeneous of degree r with
dr � 2 > 0, there exists a time dependent scaling

v�x; t� � ��t�du���t�x; ��t�� �43�
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with ��0� � 1, ��0� � 0 and ��t� ! 1 as t!1, such that u is a solution of (34)
with V�x� � jxj2=2 if and only if v is a solution of (42). Thus, this scaling is valid
for f �u� � um with d�mÿ 1� � 2 > 0 for d 5 1 or f �u� � log�u� for d � 1.

The time dependent scaling is very useful since results on the asymptotic
behavior of equations of the type (34) with V�x� � jxj2=2 and f �u� � um

(d�mÿ 1� � 2 > 0) translate into results of the asymptotic behavior of the
equations (42) with f �u� � um (d�mÿ 1� � 2 > 0). This includes the porous
medium equation and the fast diffusion equation with m5 dÿ2

d
.

Moreover, the stationary solutions for (34) obtained in the previous subsection
correspond to the Barenblatt±Prattle self-similar solutions for the ®ltration
equation (42) through the scaling (43) upto a time translation.

If f is not a power function, there are no self-similar solutions of the
corresponding ®ltration equation (42) and then the time dependent scaling does
not work. Nevertheless, one can show very easily that the scaling (43) with
��t� � �2t � 1�ÿ1=2

and ��t� � ÿlog��t� translates (34) with V�x� � jxj2=2
into

@v

@t
� ��t�dÿ2�0�t��f ���t�ÿdv�; �x 2 Rd; t > 0�: �44�

and choosing w � ��t�ÿdv we have

@w

@t
� d

2t � 1
w��f �w�; �x 2 Rd; t > 0�: �45�

Therefore, we have found a time dependent scaling translating (34) with
V�x� � jxj2=2 into the ®ltration equation with sources (45).

Again, the stationary solutions of (34) with V�x� � jxj2=2 correspond to self-
similar solutions of (45) upto a time translation and the asymptotic behavior of
(45) is reduced to the asymptotic behavior of (34) with V�x� � jxj2=2.

We conclude: From the analysis of the asymptotic behavior of (35), we will
obtain (as a by-product) results on the asymptotic behavior of (35) and (45) using
different time dependent scalings (43). The interested reader can produce them
without any dif®culty.

Let us also mention that related results were obtained by several authors in
different settings and particular cases [31], [32], [45], [46], [54], [59] by proving
the decay to zero of solutions of nonlinear diffusion equations without con®nement
(42). Also they proved the convergence to a self-similar pro®le without rate in L1

and the Liapunov functional introduced in previous subsection was used in the
uncon®ned case to prove this convergence without rate in L1.

3.3 Exponential decay of the entropy, 
 bounded. In this section we consider
the generalized Fokker±Planck equation

@u

@t
� div �urV�x� � rf �u��; �x 2 
; t > 0�; �46�

with initial condition

u�x; t � 0� � u0�x�5 0; �x 2 
�; �47�
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and zero-out¯ux boundary condition

u
@V�x�
@n
� @f �u�

@n
� 0; �x 2 @
; t > 0� �48�

assuming (HD1), (HD2), (HV1)±(HV6), (HF1)±(HF3) and bounded 
.
The aim of this subsection is to apply the entropy dissipation (production)

method to prove exponential decay of the Liapunov-type relative entropy

RE�u�t�ju1;M� � E�u�t�� ÿ E�u1;M�; as t!1:
The strategy of the proof is the following.

First of all, smooth solutions for appropriately modi®ed data (eventually u0 and f
have to be molli®ed) are considered. In this case the relative entropy
RE�u�t�ju1;M� is (twice) differentiable in time. The crucial step is the veri®cation
of the exponential decay of the entropy production

I�u�t�� :� ÿ d

d t
�RE�u�t�ju1;M��:

From this decay rate it is easy to deduce the corresponding exponential decay of
RE�u�t�ju1;M�.

In a second step, the generalized solution u of the original system (46), (47),
(48) (which is generally not smooth enough to apply the techniques of the ®rst
step) is approximated by solutions u" of appropriately de®ned `̀ molli®ed''
systems. The limit "! 0 means to go back to the original system. Several
"-independent estimates and a lower semi-continuity argument allow for the
veri®cation of the exponential decay of the relative entropy. Several dif®culties
arise from the fact that one might loose the differentiability of the relative entropy
in the limit " � 0.

The entropy production method requires additional assumptions both on f and
on V . As it will become clear in the proof of Theorem 11, we have to require

(HV7) 
 is convex.
(HV8) V � W j
, where W 2 C2�Rd;R� is uniformly convex, that is, there is

�1 > 0 such that

� � Hess�W�x�� � �T 5 �1j�j2

for any x; � 2 Rd.

(HF4) f �u�4 d

d ÿ 1
uf 0�u�, for all u > 0.

Remark 17. a) Obviously assumption (HV8) implies (HV1) and (HV2).
b) Assumption (HF4) restricts the possible values for m if f �u� � um, m > 0,

namely m5 dÿ1
d

. Thus, (HF4) is a restriction of the velocity of the diffusion, that
is, the diffusion cannot be very fast.

Remark 18. In the sequel assumption (HF4) will be of distinctive importance. It
seems appropriate to add a few remarks whose veri®cations are left to the reader.
We assume that f satis®es (HF1)±(HF3).
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a) (HF4) is equivalent to
� There is a non-decreasing, non-negative function a 2 C3�R�� with

0 < a�u�4 1; if 0 < u < 1; and 14 a�u�; if 1 < u; and

f �u� � f �1� a�u� udÿ1
d ; u > 0;

i.e.

a�u� � exp

�u

1

�s� ds

� �
; u > 0;

with non-negative  2 C1�R��.
b) In the sequel we use approximations f", " 2 �0;1�, of f such that each f"

satis®es (HF1)±(HF4) with f 0"�0�� > 0, f 0"5 f 0, f 0" ! f 0 uniformly on compact
subsets of �0;1� and f" ! f uniformly on compact subsets of �0;1�. Indeed, if
f 0�0�� > 0, then one may take f" � f , so it remains to consider the case
f 0�0�� � 0. We choose  2 C1�R�� such that supp�� � �0; 2�, 5 0 and
�u� � 1

d u
for u 2 �0; 1�. Then we de®ne for " 2 �0;1� the function

f" : �0;1� ! R, where for u5 0,

f"�u� :� f �u� � " exp

�u

1

�s� ds

� �
u

dÿ1
d :

We obtain: f"�u� � " u� f �u� for 0 < u < 1 and f" trivially satis®es (HF1)±(HF4)
and the required approximation properties as "! 0.

Before we develop the entropy production method for suf®ciently smooth
solutions u�t� we cite an auxiliary result which will be of great importance in the
sequel

Lemma 9 [56]. Given any non negative u 2 L1
loc�Rd� and vector valued

A 2 L1
loc�Rd;Rd�:

1

2

�
Rd

frac jAj2�x� : u�x�
n o

dx

� sup

�
Rd

A � � dxÿ 1

2

�
Rd

uj�j2 dx : � 2 C1c �Rd : Rd�
� �

;

where the `̀ generalized fraction'' frac is

frac : �0;1�� �0;1� ! R [ f1g; fracfw : zg �
w=z; z 6� 0;
0; w � z � 0;
1; w 6� 0; z � 0:

8<:
The representation of the integral 1

2

�
Rd fracfjAj2�x� : u�x�g dx as supremum of a

(nonlinear) functional allows for the veri®cation of a lower semi-continuity
property similiar to the lower semi-continuity of the norm.

To ®x ideas let us give
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De®nition 4. Assume (HD1), (HV1). Let f : R�0 ! R be measurable. Then

Kf : L1
��
� ! R [ f�1g;

Kf �u� �
�




frac j�urV �rf �u���x�j2 : u�x�
n o

dx; u 2 Df ;

1; else;

8<:
where

Df :� fu 2 L1
��
� : f �u� 2 L1

loc�
�; rf �u� 2 L1
loc�
 : Rd�g:

Then we have

Lemma 10. Assume (HD1), (HV8). Let f : R�0 ! R be measurable. For n 2 N
let fn : R�0 ! R be measurable and let un 2 Dfn . Assume furthermore

a) un * u as n!1, weakly in L1�
�.
b) rfn�un�* rf �u� as n!1, weakly in L1�
 : Rd�.

Then, with the notations of De®nition 4,
1) Kf �u�4 lim infn!1Kfn�un�.
2) If lim infn!1Kfn�un� <1, then u 2 Df and Kf �u� <1.

Proof. Obviously, we can restrict ourselves to the case lim infn!1Kfn
�un� <1.

We wish to apply Lemma 9 [56] with

A : Rd ! Rd; A�x� � �urV �rf �u���x�; x 2 
;
0; else;

�
where we observe that due to assumptions a) and b) we have u 2 L1

��
�,
f �u� 2 L1�
 : Rd�. Furthermore, we infer A 2 L1

loc�Rd : Rd� from a), b), (HV8).
We also introduce the trivial extension

uext : Rd ! Rd; uext�x� � u�x�; x 2 
;
0; else:

�
of u. Then we have

Kf �u� �
�

Rd

frac jAj2�x� : uext�x�
n o

dx: �49�

Proceeding in analogy we obtain

Kfn�un� �
�

Rd

frac jAnj2�x� : uext
n �x�

n o
dx; n 2 N: �50�

According to assumptions a), b), (HV8) we have for each � 2 C1c �Rd : Rd�
lim

n!1

�
Rd

An � � dx �
�

Rd

A � � dx; lim
n!1

�
Rd

uext
n j�j2 dx �

�
Rd

uextj�j2 dx:

On the other hand we have for each such � and each n 2 N due to Lemma 9 the
estimate �

Rd

frac jAnj2�x� : uext
n �x�

n o
dx5 2

�
Rd

An � � dxÿ
�

Rd

uext
n j�j2 dx;
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such that we obtain

2

�
Rd

A � � dxÿ
�

Rd

uextj�j2 dx

� lim
n!1 2

�
Rd

An � � dxÿ
�

Rd

uext
n j�j2 dx

4 lim inf
n!1

�
Rd

frac jAnj2�x� : uext
n �x�

n o
dx;

and we obtain (again due to Lemma 9) the estimate�
Rd

frac jAj2�x� : uext�x�
n o

dx

� sup 2

�
Rd

A � � dxÿ
�

Rd

uextj�j2 dx : � 2 C10 �Rd : Rd�
� �

4 lim inf
n!1

�
Rd

frac jAnj2�x� : uext
n �x�

n o
dx:

Propositions 1) and 2) follow from (49) and (50) now. &
For later use we de®ne

De®nition 5. Assume (HD1), (HV1). Let h : R� ! R be measurable. Then

Jh : L1
��
� ! R [ f�1g;

Jh�u� �
�

u>0

u jrV �rh�u��j2
� �

�x� dx; u 2 Dh;

1; else;

8<:
where Dh is as in de®nition 4 with `̀ h'' replacing `̀ f ''.

We introduce for any T > 0, QT :� �0;T� � 
:

Theorem 11. Assume (HD1), (HD2), (HV3)±(HV8), (HF1)±(HF4) with
bounded 
 and let u be a generalized solution of (46), (47), (48). Assume
furthermore

(A0) For each t 2 R�0 , ku�t�kL1�
� � ku0kL1�
� � M.
(A1) u 2 C1;2� �QT�, for each T 5 0.
(A2) There is �0 2 R� with u0 5 �0.
(A3) There is K 2 R� such that ku�t�kL1�
�4K, for all t 2 R�0 .
(A4) h�0�� � ÿ1.
(A5) Each sequence �uk�k2N in C1;2� �QT� of solutions of (46), (48), which is

uniformly bounded in L1�QT�, has a subsequence �u��k��k2N such that
fu��k� : k 2 Ng is equicontinuous.
Then

a) The functions t 7! RE�u�t�ju1;M� and t! E�u�t�� belong to C2�R�0 �
with

RE�u�t�ju1;M�4RE�u�t0�ju1;M� eÿ2�1 �tÿt0�; t 5 t0 5 0: �51�
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b) The entropy production rate

I�u�t�� :� ÿ d

dt
E�u�t�� � ÿ d

dt
RE�u�t�ju1;M� �52�

satis®es

I�u�t��4 I�u�t0�� eÿ2�1 �tÿt0�: �53�
c) RE�u�t�ju1;M� and I�u�t�� are related via

04RE�u�t�ju1;M�4 1

2�1

I�u�t��; t5 0: �54�

Remark 19. a) The requirement (A1) implies that u�x; t� satis®es the
differential equation (46) pointwise and the zero out¯ux boundary condition (48).

b) Due to (A1) the initial function u0 belongs to C2��
� and satis®es the no-¯ux
boundary condition (48).

c) (A5) can be viewed as requirement on f , [27]. We shall discuss this topic
later on.

d) The main ideas of this theorem appeared previously in [56] (Proposition 1)
with somewhat different hypotheses, although some of the computations (mainly
Steps 2±4) are almost coincident. We have included it here for the sake of the
reader and completeness of the proof.

Proof. The proof is divided into several steps.
Step 0: u�t�5 �1, �1 2 R�, for all t 2 R�. By assumption we have u0 5 �0

for some �0 2 R�. Since h�0�� � ÿ1 we have for each C 2 R:
U�x;C� � �hÿ1�C ÿ V�x�� � hÿ1�C ÿ V�x��, such that V � h�U�:;C�� � C. We
immediately obtain: U�:;C� is a generalized solution of

@ u

@ t
� div urV �rf �u�� �; u�t � 0� � U�:;C�;

subject to no-¯ux boundary conditions. Furthermore, U�:;C�4 hÿ1�C�. Since
limC!ÿ1hÿ1�C� � 0, we can take C1 2 R with u0 5 �0 > hÿ1�C1�5U�:;C1�.
Hence by the comparison principle for strictly positive generalized solutions [49]
we obtain

u�t�5U�:;C1�5 inf
x2


U�x;C1� �: �1;

where due to the boundedness of V on 
, �1 2 R�.
Step 1: RE�u�t�ju1;M� is decreasing with limt!1RE�u�t�ju1;M� � 0. Since

u�t�5 �1 independently of t and since for all T > 0, u 2 C1;2� �QT�, we can
interchange integration with the derivatives and we obtain

RE�u�t�ju1;M� 2 C2�R�0 �
with

ÿI�u�t�� � d

dt
RE�u�t�ju1;M� �

�



�V � h�u�� @ u

@ t

� �
�x; t� dx; �55�

where we made use of �0�u� � h�u� for all u 2 R�. Since u is a strong solution of
(47) we can replace @ u=@ t by div �urV�x� � rf �u��, and obtain after an
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integration by parts by using the no-¯ux boundary condition

I�u�t�� �
�




u�x; t� jyj2�x; t� dx;

where y�x; t� � �rV �rh�u���x; t�. Hence the function t 7!RE�u�t�ju1;M�,
t 2 R�0 , is decreasing. On the other hand, we trivially have RE�u�t�ju1;M�5 0
such that RE�u�t�ju1;M� is bounded below. We obtain: limt!1RE�u�t�ju1;M�
�: H� exists and RE�u0ju1;M�5H�5 0. We furthermore have for all t 2 R� the
estimate

1 > RE�u0ju1;M�5RE�u0ju1;M� ÿ RE�u�t�ju1;M� �
�t

0

I�u�s�� ds;

such that we obtain due to the non-negativity of I�u�:��, I�u�:�� 2 L1�R�0 � and

04
�1

0

I�u�s�� ds4RE�u0ju1;M�:
Hence there is a sequence �tk�k2N in R� with limk!1tk � 1 and limk!1I�u�tk��
� 0. We observe: The set fu�:� tk� : �0; T � ! 
 : k 2 Ng consists of C1;2� �QT�-
solutions of (47) and is uniformly bounded in L1�QT�. Hence by assumption there
is a subsequence ± again denoted by �tk�k2N ± and û 2 C� �QT� such that
u�:� tk� ! û uniformly on QT . We especially have u�tk� ! g uniformly on 
.
Furthermore, due to ku�tk�kL1�
�4K 2 �0;1�, K independent of k 2 N, and due
to uk 5 �1, we have�




�u�tk�rV �rf �u�tk���2�x� dx4
�




K

u�tk� �u�tk�rV �rf �u�tk���2�x� dx

� K

�



u�tk��rV �rh�u�tk���2�x� dx � K I�u�tk��4K1;

where K1 2 �0;1� is independent of k 2 N. This estimate implies: Since the
L2-norms of u�tk�rV are uniformly bounded, the L2-norms of rf �u�tk�� are
uniformly bounded, too. Furthermore the L1-norms of f �u�tk�� are uniformly
bounded. We obtain due to the boundedness of 
 and possibly after extraction of a
subsequence (which is again denoted �tk�k2N),

f �u�tk��* f�; weakly in H1�
� as k !1:
On the other hand we have f �u�tk�� ! f �g� strongly in L2�
� as k!1. Hence
f� � f �g� 2 H1�
�.

