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1. Introduction

In the paper [5] the authors introduced so-called af®ne Osserman connections.
This concept originated from the effort to supply new examples of pseudo-
Riemannian Osserman spaces (see [2], [3], [4]) via the construction that is called
the Riemann extension. This construction assigns to every manifold M with a
torsion-free af®ne connection r a pseudo-Riemannian metric gr of signature
�n; n�, n � dimM, on the cotangent bundle T�M. (See [13], Chapter 7, for more
details.)

A pseudo-Riemannian manifold is said to be Osserman if the eigenvalues of
the Jacobi operators

RZ : X 7!R�X; Z�Z; Z 2 TM

(possibly complex ones!) are constant on the unit tangent sphere bundle SM.
A torsion-free connection r on M is said to be af®ne Osserman if the Riemann
extension �T�M; gr� is an Osserman pseudo-Riemannian manifold.

The authors in [5] pay special attention to dimension n � 2. In this case they
prove that r is af®ne Osserman if and only if the Ricci tensor of r is skew-
symmetric on M. They also point out the following result by Y.C. Wong (see [12],
Th. 4.2), which we present here in a formally modi®ed form:
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Theorem 1. Let r be a smooth torsion-free connection with skew-symmetric
Ricci tensor on a two-dimensional manifold M and suppose that r does not admit
¯at points. Then r is Ricci recurrent. Moreover, around each point p 2M there
exists a local coordinate system �u1; u2� in which the nonzero components of the
connection are

�i� ÿ1
11 � ÿ@1�; ÿ2

22 � @2�;

where � is a smooth function such that @2@1� 6� 0; or

�ii� ÿ1
22 � '; ÿ1

11 � ÿ@1 log'; ÿ2
22 � @2 log';

where ' is a smooth function such that @2@1log' 6� 0; or

�iii� ÿ1
22 � ÿ =�1� u1u2�; ÿ2

11 � 1=� �1� u1u2��;
ÿ1

11 � ÿ@1 log � u2=�1� u1u2�; ÿ2
22 � @2 log � u1=�1� u1u2�;

where  is a smooth function such that @2@1log 6� 0.

(Compare Theorem 7 in [5] and also related results in [1].)
The authors of [5] used the connections of the simplest type (i) to construct

new examples of pseudo-Riemannian Osserman manifolds of signature
�� � ÿ ÿ�.

The aim of the present paper is to classify all af®ne connections from Theorem
1 which are locally homogeneous. Our classi®cation seems to be not related to that
given in Theorem 1 and our method is completely different from the procedure
used by Wong. For related topics see [9], [10], [11], and especially [7]. We shall
prove

Theorem 2. Let r be a smooth torsion-free connection with skew-symmetric
Ricci tensor on a two-dimensional M. If r is locally homogeneous, then around
each point p from a dense open subset of M there is a local coordinate system
�u; v� in which the connection r is expressed by:

A1) r@u
@u � 0; r@u

@v � ÿ 1
3

u2@u � �1=u�@v; r@v@v � ÿ 1
36

u5@u ÿ 2
3

u2@v;
or

A2) r@u
@u � 0; r@u

@v � u@u; r@v@v � u@v;
or

B) r@u
@u � ÿ�2=u�@u ÿ �1=2u�@v; r@u

@v � ��=u�@u; r@v@v � ��=u�@v;
where � is an arbitrary real parameter. In the case A1 the corresponding af®ne
Killing algebra is 3-dimensional and in the cases A2 and B this algebra is 2-
dimensional.

2. Basic Formulas and Killing Vector Fields

In the following M denotes a two-dimensional manifold and r a smooth
torsion-free connection. The curvature tensor R is uniquely determined by the
Ricci tensor due to the formula

R�X; Y�Z � Ric�Y ; Z�X ÿ Ric�X;Z�Y ; �2:1�
where X; Y ; Z 2 TqM; q 2M.
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Choose a system �u; v� of local coordinates in a domain U �M and denote by
U;V the corresponding coordinate vector ®elds @u; @v. In the domain U, the
connection r is uniquely determined by six functions A; . . . ;F given by the
formulas

rUU � AU � BV ; rUV � CU � DV � rVU; rV V � EU � FV : �2:2�
One can easily calculate

Ric�U;U� � Bv ÿ Du � D�Aÿ D� � B�F ÿ C�;
Ric�U;V� � Dv ÿ Fu � CDÿ BE;

Ric�V ;U� � Cu ÿ Av � CDÿ BE;

Ric�V ;V� � Eu ÿ Cv � E�Aÿ D� � C�F ÿ C�:

�2:3�

The following assertion is obvious:

Proposition 2.1. A smooth connection r on M is locally homogeneous if and
only if it admits, in a neighborhood of each point p 2M, at least two linearly
independent af®ne Killing vector ®elds. p 2M.

