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Abstract. The ®elds of power series (or perhaps better called formal numbers) are analogues of the
®eld of real numbers. Many questions in number theory which have been studied in the setting of the
real numbers can be transposed to the setting of the power series. The study of rational approximation
to algebraic real numbers has been intensively developped starting from the middle of the nineteenth
century with the work of Liouville up to the celebrated theorem of Roth established in 1955. In the
last thirty years, several mathematicians have studied diophantine approximation in ®elds of power
series. We present here a summary of the present knowledge on this subject, emphasizing the
analogies and differences with the situation in the real numbers case.
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1. The Fields of Power Series

Let K be a ®eld. If T is an indeterminate, we consider the ring K�T � of
polynomials in T with coef®cients in K, and the ®eld K�T� of rational functions in
T with coef®cients in K. An ultrametric absolute value in K�T� is de®ned by
j0j � 0 and jP=Qj � jT jdeg Pÿdeg Q

, where jT j is a ®xed real number greater than 1.
We consider the completion ®eld of K�T� for this absolute value, which is denoted
K��Tÿ1�� and called the ®eld of power series over K. Then, if � 2 K��Tÿ1�� and
� 6� 0, we can write

� �
X

k 4 k0

akTk where k0 2 Z; ak 2 K and ak0
6� 0:

The degree of � 6� 0 is de®ned by extension as deg� � k0. So the absolute value is
extended in K��Tÿ1��, and we have j�j � jT jdeg�

if � 6� 0.
This construction is clearly similar to the construction of the real numbers. The

analogues of Z, Q and R are respectively K�T �, K�T� and K��Tÿ1��. Here we study
the approximation of the elements of K��Tÿ1�� by the elements of K�T�.
Particularly, we consider this approximation for the elements of K��Tÿ1�� which
are algebraic over K�T�.

This analogy between the ®eld of real numbers and the ®eld of formal power
series can be considered from another point of view. Indeed, the sequence of the
coef®cients of a power series can be compared to the sequence of the digits in the



decimal expansion of a real number. We illustrate here this parallelism with an
analogue of a classical result for the real numbers. Let � 2 K��Tÿ1��. It is easy to
prove that the sequence of the coef®cients of the power series representing � is
ultimately periodic if and only if there exist integers n5 0 and m5 1 such that
Tn�Tm ÿ 1�� 2 K�T �. Now if K is a ®nite ®eld, it is a classical result that every
Q 2 K�T �, Q 6� 0, divides Tn�Tm ÿ 1� for some integers n;m 2 N. Consequently
we can state the following theorem.

Theorem 1.1. Let � 2 Fq��Tÿ1�� with � �Pk4k0
akTk. Then � 2 Fq�T� if and

only if the sequence �aÿk�k50 is ultimately periodic.

It is interesting to note the correspondence with the classical result on the
rational numbers and their decimal expansion. Observe that the proof is obtained
in the same way as above, replacing T by 10, and using the fact that every positive
integer divides 10n�10m ÿ 1� for some integers n5 0 and m5 1.

As we are concerned with algebraic power series, it is important to mention
here another result in the same direction as the previous one. Again when the base
®eld K is ®nite, Christol [4] was able to show that an element in K��Tÿ1�� which is
algebraic over K�T� can be characterised by a property of the sequence of the
coef®cients in its power series expansion. We state Christol's theorem.

Theorem 1.2. Let � 2 Fq��Tÿ1�� with � �Pk4k0
akTk. We put un � aÿn for

n5 0. Then � is algebraic over Fq�T� if and only if the set of subsequences

f�uqin�r�n50 : i5 0 and 04 r 4 qi ÿ 1g
is ®nite.

We have just seen the importance of the case where K is a ®nite ®eld, which
somehow simpli®es the situation. In the following we will observe this speci®city
in other contexts, nevertheless our base ®eld K is arbitrary when no restriction is
mentioned.

2. Analogues of Liouville and Roth Theorems

The starting point in diophantine approximation for algebraic real numbers is a
famous theorem obtained by Liouville in 1850. We have the following theorem,
due to Mahler [14], which is an adaptation of Liouville's theorem in the case of
power series.

Theorem 2.1. Let K be a ®eld. Let � be an element of K��Tÿ1�� algebraic over
K�T� of degree n > 1 and P;Q 2 K�T � with Q 6� 0. Then there exists a positive
real constant A, depending only on �, such that

j�ÿ P=Qj5AjQjÿn:

In 1955, Roth published his famous theorem about the rational approximation
of algebraic real numbers. We also have the following theorem, due to Uchiyama
[26], which is an adaptation of Roth's theorem in our context.
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Theorem 2.2. Let K be a ®eld of characteristic 0. If � is an algebraic
irrational element of K��Tÿ1�� then, for every � > 0, we have

j�ÿ P=Qj5jQjÿ�2���
for all P;Q 2 K�T � with jQj suf®ciently large.