The convergences u�tk� ! g uniformly on 
 and rf �u�tk��* rf �g� weakly
in H1�
�, as n!1, allow for an application of Lemma 10:

Kf �g� �
�




frac jgrV �rf �g�j2�x� : g�x�
n o

dx

4 lim inf
k!1

Kf �u�tk��

� lim inf
k!1

�



1

u�tk� ju�tk�rV �rf �u�tk��j2 dx

� ÿ lim inf
k!1

I�u�tk�� � 0;
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where we made use of the fact that ± due to u�tk�5 �1 on 
 ± Kf �u�tk�� ��



1
u�tk� ju�tk�rV �rf �u�tk��j2 dx. Hence�




frac jgrV �rf �g�j2�x� : g�x�
n o

dx � 0;

from which we readily deduce from the de®nition of frac,�
g>0

1

g
jgrV �rf �g�j2 dx � 0: �56�

On the other hand we have due to uniform convergence, g5 �1. Hence

 � fg > 0g and we deduce from (56)

I�g� �
�




gjrV �rh�g��j2�x� dx � 0;

as well as g � hÿ1�C ÿ V� for some C 2 R. Furthermore,
�

 g�x� dx � M. Hence

g � u1;M .
We summarize: u�tk� ! u1;M � g uniformly on 
 as k!1. This con-

vergence is suf®cient to obtain

lim
k!1

E�u�tk�� � lim
k!1

�



�Vu�tk� � ��u�tk����x� dx � E�u1;M�;

such that limk!1RE�u�tk�ju1;M� � 0. Since RE�u�t�ju1;M� is decreasing in t, we
®nally obtain H� � limt!1RE�u�t�ju1;M� � 0.

Step 2: Calculation of
d

dt
I�u�t��. Equation (55) relates the relative entropy to

the entropy production. From this relation we just concluded the convergence to
zero of the solution in relative entropy, without any rate. To ®nd the rate of
convergence requires a further step. Therefore let us calculate the time evolution of
I�u�t��,

d

dt
I�u�t�� �

�



@ u

@ t
jyj2

� �
�x; t� dx� 2

�



uy � @ y

@ t

� �
�x; t� dx

�: I1�t� � I2�t�;
where ± according to u 2 C1;2� �QT� with u5 cT > 0 such that h�u� 2 C1;2� �QT� as
well ± we interchanged integration with differentiation. The second term, taking
into account the boundary conditions (48), can be written as

I2�t� � ÿ2

�



div �uy� @
@t

h�u�
� �

�x; t� dx � ÿ2

�



h0�u��div �uy��2
� �

�x; t� dx;

and the ®rst term can be written as (using again (48) and the assumed smoothness
of the involved functions)

I1�t� � ÿ2

�



u�y � Jacob�y� � yT�ÿ ��x; t� dx :
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Since Jacob�y� � Hess�V� � Hess�h�u�� we have

I1�t� � ÿ 2

�



u�y � Hess�V� � yT�ÿ ��x; t� dx

ÿ 2

�



u�y � Hess�h�u�� � yT
ÿ ��x; t� dx

Now, the last integral reads�



u�y � Hess�h�u�� � yT�ÿ ��x; t� dx �
Xd

i; j�1

�



uyiyj

@2h�u�
@xi@xj

� �
�x; t� dx

�
Xd

i; j�1

�



1

u
�uyi��uyj� @

2h�u�
@xi@xj

� �
�x; t� dx:

Using the divergence theorem, the smoothness of the involved functions and
taking into account the boundary conditions (46), it is straightforward to check thatXd

i; j�1

�



1

u
�uyi��uyj� @

2h�u�
@xi@xj

� �
�x; t� dx

� ÿ
Xd

i; j�1

�



@h�u�
@xi

ÿ 1

u2
�uyi��uyj� @u

@xj

� 1

u

@��uyi��uyj��
@xj

� �� �
�x; t� dx

�
Xd

i; j�1

�



h0�u�yiyj

@u

@xi

@u

@xj

� �
�x; t� dx

ÿ
Xd

i; j�1

�



h0�u� @u

@xi

yi

@�uyj�
@xj

� yj

@�uyi�
@xj

� �� �
dx

�
Xd

i; j�1

�



h0�u�yiyj

@u

@xi

@u

@xj

� �
�x; t� dxÿ 2

Xd

i; j�1

�



h0�u�yi

@u

@xi

@�uyj�
@xj

� �
�x; t� dx

�
Xd

i; j�1

�



h0�u� @u

@xi

yi

@�uyj�
@xj

ÿ yj

@�uyi�
@xj

� �� �
�x; t� dx:

Since
@yi

@xj
� @yj

@xi
, we obtainXd

i; j�1

@u

@xi

yi

@�uyj�
@xj

ÿ yj

@�uyi�
@xj

� �

�
Xd

i; j�1

u yi

@u

@xi

@yj

@xj

ÿ yj

@u

@xi

@yi

@xj

� �

� u
Xd

i; j�1

yi

@u

@xi

@yj

@xj

ÿ 1

2

@u

@xi

@y2
j

@xi

 !

� u �y � ru�div yÿ 1

2
rjyj2 � ru

� �
:
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Thus, simplifying and collecting terms we obtain

I1�t� � I2�t�
� ÿ2

�



u�y � Hess�V� � yT�ÿ ��x; t� dxÿ 2

�



f 0�u�u div y� �2
� �

�x; t� dx

ÿ 2

�



f 0�u� �y � ru�div yÿ 1

2
rjyj2 � ru

� �� �
�x; t� dx:

that we can write as

I1�t� � I2�t�
� ÿ2

�



u�y � Hess�V� � yT�ÿ ��x; t� dxÿ 2

�



f 0�u�u div yf g2
� �

�x; t� dx

ÿ 2

�



�y � rf �u�� div yÿ 1

2
rjyj2 � rf �u�

� �� �
dx:

Applying the divergence theorem in the last two terms and taking into account that

div �y div y� � div y� �2�y � r�div y�
we deduce

d

dt
I�u�t��

� ÿ2

�



u�y � Hess�V� � yT�ÿ ��x; t� dxÿ 2

�



� f 0�u�uÿ f �u�� div yf g2
� �

�x; t� dx

ÿ 2

�



f �u� 1

2
�jyj2 ÿ �y � r�div y��

� �� �
�x; t� dx

� 2

�
@


f �u��y � Jacob�y� � nT�ÿ ��x; t� dS:

Using that
@yi

@xj
� @yj

@xi
, we obtain that

1

2
�jyj2 ÿ �y � r�div y�� �

Xd

i; j�1

@yi

@xj

� �2

and as a consequence

d

dt
I�u�t�ju1;M�

� ÿ2

�



u�y � Hess�V� � yT�ÿ ��x; t� dxÿ 2

�



� f 0�u�uÿ f �u���div y�2
� �

�x; t� dx

ÿ 2

�



f �u�
Xd

i; j�1

@yi

@xj

� �2
 ! !

�x; t� dx� 2

�
@


f �u��y � Jacob�y� � nT� dS

4 ÿ 2�1 I�u�t�� ÿ R�t�; �57�
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where we made use of the uniform convexity of V and we put

R�t� :� 2

�



� f 0�u�uÿ f �u���div y�2
� �

�x; t� dx

� 2

�



f �u�
Xd

i; j�1

@yi

@xj

� �2
 ! !

�x; t� dx

ÿ 2

�
@


f �u��y � Jacob �y� � nT�ÿ �
dS:

Step 3: Exponential decay of I�u�t��. With respect to (57) it suf®cies to prove
R�t�5 0. This estimate is a consequence of the convexity of 
 and the imposed
assumptions on f :

Let us ®rst show that the boundary term of R�t� is negative for convex domains
[56]. Consider the function 	 : @
! R de®ned by 	�x� � y�x� � n�x�. Now, since
y�x� is a vector in the tangent space to @
 in x due to the boundary condition (48),
take a smooth curve ��t� such that ��0� � x and �0�0� � y�x�. Using basic
differential geometry calculus we have

d

dt
	���t�� � �0�t�T Jacob�y����t�� n���t�� � y���t��TII��t� �0�t�

where II��t� is the second fundamental form of the manifold @
. Since 	 � 0
because of boundary condition (48), we have

d

dt
	���t��kt�0 � y�x�T Jacob�y��x� n�x� � y�x�T IIx y�x� � 0:

Due to the convexity of 
 we have y�x�TJacob�y��x� n�x� � ÿy�x�TIIx y�x�4 0 on
the boundary @
.

We therefore have R�t�5R��t� with

R��t� :� 2

�



� f 0�u�uÿ f �u��div y�2
� �

�x; t� dx

� 2

�



f �u�
Xd

i; j�1

@yi

@xj

� �2
 ! !

�x; t� dx;

which gives

d

dt
I�u�t��4 ÿ 2�1I�u�t�� ÿ R��t�: �58�

Let us set Z�x; t� � Jacob�y��x; t�. We can write R��t� as

R��t� � 2

�



T�u��x; t� dx

with

T�u��x; t� � �a2 ÿ a1��trace�Z��2 � a1trace�Z2�
� �

�x; t�
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where a1�x; t� � f �u��x; t� and a2�x; t� � f 0�u�u� ��x; t�. Taking into account that Z
is symmetric it is easy to show that

�trace�Z��2 4 d trace�Z2�; i:e: �trace�Z��2�x; t� � ��x; t� d trace�Z2��x; t�;
with ��x; t� 2 �0; 1�. Hence

T�u��x; t� � ��a2 ÿ a1�� d � a1��x; t� trace�Z2��x; t�
which is non-negative if

f �u�4 d

d ÿ 1
uf 0�u� for any u > 0:

Therefore, T�u�5 0 which proves R��t�5 0 as well as R�t�5 0. Now we infer
from (57)

I�u�t��4 I�u�t0�� eÿ2�1 �tÿt0�: �59�
Step 4: Exponential decay of RE�u�t�ju1;M�. We recover I�u�t�� from (58), and

we plug it into (55):

2�1
d

dt
RE�u�t�ju1;M�5 d

dt
I�u�t�� � R��t�:

Using limt!1RE�u�t�ju1;M� � 0 (see Step 1) we integrate between t 5 0 and
�1 and obtain

04RE�u�t�ju1;M�4 1

2�1

I�u�t��; t5 0: �60�

Finally, we use inequality (60) in (55) to conclude

RE�u�t�ju1;M�4RE�u�t0�ju1;M� eÿ2�1 �tÿt0�; t 5 t0 5 0: �61�
&

The next step in the analysis is to get rid of the assumptions (A0)±(A5) by
approximation arguments.

Let us recall the available L1 theory which was developed by M. Bertsch and
D. Hilhorst in [13] for h�0�� > ÿ1 (plus additional assumptions, see below).
However, it is not dif®cult to check the proofs in [13], [27] to conclude that these
results hold for the cases h�0�� � ÿ1 (see sections 5,7,8 in [13], Theorems 6.2
and 7.1 in [27] and [49]) as well. Hence we can make use of the next existence result.

Theorem 12 [13]. Assume (HD1), (HD2), (HV3)±(HV8), (HF1)±(HF4) with 

bounded. Furthermore, assume

(HD3) u0 2 L1�
�.
(HF5) If h�0�� > ÿ1, then there is s0 2 R� with f 00�u�5 0 for all u 2 �0; s0�.

Then:
a) (46), (47), (48) has a unique non-negative, preserving-mass solution u,

i.e. ku�t�kL1�
� � ku0kL1�
� � M, t > 0.

b) u 2 C�R� � �
�.
c) If u0 2 C��
�, then u 2 C�R�0 � �
�.
d) u�t� ! u1;M in C��
� as t!1.
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Remark 20. In [13] it is additionally assumed that f 0�0� � 0. This is, however, a
direct consequence of the continuity of f at 0, of the assumed monotonicity of f 0,
locally around 0, and of the assumption

lim
u!0

�1

u

f 0�s�
s

ds

���� ���� � jh�0��j <1:
Let us also point out that (HF5) is only assumed in the h�0�� > ÿ1 case. In

this case this hypothesis is used in the proof of the regularization procedure they
perform. If h�0�� � ÿ1 we do not need to regularize the nonlinearity but only
the initial data and then standard existence and regularity� equicontinuity results
in [49] and Theorems 6.2 and 7.1 in [27] respectively, are directly applicable.

Now it is our aim to obtain exponential decay of the entropy (and of the
entropy production) under the assumptions of Theorem 12. The strategy is to make
use of a `̀ parabolic approximation of the nonlinearity f '' as already speci®ed in
Remark 18:

Proposition 13. Assume that f : R�0 ! R satis®es (HF1)±(HF5). Then there is
for any � > 0 a function f� : R�0 ! R satis®ying (HF1)±(HF5) (with h"�u� :� � u

1
f 0"�s� sÿ1 ds; u > 0) and

1. 0 < c1���4 f 0��u� (hence h"�0�� � ÿ1 and h"�1� � 1) and f 0�u�4 f 0��u�
for any u > 0.

2. f� ! f uniformly in compacts of R�0 , and f 0� ! f 0 uniformly in compacts of
R� as �! 0.

3. h" ! h as "! 0 uniformly in compacts of R�.
4. �hÿ1

" ! �hÿ1 uniformly on each half-in®nite interval �ÿ1; c�, c < h�1�.
5. �" ! � uniformly on compacts in R�0 , where �" : R�0 ! R,

u 7! �"�u� :� � u

0
h"�s� ds, i.e. �"�u� � u h"�u� ÿ f"�u� for u > 0 and �"�0� � 0.

We recall: The function f needs to be regularized only if h�0�� � h > ÿ1.
For the other cases we can keep the original f .

We refer to [13], [27], [49] for the following approximation result:

Theorem 14. Assume (HD1)±(HD3), (HV3)±(HV8), (HF1)±(HF5). For " 2 R�

let f" as speci®ed in remark 18 and proposition 13, respectively. Then, there exists
for each " 2 R� a function u"0 2 C2��
� such that

1) 0 < c2���4 u�0 4 ku0kL1�
�,
2) u�0 ! u0 in L2�
� as �! 0,
3) the no-¯ux regularized boundary condition is satis®ed, that is,

u�0
@V�x�
@n
� @f��u�0�

@n
� 0; �x 2 @
�;

and the regularized system

@u�

@t
� div �u�rV�x� � rf��u���; �x 2 
; t > 0�; �62�

with initial condition

u��x; t � 0� � u�0�x�; �x 2 
� �63�
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and no-¯ux boundary condition

u�
@V�x�
@n
� @f��u��

@n
� 0; �x 2 @
; t > 0�: �64�

satis®es
(A5) Each sequence �u"k�k2N in C1;2� �QT� of solutions of (62), (64), which is

uniformly bounded in L1�QT�, has a subsequence �u"��k��k2N such that
fu"��k� : k 2 Ng is equicontinuous,

and for each " 2 R�, the system (62), (63), (64) has a unique generalized solution
u� which satis®es

(A0) for each t 2 R�0 , ku"�t�kL1�
� � ku"0kL1�
� �: M", 0 < M" < �M�
�.
(A1) u" 2 C1;2� �QT�, for each T 5 0.
(A3) there is K 2 R� such that ku"�t�kL1�
�4K, for all t 2 R�0 .

Furthermore,
4) u�5 c3��� > 0,

and for all T > 0,
5) u� ! u uniformly in all compacts ��; T � � �
 with 0 < �4T,
6) u� ! u strongly in L2�QT� and almost everywhere,

where u is the unique non-negative, mass-preserving solution of (46), (47), (48)
(see Theorem 12).

Let us discuss the stationary states for the regularized problem now. We adopt
the notations of the subsection `̀ Stationary Solutions'' and assume that " 2 �0;1�
is ®xed. We distinguish two cases.

I) h�0�� � ÿ1. In this case we have f" � f . We particularly have the unique
existence of C" 2 �ÿ1; h�1�� with M�C"� � M" < �M�
�. Hence the corre-
sponding stationary solution u"1;M"

:� u1;M"
is well-de®ned.

II) If h�0�� > ÿ1, then the parabolic regularization f" is constructed such that
h"�0�� � ÿ1 and h"�1� � 1. As discussed in the subsection `̀ Stationary
Solutions'' there is a unique C" 2 R with M"�C"� � M", where M" is de®ned in
analogy to M by replacing `̀ �hÿ1'' by `̀ �hÿ1

" ''. We set u"1;M"
:� �hÿ1

" �C" ÿ V�.
We introduce for " 2 �0;1� the functionals

E" : C" ! R [ f1g;

E"�u� �
�




�V�x�u�x� � �"�u�x��� dx; Vu;�"�u� 2 L1�
�;
1; else;

8<:
where

C" :� u 2 L1�
� : u5 0;

�



u�x� dx � M"

� �
;

RE"�:ju"1;M"
� : C" ! R [ f1g; RE"�uju"1;M"

� � E"�u� ÿ E"�u"1;M"
�;

and

E"�:ju1;M"
� : C" ! �0;1�;

E�uju1;M"
� �

�



��"�u� ÿ �"�u"1;M"
� ÿ �0"�u"1;M"

��uÿ u"1;M"
���x� dx:
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Now it is a straight-forward task to verify that the assumptions of Theorem 14
except (HF5) (which is needed for the limit "! 0) are suf®cient to ensure that
system (62), (63), (64) satis®es all assumptions of Theorem 11:

Theorem 15. Assume (HD1)±(HD3), (HV3)±(HV8), (HF1)±(HF5). For " 2 R�

let f" as speci®ed in Remark 18 and Proposition 13, respectively, and let u"0 as
speci®ed in Theorem 14. Let u" be the unique, non-negative mass-preserving
solution of (46), (47), (48) (see Theorem 14).