We start with the analysis of the system of partial differential equations for the
Killing vector ®elds.

A Killing vector ®eld X is characterized by the equation

�X;rYZ� ÿ rY �X; Z� ÿ r�X;Y �Z � 0 �2:4�
which has to be satis®ed for arbitrary vector ®elds Y ;Z (see [6]). It is suf®cient to
satisfy (2.4) for the choices �Y ; Z� 2 ��U;U�; �U;V�; �V ;U�; �V ;V�	. Moreover,
we easily check from the basic identities for the torsion and the Lie brackets, that
the choice �Y ;Z� � �V ;U� gives the same condition as the choice �Y ;Z� � �U;V�.

In the sequel, let us express the vector ®eld X in the coordinate form

X � a�u; v�U � b�u; v�V : �2:5�
If we substitute the corresponding expressions for X; Y and Z in (2.4), we easily
see that the condition (2.4) reduces to six linear partial differential equations for
the unknown functions a; b:

1� auu � Aau ÿ Bav � 2Cbu � Aua� Avb � 0;

2� buu � 2Bau � �2Dÿ A�bu ÿ Bbv � Bua� Bvb � 0;

3� auv � �Aÿ D�av � Ebu � Cbv � Cua� Cvb � 0;

4� buv � Dau � Bav � �F ÿ C�bu � Dua� Dvb � 0;

5� avv ÿ Eau � �2C ÿ F�av � 2Ebv � Eua� Evb � 0;

6� bvv � 2Dav ÿ Ebu � Fbv � Fua� Fvb � 0:

�2:6�

Next, we shall calculate four integrability conditions (2.7) which must be satis®ed
by (2.6).

The ®rst condition (2.7-1) is obtained if we differentiate (2.6-1) with respect to
v and then subtract (2.6-3) differentiated with respect to u. Moreover, all the
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second derivatives of a and b are replaced by their values calculated from (2.6).
We are left with a partial differential equation of ®rst order. The second
integrability condition (2.7-2) follows analogously from the equations (2.6-3) and
(2.6-5), the third equation (2.7-3) follows from the equations (2.6-2) and (2.6-4),
and the last equation (2.7-4) follows from the equations (2.6-4) and (2.6-6).

After a long but routine calculation we obtain, using also the formulas (2.3),
the corresponding integrability conditions in a surprisingly simple form:

1� Ric�V;U� au � Ric�U;U� av � Ric�V ;V� bu � Ric�V ;U� bv

� @

@u
Ric�V ;U�

� �
a� @

@v
Ric�V ;U�

� �
b � 0;

2� Ric�U;V� � Ric�V ;U�� � av � 2Ric�V;V� bv

� @

@u
Ric�V ;V�

� �
a� @

@v
Ric�V;V�

� �
b � 0;

3� 2 Ric�U;U� au � Ric�U;V� � Ric�V;U�� � bu

� @

@u
Ric�U;U�

� �
a� @

@v
Ric�U;U�

� �
b � 0;

4� Ric�U;V� au � Ric�U;U� av � Ric�V ;V� bu � Ric�U;V� bv

� @

@u
Ric�U;V�

� �
a� @

@v
Ric�U;V�

� �
b � 0:

�2:7�

In the next section we shall make the classi®cation of locally homogeneous
connections with skew-symmetric Ricci tensor. We shall always assume Ric 6� 0.
Because locally symmetric connections in dimension two are known to have
symmetric Ricci tensor, we can assume rRic 6� 0 everywhere on M. (Cf. also
Theorem 5 in [5].)