It is well known, as we will see, that this theorem does not hold if the
characteristic of K is positive. Thus rational approximation of algebraic power
series is much more complex when the base ®eld has positive characteristic. But
although the equivalent of Roth's theorem holds in the power series case when the
base ®eld is of characteristic 0, we will see also that the rational approximation of
algebraic elements in K��Tÿ1�� is different from the situation we know in the
classical case of the real numbers.

3. The Continued Fraction Algorithm

As in the classical context of the real numbers, we have a continued fraction
algorithm in K��Tÿ1��. The continued fraction theory in K��Tÿ1�� is in some ways
simpler than in the real number case because of the ultra-metric absolute value in
the ®rst ®eld. For a general reference on this subject, see [23]. If � 2 K��Tÿ1�� we
can write

� � a0 � 1=�a1 � 1=�a2 � � � � � �a0; a1; a2; . . .� where ai 2 K�T �:
The ai are called the partial quotients and we have deg ai > 0 for i > 0. This
continued fraction is ®nite if and only if � 2 K�T�. As in the classical theory we
de®ne recursively the two sequences of polynomials �Pn�n50 and �Qn�n50 by

Pn � anPnÿ1 � Pnÿ2 and Qn � anQnÿ1 � Qnÿ2;

with the initial conditions P0 � a0, P1 � a0a1 � 1, Q0 � 1 and Q1 � a1.We have
Pn�1Qn ÿ Qn�1Pn � �ÿ1�n, whence Pn and Qn are coprime. The rational Pn=Qn is
called a convergent to � and we have Pn=Qn � �a0; a1; a2; . . . ; an�. Because of the
ultrametric absolute value we have

j�ÿ Pn=Qnj � jPn�1=Qn�1 ÿ Pn=Qnj � jQnQn�1jÿ1 � jan�1jÿ1jQnjÿ2:

It is interesting to notice that there is a simple characterisation of a convergent: if
P;Q 2 K�T � and Q 6� 0 then P=Q is a convergent to � if and only if
j�ÿ P=Qj < jQjÿ2

.
At last we mention an important result, whose analogue in the classical case is

well known.

Theorem 3.1. Let K be a ®nite ®eld and � 2 K��Tÿ1�� irrational. Then the
sequence of partial quotients in the continued fraction expansion of � is ultimately
periodic if and only if � is quadratic over K�T�.

4. The Approximation Exponent

In order to mesure the quality of the rational approximation, we introduce now
the following notation and de®nitions. Let � be an irrational element of K��Tÿ1��.
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For all real numbers �, we de®ne

B��; �� � lim inf
jQj!1

jQj�j�ÿ P=Qj

where P and Q run over polynomials in K�T � with Q 6� 0. Now the approximation
exponent of � is de®ned by

���� � supf� 2 R : B��; �� <1g:
It is clear that we have

B��; �� � 1 if � > ����; B��; �� � 0 if � < ���� and 04B��; �����41:
The approximation exponent can also be de®ned directly by

���� � lim sup
jQj!1

ÿ logj�ÿ P=Qj
logjQj

� �
;

where P and Q run over polynomials in K�T � with Q 6� 0. Observe that the same
de®nition could hold for the approximation exponent of a real number, replacing P
and Q 6� 0 by rational integers and the absolute value being the usual one.

We recall that if Pn=Qn is a convergent to �, we have

j�ÿ Pn=Qnj � jQnjÿ�1�deg Qn�1= deg Qn�:

Since the best rational approximations to � are its convergents, in the above
notation we have

���� � 1� lim sup
k

�deg Qk�1=deg Qk� � 2� lim sup
k

deg ak�1=
X

14i4k

deg ai

 !
:

The approximation exponent for a real number x would be

��x� � 1� lim sup
n
�ln qn�1=ln qn�;

where �pn=qn�n50 is the sequence of the convergents to x.
This notation is a slight modi®cation of that introduced by de Mathan [15].

According to Schmidt [23], it is also possible to de®ne the approximation
spectrum of �. This is the set of the accumulation points of the sequence
�1� �deg Qk�1=deg Qk��k50. This set is denoted S���. Then ���� is the upper
bound of S���.

Since j�ÿ Pn=Qnj4jT jÿ1jQnjÿ2
, for all irrational � 2 K��Tÿ1�� we have

B��; 2�4jT jÿ1
. Thus ����52. Moreover, using continued fractions, it is clear that

for every � 2 �2;�1� there exists an irrational � 2 K��Tÿ1�� such that ���� � �.
The same is true in the real number case.

Mahler's version of Liouville's theorem says that if � 2 K��Tÿ1�� is algebraic
over K�T� of degree n > 1 then B��; n� > 0. Consequently, for all � 2 K��Tÿ1��
algebraic over K�T� of degree n > 1 we have ���� 2 �2; n�. Moreover, because of
Uchiyama's version of Roth's theorem, if K has characteristic 0 then ���� � 2.
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We will now use the following vocabulary: If � 2 K��Tÿ1��, we say that

� � is badly approximable if ���� � 2 and B��; 2� > 0. This is equivalent to
saying that the partial quotients in the continued fraction for � are bounded.
� � is normally approximable if ���� � 2 and B��; 2� � 0.
� � is well approximable if ���� > 2.