Then
a) The function t 7!RE"�u"�t�ju"1;M"

� belongs to C2�R�0 � with

RE"�u"�t�ju"1;M"
�4RE"�u"�t0�ju"1;M"

� eÿ2�1 �tÿt0�; t5 t0 5 0: �65�
b) The entropy production rate

I"�u"�t�� :� ÿ d

dt
E"�u"�t�� � ÿ d

dt
RE"�u"�t�ju"1;M"

� �66�

satis®es

I"�u"�t��4 I"�u"�t0�� eÿ2�1 �tÿt0�; t5 t0 5 0: �67�
c) RE"�u"�t�ju"1;M"

� and I"�u"�t�� are related via

04RE"�u"�t�ju"1;M"
�4 1

2�1

I"�u"�t��; t5 0: �68�

Now we want to make use of approximation arguments to pass from the
propositions of Theorem 15 ± valid for regularized data and smooth solutions ± to
corresponding results for generalized solutions of (46), (47), (48). The involved
approximation arguments require a careful handling of the relative entropy and the
entropy production rate. It is therefore apropriate to give a few remarks without
refering explicitly to several additional assumptions which will be speci®ed later
on.

a) It turns out that the relative entropy RE"�u"�t�ju"1;M"
� converges for all t 5 0

to the entropy RE�u�t�ju1;M�. Hence part a) of Theorem 11 (exponential decay of
the relative entropy as t!1) will hold for generalized solutions as well.

b) A much more delicate question concerns the differentiability of the function
t! RE�u�t�ju1;M�. This is by no means a trivial problem. Indeed Theorem 15 is a
consequence of Theorem 11 whose proof makes use of the equalities

I�u�t�� � ÿJh�u�t�� � ÿKf �u�t��; �69�
and of

Jh�u�t�� �
�




u rV �rh�u�j j2
� �

�x; t� dx; �70�

and of

Kf �u�t�� �
�




1

u
urV �rf �u�j j2

� �
�x; t� dx: �71�
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When passing from the regularized problem to the original system one loses the
assumptions which are required to verify (69), (70), (71) and ± due to the possible
lack of differentiability of f and h at 0 ± the function I�:� may not be the classical
derivative of the entropy anymore.

All in all it is not clear whether after passing to the limit "! 0,
1) the entropy E�:� is strongly differentiable, i.e. whether the entropy

production rate can be de®ned as classical derivative of E�:�;
2) Jh�:� equals Kf �:�;
3) the distributional derivative of E�:� equals Jh�:� or Kf �:�;
4) by which quantity the function I"�u"�t�� in b) and c) of Theorem 15 has to be

replaced;
5) which modi®cations of b) and c) of Theorem 15 are necessary.
It turns out ± and this is according to the lower semi-continuity of the

functional Kf �:�, see de®nition 4 and lemma 10 not entirely surprising ± that the
exponential decay in time of Kf �u�t�� is not affected by the limiting procedure
"! 0.

Theorem 16. Assume (HD1)±(HD3), (HV3)±(HV8), (HF1)±(HF5) with 

bounded. Let u be the unique, non-negative mass-preserving solution of (46), (47),
(48) (see Theorem 12). Then

a) RE�u�t�ju1;M�4RE�u�t0�ju1;M� eÿ2�1 �tÿt0�; t5 t0 5 0.
b) For all t 5 0,

Kf �u�t��4 Jh�u0� eÿ2�1 t:

c) For all t5 0,

RE�u�t�ju1;M�4 eÿ2�1 t

2�1

Jh�u0�:

d) If Jh�u0� <1, then the distributional derivative

I :� ÿ d

dt
E�u�:�� � ÿ d

dt
RE�u�:�ju1;M�

satis®es

I 5Kf �u�:��; in the sense of distributions:

Proof. In the sequel let u", " 2 R�, be the unique, non-negative mass-
preserving solution of (46), (47), (48) as de®ned in Theorem 14. Eventually we
shall replace the parameter " by the term "�n�, where we tacitly assume that
�"�n��n2N is a sequence in R� with limn!1"�n� � 0. Occasionally we shall pass
to a subsequence of �"�n��n2N and we do this ± by a slight abuse of notation ±
without changing notations.

Step 1: lim"!0u"1;M"
� u1;M , uniformly on 
. We observe lim"!0M" � M. Let

us consider the net �C"�"2R� , where

u"1;M"
� �hÿ1

" �C" ÿ V�:
We wish to prove: lim"!0C" � C, where u1;M � �hÿ1�C ÿ V�. We deduce from
lim"!0M" � M the estimates h�0�� < lim inf"!0C"4 lim sup"!0C" < h�1�.
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Indirect. Assume there is a sequence ���k��k2N, ��k� 2 R�, limk!1��k� � 0, such
that �C��k��k2N does not converge to C. Then ± eventually by passing to a
subsequence, but without changing notations ± we have jC ÿ C��k�j5 �0 > 0, for
all k 2 N. Since h�0�� < lim infk!1C��k�4 lim supk!1C��k� < h�1�, the
sequence �C��k��k2N is bounded. Hence ± after eventually passing to asubsequence,
but without changing notations ± we have limk!1C��k� � C� 2 �h�0��; h�1��
and h�0�� < a4C��k�4 b < h�1� for all k 2 N. We recall: �hÿ1

" ! �hÿ1

uniformly on the half-in®nite interval �ÿ1; b�. Hence �hÿ1
��k��C��k� ÿ V� ÿ �hÿ1

�C" ÿ V� ! 0 uniformly on 
. Furthermore, �hÿ1 is uniformly continuous on
�ÿ1; b�. Hence �hÿ1�C" ÿ V� ÿ �hÿ1�C� ÿ V� ! 0 uniformly on 
 as well. Due to
the boundedness of 
 these two convergence statements are suf®cient to deduce

lim
k!1

M��k� �
�




�hÿ1
��k��C��k� ÿ V��x� dx

�
�




�hÿ1�C� ÿ V��x� dx � M�C�� � M;

such that C� � C.
We obtain: lim"!0C" � C. Mimicking the argumentation carried out right now,

we easily deduce that

u"1;M"
! u1;M uniformly on 
 as "! 0:

Step 2: lim"!0RE"�u"�t�ju"1;M"
� � RE�u�t�ju1;M�, for all t5 0. We recall:

�" ! � on compact subsets of R�0 . Furthermore, according to Theorem 14, we
have for all t 2 R�, u"�t� ! u�t� uniformly on 
 as "! 0. We also have
u"1;M"

! u1;M uniformly on 
 as "! 0. Due to the boundedness of 
, these
convergence statements are suf®cient to prove

lim
"!0

RE"�u"�t�ju"1;M"
� � RE�u�t�ju1;M�; for all t > 0:

Furthermore, we have u"0 ! u0 strongly in L2�
� as "! 0 with ku"0kL1�
�4
ku0kL1�
�. Together with the available uniform convergence of �" ! � on
compact subsets of R�0 we also have

lim
"!0

RE"�u"0ju"1;M"
� � RE�u0ju1;M�:

Step 3: RE�u�t�ju1;M�4RE�u�t0�ju1;M� eÿ2�1 �tÿt0�; t 5 t0 5 0. We obtain
from Step 2 for all 04 t0 4 t,

RE�u�t�ju1;M� � lim
"!0

RE"�u"�t�ju"1;M"
�

4 lim
"!0

RE"�u"�t0�ju"1;M"
� eÿ2�1�tÿt0�

� RE�u�t0�ju1;M� eÿ2�1�tÿt0�:

Step 4: In case of Jh�u0� � �1 nothing remains to be shown. Hence we may
assume Jh�u0� <1 henceforth. We observe: According to Jh�u0� <1 we may

assume without loss of generality that the sequence �u"�n�0 �n2N in L1�
� has the
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additional property

Jh"�n� �u"�n�0 � �
�




�u"�n�0 jrV �rh"�n��u"�n�0 �j2��x� dx! Jh�u0� as n!1;

especially �



u"�n��t� jrV �rh"�n��u"�n��t��j2
� �

�x� dx4K0;

where K0 2 R�0 is independent of t 2 R�0 , n 2 N.

Step 5: Kf �u�t��4 lim infn!1Kf"�n� �u"�n��t�� for all t 2 R�. Let t 2 R�. We set
�t� :� lim infn!1Kf"�n� �u"�n��. By passing (if necessary) to a subsequence (which
may depend on t) we have limn!1Kf"�n� �u"�n�� � �t�. We recall: u"�n��t� ! u�t�
uniformly on 
 as n!1. (In particular: ku"�n��t�kL1�
�4K1�t� 2 R�,
independently of n 2 N with K1�t� 2 R�.) Furthermore, f"�n� ! f uniformly on
compact subsets of R�0 as n!1. Hence f"�n��u"�n��t�� ! f �u�t�� uniformly on 

as n!1. In particular we obtain f"�n��u"�n��t��* f �u�t�� in the sense of
distributions as n!1. From the estimate of Step 4 it is easy to deduce�




u"�n��t�rV �rf"�n��u"�n��t��
�� ��2�x� dx4K1�t�K0:

We obtain: � f"�n��u"�n��t���n2N is a bounded sequence in H1�
�. We can extract a
subsequence (without changing notations) such that

f"�n��u"�n��t��* g�t�; weakly in H1 �
� as n!1:
Since f"�n��u"�n��t��* f �u�t�� in the sense of distributions as n!1, we obtain
g�t� � f �u�t��. Now we can apply Lemma 10 to obtain

Kf �u�t��4 �t� � lim inf
n!1 Kf"�n� �u"�n��t��:

Step 6: Proof of b). We have for each t 2 R�0 and for each n 2 N the estimate

I"�n��u"�n��t�� � Kf"�n� �u"�n��t��4 I"�n��u"�n�0 � eÿ2�1 t � Jh"�n� �u"�n�0 � eÿ2�1 t;

such that we get from Step 4 and Step 5

Kf �u�t��4 lim inf
n!1 Kf"�n� �u"�n��t��

4 lim inf
n!1 Jh"�n� �u"�n�0 � eÿ2�1 t

� lim
n!1 Jh"�n� �u"�n�0 � eÿ2�1 t

� Jh�u0� eÿ2�1 t;

for all t > 0.

Step 7: Proof of c). We deduce c) from a) and Step 4.
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Step 8: Proof of d). We have for all T > 0, for all � 2 C10 �R�0 �, and for all
n 2 N�T

0

I"�n��u"�n��s�� ��s� ds �
�T

0

ÿ d

dt
RE"�n��u"�n��t�ju1;M"�n� �

� �
�s� ��s� ds

�
�T

0

RE"�n��u"�n��t�ju1;M"�n� ��s�
d

dt
��s� ds:

We easily obtain from Step 2

lim
n!1

�T

0

RE"�n��u"�n��t�ju1;M"�n� ��s�
d

dt
��s� ds �

�T

0

RE�u�s�ju1;M� d

dt
��s� ds;

such that in the sense of distributions,

I"�n��u"�n��* I�:� � ÿ d

dt
RE�u�:�ju1;M�; as n!1:

On the other hand, we have for each n 2 N and each t 2 R�0

I"�n��u"�n��t�� � Kf"�n� �u"�n��t��;
such that we obtain from Fatou's lemma with the aid of b) for each non-negative
� 2 C1c �R�0 � �T

0

I�s� ��s� ds � lim
n!1

�T

0

I"�n��u"�n��s�� ��s� ds

� lim
n!1

�T

0

Kf"�n� �u"�n��s�� ��s� ds

� lim inf
n!1

�T

0

Kf"�n� �u"�n��s�� ��s� ds

5
�T

0

Kf �u�s�� ��s� ds;

which settles d). &

Remark 21. Under the assumptions of Theorem 16 one may rather wish to deal
with the functional Jh than with Kf . When are they equal ? A suf®cient condition is
certainly u�t� > 0. In this case we can supplement statements b) and d) as follows:

b. supp) For all t 5 0: If u�t� > 0, then Jh�u�t��4 Jh�u0� eÿ2�1 t.
d. supp) If Jh�u0� <1, and if u�:� > 0 on a measurable set � � R�0 , then

I 5 Jh�u�:�� on � in the sense of distributions.
We deduce as a byproduct from Theorem 16 c) for t � 0 a generalized Sobolev

inequality in bounded domains.

Corollary 1. Assume (HD1)±(HD3), (HV3)±(HV8), (HF1)±(HF5), in part-
icular: u0�x�5 0 belongs to L1�
� with mass M. Then,

RE�u0ju1;M�4 1

2�1

Jh�u0�: �72�
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3.4 Generalized Sobolev inequalities, 
 � Rd. The aim of this section is to
prove generalized Sobolev inequalities on Rd. The procedure is as follows. Let us
take a positive function u0 2 L1�Rd� with mass M such that the entropy production
Jh�u0� in Rd is ®nite. We can approximate it by functions de®ned on Euclidean
balls Bn of radius n. For these approximations the generalized Sobolev inequality
(72) is available. Letting tend n!1 ®nishes the proof.

Theorem 17. Let 
 � Rd and assume that u0 satis®es

u0 2 L1�Rd�; u0 5 0 and

�
Rd

u0�x� dx � M:

Furthermore, assume (HF1)±(HF5), (HV3)±(HV8). For n 2 N let Bn be the
Euclidean ball of radius n centered at the origin. Assume that

(U1) there exists g 2 L1�Rd� and n4 2 N such that

n jrV j2 indfx2Bn:u0�x�>ng4 g; 8n5 n4;

where indfx2Bn:u0�x�>ng is the indicator function of fx 2 Bn : u0�x� > ng.
(U2)

�
Rd

�ÿ�u0��x� dx <1.

Then

RE�u0ju1;M�4 1

2�1

Jh�u0�: �73�

Remark 22. a) According to (HV6), the relative entropy RE�u0ju1;M� has a
well-de®ned value in R [ f�1g.

b) u0 may be unbounded.
c) (U1) is trivially satis®ed if u0 2 L1�Rd� or if u0jrVj2 2 L1�Rd� or if there is

A 2 R� such that the set fx : u0�x� > Ag is bounded.
d) (U2) holds if E�u0� <1 or if h�0�� > ÿ1. However it is worth noting

that (U2) is weaker than E�u0� <1.

Proof. We observe: There is nothing to prove in case Jh�u0� � 1. Hence
assume Jh�u0� <1 henceforth. We introduce for n 2 N the function

un
0 :� minfn; u0gjBn

:

We observe: un
0 2 L1�Bn�, for all n 2 N. We set for n 2 N,

Mn :�
�

Bn

un
0�x� dx:

It is easy to see that Mn 4M for all n 2 N and Mn ! M as n!1. Let us put for
n 2 N,

�Mn :� sup

�
Bn

�hÿ1�C ÿ V� dx : �hÿ1�C ÿ V�jBn
2 L1�Bn�

� �
:

It is left to the reader to deduce from the boundedness of Bn for n 2 N, that

�Mn � lim
C!h�1�

�
Bn

�hÿ1�C ÿ V� dx:
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Since limn!1
�

Bn

�hÿ1�C ÿ V� dx � �
Rd

�hÿ1�C ÿ V� dx for any C < h�1�, we
obtain

�M4 lim inf
n!1

�Mn:

Taking into account (HV5), there is n0 2 N with

0 < Mn < min f �M; �Mng; n0 4 n; n 2 N: �74�
This observation allows for the unambiguous introduction of

un
1;Mn

:� �hÿ1�Cn ÿ Vn�; Cn 2 R such that

�
Bn

�hÿ1�Cn ÿ Vn�x�� dx � Mn;

where n0 4 n 2 N. Now we introduce for n0 4 n 2 N the functional

En : Cn ! R [ f1g

u 7!
�

Bn

�V�x�u�x� � ��u�x��� dx; Vu;��u� 2 L1�Bn�;
1; else;

8<:
with

Cn :� u 2 L1�Bn� : u5 0;

�
Bn

u�x� dx � M

� �
;

and the functional

Ln
h : L1

��Bn� ! R [ f�1g;

Ln
h�u� �

�
u>0

u jrV �rh�u��j2
� �

�x� dx; u 2 Dn
h;

1; else;

8<:
where

Dn
h :� fu 2 L1

��Bn� : h�u� 2 L1
loc�Bn�; rh�u� 2 L1

loc�Bn : Rd�g:
Step 1: En�un

1;Mn
� <1, for all n0 4 n 2 N. This is obvious, because un

1;Mn
is

bounded on the bounded set Bn. Hence we can de®ne for each n0 4 n 2 N,

REn�un
0jun
1;Mn
� :� En�un

0� ÿ En�un
1;Mn
�:

Step 2: There is n1 2 N with n0 4 n1 and

REn�un
0jun
1;Mn
�4 1

2�1

Jn
h�un

0�; n1 4 n 2 N: �75�
We wish to apply (72) of Corollary 1. We have to check the assumptions imposed
there for 
 � Bn, un

0, Mn and Vn, n 2 N suf®ciently large.
(HD1) holds for 
 � Bn, for each n 2 N.
(HD2) holds for `̀ Mn'' replacing `̀ M'' for all n0 4 n 2 N.
(HV8) Vn is the restriction of V to Bn, i.e. (HV8) holds for all n 2 N.
(HV7) is satis®ed for all n 2 N.
(HV6) is of no relevance.
(HV5) holds due to (74) for all n 2 N with n0 4 n.
(HV4) is of no relevance.
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(HV3) holds due to the assumed uniform convexity of V and infRd V � 0 for all
suf®ciently large n 2 N, say, for n3 4 n 2 N with n3 2 N.