3. The Preliminary Classi®cation

The skew-symmetry of Ric means that, in any local coordinates,

Ric�U;U� � Ric�V;V� � 0; Ric�U;V� � Ric�V;U� � 0 ; �3:1�
and the system (2.7) is reduced to only one equation

au � bv � �u

�
a� �v

�
b � 0; �3:2�

where we put
� � Ric�U;V� 6� 0: �3:3�

According to (2.3) and (3.1) we have

Cu � Av � BE ÿ CDÿ �;
Du � Bv � D�Aÿ D� � B�F ÿ C�;
Eu � Cv � E�Dÿ A� � C�C ÿ F�;
Fu � Dv � CDÿ BE ÿ �;

�3:4�
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For the ®rst covariant derivatives of Ric we have (due to notation (2.2) and (3.3))

�rU Ric��U;V� � ÿ�rU Ric��V;U� � �u ÿ �A� D��;
�rV Ric��U;V� � ÿ�rV Ric��V ;U� � �v ÿ �C � F��; �3:5�

�rX Ric��U;U� � �rX Ric��V ;V� � 0 for X � U;V �3:6�
Put, for the initial point p 2M,

r � �� p� 6� 0: �3:7�
For any q 2M consider the linear form �q : Z 7! �rZ Ric��X; Y�, where

X; Y 2 TqM are arbitrary but such that X ^ Y 6� 0. Then �q is de®ned up to
proportionality by a nonzero factor. Because rRic 6� 0, �q has a nonzero kernel,
which is independent of the choice of X and Y . Ker � is a well-de®ned 1-
dimensional distribution on M, which we denote by D. De®ne a special local
coordinate system �u; v� such that U � @

@u
belongs to D everywhere. We have

�rU Ric��U;V� � 0; �rV Ric��U;V� 6� 0 �3:8�
in a neighborhood U of p.

Now, put

N � r

�
�rV Ric��U;V�: �3:9�

From (3.5) we get

�u

�
� A� D;

�v
�
� C � F � N

r
: �3:10�

The obvious integrability condition for (3.10) reads

Av � Dv � Cu � Fu � 1

r
Nu: �3:11�

Further, the ®rst and the last equation (3.4) give

Av � Dv ÿ Cu ÿ Fu � 2�: �3:12�
Hence we obtain

Nu � 2r�: �3:13�
Next, as in [7], we denote

HXY � �r2
XYRic��U;V�: �3:14�

Then using (3.8) and (3.9) we easily obtain

HUU � ÿ �
r

BN; HUV � �
r
�Nu ÿ DN�; HVU � ÿ �

r
DN;

HVV � ÿ �
r

Nv � N2

r
ÿ FN

� � �3:15�

HXY is a tensor ®eld of type �0; 2� which is not symmetric, in general. Let
g�X;Y� � HXY � HYX be the symmetrization of H. Then we have the following.
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Lemma 3.1. In a neighborhood U of any point p from an open dense subset of
M one of the following situations occurs:

a) g�U;U� � 0 on U and there is a system �u; v� of local coordinates such that
U 2 D and either g�U;V� � 0 on U, or g�V;V� � 0 on U.

b) g�U;U� 6� 0 on U and there is a system �u; v� of local coordinates such that
U 2 D and g�U;V� � 0 on U.

Proof. It follows from elementary techniques of linear algebra and partial
differential equations. &

We shall prepare some more facts and formulas. First we use (3.10) in (3.2) and
we obtain

au � bv � �A� D�a� �C � F � N=r�b � 0: �3:16�
We can obtain two other equations of 1st order as follows. First we add the

equations (2.6-1), (2.6-4) and subtract (3.16) differentiated with respect to u. We
easily obtain

N

r
bu ÿ Av � Dv ÿ Cu ÿ Fu ÿ Nu

r

� �
b � 0 �3:17�

and according to (3.11) and the inequality N 6� 0 we get bu � 0. Hence

b � b�v�: �3:18�
Next, we add the equations (2.6-3), (2.6-6) and subtract (3.16) differentiated with
respect to v. We easily obtain

�Av � Dv ÿ Cu ÿ Fu�a� N

r
bv � Nv

r
b � 0; �3:19�

or, according to (3.12),

a � ÿ 1

2�r
�Nb0�v� � Nvb�v�� : �3:20�

Hence a is uniquely determined if b is ®xed. This fact and Proposition 2.1 lead to
the following useful

Lemma 3.2. Suppose that r is locally homogeneous in a neighborhood
U �M of p and let the function b�v� satisfy an ordinary differential equation of
the form

P�u; v�b0�v� � Q�u; v�b�v� � 0; �3:21�
where P and Q are ®xed functions. Then P and Q must vanish identically.