(HD3) holds due to the de®nition of un
0 for all n 2 N.

(HF1)±(HF5) are not affected by restricting u0 and V to Bn.
Summarizing the discussion, we obtain (75) from Corollary 1 with

n1 :� maxfn0; n3g.
Step 3: limn!1Jn

h�un
0� � Jh�u0�. We introduce for n1 4 n 2 N,

an : Rd ! R;

an�x� �
u0�x� jrV �rh�u0�j2�x�; x 2 Bn; 0 < u0�x�4 n;

n jrV j2�x�; x 2 Bn; u0�x� > n;

0; else;

8><>:
where we tacitly make use of the fact that both h�u0� and rh�u0� are locally
integrable. We obviously have

Jn
h�un

0� �
�

Rd

an�x� dx;

and for all suf®ciently large n 2 N (see (U1)),

04 an 4 u0jrV �rh�u0�2 � g 2 L1�Rd�;
and clearly limn!1an�x� � �u0jrV �rh�u0�j2� indfu0>0g�x� for almost all
x 2 Rd. Hence limn!1Jn

h�un
0� � Jh�u0� by Lebesgue's dominated convergence

theorem.

Step 4: limn!1En�un
1;Mn
� � E�u1;M�. We have u1;M � �hÿ1�C ÿ V�. Since

M < �M there is M� 2 �M; �M� and C� 2 �C;C�� with u1;M� � �hÿ1�C� ÿ V�.
Furthermore, for all suf®ciently large n 2 N,

un
1;Mn

� �hÿ1�Cn ÿ Vn�; Cn 2 R:

Since Mn ! M as n!1 we obtain: limn!1Cn � C. Due to the growth property
of V it is easy to deduce that un

1;Mn
! u1;M uniformly on Rd. We furthermore

have C < C�. Due to limn!1Cn � C we have Cn < C� for all suf®ciently large n
± say, n5 n5. Hence

Un :� �hÿ1�Cn ÿ V�4 u1;M� ; n5 n5:

Let us denote by �un
1;Mn
�ext

the trivial extension of un
1;Mn

to Rd. By (HV6) we have

E�u1;M�� <1. Since �un
1;Mn
�ext 4Un 4 u1;M� and E��un

1;Mn
�ext� � En�un

1;Mn
�

for all n5 n5, we obtain limn!1En�un
1;Mn
� � E�u1;M� from Lemma 7.

Step 5: limn!1En�un
0� � E�u0�. If we denote the trivial extension of un

0 to Rd

by �un
0�ext

, then we will obtain �un
0�ext 4 �un�1

0 �ext 4 u0. Hence limn!1En�un
0� �

E�u0� by Lemma 8.

Step 6: Finishing the proof. By Step 4 and Step 5 we have limn!1REn

�un
0jun
1;Mn
� � RE�u0ju1;M�, by Step 3 we have limn!1Jn

h�un
0� � Jh�u0�. Hence it

is possible to pass to the limit n!1 in (75) yielding (73). &
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Equation (73) is a generalized Sobolev inequality. Indeed after some ele-

mentary manipulations we obtain in particular for f �u� � um and V�x� � jxj2=2 the
following inequality (see [17], [28]).

Corollary 2. Let u0�x�5 0 belong to L1�Rd� and um
0 2 L1�Rd� with mass M

and m5max

�
d ÿ 1

d
;

d

d � 2

�
, m 6� 1; 1

2
such that the distributional gradient of

u
mÿ1=2
0 is square integrable, then

d � 1

mÿ 1

� ��
Rd

um
0 dx4

1

2

2m

2mÿ 1

� �2�
Rd

jru
mÿ1=2
0 j2 dx� Am ku0k1� � �76�

where

Am M� � �
�

Rd

jxj2
2

u1;M � 1

mÿ 1
um
1;M

" #
dx:

Remark 23. Naturally we derive inequality (76) from Theorem 17 only for
functions u0 which satisfy (U1), (U2). We observe: (U2) holds due to um

0 2 L1�Rd�
and if assumption (U1) does not hold, then we can approximate u0 by L1�Rd�
functions and pass to the limit in inequality (76).

In a similar way we can proceed if m � 1 to recover the logarithmic Sobolev
inequality (see [35], [3]).

Corollary 3. Let u0�x�5 0 belong to L1�Rd� with mass M, such that the
distributional gradient of

�����
u0
p

is square integrable, then�
Rd

u0 log�u0� dx4 2

�
Rd

jr �����
u0

p j2 dx� A1�ku0k1�; �77�
where

A1 M� � � d �M log
M

�2��d=2

 !
:

3.5. Existence of solution and exponential decay of the entropy, 
 � Rd.
The main problem to attack the large-time asymptotics in the Rd case is the lack of
existence and uniqueness results for problem (34)±(35). We show the existence of
a generalized solution (De®nition 1) veri®ying the exponential convergence of the
entropy and the entropy production. Let us denote by F�u� a primitive of the
nonlinearity f �u� with F�0� � 0 and G�u� � uf �u� ÿ F�u� such that G0�u� � uf 0
�u�.

Theorem 18. Assume (HD1)±(HD2), (HV3)±(HV8), (HF1)±(HF5). In addi-
tion, we assume (U1),(U2),

(HE1) F�u0� 2 L1�Rd�.
(HE2) There exists A > 0 such that G�u�4AF�u� for u > 0.
(HE3) �V 2 L1�Rd�.
(HE4) u0 2 L1�Rd�.
(HF6) Either f is convex on �0;1� or fÿ1 is globally HoÈlder continuous.
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(HF7) If h�0�� � ÿ1 we assume there exists 0 < s1 < 1 such that

b :� sup
��u�
uh�u� ; 0 < u < s1

� �
< �1:

Then, there exists a generalized solution of problem (34)±(35) satisfying
a) If h�0�� � ÿ1, then

RE�u�t�ju1;M�4RE�u0ju1;M� eÿ2�1 t; a:e: t > 0:

If h�0�� > ÿ1, then

~RE�u�t�ju1;M� � ~E�u�t�� ÿ ~E�u1;M�4RE�u0ju1;M� eÿ2�1 t; a:e: t > 0:

b) For a.e. t > 0,

Kf �u�t��4 Jh�u0� eÿ2�1 t:

c) For a.e. t > 0,

ku�t�kL1�Rd� � M:

Remark 24. a) (HE1)±(HE3) imply an energy estimate needed for the
compactness argument. In order to apply this argument we need condition (HF6).
Note that f �u� � um for all m5 1 satis®es that f is convex and f �u� � um for all
0 < m4 1 satis®es that fÿ1 is globally HoÈlder continuous, and thus, (HF6) is
satis®ed for f �u� � um for all m > 0.

b) Assumption (HE2) is implied by the condition: there exists A > 0 such that

f �u�5 1

A
uf 0�u� for u > 0:

This condition is veri®ed by f �u� � um for any m.
c) We do not know the uniqueness of the generalized solution for problem

(34)±(35). Under more restrictive assumptions (strong L1-solutions) one may
produce a standard uniqueness result, we refer to [2], [66].

d) (HE3)±(HE4) can be substituted by alternative hypotheses; we come back to
this point after the proof of this theorem.

e) We recall that ~E is de®ned in Remark 14. ~RE coincides with RE provided u
is a mass-preserving solution.

f) Condition (HF7) is needed for the mass conservation.

Proof. Step 1: Sequence of approximate problems. Consider the sequence of
subsets 
n de®ned by


n � fx 2 Rd such that V�x�4 ng
for any n5 1. Using (HV3)±(HV8) 
n is an increasing sequence of convex
bounded smooth domains covering Rd as n!1. Let us de®ne

un
0 :� u0j
n

:

We observe: un
0 2 L1�
n�, for all n 2 N. We set for n 2 N,

Mn :�
�

Bn

un
0�x� dx:
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We follow the same notations as in the proof of Theorem 17 by substituting Bn by

n. It is obvious that (U1), (U2) and (HV3)±(HV8) together with the same
arguments in the proof of Theorem 17 imply that for n5 no

1. Mn 4M for all n 2 N, Mn ! M as n!1, 0 < Mn < minf �M�
n�; �Mg.
2. En�un

0� ! E�u0� as n!1.
3. Jn

h�un
0� ! Jh�u0� as n!1.

4. En�un
1;Mn
� ! E�u1;M� as n!1.

5:

�

n

F�un
0� dx !

�
Rd

F�u0� dx as n!1:

Taking now un
0 as the initial data for the problem (34)±(35) in the bounded

domain 
n and applying Theorem 16, we deduce that the unique solution un of the
problem (46)±(48) in 
n satis®es

Kn
f �un�t��4 Jh�un

0�eÿ2�1t; t5 0 �78�
and

REn�unjun
1;Mn�4REn�un

0jun
1;Mn�eÿ2�1t t5 0 �79�

for n5 no.

Step 2: Energy estimates. Each solution un is obtained using Theorem 14 as the
limit of a regularized problem. Let us take un;� the regularized solution for a
regularized initial data u

n;�
0 . Then, by the divergence theorem it is straightforward

to show that

d

dt

�

n

F��un;�� dx �
�


n

G��un;���V dx

ÿ
�


n

jrf��un;��j2 dxÿ
�
@
n

G��un;���rV � n�x�� dS�x�; �80�

where F� and G� have the same de®nitions as F and G which correspond to the
regularized f�. In the regularization procedure for the nonlinearity one can assume
without loss of generality that (HE1)±(HE2) are preserved, i.e.,

G��u� � uf��u� ÿ F��u�4AF��u� for u > 0 �81�
and that �


n

F�un;�
0 � dx !

�

n

F�un
0� dx as �! 0: �82�

Due to (HV8) and the de®nition of 
n we have

@V

@n
5 0 on @
n;

and therefore using (81)

d

dt

�

n

F��un;�� dx4A

�

n

F��un;���V dx:
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This inequality together with (HE3) implies that�

n

F��un;�� dx4 exp fAk�VkL1�Rd�tg
�


n

F��un;�
0 � dx for t5 0:

Now, coming back to the energy evolution (80) we deduce by integrating and using
previous estimate that�T

0

�

n

jrf��un;��j2 dx dt 4C�T ;V�
�


n

F��un;�
0 � dx for any T > 0:

Now, we take the limit �! 0 in the above expressions. Using that
1. un;� ! un uniformly in all compacts ��; T � � �
n with 0 < �4T .
2. f��un;�� ! f �un� strongly in L2�Qn

T� and weakly in L2�0;T ; H1�
n��.
the lower semicontinuity of the norms and (82), we show�


n

F�un� dx4 expfAk�VkL1�Rd�tg
�


n

F�un
0� dx for t5 0

and �T

0

�

n

jrf �un�j2 dx dt4C�T ;V�
�


n

F�un
0� dx for any T > 0:

Step 3: L1loc estimate. Let us denote by �un�ext
the trivial extension of un to

Rd � Rt. Using (HE3) and (HE4) it is easy to check that �un given by

�un�t� :� ku0kL1�Rd�e
tk�Vk

L1�Rd � :

are supersolutions for the regularized problem. Therefore, by the comparison
principle, one has un;��t; x�4 �un�t� for any t 5 0, x 2 
n and n5 1. Using the
uniform convergence of un;� to un, one ®nally deduces that un is bounded in
L1�Rd � �0; T�� for any T > 0 independently of n.

Step 4: Compactness. Let 
 be any bounded domain in Rd. Using step 3 we
have that �un�extrV is bounded in L2

loc�
� Rt� independently of n. Step 2 assures
that �rf �un��ext

is bounded in L2
loc�
� Rt� independently of n for n5 n1. Using

the equation for @un

@t
we deduce that �@un

@t
�ext

is bounded in L2
loc�R;Hÿ1

loc �
��
independently of n for n5 n1.

Using the compactness result in [38] in case f convex or in [33] in case fÿ1 is
HoÈlder continuous we have the compactness of the sequence �un�ext

for n5 n1 in
L2

loc�
� Rt� for any 
 bounded domain in Rd. A standard Cantor diagonal
selection argument implies the convergence in L2

loc�Rd � Rt� and thus, also a.e. in
Rd, of a subsequence, that we denote with the same index, to a positive function u.

Let us check that u is a generalized solution of the problem (46)±(47). By step
3 and the a.e. convergence we have u 2 L1�Rd � �0; T�� for any T > 0. Previous
estimates imply that � f �un��ext

converges to f �u� strongly in L2
loc�
� Rt� and

weakly in L2
loc�Rt;H

1�
�� for a subsequence, that we continue denoting with the
same index. Therefore, rf �u� 2 L1

loc�Rd � Rt : Rd� and the equation (46) is
satis®ed in distributional sense.
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Step 5: Proof of a). We have to take the limit n!1 in (79). In view of the
previous properties of the approximations un

0 in step 1, the limit as n!1 of the
right hand sides of (79) is obvious. As a consequence of step 4 we have that for a.e.
t > 0, �un�ext�t� converges in L1

loc�Rd� and a.e. in Rd to u�t�. Let us ®x t > 0 for
which this is true.

Let us focus on the left hand side of (79). If h�0�� � ÿ1 then by Proposition
5 we have that

RE�u�t�ju1;M� � E�u�t�ju1;M�
and

REn�un�t�jun
1;Mn� � En�un�t�jun

1;Mn�
where

En�un�t�jun
1;Mn� �

�

n

���un� ÿ ��un
1;Mn� ÿ �0�un

1;Mn� �un ÿ un
1;Mn���x; t� dx;

Since un�t� converges a.e. to u�t�, un
1;Mn converges a.e. to u1;M and � is a convex

function we have

����un� ÿ ��un
1;Mn� ÿ �0�un

1;Mn� �un ÿ un
1;Mn���x; t��ext

is a sequence of positive functions converging a.e. in Rd to

���u� ÿ ��u1;M� ÿ �0�u1;M� �uÿ u1;M���x; t�:
Fatou's lemma implies that

RE�u�t�ju1;M�4 lim inf
n!1 REn�un�t�jun

1;Mn�:
Now, if h�0�� > ÿ1 we have ��u� � ~��u� � h�0��u with ~��u�5 0 (see

Remark 14). Then we can write

En�un�t�� � ~En�un�t�� � h�0��Mn

where

~En�un�t�� �
�


n

�Vun � ~��un���x; t� dx:

Since un�t�5 0 converges a.e. to u�t�5 0 and ~� is positive we have

��Vun � ~��un���x; t��ext
is a sequence of positive functions converging a.e. in Rd

to �Vu� ~��u���x; t�. Fatou's lemma and Mn ! M imply that

~E�u�t�� � h�0��M 4 lim inf
n!1 En�un�t��:

Since Mn ! M and En�un
1;Mn
� ! E�u1;M� as n!1, we have En�un

1;Mn
� !

~E�u1;M� � h�0��M as n!1. Therefore,

~RE�u�t�ju1;M�4 lim inf
n!1 REn�un�t�jun

1;Mn�:
Step 6: Proof of b). We have to take the limit n!1 in (78). In view of the

previous properties of the approximations un
0 in step 1, the limit as n!1 of the
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right hand sides of (78) is obvious. As a consequence of step 4 we have that for a.e.
t > 0, �un�ext�t� converges in L1

loc�Rd� and a.e. in Rd to u�t�. Let us ®xed one of the
almost all t > 0 for which this is true.

As a consequence of step 4, we know that given a bounded domain 
 in Rd,
f �un� converges strongly to f �u� in L2

loc�
� Rt� and weakly in L2
loc�Rt;H

1�
�� for
a subsequence which we continue denoting with the same index. Using Lemma 10
we obtain

K

f �u�t��4 lim inf

n!1 K

f �un�t��4 lim inf

n!1 Kn
f �un�t��

where by K

f we mean the functional Kf de®ned on the domain 
. Using (78) and

step 1 we deduce

K

f �u�t��4 Jh�u0� eÿ2�1 t:

for any 
 bounded domain in Rd, which ®nally proves b).

Step 7: Proof of c). We need ®rst to prove that�
Rd

�V �un�ext��x; t� dx �83�

is bounded independently of n in �0;T �. Using step 5, we know that En�un�t��
is bounded independently of n in �0; T �. In the case, h�0�� > ÿ1 since

En�un�t�� � ~En�un�t�� � h�0��Mn, ~� is positive and Mn ! M as n!1, it is
easy to deduce the uniform bound on (83).

Let us focus now on the case h�0�� � ÿ1. The main difference is that we
have to estimate �


n

�ÿ�un��x; t� dx:

In order to do so, we divide 
n into three subsets


1
n :� fun 4 uAg; 
2

n :� fuA < un < 1g and 
3
n :� fun 5 1g

where uA :� hÿ1�C ÿ �V�x�=A��, C < 0 and A > 0 to be speci®ed. Taking into
account Remark 7 we have �ÿ�un�4�ÿ�uA� in 
1

n and �ÿ�un�4�ÿ�1�un in 
3
n.

In 
2
n we use that the function �ÿ�s�=s is decreasing in s to have�


2
n

�ÿ�un��x; t� dx4
�


2
n

un �ÿ�uA�
uA

� �
�x; t� dx:

Now, we take C small enough to assure that uA is well-de®ned, uA 2 L1�Rd�
and �ÿ�uA� 2 L1�Rd� by hypotheses (HV4), (HV5), (HV6). Thus, we deduce�


n

�ÿ�un��x; t� dx4B1 �
�


2
n

un �ÿ�uA�
uA

� �
�x; t� dx:

Using (HF7) and taking C small enough we prove

�ÿ�uA�
uA

4ÿ bh�uA� � b

A
V�x� ÿ bC
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in Rd. Therefore,�

n

�ÿ�un��x; t� dx4B2 � b

A

�

n

�Vun��x; t� dx:

Since En�un�t�� is decreasing in t, we have that�
Rd

�Vun��x; t� dx4En�un�0�� �
�


n

�ÿ�un��x; t� dx

Take b < A and using step 1, we conclude that

1ÿ b

A

� ��
Rd

�Vun��x; t� dx4B3

and then (83) is proved.
Since un converges to u in L2

loc�Rd � Rt� and the uniform bound of (83), we
have that for a.e. t > 0 un�t� converges weakly in L1�Rd�. Therefore,
u�t� 2 L1�Rd� for a.e. t > 0 and un�t� ! u�t� weakly in L1�Rd� and strongly in
L1�
� for any 
 bounded domain in Rd.

Now, let us ®x � > 0 and T > 0, we can ®nd a ball BR such that for n5 n�, we
have BR in the support of un and�

Rd=BR

�un�ext�x; t� dx < �

for any t 2 �0;T �. This is proved just by using that V�x�5�1jxj2 5�1R2 out of
BR. Let us remark that R is independent of n but depends on �, R!1 as �! 0.
Therefore, we have that �

BR

�un�ext�x; t� dx5Mn ÿ �

for n5 n�. Taking the limit n!1 for a.e. t > 0 for which un�t� converges
strongly in BR we deduce �

BR

u�x; t� dx5M ÿ �:

We ®nd the conservation of mass just taking the limit �! 0 in the previous
expression and using that

ku�t�kL1�Rd�4M:

since un�t� ! u�t� weakly in L1�Rd�. &

In particular, we can take f �u� � um and V�x� � jxj
2

2
to recover the following

known result (see [17], [56]), where the generalized solution for the problem (34)±
[35] is known to be unique, mass-preserving and C��0;T �; L1�Rd�� for any T > 0.

Corollary 4. Let u0�x� 2 L1
� \ L1�Rd� with mass M and m5

d ÿ 1

d
and

m >
d

d � 2
. Then, the unique generalized solution of problem (34)±(35) with

f �u� � um and V�x� � jxj
2

2
satis®es
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a) For a.e. t > 0, RE�u�t�ju1;M�4RE�u0ju1;M� eÿ2 t.
b) For a.e. t > 0, Kf �u�t��4 Jh�u0� eÿ2 t:
(HE3) can be dropped if one is able to prove L1 estimates for the solution

independent of (HE3). The following result is an alternative to the previous
theorem.

Theorem 19. Assume (HD1)±(HD2), (HV3)±(HV8), (HF1)±(HF7). In addi-
tion, we assume (U1), (U2), (HE1), (HE2) and

(HE3b) There exists 0 < ~M < �M such that u0 4 u1; ~M in Rd with
u1; ~M�V 2 L1�Rd�.
Then, there exists a generalized solution of problem (34)±(35) satisfying

a) If h�0�� � ÿ1,

RE�u�t�ju1;M�4RE�u0ju1;M� eÿ2�1 t; a:e: t > 0:

If h�0�� > ÿ1,

~RE�u�t�ju1;M�4RE�u0ju1;M� eÿ2�1 t; a:e: t > 0:

b) For a.e. t > 0,

Kf �u�t��4 Jh�u0� eÿ2�1 t:

c) For a.e. t > 0,

ku�t�kL1�Rd� � M:

Proof. The proof is exactly the same as in Theorem 18. We have only to prove
the energy and the L1 estimates using the hypothesis (HE3b) instead of (HE3)±
(HE4). We keep the same notations. The L1 estimates are an easy consequence of
the comparison principle. The restriction of u1; ~M to 
n is a stationary solution for
the problem in 
n with different mass, thus u1; ~M � un

1; ~Mn . By (HE3b) we have

un
0 4 un

1; ~Mn in 
n, then by comparison principle in the bounded domain problem

(see [13]) we have un 4 un
1; ~Mn � u1; ~M for any n5 1. This bound gives us

uniform L1 global estimates in �x; t� of the sequence un.
The energy estimates can be obtained following as in step 2 of Theorem 18. We

avoid the use of (HE3) by the following argument. Since F0�0�� � 0 then, there
exists � > 0 such that F�u�4�u for any u 2 �0; sup �u1; ~M��. Using (HE2)±
(HE3b) we have�


n

G�un��V dx4A�

�

n

un�V dx4A�

�
Rd

u1; ~M�V dx:

The proof continues as in Theorem 18. &

Remark 25. a) Theorem 19 applies to any positive compactly supported

bounded initial data when �M � 1 provided u1;M�V 2 L1�Rd� for any M > 0.
The last assertion is true for instance if there exists D > 0 such that �V 4DV
in Rd and u1;MV 2 L1�Rd� for any M > 0. For example, this is satis®ed for

V�x� � � jxj2 � � jxj� for some �; �; � > 0, and f �u� � um, m > 0 if

d

d �maxf2; �g < m:
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b) Theorems 18 and 19 could be improved if we were able to produce an a
priori L1�Rd� estimate of the solution u�t� for any t > 0 in terms of the L1�Rd�
norm of the initial data. Global uniform estimates were obtained for the porous
medium and general ®ltration equation. Their proof is not trivial at all and involves
delicate arguments either on nonlinear semigroup theory [5], [68] or on estimates
for non integrable initial data [66].

In the linear case, one usually uses propagation of moments in order to study
the smoothness of the solution, see for instance [25]. This procedure here is much
more complicated because of the nonlinear diffusion. Nevertheless, in the power-
law case, uniform bounds of moments can be used to improve previous results in
some cases. Here, we shall use the application of this technique in dimension
d � 3 for the porous media case f �u� � um with m5 1, under the assumption of
the existence of smooth solutions of (34)±(35).

Corollary 5. Assume (HD1)±(HD2), (HV3)±(HV8), (U1), (U2) in the
particular case f �u� � um, m5 1, d � 3 and

(HV9) There exist A1
V ;A

2
V > 0 and 0 < V 4 8 such that

A1
V jxjV �V 4A2

V�1� jxjV �
for all x 2 R3.

Moreover, assume there exists a sequence of approximated smooth fast
decaying at 1 solutions un of problem (34)±(35), for a regularized initial data
sequence un

0, satisfying the decay properties stated in Theorem 18.
Then, there exists a generalized solution of problem (34)±(35) satisfying

a) For a.e. t > 0,

~RE�u�t�ju1;M�4RE�u0ju1;M� eÿ2�1 t:

b) For a.e. t > 0,

Kf �u�t��4 Jh�u0� eÿ2�1 t:

c) For a.e. t > 0,

ku�t�kL1�Rd� � M:

Proof. The proof follows the lines of the proof of Theorem 18. We only have to
prove energy estimates and L2 estimates in a different way. Basically, we can
derive uniform bounds of certain moments of the solution by performing parts of
steps 5 and 7 of Theorem 18. By reviewing this proof we note that we can prove
apriori the boundedness of �

R3

�V�x�un��x; t� dx �84�

independently of n in �0; T �. Coming back to the energy estimates in step 2 of
Theorem 18, we have in this case

1

m� 1

d

dt

�
R3

�un�m�1
dx4

m

m� 1

�
R3

�un�m�1�V dxÿ
�

R3

jr�un�mj2 dx: �85�
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Due to (HV9) and HoÈlder's inequality we have

m

m� 1

�
R3

�un�m�1�V dx

4 C1

�
R3

un�1� jxjV �6mÿ1=5mÿ1
dx

� �5mÿ1=6mÿ1 �
R3

�un�6m
dx

� �m=6mÿ1

:

By using Sobolev's inequality we deduce�
R3

�un�m�1�V dx

4C2

�
R3

un�1� jxjV �6mÿ1=5mÿ1
dx

� �5mÿ1=6mÿ1 �
R3

jr�un�mj2 dx

� �3m=6mÿ1

and a ®nal application of Young's inequality gives that for any � > 0 we can ®nd
C� > 0 such that�

R3

�un�m�1�V dx

4C�

�
R3

un�1� jxjV �6mÿ1=5mÿ1
dx

� �5mÿ1=3mÿ1

��
�

R3

jr�un�mj2 dx:

Therefore, coming back to the energy equation (85) we ®nally conclude

1

m� 1

d

dt

�
R3

�un�m�1
dx

4C�

�
R3

un�1� jxjV �6mÿ1=5mÿ1
dx

� �5mÿ1=3mÿ1

ÿ�1ÿ ��
�

R3

jr�un�mj2 dx:

Moreover, since V 4 8 due to (HV9) and using conservation of mass we
obtain

C�

�
R3

un�1� jxjV �6mÿ1=5mÿ1
dx4C3 � C4

�
R3

unV�x� dx;

and thus, it is uniformly bounded in n: Therefore, we ®nd that�T

0

�
R3

�un�m�1
dx dt

and �T

0

�
R3

jr�un�mj2 dx dt

are uniformly bounded in n for any T > 0. From this, the assertion follow starting
at step 4 of the proof of Theorem 18. &

Let us remark that the previous corollary can be generalized to any dimension
d by choosing carefully the exponents in the estimates corresponding to the
Sobolev inequality. This result will give you the decay result for any potential of
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the type jxj2 � jxj� for � in a suitable interval. This shows that a priori bounds of
moments are key estimates to improve the existence results if we want to allow full
generality in the behaviour of V�x� at 1.

3.6. A general result on the exponential decay of the entropy

Theorem 20. Let 
 � Rd and assume that u0 satis®es

u0 2 L1�Rd�; u0 5 0 and

�
Rd

u0�x� dx � M > 0:

Furthermore, assume (HF1)±(HF5), (HV3)±(HV8). Let u 2 L1
loc�R� : L1�Rd�� be

a generalized mass-preserving solution of (34), (35). Let 04T0 < T1. Assume for
each t 2 �T0;T1�,

(HG1) h��u�t�� 2 L1
loc�Rd�.

(HG2) There is a nonvoid, open interval It � �T0; T1� such that

�h�u�t�� � V� u�s� 2 L1�Rd�; s 2 It;

(HG3) The function

Pt : It ! R; Pt�s� �
�

Rd

�h�u�t�� � V� u�s� dx

is differentiable at t with

ÿP0t�t� � Jh�u�t�� �
�

Rd

u�t� rh�u�t�� � rVj j2 dx

� �
<1:

(HG4) u�t� satis®es (U1), E�u�t�� <1 and

lim
It3s!t

�
Rd

��u�s�� ÿ ��u�t�� ÿ h�u�t�� �u�s� ÿ u�t��
sÿ t

dx � 0:

and assume that the function

J : �T0; T1� ! R; J�t� � Jh�u�t��
belongs to L1�T0;T1�.

Then

RE�u�t�ju1;M�4RE�u�T0�ju1;M� eÿ2�1�tÿT0�; T0 4 t < T1:

Proof. We set for the sake of simplicity for t > 0, E�t� :� E�u�t��. Then we
have E�t� <1 for all t 2 �T0; T1� and �h�u�t�� � V� u�s� 2 L1�Rd� for any s 2 It.
Hence,

��u�s�� � V u�s� ÿ ��u�t�� ÿ V u�t� ÿ �h�u�t�� � V� �u�s� ÿ u�t�� 2 L1�Rd�;
for any s 2 It, such that the integrand of (HG4) is well-de®ned. We calculate for
s 2 It with s 6� t,

E�s� ÿ E�t�
sÿ t

� Pt�s� ÿ Pt�t�
sÿ t

�
�

Rd

��u�s�� ÿ ��u�t�� ÿ h�u�t���u�s� ÿ u�t��
sÿ t

dx:
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Hence by (HG3), E�:� is differentiable at t with

E0�t� � P0t�t� � ÿJ�t�:
By (HG4) we have J 2 L1�T0; T1�. This suf®cies [60] to deduce

E�t� ÿ E�T0� � ÿ
�t

T0

J��� d�; �86�

with absolutely continuous E�:� : �T0; T1� ! R. We obtain from the generalized
Sobolev inequality (73),

RE�u�t�ju1;M� ÿ RE�u�T0�ju1;M�4 ÿ 2�1

�t

T0

RE�u���ju1;M� d�;

such that due to the continuity of RE�u�:�ju1;M�,
RE�u�t�ju1;M�4RE�u�T0�ju1;M� eÿ2�1�tÿT0�; T0 4 t < T1: &

Remark 26. The intention of Theorem 20 is to formulate `̀ minimal''
requirements on a generalized solution of (34), (35) which imply exponential
decay of the relative entropy. It is useful to relate the assumptions to the theory of
parabolic equations.

a) The requirement Jh�u�t�� <1 on �T0; T1� (see (HG3)) is obligatory for a
non-trivial application of the generalized Sobolev inequality which is the main
idea behind the proof. Hence assumption (HG1) is a preliminary step to give sense
to the integrand of Jh�u�t��.

b) The main step in the proof is the veri®cation of (86) with real E�t� and
E�T0�. The assumption E�u�t�� <1 on �T0;T1� is therefore obligatory.

c) A more critical assumption is (HG2). Let us, however, note two aspects:
c.1) If one wishes to prove the conservation of mass (we consider here only

such solutions) one usually starts with the derivation of estimates on the L1 norm
of Vu�t�.

c.2) According to c.1) one has to check whether h�u�t�� u�s� 2 L1�Rd� for s in
an interval containing t. In the pure power case we have u�t� h�u�t�� � c:��u�t��
2 L1�Rd� (since E�u�t�� <1) such that it is rather natural to believe that
u�t� h�u�t�� 2 L1�Rd� can be veri®ed. From that point of view the assumption
`̀ h�u�t�� u�s� 2 L1�Rd�'' is a regularity assumption on the time-evolution of u,
locally at each t 2 �T0; T1�.

d) Once one has veri®ed (HG2) the proof of local continuity of Pt is probably
not out of sight. A much more delicate requirement is the differentiability of Pt at t
for all t 2 �T0; T1�. Certainly, one can not go much beyond the requirements `̀ Pt is
differentiable on It'' and `̀ P0t 2 L1 (see the assumption on J)'' to establish equation
(86), compare well-known counterexamples, to be found, e.g. in [60].

e) Yet another aspect of (HG3) is the identity P0t�t� � Jh�u�t��. This is seemingly
a regularity assumption on u�t� for ®xed t: The concept of generalized solutions is
usually settled on the identi®cation of ut with an element of an appropriately chosen
dual space of a Banach space of Bochner-integrable functions such that

hut; �i�s� � d

dt

�
Rd

rf �u�s�� � u�s�rV� �r� dx

� �
�87�
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for a suf®ciently large class of (t-independent) test functions �. Now if we assume
continuity of u�t�, say for t > 0 (which is true for the pure power case), then it is
easy to verify that u�t�rh�u�t�� � rf �u�t�� for almost all x 2 Rd (with the tacit
identi®cation u�t�rh�u�t�� � 0 whenever u � 0) such that�

Rd

rf �u�t�� � u�t�rV� �r� dx �
�

u�t�>0

u�t� �rh�u�t�� � rV�r� dx:

Finally, one may try a density argument to replace `̀ �'' in (87) by the function
h�u�t�� � V . This strategy could lead to a veri®cation of P0t�t� � Jh�u�t�� whenever
Pt is differentiable at t.

f) It is reasonable to assume u�t� > 0 pointwise whenever � is not
differentiable at 0. Hence it is very reasonable to assume that the integrand of
(HG4) tends pointwise to 0 as s approaches t. The differentiability assumption of
(HG4) is a regularity assumption on the time-evolution of u�t� then.

g) As already mentioned in d) one cannot go beyond the L1 property on J�:�.
h) Unfortunately, the partial integration in time, i.e. Lemma 2 in Section 2.2,

cannot generally be used here. The assumptions of this lemma are that
@tu 2 Lp0 �0; T ; X0� and h�u� � V 2 Lp�0; T ; X� where 1=p� 1=p0 � 1 and X �
W1;p�Rd�. If these conditions are satis®ed (and the integrals are de®ned), we obtain

RE�u�t�ju1;M� ÿ RE�u�s�ju1;M� �
�t

s

hut; h�u� � Vidt

�
�t

s

�
Rd

ujr�h�u� � V�j2dx dt;

which is (86). From the proof of [2] it can be seen that the space W1;p�Rd� can be
replaced by a more general Banach space X satisfying some additional
assumptions. However, in the porous-medium case with compactly supported
initial data the function h�u� � V does not belong to any Lp space.