Proof. Indeed, in the opposite case there exists at most one af®ne Killing
vector ®eld around the point p, which is a contradiction. &

The next step will be that we transform the system (2.6) of partial differential
equations for two unknown functions a�u; v�; b�u; v� in a system of ordinary
differential equations for one unknown function b�v�. To this aim, we substitute for
b an unknown function b�v� and for a and for its derivatives we substitute the
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expression (3.20) and its corresponding derivatives. Obviously, the ®fth equation
obtained in this way will be of 3rd order; the other ones will be of lower order.

Now, a natural idea is to derive as many equations of ®rst order as possible
because, according to Lemma 3.2, such equations will give additional information
about the functions A;B; . . . ;F.

First, from (2.6-2) we obtain (using, in addition, formula (3.13))

�2B�uN ÿ Bu�N ÿ 6rB�2� b0�v�
� �2B�uNv � 2r�2Bv ÿ Bu�Nv ÿ 4rB�Rv� b�v� � 0:

�3:22�

According to Lemma 3.2, if r is locally homogeneous, both coef®cients must
be zero. The second coef®cient equation is obviously equivalent to

2r�

�
B

�2

�0
v

ÿ Nv

�
B

�2

�0
u

� 0: �3:23�

The ®rst coef®cient equation is equivalent to�
B

�2

�0
u

� ÿ 6rB

�N
: �3:24�

Using (3.24) in (3.23) we obtain�
B

�2

�0
v

� 3BNv

�2N
� 0: �3:25�

We shall now start with our classi®cation. We always assume that r is locally
homogeneous and that any base point p 2M belongs to an open dense subset such
that Lemma 3.1 can be applied. We distinguish two main cases.

Case A. We suppose that B � 0 in the given neighborhood. Then (3.22) is
trivially satis®ed. Further, from the ®rst formula (3.15) we see that HUU � 0.
According to Lemma 3.1 we can assume either HUV � HVU � 0, or HVV � 0, and
U still belongs to the distribution D.

Subcase A1. Let ®rst HUV � HVU � 0 hold in U for some coordinate system
�u; v� such that U 2 D. Because the distribution D is totally geodesic, a coordinate
transformation of the form u � f �u; v�; v � v makes U 2 D, A � B � 0 and
HU U � 0; HU V � HV U � 0. Because r is curvature homogeneous in each order
(see [9], [10]), it is especially curvature homogeneous up to order two and we
obtain the example from [7], pp. 129±131. Here

A � B � 0; C � ÿ 1

3
u2; D � 1

u
; E � ÿ 1

36
u5 � e�v�u; F � ÿ 2

3
u2 ; �3:26�

where e�v� is an arbitrary function of v. The corresponding Killing vector ®elds
are all of the form

X � q0�v�u @

@u
ÿ 2q�v� @

@v
; �3:27�
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where q�v� is any solution of the ordinary differential equation of 3rd order

q000�v� ÿ 4e�v�q0�v� ÿ 2e0�v�q�v� � 0 : �3:28�
The af®ne Killing algebra is 3-dimensional.

We shall complete the analysis of subcase A1 in the next section.

Subcase A2. We have always HUV � HVU 6� 0 for U belonging to D. We can
again use a coordinate transformation after which A � B � 0. The equation (2.6-4)
is reduced, due to (3.18), to the form

Dau � Dua� Dvb � 0: �3:29�
Substituting the right-hand side of (3.20) for a and its derivative for au into (3.29)
we see that the new equation will be a 1st order ODE for b�v�. According to
Lemma 3.2, the coef®cient of b0�v� should be equal to zero. We calculate this
coef®cient equation explicitly and then use Du � ÿD2 and �u � D� [(see (3.4-2)
and (3.10)]. Finally we obtain,

D�Nu ÿ 2DN� � 0: �3:30�
According to (3.15) this means D�HUV � HVU� � 0 and, according to our
assumption HUV � HVU 6� 0, we get

D � 0: �3:31�
(Let us notice that Lemma 3.1 does not imply automatically HVV � 0 because we
have used already a coordinate transformation to get A � 0 !) Now, D � 0 implies
�u � 0 and hence

� � ��v�: �3:32�
Because A � B � D � 0, the equation (3.4-1) gives

C�u; v� � ÿ��v��u� c�v��: �3:33�
where c�v� is an arbitrary function. Let us make a coordinate transformation

u � C�u; v�; v � v; �3:34�
which does not change the equalities A � B � D � 0. We denote u; v again as u; v.
Then, integrating the whole system (3.4) we get