Yet another strategy to prove exponential decay of the relative entropy in Rd

may be settled on an approximation of u�t� by solutions uR�t� which solve (34),
(35) on an euclidean ball BR centered at the origin with radius R.

De®nition 6. Assume 
 � Rd and assume that u0 satis®es

u0 2 L1�Rd�; u0 5 0 and

�
Rd

u0�x� dx � M > 0:

Furthermore, assume (HF1)±(HF5), (HV3)±(HV8) and let u 2 L1
loc�R� : L1�Rd��

be a generalized mass-preserving solution of (34), (35). Let T 2 R�. Then u is said
to be consistently approximable at T iff there is a strictly increasing sequence
�Rn�n2N in R� and a sequence �u0;n�n2N in

S
n2N L1�BRn

� such that
cat. 1 For all n 2 N: u0;n 2 L1�BRn

�, u0;n 5 0 and
�

BRn
u0;n�x� dx � Mn > 0.

cat. 2 infBRn
V � 0.

cat. 3 For all n 2 N: Mn < �M�BRn
�.

cat. 4 E�u1;M� � lim
n!1E��u1;Mn

�ext�, where �u1;Mn
�ext

is the trivial extension of

u1;Mn
2 L1�BRn

� to Rn.

cat. 5 E�u0� � lim
n!1E��u0;n�ext�.
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cat. 6 There is p 2 �1;1� such that �un�T��ext * u�t� weakly in Lp�Rd� as
n!1, where un�t� is the unique solution of (34), (35) on BRn

with initial datum
u0;n, see Theorem 12.

Remark 27. The approximating sequence un�t� may depend on T 2 R�.

Theorem 21. Assume 
 � Rd and assume that u0 satis®es

u0 2 L1�Rd�; u0 5 0 and

�
Rd

u0�x� dx � M > 0:

Furthermore, assume (HF1)±(HF5), (HV3)±(HV8) and let u 2 L1
loc�R� : L1�Rd��

be a generalized mass-preserving solution of (34), (35). Let T 2 R�. Assume that
1. E�u�T�� <1.
2. u is consistently approximable at T.

Then

RE�u�T�ju1;M�4RE�u0ju1;M� eÿ2�1T : �88�
Proof. It is left to the reader to verify that the assumptions of Theorem 16 are

satis®ed for the approximative systems on BRn
, n 2 N. Hence we have for any

n 2 N,

RE��un�T��extj�u1;Mn
�ext�4RE��u0�extj�u1;Mn

�ext� eÿ2�1T :

Due to E�u�T�� <1 and due to the convexity of � we have by lower semi-
continuity (apply cat. 6),

E�u�T��4 lim inf
n!1 E��un�T��ext�:

The formula (88) follows from cat. 4 and cat. 5 now. &

4. A CsiszaÂr±Kullback-Type Inequality

This section is devoted to the derivation of a generalized CsiszaÂr±Kullback
inequality for the relative entropy E�:ju1;M� introduced in the previous section,
i.e. we are looking for a real function U such that the estimate

kuÿ u1;MkL1�
�4U�E�uju1;M��
holds for a rather general class of functions u.

For the sake of a broader range of applicability the discussion is performed in a
more general measure-theoretic background and a larger class of convex functions
� than used in the previous section is considered.

4.1. Properties of the relative entropy E�:j:�. Henceforth we shall make use
of the following notations and assumptions.

A.1 � : I ! R, I � R�0 or I � R�, is strictly convex and continuous. If
I � R�, then ��0�� � 1.

A.2 � is differentiable on R� and we set

I 0 :� fs 2 I : � is differentiable at sg;
and h :� �0 : I0 ! R.

A.3 �S;B; �� is a measure space.
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We note: R� � I0 � I � R�0 and if 0 =2 I0, then ��0�� � 1.
Let us introduce

C :� fv 2 L1�S� : v�z� 2 I for �-aa z 2 Sg;
C0 :� fv 2 L1�S� : v�z� 2 I0 for �-aa z 2 Sg:

We certainly have C0 � C � L1
��S� (with C0 � C if I0 � I and C � L1

��S� if
I � R�0 ). Clearly, C0;C;L1

��S� are closed, convex subsets of L1�S�.
We shall be concerned with relative entropies with respect to a ®xed reference

function u1 and assume
A.4 u1 2 C0 with

�
S

u1 d� �: M 2 R�.
The derivative h of � is strictly increasing. As in the previous section we set

h�0�� :� inf h � lim
s!0

h�s� 2 �ÿ1;1�;
h�1� :� sup h � lim

s!1 h�s� 2 �ÿ1;1�;
where we note that h�0�� � h�0� if � is differentiable at 0. We recall the
de®nition of the generalized inverse �hÿ1 of h,

�hÿ1 : R! �0;1�; �hÿ1��� �
0; �4 h�0��
hÿ1���; h�0�� < � < h�1�
1; h�1�4�:

8><>:
Let us consider for c 2 R the function �hÿ1�c� �0�u1��. We immediately

obtain: If c4 0, then �hÿ1�c� �0�u1��4 u1, hence �hÿ1�c� �0�u1�� 2 L1
��S�.

Due to this observation it is easy to see that

J :� fc 2 R : �hÿ1�c� �0�u1�� 2 L1
��S�g

is an interval containing the non-positive real axis. For c < sup J we set

M�c� :�
�

S

�hÿ1�c� �0�u1�� d� 2 R�0 :

Now we can introduce

�M :� sup
c2J

M�c�;

where we immediately obtain �M � limc!sup JM�c�5M, due to monotonicity. As
in the previous section it is easy to see that there is for each N 2 �0; �M� exactly
one c�N� 2 J with

�
S

�hÿ1�c�N� � �0�u1�� d� � N. Hence we can de®ne
unambigously

u�N :� �hÿ1�c�N� � �0�u1��; N 2 �0; �M�:
We note: u�N 2 C0 for any N 2 �0; �M�.

We introduce the relative entropy functional

E�:j:� : C� C0 ! R�0 [ f1g; E�vjv��
�
�

S

���v� ÿ ��v�� ÿ �0�v���v ÿ v��� d�;
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where we make use of the fact that ± due to the convexity of � ± the function
��:j:� : I � I0 ! R; �s; s�� 7!��s� ÿ ��s�� ÿ �0�s���sÿ s�� is non-negative such
that E�vjv�� has a well-de®ned value in �0;1�.

Remark 28. The de®nition of E�uju1� neither requires ��u1� 2 L1�d�� nor
�0�u1� 2 L1�d��.

We make the following observation.

Proposition 22. Assume A.1±A.4. Let v 2 C and let v� 2 C0 (such that
E�vjv��, E�v�ju1�, E�vju1� have well-de®ned values in �0;1�). Assume
furthermore

A. ���0�u1� ÿ �0�v����v� ÿ v��ÿ 2 L1�S�:
Then

E�vjv�� � E�v�ju1� �
�

S

��0�u1� ÿ �0�v����v� ÿ v� d� � E�vju1�: �89�

Remark 29. Any of the values E�vjv��, E�v�ju1�,�
S
��0�u1� ÿ �0�v����v� ÿ v�d�, E�vju1� may be 1.

Proof. We have due to non-negativity of the ®rst two integrands and due to A.,

E�vjv�� � E�v�ju1� �
�

S

��0�u1� ÿ �0�v����v� ÿ v� d�

�
�

S

���v� ÿ ��v�� ÿ �0�v���v� ÿ v�� d�

�
�

S

���v�� ÿ ��u1� ÿ �0�u1��v� ÿ u1�� d�

�
�

S

��0�u1� ÿ �0�v����v� ÿ v� d�

�
�

S

���v� ÿ ��v�� ÿ �0�v���v ÿ v�� � ��v�� ÿ ��u1� ÿ �0�u1��v� ÿ u1�

� �0�u1��v� ÿ v� ÿ �0�v���v� ÿ v�� d�
�
�

S

���v� ÿ ��u1� ÿ �0�u1��v ÿ u1�� d� � E�vju1�: &

From Proposition 22 one easily deduces

Lemma 23. Assume A.1±A.4. Let N 2 �0; �M�. Then for all v 2 C with�
S

v d� � N,

E�vju�N� � E�u�N ju1�4E�vju1�; �90�
in particular

E�u�N ju1�4E�vju1�: �91�
Remark 30. a) In (90), (91) we have N � ku�NkL1�d�� � kvkL1�d��, which is

usually not equal to M � ku1kL1�d��. This is in contrast to the assumptions on
which the (rather similar) derivation of (40) (kukL1�d�� � M) is based.
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b) As it will become clear from the proof, one has equality in (90) iff
��0�u1� ÿ �0�u�N���z� � c�N� for �-aa z 2 S. This is in particular the case for
�0�0�� � ÿ1.

Proof. As already mentioned before, u�N 2 C0. Hence E�vju�N� is well-de®ned.
We wish to apply (89) of Proposition 22. First we have to verify A. It is easy to
deduce from the de®nition of u�N that �0�u�N� � �0�u1� � c�N�, if u�N > 0, and
�0�0�5�0�u1� � c�N�, if u�N � 0. Hence due to non-negativity of v�

S

��0�u1� ÿ �0�u�N���u�N ÿ v� d�

� ÿc�N�
�

u�
N
>0

�u�N ÿ v� d�ÿ
�

u�
N
�0

��0�u1� ÿ �0�0��v d�

5 ÿ c�N�
�

u�
N
>0

�vÿ u�N� d�ÿ c�N�
�

u�
N
�0

v d�

� ÿc�N�
�

u�
N
>0

�v ÿ u�N� d�ÿ c�N�
�

u�
N
�0

�v ÿ u�n � d�

� ÿc�N�
�

S

�v ÿ u�N� d� � 0;

such that A has to hold. Furthermore, the integral arising in (89) is non-negative.
This proves (90). (91) follows from (90) due to non-negativity. &

For later reference we state

Proposition 24. Assume A.1±A.4. Let v1; v2 2 C.

If v1 4 v2 4 u1; �-almost everywhere; then E�v1ju1�5E�v2ju1�:
Proof. Since � is convex, we have for all t 2 R�0 :

�t : �0; t� ! R; �t�s� :�
��s� ÿ ��t�

sÿ t
ÿ �0�t�; s < t

0; s � t:

(
is increasing and non-positive. Hence

ÿE�v2ju1� �
�

S

���u1� ÿ ��v2� ÿ �0�u1��u1 ÿ v2�� d�

�
�

S

�u1�z��v2�z�� �u1�z� ÿ v2�z�� d��z�

5
�

S

�u1�z��v1�z�� �u1�z� ÿ v2�z�� d��z�

5
�

S

�u1�z��v1�z�� �u1�z� ÿ v1�z�� d��z�

�
�

S

���v1� ÿ ��u1� ÿ �0�u1� �u1 ÿ v1� d�
� ÿE�v1ju1�: &
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We introduce for � 2 R�

C� :� v 2 C :

�
S

v d� � �
� �

;

and
R1 :� sup fE�uju1� : u 2 CMg;

where we recall
�

S
u1 d� � M. Furthermore, let

C�M :� fu 2 CM : E�uju1� < R1g;
and

S1 :� sup fkuÿ u1kL1�d�� : u 2 C�Mg:
Remark 31. Since u1 2 CM and since E�u1ju1� � 0 we have R1 2 �0;1�.
To avoid trivialities we shall assume henceforth

A.5 R1 6� 0 and C�M contains an element different from u1.

Remark 32. a) Assumption A.5 is a rather technical requirement on the
measure space �S;B; ��. A.5 is full®lled in many cases, e.g. when S is a nonvoid,
open subset of Rd, B is the usual Borel-�-algebra and � is the Lebesgue-measure.

b) According to A.5 we have S1 > 0. On the other hand we trivially have
S14 2 M. Hence S1 2 �0; 2 M�.

c) If A.5 did not hold we would have R1 � 0 (implying CM � fu1g such that
u1 is the L1 function with norm M and well-de®ned entropy) or C�M � fu1g
(i.e. u1 is the only function in CM whose entropy is not maximal.). Both cases are
not interesting here.

The reader will have no dif®culties to verify that the mapping

E�:ju1� : C! R [ f1g; u 7!E�uju1�
satis®es

8u 2 C : E�uju1�5 0 and E�uju1� � 0 iff u � u1� �:
This property shows that E�uju1� can be interpreted as a `̀ distance'' between u
and u1. The question is: Does this notion of `̀ distance'' have something in
common with the canonical distance juÿ u1jL1�d�� of u and u1, at least in CM?
The af®rmative answer is given in the subsequent section.

4.2. A CsiszaÂr±Kullback inequality for E�:ju1�. The following Theorem is
the main result of this section.

Theorem 25. Assume A.1±A.5. Then there is a function

U : R�0 ! �0; 2 M�;
such that

1. U�0� � 0.
2. U is continuous at 0, i.e. lim�!0� U��� � 0.
3. U is non-decreasing.
4. For all u 2 CM with E�uju1� <1 one has the CsiszaÂr±Kullback-type

inequality

juÿ u1jL1�d��4U�E�uju1��: �92�
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Proof. The main ingredient of the proof of Theorem 25 is a minimization
argument. This can be seen after several preparational steps.

Step 1. Inequality (92) will follow from an estimate involving a function H
whose `̀ generalized inverse'' equals U.

De®nition 7 [7]. Let H : �0; S1� ! R� be increasing. Then the `̀ generalized
inverse Hÿ� of H'' is de®ned as

Hÿ� : R�0 ! �0; 2 M�;

Hÿ���� �
0; 04� < H�0�;
supfs 2 �0; S1� : H�s�4�g; H�0�4 �4H�S1�;
S1; H�S1� < �;

8><>:
where

H�0� :� lim
s!0
H�s� � infH 2 R�0 ;H�S1� :� lim

s!S1
H�s� � supH 2 R� [ f1g:

For the sake of completeness we give a proof of

Lemma 26 [7]. Let H : �0; S1� ! R� be increasing. Then:
a) Hÿ� is increasing and Hÿ��0� � 0.
b) For all � 2 R�0 and all s 2 �0; S1�: If H�s�4�, then s4Hÿ����.
c) Hÿ� is continuous at 0, i.e. lim�!0�Hÿ���� � 0.

Proof. The proof of a) can be left to the reader.
b) If 04 � < H�0�, then H�s�4� < H�0�, which is not possible. If

H�0�4�4H�S1�, then Hÿ���� � sup ft 2 �0; S1� : H�t�4�g. Since H�s�4
� we obtain s4Hÿ����. If H�S1� < �, then Hÿ���� � S1 > s.

c) There is nothing to prove in case of H�0� > 0. Hence assume H�0� � 0
henceforth. We note: H�s� 2 R�, i.e. H�s� > 0 for all s 2 �0; S1�. We observe: If
�sn�n2N is a sequence in �0; S1� with limn!1H�sn� � 0, then limn!1 sn � 0.
(Indeed, if not, then there is a subsequence �s��n��n2N with s��n�5 s� > 0, hence
H�s��n��5H�s�� > 0 by monotonicity of H and by the positivity of H.)
Furthermore, due to the positivity of HÿH�S1� > 0. Now, let ��n�n2N be a
sequence in R� with limn!1�n � 0. We assume without loss of generality:
0 < �n < H�S1� for all n 2 N. By de®nition of Hÿ�, there is for each n 2 N a
number sn 2 �0; S1� with

H�sn�4�n; Hÿ���n�4 sn � 1

n
; n 2 N:

As shown above, we obtain limn!1 sn � 0 which settles limn!1Hÿ���n� �
0 � Hÿ��0�. &

Step 2: With the aid of the generalized inverse we can re-state the proposition
of Theorem 25 as follows.