C � u; F � u� f �v�; E � ÿ 1

2
u2f �v� � e�v�; A � B � D � 0; �3:35�

where f �v� and e�v� are arbitrary functions and

� � ÿ1; r � ÿ1: �3:36�
Moreover, using (3.10), (3.35) and (3.36) we get

N � 2u� f �v� �3:37�
and (3.20) takes on the form

a � ÿ 1

2

�
f �v� � 2u� �b0 � f 0�v�b�: �3:38�
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Now, the equation (2.6-3) can be rewritten in the form

2b00�v� � f �v�b0�v� � f 0�v�b�v� � 0: �3:39�
Let now b1�v�; b2�v� be independent solutions of (3.39) which are de®ned by

the initial conditions

b1�v0� � 0; b01�v0� � 1; b2�v0� � 1; b02�v0� � 0 �v0 � v� p��: �3:40�
Consider the Killing vector ®elds

X1 � a1�u; v� @
@u
� b1�v� @

@v
; X2 � a2�u; v� @

@u
� b2�v� @

@v
; �3:41�

where the functions a1; a2 are calculated from (3.38). Then the Lie bracket �X2;X1�
belongs to span �X1;X2�. Because the corresponding coef®cient of @

@v is
b2�v�b01�v� ÿ b1�v�b02�v�, which is equal to 1 for v � v0, we get

�X2;X1� � X2: �3:42�
We shall complete the analysis of subcase A2 in the next section.

Case B. Let us suppose B 6� 0 in a whole neighborhood. Then HUU 6� 0 holds
and, according to Lemma 3.1, we can introduce a system of local coordinates u; v
for which HUV � HVU � 0, i.e., according to (3.15),

Nu ÿ 2DN � 0: �3:43�
From (3.13) we get

r�ÿ DN � 0; �3:44�
i.e., DN 6� 0 and

N � r�

D
: �3:45�

This identity will be still satis®ed after any particular changes of local coordinates
of the form u � u�u�; v � v�v�.

Next, the equation (3.25) can be integrated in the form

B

�2
� '�u�

N3
; �3:46�

where '�u� is an arbitrary function. If we substitute (3.46) in (3.24), we get at once
'0�u� � 0, i.e., '�u� � � is a nonzero constant. (Using the coordinate
transformation u � u; v � �ÿ1=3v one can make � � 1. Yet, we shall not use
this specialization because it would become inconvenient in the subsequent
considerations.)

Thus, we have
B

�2
� �

N3
�3:47�

which makes, in turn, the equation (3.22) satis®ed for an arbitrary function b�v�. If
we substitute (3.45) in (3.47), we obtain an equivalent identity

B � �D3

r3�
: �3:48�
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Now, we come back to the equation (2.6-3) and transform it by use of (3.18),
(3.20), (3.10) and (3.13). We obtain an ODE of the second order with respect to
b�v�. But using also (3.45) we see that the coef®cient of b00�v� vanishes and we get
an ODE of the ®rst order, namely

N

�
Av � Dv ÿ Cu ÿ 2�ÿ 2FDÿ 2CDÿ 2N

r
D� 4DNv

N
ÿ 2r�F

N

�
b0�v�

�
�

Nv Av � Dv ÿ Cu ÿ 2�ÿ 2FDÿ 2CDÿ 2N

r
D

� �
� 2DN 00vv ÿ 2r�Fv

�
b�v� � 0: �3:49�

Now, according to Lemma 3.2, the corresponding coef®cient equations must be
satis®ed. We use (3.45) and differentiate log N � log r � log �ÿ log D with
respect to v, which gives

Nv

N
� �v

�
ÿ Dv

D
� C � F � �

D
ÿ Dv

D
: �3:50�

Using (3.50), (3.45) and also (3.12) we get the ®rst coef®cient equation in the form

Fu ÿ 4Dv � 2CD� 2� � 0: �3:51�
Expressing Fu from (3.4-4) and using this expression in (3.51) we get

Dv � CDÿ 1

3
BE � 1

3
� ; �3:52�

Fu � 2CDÿ 4

3
BE ÿ 2

3
� : �3:53�

Using now the fact that the coef®cient of b0�v� in (3.49) vanishes, we can write the
second coef®cient equation in the form