Lemma 27. Assume A.1±A.5. Let H : �0; S1� ! R� such that
a. H is increasing.
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b. For all u 2 C�M:

If juÿ u1jL1�d�� 2 �0; S1�; then H�kuÿ u1kL1�d���4E�uju1�:
Then

1. Hÿ��0� � 0.
2. Hÿ� is continuous at 0; i:e: lim�!0� Hÿ���� � 0.
3. Hÿ� is increasing.
4. For all u 2 CM with E�uju1� <1 one has the CsiszaÂr-Kullback-type

inequality

juÿ u1jL1�d��4Hÿ��E�uju1��: �93�
Proof. 1., 2. and 3. follow from Lemma 26.
4. Let u 2 CM. If u 2 C�M , then we obtain (93) from assumption b) and Lemma

26. It remains to consider the case u 2 CM n C�M, i.e. E�uju1� � R1 �
sup fE�vju1� : v 2 CMg. Since E�uju1� <1 we obtain R1 <1. We further-
more, trivially, have due to b) the estimate H�S1�4R1 � E�uju1�. If
H�S1� < R1, then due to the de®nition of Hÿ�, kuÿ u1kL1�d�� < S1 � Hÿ�
�R1� � Hÿ��E�uju1��, and if H�S1� � R1, then H�S1� <1 and (93) follows
in a straight-forward manner from the de®nition of Hÿ�. &

Step 3: As shown in Step 2 it is suf®cient to ®nd a function which satis®es
a. and b. of Lemma 27. Now we shall prove that the existence of such a function
can be established by considering a minimization problem.

Lemma 28. Assume A.1±A.5. Let

A� : �0; 1� ! R�

such that
i. A� is decreasing.
ii. For all � 2 �0; 1�:

A����4 inf E�vju1� : v 2 C�M; v�z�4 u1�z� for �-almost all z 2 Sf g:
Then the function

H� : �0; S1� ! R�; H���� :� A0 1ÿ �

2 M

� �
has the following properties:

a. H� is increasing.
b. For all u 2 C�M:

If kuÿ u1kL1�d�� 2 �0; S1�; then H��kuÿ u1kL1�d���4E�uju1�:
Proof. a. is obvious.
b. Let u 2 C�M with 0 < kuÿ u1kL1�d�� < S1. We put � :� 1

M

�
S
�uÿ u1�ÿ d�.

Since
�

S
u d� � �

S
u1 d� � M we obtain juÿ u1jL1�d�� � 2M�. Hence � 2�0; 1�.

Let S� :� fz 2 S : u�z� > u1�z�g. We put � :� �
SnS� u d�. Then we obtain
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�
S� u1 d� � �1ÿ ��M ÿ � and

E�uju1� �
�

S

��uju1� d�

�
�

SnS�
��uju1� d��

�
S�

��uju1� d�

5
�

SnS�
��uju1� d�

5 inf

�
SnS�

��vju1� d� : v 2 C; v�z�4 u1�z� for �-aa z 2 S n S�;

(

and

�
SnS�

v d� � �
)

� inf

�
S

��vju1� d� : v 2 C; v�z�4 u1�z� for �-aa z 2 S n S�;
�

and v�z� � u1�z� for �-aa z 2 S�;
�

S

v d� � ��
�

S�
u1 d�

�
� inf

�
E�vju1� : v 2 C; v�z�4 u1�z� for �-aa z 2 S n S�;

and v�z� � u1�z� for �-aa z 2 S�;
�

S

v d� � �1ÿ ��M
�

5 inf

�
E�vju1� : v 2 C�1ÿ��M; v�z�4 u1�z� for �-almost all z 2 S

�
� A� 1ÿ �� �

� A� 1ÿ kuÿ u1kL1�d��
2M

� �
� H��kuÿ u1kL1�d���: &

Step 4: As shown in Step 3 it is suf®cient to prove the existence of a function
A� which satis®es i. and ii. of Lemma 28. We observe

Lemma 29. Assume A.1±A.5. Then the function

A0 : �0; 1� ! R� [ f1g; A0��� � inf
C�M

E�:ju1�

is decreasing.

Proof. We observe: � 2 �0; 1� implies �M < M and, since M 4 �M, �M < �M.
Hence due to Lemma 23 we obtain E�u��Mju1�4E�vju1� for all v 2 C�M ,
i.e. E�u��Mju1� � infC�M

E�:ju1�. We recall:

u��M � �hÿ1�c��M� � �0�u1��;
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such that due to monotonicity of �hÿ1,

If �1 4 �2; then c��1M�4 c��2M�4 0 and u��1M 4 u��2M 4 u1:

Hence by Proposition 24, E�u��1Mju1�5E�u��2Mju1�, i.e. A0 is decreasing. &

We have for any � 2 �0; 1�,
A0���4 inffE�vju1� : v 2 C�M; v�z�4 u1�z� for �-almost all z 2 Sg:

We deduce from Lemma 29: No matter whether A0 equals 1 on a subinterval of
�0; 1� or not, there is always a decreasing, positive function A� which satis®es i. and
ii. of Lemma 28. &

4.3. Applications. Hardly any information about U follows from Theorem 25.
This is not surprising, because the function U will usually depend on local
properties of u1. However upper bounds on U may be available.

Theorem 30. Assume A.1±A.5 and
A.6 There are m; � 2 R� such that for all s; t 2 I with t4 s4 ess sup

u1 2 R� [ f1g the estimate ��t� ÿ ��s� ÿ �0�s��t ÿ s�5mjt ÿ sj1�� holds.
For � 2 �0; 1� let c� 2 R� such that1

�
S
�u1 ÿ c��� d� � �M. Furthermore, let

R : �0; 1� ! R�0 ;R���� sup
�2��;1�

m c1��
� ��fu1 > c�g� � m

�
fu14 c�g

�u1�1�� d�

( )
:

Then,
1. R is decreasing and positive.
2. For all � 2 �0; 1�, we have

R���4 inf fE�vju1� : v 2 C�M; v�z�4 u1�z� for �ÿ almost all z 2 Sg:
3. For all decreasing, positive S : �0; 1� ! R� with S4R, and all u 2 C�M

with E�uju1� <1 one has the CsiszaÂr-Kullback-type inequality

juÿ u1jL1�d��4 T ÿ�S �E�uju1��; �94�
where T ÿ�S is the generalized inverse function of

T S : �0; 2 M� ! R�; T S��� � S 1ÿ �

2 M

� �
:

Remark 33. a) With respect to 1. one may take S � R.
b) If ��S� � 1 or if ± more generally ± ��fu4 c�g� 6� 0 for any � 2 �0; 1�,

then one may take S � m
�

u14 c�
�u1�1�� d�.

c) We note: �! c� is decreasing with lim�!1c� � 0. Hence the second
condition `̀ ��fu4 c�g� 6� 0 for any � 2 �0; 1�'' of b) is equivalent to
`̀ ��fu4 c�g� > 0 for each � 2 �0; 1�''.

d) If ��fu4 c�g� � 0 for some � 2 �0; 1�, then ��S� <1 and there is
�� 2 �0; 1� with ��fu4 c�g� > 0 on �0; ��� and ��fu4 c�g� � 0 on ���; 1�. One
may take S � m��S� minfc1��

�� ; c
1��
� g.

1It can be left to the reader to verify that c� 2 R� is uniquely determined.
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Proof. The veri®cation of 1. is left to the reader.
2.,3. Let v 2 C�M with � 2 �0; 1� and v�z�4 u1�z� for �-almost all z 2 S. We
calculate

E�vju1� �
�

S

���v� ÿ ��u1� ÿ �0�u1��v ÿ u1�� d�

5m

�
S

�u1 ÿ v�1�� d�

5m

�
S

�u1 ÿ �u1 ÿ c����1�� d�

5m c1��
� ��fu1 > c�g� � m

�
fu4 c�g

�u1�1�� d�:

Furthermore, since �! c� is decreasing, we obtain for any � 2 ��; 1� the estimate

m

�
S

�u1 ÿ �u1 ÿ c����1�� d�5m

�
S

�u1 ÿ �u1 ÿ c����1�� d�

5m c1��
� ��fu1 > c�g� � m

�
fu4 c�g

�u1�1�� d�:

Hence

E�vju1�5 sup
�2��;1�

m c1��
� ��fu1 > c�g� � m

�
fu4 c�g

�u1�1�� d�

( )
:

2. and 3. follow from Lemma 28 now. &

As an example, consider ��t� � t�log�t� ÿ 1�, u1 � 1 and ��S� � 1. Then for
all 0 < t4 s4 1 we obtain for a � 2 �0; 1� the estimate

��t� ÿ ��s� ÿ �0�s��t ÿ s� � �00��t � �1ÿ ��s��t ÿ s�2

� 1

�t � �1ÿ ��s jt ÿ sj2 5 jt ÿ sj2;

hence m � � � 1. Furthermore, c� � 1ÿ � and ��fu1 > c�g� � 1. We deduce
from Theorem 30 for all u 2 L1

��d�� with
�

S
u d� � 1 the estimate

juÿ 1jL1�d��4

�������������������������������
4

�
S

u log �u� d�
s

:

We observe that the constant
���
4
p

is not optimal (the optimal constant is known to
be

���
2
p

), but Theorem 30 provides the right decay rate.
In corollary 30 it is only assumed that u1 2 L1�d�� holds. If one additionally

assumes u�1 2 L1�d�� for some � 2 R, then one can employ Lemma 28 to extend
an argumentation outlined in [56] to get

Theorem 31. Assume A.1±A.5 and additionally
A.7 There are c 2 R�, a 2 �1;1�, b 2 R such that
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A.7.1 For all t; s 2 I with t 4 s4 ess sup u1 2 �0;1� the estimate

��t� ÿ ��s� ÿ �0�s��t ÿ s�5 c sbÿa �sÿ t�a
holds and

A.7.2 u
aÿb
aÿ11 2 L1�d��.

Then for all u 2 C�M with juÿ u1jL1�d�� 2 �0; S1�:

juÿ u1jL1�d��4
2

c1=a

�
S

�u1�
aÿb
aÿ1 d�

� �aÿ1
a

E�uju1�� �1=a:

Proof. We wish to apply Lemma 28. Let v 2 C�M with � 2 �0; 1� and
v�z�4 u1�z� for �-almost all z 2 S. Due to assumption A.7 we have the estimate

E�vju1�5
�

S

c ubÿa
1 �u1 ÿ v�a d�:

On the other hand we can employ u1 2 L
aÿb
aÿ1�d�� to obtain from HoÈlder's

inequality the estimate

�1ÿ ��M �
�

S

�u1 ÿ v� d�

�
�

S

u1 1ÿ v

u1

� �
d�

�
�

S

�u1�
aÿb

a �u1�
b
a 1ÿ v

u1

� �� �
d�

4
�

S

�u1�
aÿb
aÿ1 d�

� �aÿ1
a
�

S

ub
1 1ÿ v

u1

� �a

d�

� �1
a

�
�

S

�u1�
aÿb
aÿ1 d�

� �aÿ1
a
�

S

ubÿa
1 �u1 ÿ v�a d�

� �1
a

4 cÿ1=a

�
S

�u1�
aÿb
aÿ1 d�

� �aÿ1
a

�E�vju1��1=a:

We set

A���� :� �1ÿ ��aMa c

�
S

�u1�
aÿb
aÿ1 d�

� �1ÿa

and apply Lemma 28. &

We wish to apply Theorem 31 in cases where A.1±A.5 holds with

��t� � t h�t� ÿ f �t�; t h0�t� � f 0�t�;
where f is of one of the following types:

a) f �t� � t. Then ��t� � t �log�t� ÿ 1�, I � R�0 and �00 � 1=t is decreasing.
Hence we have for all t; s 2 I with t4 s4 ess sup u1 2 R� [ f1g the estimate

��t� ÿ ��s� ÿ �0�s��t ÿ s� � 1

2
�00�� s� �1ÿ �� t��sÿ t�2

5
1

2
�00�s� �sÿ t�2 � 1

2
sÿ1 �sÿ t�2;
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because � 2 �0; 1�. We can apply Theorem 31 with c � 1=2, b � 1 and a � 2 to
obtain

kuÿ u1kL1�d��4

��������������������������
8

�
S

E�uju1�
s

:

b) f �t� � tm with m 2 �0; 1�. Then ��t� � ÿ 1
1ÿm

tm, I � R�0 and �00 � m tmÿ2

is decreasing. As above we have for all t; s 2 I with t4 s4 ess sup u1 2
R� [ f1g

��t� ÿ ��s� ÿ �0�s��t ÿ s� � 1

2
�00�� s� �1ÿ �� t��sÿ t�2 5 m

2
smÿ2 �sÿ t�2;

such that we obtain with c � m=2, a � 2 and b � m the estimate [56]

juÿ u1jL1�d��4
8

m

�
S

�u1�2ÿm
d�

� �1=2 �����������������
E�uju1�

p
:

Clearly, this estimate is non-trivial only in cases where u1 2 L2ÿm�d��.
c) f �t� � log �t�. Then ��t� � ÿ1ÿ log�t�, I � R� and �00 � tÿ2 is decreas-

ing. As above we have for all t; s 2 I with t4 s4 ess sup u1 2 R� [ f1g

��t� ÿ ��s� ÿ �0�s��t ÿ s� � 1

2
�00�� s� �1ÿ �� t��sÿ t�2 5 1

2
sÿ2 �sÿ t�2;

such that we obtain with c � 1=2, a � 2 and b � 0 the estimate

juÿ u1jL1�d��4 8

�
S

�u1�2 d�

� �1=2 �����������������
E�uju1�

p
:

Clearly, this estimate is non-trivial only in cases where u1 2 L2�d��.
d) f �t� � tm with m 2 �1; 2�. Then ��t� � 1

mÿ1
tm, I � R�0 and �00 � m tmÿ2 is

decreasing. As above we have for all t; s 2 I with t 4 s4 ess sup u1 2 R� [ f1g

��t� ÿ ��s� ÿ �0�s��t ÿ s� � 1

2
�00�� s� �1ÿ �� t��sÿ t�2 5 m

2
smÿ2 �sÿ t�2;

such that we obtain with c � m=2, a � 2 and b � m the estimate

kuÿ u1kL1�d��4
8

m

�
S

�u1�2ÿm
d�

� �1=2 �����������������
E�uju1�

p
:

This estimate is non-trivial only in cases where u2ÿm
1 2 L1�d��, where we note that

0 < 2ÿ m < 1.
e) f �t� � t2. We can proceed as in d) to obtain

juÿ u1jL1�d��4 2

�
S

�u1�0 d�

� �1=2 �����������������
E�uju1�

p
�

������������������������������
4��S�E�uju1�

p
:

This is a non-trivial estimate if and only if ��S� <1. What happens in case of
��S� � 1? Will there be an estimate involving square roots available? The answer
to the second question is according to f) below: usually not.
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f) f �t� � t2, S � �0;1�, B � set of all Borel-measurable subsets of �0;1�,
� � Lebesgue measure, u1�z� � eÿz. We have for all u 2 L1�d�� with u�z�5 0
�-aa and

�1
0

u�z� dz � 1,

E�uju1� �
�1

0

�u�z� ÿ eÿz�2 dz:

For � 2 �0; 2=e� let c � c��� 2 �0; 1=e� and B � B��� 2 �0;1� such that

� � ÿ2 c��� log�c����; 2 c���B��� � �:
We note lim

�!0
c��� � 0. For � 2 �0; 1=e� let

u� : R� !R�0

u��z� �
eÿz ÿ c���; 0 < z4 ÿ log�c����;
eÿz � c���; ÿlog�c���� < z4 ÿ log�c���� � B���;
eÿz; ÿlog�c���� � B��� < z:

8><>:
We certainly have for all � 2 �0; 2=e�: u��z�5 0 for �-aa z 2 �0;1� and

ku�kL1�d�� �
�1

0

u��z� dz

�
�ÿlog�c����

0

eÿz ÿ c���� � dz

�
�ÿlog�c�����B���

ÿlog�c����
eÿz � c���� � dz�

�1
ÿlog�c�����B���

eÿz dz

� 1� c log�c� � c B � 1;

and

ku� ÿ u1kL1�d�� � ÿc log�c� � c B � �; E�u�ju1� � ÿc2 log�c� � c2 B � c �:

Hence

lim
�!0

ku� ÿ u1k2
L1�d��

E�u�ju1� � lim
�!0

�

c��� � lim
�!0
ÿ2 log�c���� � 1:

Hence there is no K 2 �0;1� such that for all u 2 L1�d��, u�z�5 0 for �-aa
z 2 �0;1�, �1

0
u d� � 1 an estimate of the form kuÿ u1kL1�d��4K

�����������������
E�uju1�

p
would be available.

f) (continued) We keep the notations and assumptions of the previous example.
The above discussion suggests an estimate of the form

kuÿ u1kL1�d��4K1 F
ÿ1�K2 E�uju1��; �95�

where K1;K2 2 �0;1�, at least for `̀ small'' values of kuÿ u1kL1�d��, where F is
the strictly increasing function � 7! c��� �, � 2 �0; 2=e�. Estimate (95) actually
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follows from Lemma 28. This can be seen as follows. For � 2 �0; 1� it is easy to
see that we have for all u 2 L1

��d�� with u1�z� � eÿz 5 u�z�, �1
0

u d� � � the
estimate

E�uju1�5E��uÿ c��ju1� � ÿc2 log�c� � c2=25 ÿ c2 log�c� � c �1ÿ ��
2

;

where c � c�1ÿ ��. (95) follows with K1 � K2 � 2 from Lemma 28 now.
g) f �t� � tm with m 2 �2;1� (hence ��t� � 1

mÿ1
tm) and ��fu1 > 0g� <1.