DN

�
Nv

N2

�0
v

ÿ r�

�
F

N

�0
v

� 0: �3:54�

Due to (3.45) we get hence �
Nv

N2
ÿ F

N

�0
v

� 0 : �3:55�

Using (3.50), (3.45) and (3.52) we obtain

Nv

N2
ÿ F

N
� 2

3r
� 1

3

BE

r�
�3:56�

and (3.55) can be rewritten in the form

�BE=��0v � 0: �3:57�
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We also obtain

Nv � r�

D2

�
1

3
BE � DF � 2

3
�

�
: �3:58�

Differentiating (3.45) in the logarithmic form with respect to u and using (3.10),
(3.13) we get

Du � D�Aÿ D�: �3:59�
From (3.4-2) we then obtain

Bv � B�C ÿ F�: �3:60�
Now, taking the logarithmic derivative of (3.48) with respect to v we get, using
also (3.52) and (3.10),

Bv

B
� 2C ÿ F ÿ BE

D
: �3:61�

Comparing (3.60) and (3.61) we obtain

BE ÿ CD � 0 �3:62�
and, due to (3.48)

E � CD

B
� Cr3�

�D2
: �3:63�

Now, (3.52) and (3.53) can be written in the form

Dv � 2

3
CD� 1

3
�; Fu � 2

3
CDÿ 2

3
� : �3:64�

Next, we differentiate (3.59) with respect to v, then (3.64-1) with respect to u and
compare. We also replace �u;Du and Dv by the corresponding expressions. We
obtain ®rst

Av ÿ Dv � 2

3
Cu � 2

3
�: �3:65�

Then (3.4-1) and (3.62) give Av � Cu � � and Dv is given by (3.64-1). Hence we
get

Cu � 2CD: �3:66�
Now, let us differentiate the formula (3.63) with respect to u (using logarithms).
We easily get

Eu � E�5Dÿ A�: �3:67�
From (3.4-3) we obtain

Cv � Eu � E�Aÿ D� � C�F ÿ C� �3:68�
and from (3.67) we get, using also (3.63),

Cv � 4Cr3�

�D
� C�F ÿ C�: �3:69�
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The integrability condition for (3.66) and (3.69) reads (after we use (3.10), (3.53),
(3.59), (3.62) and (3.66) in the ®nal step)

6
r3

�
ÿ 1

� �
� � 2CD: �3:70�

We have two subcases:

Subcase B1. C 6� 0 and, due to (3.63), E 6� 0.

Then we get

� � 2�CD; � � �

6r3 ÿ � �3:71�
and we obtain (3.48) and (3.63) in the form

B � 1

�

D2

C
; E � �C2

D
; � � 2r3

6r3 ÿ � : �3:72�
Here � 6� 0 is an arbitrary parameter.

Let us notice that formula (3.57) does not bring new information because it
follows from (3.71) and (3.62). Now, (3.64-1) can be rewritten in the form

Dv � 2�CD: �3:73�
Our next goal is to solve the system of two PDE (3.66) and (3.73). These two
equations can be also rewritten in the form

log C� �0u� 2D; log D� �0v� 2�C : �3:74�
Hence

log C� �00uv� 2Dv � 4�CD � 2�Cu: �3:75�
Integrating this with respect to the variable u, we obtain easily

Cv � 2�C2 � f �v�C; �3:76�
where f �v� is an arbitrary function. On the other hand, (3.69) and (3.71) imply

Cv � �4�ÿ 1�C2 � FC: �3:77�
Hence it follows

F � �1ÿ 2��C � f �v�: �3:78�
Analogously, we obtain from (3.74) and (3.75)

log D� �00uv� 2Dv:

Integrating this with respect to v we get

Du � 2D2 � g�u�D; �3:79�
where g�u� is an arbitrary function.

Comparing (3.79) and (3.59) we obtain

A � 3D� g�u�: �3:80�
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Next, (3.74-1) and (3.79) form a system of PDEs

log C� �0u� 2D; log D� �0u� 2D� g�u�: �3:81�
Hence

log�D=C�� �0u� g�u� �3:82�
and thus

log�D=C� � G�u� � H�v�; �3:83�
where G�u� and H�v� are arbitrary functions, G0�u� � g�u�.

Analogously, using (3.74-2) and (3.76) we obtain at once

log�D=C�� �0v� ÿf �v� �3:84�
and hence H0�v� � ÿf �v�. We obtain

D � CeQ; Q � G�u� � H�v� ; �3:85�
where

Qu � g�u�; Qv � ÿf �v�: �3:86�
Expressing D in (3.74) through formula (3.85) we get the system

Cu � 2C2eQ; Cv � 2�C2 � f �v�C; �3:87�
which satis®es the integrability condition.

An easy integration gives

C � ÿ L0�v�
2� K�u� � L�v�� � ; D � ÿ K 0�u�

2 K�u� � L�v�� � ; �3:88�

where

K 0�u� � eG�u�; L0�v� � �eÿH�v�; �3:89�

g�u� � K 00�u�=K 0�u�; f �v� � L00�v�=L0�v�: �3:90�
Because K 0�u� 6� 0; L0�v� 6� 0, we can make the coordinate transformation

u � K�u�; v � L�v�:
If we denote the coordinate system �u; v� as �u; v� again, then (3.88) takes on the
form

C � ÿ1

2��u� v� ; D � ÿ1

2�u� v� : �3:91�

Further, (3.72) implies

B � ÿ1

2�u� v� ; E � ÿ1

2��u� v� �3:92�

and (3.78), (3.80) and (3.90) imply

A � ÿ3

2�u� v� ; F � 1ÿ 1

2�

� �
1

u� v : �3:93�
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It remains to calculate the Killing vector ®elds. Using, in addition, (3.20), (3.45)
and (3.71), we get

b � b�v�; a � �u� v�b0�v� ÿ b�v�: �3:94�
Then the equation (2.6-4) implies b00�v� � 0 and hence

b�v� � C1v� C2; a � a�u� � C1uÿ C2: �3:95�
We easily see that all equations (2.6) are satis®ed and hence the generating Killing
vector ®elds are

X1 � u
@

@u
� v @

@v
; X2 � @

@v
ÿ @

@u
: �3:96�

We shall complete the analysis of subcase B1 in the next section.

Subcase B2. Here we have C � 0 and E � 0. From (3.70) we obtain

6r3 ÿ � � 0: �3:97�
Further, we summarize the conditions (3.59), (3.64) and (3.65). We get

Av � �; Dv � 1

3
�; Fu � ÿ 2

3
�; Du � D�Aÿ D�: �3:98�

Hence �Aÿ 3D�0v � 0 and we can substitute for A the expression

A � 3D� g�u� �3:99�
in the last equation (3.98). We get

Du � 2D2 � Dg�u�; �3:100�
where g�u� is an arbitrary function. If we divide (3.100) by D2, we obtain a linear
equation of 1st order for the unknown function 1=D. This equation can be
integrated in an explicit form by standard methods and we obtain the general
solution as follows:

D � K 0�u�
ÿ2K�u� � L�v� 6� 0; �3:101�

where K�u�; L�v� are arbitrary functions such that

K 00�u�=K 0�u� � g�u�: �3:102�
Now, according to (3.98), Dv � �=3 6� 0 and hence L0�v� 6� 0. Hence we can
choose a new system of local coordinates �u; v� putting u � K�u�; v � L�v�. If we
denote the new coordinates again as u; v, we obtain easily

D � 1

ÿ2u� v ; A � 3D; � � ÿ3D2; N � ÿ3rD: �3:103�

The last equality follows from (3.45).
Finally, we can calculate B from (3.48) and F from (3.10-2). We get, using also

(3.97),

B � ÿ2D; F � D: �3:104�
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The equation (2.6-4) now easily yields the equation

b00�v� � 0: �3:105�
Hence and from (3.20), (3.103) we obtain

b�v� � C1v� C2; a�u; v� � C1u� 1

2
C2: �3:106�

The generating Killing vector ®elds (as it is easy to check) are

X1 � u
@

@u
� v @

@v
; X2 � 1

2

@

@u
� @

@v
: �3:107�

Finally, we check at once that all equations (2.6) and (3.4) are satis®ed as
consequences of (3.103) and (3.104).

We shall complete the analysis of subcase B2 in the next section.