According to the discussions of e) and f) the norm kuÿ u1kL1�d�� can usually not
be estimated by K

�����������������
E�uju1�

p
. This is shown at hand of the counter example of f).

In this example the support of u1 has in®nite measure. On the other hand the
stationary solutions u1 of the evolution systems investigated in previous sections
are compactly supported, i.e. ��fu1 > 0g� <1. The question arises whether this
additional property of u1 can be exploited to achieve a more transparent
description of U. The af®rmative answer is given in

Theorem 32. Assume A.3, A.4. Let m 2 �2;1� and let � : R0 ! R0,
��t� � c tm with c 2 R�. Assume A.5 and additionally

��fu1 > 0g� <1:
Then there is K 2 R� (only depending on m, c, ��fu1 > 0g�), such that for all
u 2 C�1 with kuÿ u1kL1�d�� 2 �0; S1�:

kuÿ u1kL1�d��4K E�uju1�� �1=m:

Proof. We wish to apply Lemma 28. Hence we have to estimate

inffE�vju1� : v 2 L1�d��; 04 v 4 u1;
�

v d� � �g;

where � 2 �0; 1�. Let v 2 L1�d�� with 04 v 4 u1;
�

v d� � �. We note:
� � �fu1>0g v d� and

E�vju1� �
�
���v� ÿ ��u1� ÿ �0�u1� �v ÿ u1�� d�

5
�
fu1>0g

���v� ÿ ��u1� ÿ �0�u1� �v ÿ u1�� d�

�
�
fu1>0;v 6�u1g

���v� ÿ ��u1� ÿ �0�u1� �v ÿ u1�� d�:

Now comes an important estimate: There is K0�m� 2 R� such that for all
� 2 �0; 1�

�m ÿ m�� �mÿ 1�
�1ÿ ��m 5K0:
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Hence �
fu1>0g;v 6�u1

���v� ÿ ��u1� ÿ �0�u1� �v ÿ u1�� d�

� c

�
fu1>0g;v 6�u1

um
1 �v=u1�m ÿ m�v=u1� � mÿ 1� � d�

5 c K0

�
fu1>0g;v 6�u1

um
1 1ÿ �v=u1�� �m d�

� c K0

�
fu1>0g;v 6�u1

�u1 ÿ v�m d�

� c K0

�
fu1>0g

�u1 ÿ v�m d�

5 c K0 ��fu1 > 0g�1ÿm

�
fu1>0g

�u1 ÿ v� d�
 !m

�: K1 �1ÿ ��m:
Hence, due to Lemma 28: If u 2 C�1 and if kuÿ u1kL1�d�� 2 �0; S1�, then

K1

kuÿ u1kL1�d��
2

� �m

4E�uju1�;

which ®nishes the proof. &

Remark 34. In the previous sections exponential decay has been established for
superentropies E�t� of E�u�t�ju1� (i.e. E�t�5E�u�t�ju1�). Due to Lemma 32 we
have under the assumptions mentioned there for f �t� � log�t� or f �t� � tm,
m 2 R�, the estimate

ku�t� ÿ u1kL1�d��4K E�t�� �1=�;
where K 2 R� and � � 2 for limt!1 f �t� tÿ2 � 0 and � � m for f �t� � tm with
m 2 �2;1�.

5. Entropy Dissipation for Higher-Order Parabolic Equations

In this section we present some extensions of the previous results. For most of
these extensions the proofs are straightforward adaptations of the proof methods
already used. In particular, we shall discuss further applications of the entropy
method to higher order (possibly) degenerate scalar parabolic equations. The
following discussion will be largely formal, due to the fact that the existence
theory for the class of equations we shall introduce is at present not well
developed, except in particular cases. One of the main reasons of this fact is that
maximum principles are in general not available for fourth order equations such
that positivity or nonnegativity properties has to be proven by ad hoc techniques.
In many cases, like for the so-called thin ®lm equations, positivity has been
derived considering entropy dissipation ([9], [11], [12], [6]).
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It is evident that the generalized Sobolev inequalities we obtained in the pre-
vious sections allow to obtain, at least in a formal way, the asymptotic behaviour
of nonnegative solutions of fourth-order parabolic equations of the form

@u

@t
� ÿ� 	�u�� V�x� � h�u�� �� � � div ur V�x� � h�u�� �� �;

�x 2 Rd; t > 0�; �96�
where  > 0, 	5 0 and V and h verify the hypotheses used in Section 4 for the
general nonlinear diffusion equation (1). In fact, if we assume that the considered
solution of equation (96) is positive and regular enough to perform the necessary
integrations by parts, the entropy functional is nonincreasing in time, and

d�E�u�t�� ÿ E�u1��
dt

� ÿ
�

Rd

u j��V � h�u��j2 dx

ÿ
�

Rd

	�u�j��V � h�u��j2 dx

4ÿ ��E�u�t�� ÿ E�u1��: �97�
In other words, the fourth order term `̀ improves'' the exponential decay of the
entropy towards its minimum. Particular choices of both the constant , and the
functions 	;V in (96) permit to obtain well-known equations. To this aim, let us
set V�x� � jxj2=2, and  � 1=d. Since �jxj2 � 2d, equation (96) become

@u

@t
� ÿ 1

d
� 	�u��h�u�� � ÿ��	�u� ÿ f �u�� � div�xu�
�x 2 Rd; t > 0�; �98�

Thus, choosing 	�u� � f �u�, equation (98) reduces to

@u

@t
� ÿ 1

d
� f �u��h�u�� � � div�xu� �x 2 Rd; t > 0�; �99�

with f �u� and h�u� related as in (HF3), namely

h�u� :�
�u

1

f 0�s�
s

ds; u 2 �0;1�: �100�

This implies that, with the choice V�x� � jxj2=2, for any given Fokker±Planck type
equation (1), we can construct a fourth-order parabolic equation, given by (99),
which has the same equilibrium solution as equation (1), and such that, at least
formally, has nonnegative solutions which converge exponentially in relative
entropy towards its steady state (with the same mass). From now on, we shall call
equation (99) the fourth order parabolic equation conjugate to the Fokker±Planck
type equation (1). In the next two subsections we will discuss in some detail two
cases of particular interest. The ®rst one is related to the linear Fokker±Planck
equation, while the second refers to the porous medium equation with exponent
m � 2.

5.1. A parabolic equation describing interface ¯uctuations. In this paragraph,
we consider the fourth-order equation conjugate to the linear Fokker±Planck
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equation. In this simple case, f �u� � u, so that h�u� � log u, and equation (99)
reads

@u

@t
� ÿ 1

d
� u� log u� � � div�xu� �x 2 Rd; t > 0�; �101�

By a standard time dependent rescaling (see Section 3.2), one shows that the
function

v�x; t� � 1

�d�t� u
x

��t� ; ��t�
� �

; �102�

where

��t� � �1� 4t�1=4 ; ��t� � log��t�; �103�
satis®es the fourth-order diffusion equation

@v

@t
� ÿ 1

d
� v� log v� � �x 2 Rd; t > 0�: �104�

Equation (104) was considered in [14] among possible generalizations to higher
dimensions of the one±dimensional partial differential equation

vt � ÿ�v�log v�xx�xx; �x 2 R; t > 0�: �105�
Equation (105) arose originally as a scaling limit in the study of interface
¯uctuations in a certain spin system. The same equation also arises in the modeling
of quantum semiconductor devices [57]. The initial boundary value problem for
equation (105) has been ®rst considered in [14] with periodic boundary conditions.
Assuming (strictly) positive initial H1-data, they showed that there exists a unique
positive classical solution, locally in time. For suitably small initial data, the
solution is even global in time. However, the problem whether non-negative
solutions for general (non-negative) initial data exist globally in time, even in one
dimension, remained open. A ®rst step in this direction was done in [40],
for equation (105) in a bounded domain 
 � �0; 1�, subject to the boundary
conditions

v�0� � v�1� � 1; vx�0� � vx�1� � 0:

However, these results are not strong enough to give a rigorous treament of the
asymptotic behaviour of equation (105) posed on the whole real line. From a
formal point of view, the polynomial decay of the nonnegative solution of (105)
towards the (Gaussian) similarity solution with the same mass M

w�x; t� � M������������������������
2��1� t�1=2

q exp ÿx2=4�1� t�1=2
h i

�106�

is a consequence of the structure of the fourth order diffusion equation (101),
conjugate to the Fokker±Planck equation, which in one dimension can be written
as

ut � ÿ u log u� x2

2

� �
xx

� �
xx

� u log u� x2

2

� �
x

� �
x

: �107�
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Exponential L1�R�-convergence of the nonnegative solution of equation (107) to
the Gaussian u1 follows by the convergence in relative entropy, which in this case,
as for the linear Fokker±Planck equation, is the standard Boltzmann relative
entropy H�uju1� � H�u� ÿ H�u1�, with

H� f � �
�

R

x2

2
f � f log f

� �
dx: �108�

As discussed in the previous sections, the relative entropy H�uju1� satis®es the
differential inequality

d

dt
H�uju1�4 ÿ

�
R

u
x2

2
� u log u

� �2

x

dx � ÿD�u�4 0: �109�

We remark that D�u� is the entropy dissipation associated to the Fokker±Planck
equation. The classical logarithmic Sobolev inequality then permits to bound the
entropy production from below in terms of the relative entropy.

A study of positivity and global existence of solutions of the equation (105) on
the real line, and the rigorous derivation of the asymptotic behaviour of its
solutions are presently being carried out [19].

The second example we present here is the fourth-order diffusion equation
conjugate to the porous medium equation with exponent m � 3=2.

5.2. Droplet breakup in a Hele±Shaw cell. Let us consider the one±
dimensional fourth-order nonlinear degenerate diffusion equation

@v

@t
� ÿ�vvxxx�x; �x 2 R; t > 0�: �110�

This equation, derived from a lubrication approximation, models the surface-
tension-dominated-motion of thin viscous ®lms and spreading droplets [52]

@v

@t
� div � f �v�rx�xv�: �111�

Equation (111) is a particular case of the thin ®lm equation

@v

@t
� ÿ�jvjnvxxx�x; �x 2 R; t > 0�; �112�

where n > 0. These equations attracted a lot of attention in the mathematical
literature in the last ten years (see [9], [11], [8], [12], [6], and the references
therein). The majority of these papers deal with the problem of existence of
solutions in a bounded domain, subject to appropriate boundary conditions. The
asymptotic behaviour of (112) has been studied in [12] for the initial-boundary
value problem with periodic boundary conditions. On the real line R, the problem
of the asymptotic behaviour of equation (110) has been recently considered by
Carrillo and Toscani in [18]. They remarked that (110) can be written as

vt � ÿ2 v
3
2 v

1
2

� �
xx

h i
xx
: �113�
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Let us set

��t� � et and ��t� � e5t ÿ 1
ÿ �

=5:

Due to the standard time dependent change of variables

u�x; t� � ��t�v���t�x; ��t��; �114�
Equation 113 becomes

ut � ÿ2 u
3
2 u

1
2

� �
xx

h i
xx
��xu�x: �115�

Equation (115) has a unique C1�R� compactly supported steady state of given
mass M,

u1�x� � 1

6
C2 ÿ x2

2

� �2

�
�116�

with C � C�M�, and, as usual, g� indicates the positive part of g. This solution has
been found ®rst by Smyth and Hill [61]. The steady state (116) is nothing but the
Barenblatt±Pattle steady state of a rescaled porous medium equation with
exponent m � 3=2.

It is seen by a simple calculation that equation (115) corresponds to the choice

f �u� �
��
2
3

q
u3=2 and h�u� � ���

6
p �u1=2 ÿ 1� in (99). In other words, equation (115) is

the fourth-order equation conjugate to the Fokker±Planck type equation

wt �
���
2

3

r
w3=2
� �

xx
��xw�x; �117�

Thus, by studying entropies of the second order nonlinear degenerate diffusion
equation (117) we obtain entropies for the fourth-order nonlinear diffusion
equation (115). The exact form of the entropy associated to the steady state u1
given in (116) is given by:

H� f � �
�

R

x2

2
f �

���
8

3

r
f 3=2

 !
dx: �118�

Let u1�x� be the stationary solution de®ned by (116). As discussed in the
previous sections, the relative entropy H�uju1� satis®es the differential inequality

d

dt
H�uju1�4 ÿ

�
R

u
x2

2
�

���
6
p

u1=2

� �2

x

dx � ÿDp�u�4 0: �119�

We remark that Dp�u� is the entropy production associated to the porous medium
type equation. Lower bounds for the entropy production in terms of the relative
entropy have been obtained in Section 2. These bounds assure that

H�uju1�4 1

2
Dp�u�: �120�

Applying (120) to u�t� we ®nally deduce

d

dt
H�u�t�ju1�4 ÿ2H�u�t�ju1�;
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which implies exponential convergence to equilibrium in relative entropy with the
explicit rate 2. In [18] these computations were rigorously justi®ed. It is important
to remark that, while the results about existence and regularity of nonnegative
solutions, as well as the results on the asymptotic behaviour of the solution in a
bounded domain hold for any exponent n > 0 in equation (112), the entropy
method by conjugation to the second-order equation on R seems to be limited to
the exponent n � 1, since only in this case the fourth-order diffusion equation is
conjugate to a second-order diffusion equation. In the next subsection we shall
discuss brie¯y possible extensions to the case 0 < n < 3.

5.3. About the thin-®lm equation in Rd. We shall now brie¯y discuss possible
extensions of the entropy method to the thin-®lm equation in Rd, with d 5 1,

@v

@t
� div�vnrx�xv�; 0 < n < 3: �121�

For this range of the exponent n, it has been shown, ®rst in dimension d � 1
[10], and subsequently in dimension d 5 2 [29], that a unique C1 source-type
radial self-similar nonnegative solution exists. This solution, from now on
called w�n�1 �r; t�, has bounded support �0; a�, and is positive and decreasing for the
radius 04 r < a. As usual, it can be found by looking for steady states of the
equation

@u

@t
� ÿdiv�unrx�xu� � div�xu�; 0 < n < 3: �122�

Unless n � 1, where w�1�1 is given by the steady solution is not known explicitly.
On the other hand, its properties permit to conclude the existence of a
nondecreasing function f �n��w� satisfying hypotheses (HF1)±(HF3) such that

rf �n��w� � xw � 0;

�



w dx � M: �123�

for w � w�n�1 . This is an easy consequence of the discussion we gave in Section 3.1.
Hence, for any 0 < n < 3 we can write a nonlinear Fokker±Planck equation

@w

@t
� div�rf �n��w� � xw�; 0 < n < 3: �124�

which has w�n�1 �x� as the equilibrium solution. By the results of Section 3, the
generalized Sobolev inequality implies the exponential convergence to zero of the

relative entropy E�n��wjw�n�1 � � E�n��w� ÿ E�n��w�n�1 �, where

E�n��w� �
�

Rd

x2

2
w� ��n��w�

� �
dx: �125�

The equation (122) is however not conjugate to the second-order equation (124).
Thus we can not conclude directly the exponential convergence of the solution of
equation (121) towards the equilibrium w�n�1 �x�.
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In fact, for all 0 < n < 3 elementary computations show that we can write
(122) as

@u

@t
� ÿdiv unrx �xu� G�n��u�

� �h i
� div urx h�n��u� � x2

2

� �� �
; �126�

where h�n��u� is related to f �n��u� by (100), and

G�n��u� �
�u

1

� f �n��0���
�nÿ1

d�: �127�

We believe that (125) is the natural entropy to study the asymptotic behaviour of
the thin-®lm equation. So far, however it remains an open problem to ®nd lower
bounds for the entropy production of equation (126), which would imply
convergence of the nonnegative solution in relative entropy towards the
equilibrium solution w�n�1 �x� with an explicit rate.
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