4. The Canonical Forms aÁ la Sophus Lie

Subcase A1. Consider the space of all vector ®elds Y � q�v� @@v, where q�v�
satis®es the equation (3.28). This is a 3-dimensional Lie algebra of `̀ in®nitesimal
transformations'' of a line interval. We shall now use the following

Lemma. (S. Lie) Each 3-dimensional Lie algebra g of in®nitesimal
transformations acting on a one-dimensional manifold can be expressed locally,
with respect to a convenient local coordinate v, in the form

g �
�

@

@v
; v

@

@v
; v2 @

@v

�
: �4:1�

The corresponding local transformation group is locally equivalent to the group of
all projective transformations of the real line.

Proof. See [8], p. 6, Theorem 1.

From the above lemma and (3.27) we see that, with respect to a new system of
local coordinates �u; v�, the algebra of all af®ne Killing vector ®elds has the form

k � span

�
@

@v
; u

@

@u
ÿ 2v

@

@v
; vu

@

@u
ÿ v2 @

@v

�
: �4:2�

Further, from (4.1) and (3.28) we obtain e�v� � 0. We obtain a unique locally
homogeneous af®ne connection with the Christoffel symbols

A � B � 0; C � ÿ 1

3
u2; D � 1

u
; E � ÿ 1

36
u5; F � ÿ 2

3
u2: �4:3�

Subcase A2. Introduce a new variable v by the formula

v �
�v
v0

dv

b2�v� : �4:4�

Denoting v again as v we see that we can assume b2�v� � 1 (and v0 � 0). From
(3.41) and (3.42) we obtain b01�v� � 1 and from the corresponding initial
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conditions b1�v� � v. Because (3.39) has two independent solutions
b1�v� � v; b2�v� � 1, we obtain f �v� � 0 and the basic Killing vector ®elds
(3.41) are given by

X1 � ÿu
@

@u
� v @

@v
; X2 � @

@v
: �4:5�

Moreover, the equalities A � B � D � 0 are still preserved.
Integrating the equations (3.4) in the last coordinate system, we obtain

C � u� c�v�; F � u� f �v�;
E � ÿ 1

2
u2 f �v� ÿ c�v�ÿ �� �c0�v� � c�v� ÿ f �v�� �c�v��u� e�v�;

�4:6�

where c�v�; f �v� and e�v� are arbitrary functions.
If we now substitute in the system (2.6) for the pair of functions �a; b� the pairs

�ÿu; v� and �0; 1� respectively, and for C;F and E the expressions given by (4.6),
we see easily that c�v� � f �v� � e�v� � 0. We obtain a unique locally
homogeneous af®ne connection

A � B � D � E � 0; C � F � u: �4:7�
Subcase B1. Here we make the coordinate transformation u � u� v; v � v. It

is easy to calculate the new Christoffel symbols A;B; . . . ;F from (2.2). Turning
back to the original notation of our coordinates, we get ®nally the basic af®ne
Killing vector ®elds (3.96) in the form

X1 � u
@

@u
� v @

@v
; X2 � @

@v
: �4:8�

Further, one gets a one-parameter family of locally homogeneous af®ne
connections with the Christoffel symbols

A � ÿ 2

u
; B � ÿ 1

2u
; C � F � �

u
� 6� 3

2

� �
; D � E � 0 : �4:9�

Subcase B2. Here we use the coordinate transformation u � 2uÿ v; v � ÿv.
By a similar computations we obtain, rewriting again u; v as u; v, the basic af®ne
Killing vector ®elds in the form

X1 � u
@

@u
� v @

@v
; X2 � @

@v
�4:10�

and the corresponding Christoffel symbols in the form

A � ÿ 2

u
; B � ÿ 1

2u
; C � F � 3

2u
; D � E � 0: �4:11�

We obtain a unique locally homogeneous af®ne connection.
Hence the subcases B1, B2 can be uni®ed if we assume � to be an arbitrary real

parameter.
This concludes the proof of Theorem 2.

Remark 1. The simplest locally homogeneous connections, that is those with
constant Christoffel symbols, are not Ricci skew-symmetric.
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Remark 2. One can see easily that r is Ricci recurrent (Theorem 1) as follows:
®rst de®ne, for any system of local coordinates �u; v�,

! �
�
�u

�
ÿ �A� D�

�
du �

�
�v
�
ÿ �C � F�

�
dv:

A direct computation shows that ! is independent of the choice of the local
coordinate system and hence ! is a global Pfaf®an form on M. Then we see at
once from (3.1), (3.3) and (3.5) that

rXRic � !�X�:Ric

for each vector ®eld X on M.
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