Clearly, by Mahler's theorem, all quadratic power series are badly approximable.
This fact is also a consequence of their particular continued fraction expansion. We
will see that there are algebraic power series in each of these three classes. By
Liouville's theorem all quadratic real numbers are badly approximable and by
Roth's theorem no algebraic real number can be well approximable. Nevertheless, it
is necessary to underline that there is no example of an algebraic real number of
degree n > 2 that is known to be badly or normally approximable. This is certainly a
very important open question in number theory.

Now we want to give two classical examples of algebraic elements when the
base ®eld has positive characteristic. Let p be a prime number and let q be a positive
power of p. Both examples illustrate the disturbance brought by the Frobenius
homomorphism.

Example 1: First we de®ne � 2 Fp��Tÿ1�� by � � �0; T ;Tq; . . . ;Tqk

; . . .�. Then,
because of the Frobenius homomorphism, we have � � 1=�T � �q�. From the
continued fraction expansion we deduce ���� � q� 1 and S��� � fq� 1g. If � is
algebraic over K�T� of degree d, we know that ����4d and therefore d � q� 1.

Example 2: Now we de®ne � 2 Fp��Tÿ1�� by � �Pk50 Tÿqk

. Again, because
of the Frobenius homomorphism, we have � � 1=T � �q. If we write Un=Vn �P

04k4n Tÿqk

, we have j�ÿ Un=Vnj � jVnjÿq
. Hence we see that ����5 q.

Consequently � is algebraic over K�T� of degree q and ���� � q.
Unlike the real numbers case, where no explicit continued fraction is known

for an algebraic number of degree 53, we can describe the continued fraction for
this element (see [8], p. 224).

Theorem 4.1. Let p be a prime number and q > 2 a power of p. Let
� 2 Fp��Tÿ1�� be de®ned by � � 1=T � �q and j�j < 1. Let us de®ne the
sequence �
n�n>0 of ®nite sequences of elements of Fp�T � recursively by


1 � T and 
n � 
nÿ1;ÿT �qÿ2�qnÿ2

;ÿ
0nÿ1 for n52:

In this formula, if 
 � a1; a2; . . . ; am, then 
0 � am; amÿ1; . . . ; a1 and ÿ
 � ÿa1;
ÿa2; . . . ;ÿam and commas denote juxtaposition of sequences. Denote by 
1 the
in®nite sequence beginning by 
n for all n5 1. Then the continued fraction
expansion for � is �0; 
1�.

For q � 2, � is a quadratic element and we can see that � � �0; T � 1; �T��
(Here the brackets indicate the periodic part of the expansion). From this continued
fraction expansion we can determine the approximation spectrum.

Corollary 4.1. Let k51 be an integer and k �P04i4m ki2
i its representation

in base 2, then we de®ne !�k; q� �P04i4m kiq
i. The approximation spectrum of
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the element � de®ned in theorem 4.1 is

S��� � f�uk�k51g with uk � 2� qÿ 2

�qÿ 1�!�k; q� � 2ÿ q
:

Observe that the sequence �uk�k51 is decreasing and that we have u1 � q and
limk!1uk � 2.

This second example was ®rst introduced by Mahler [14] to show the speci®city
of diophantine approximation in positive characteristic.

5. The Subset of Algebraic Elements of Class I

Here we suppose that the base ®eld K has a positive characteristic p. As we
have seen in the two preceeding examples the rational approximation of algebraic
elements is disturbed by the Frobenius homomorphism. Therefore it is important
to consider a special subset of algebraic elements in K��Tÿ1��.

For an integer s51, we will denote by Hs the set of irrational algebraic
elements in K��Tÿ1�� which satisfy an algebraic equation of the following type:

x � �Axps � B�=�Cxps � D� �I�
where A;B;C;D are in K�T � with ADÿ BC 6� 0. We put q � ps and set
H � Ss51 Hs. We say that an element in H is of class I.

It is clear that if � 2 K��Tÿ1�� is algebraic of degree less than 4, then it is an
element of class I, since 1; �; �q and �q�1 are linearly dependent over K�T�.
Besides, it is easy to show that there are algebraic elements in K��Tÿ1�� which are
not of class I. The two examples given in Section 4 are of class I.

The rational approximation for elements of class I has been studied by Voloch
[27] and more deeply by de Mathan [15]. They could show that if the partial
quotients in the continued fraction expansion of such an element � are unbounded,
then ���� > 2. In other words, there are no normally approximable elements of
class I. By the work of B. de Mathan [15], we know moreover that for elements
of class I, the approximation exponent ���� is a rational number and
B��; ����� 6� 0;1.

Many elements of class I are well approximable, as for instance the two
previous examples. Indeed it is possible to show with the above notation that if
q > 1� deg �ADÿ BC�, then ���� > 2 (see [9], p. 53). Inparticular, if
ADÿ BC 2 K�, then this condition is full®led for all q. The algebraic irrational
elements satisfying equation (I) with the condition ADÿ BC 2 K� are called to be
of class IA. Those special elements have been considered and studied by W.
Schmidt [23] and Thakur [24]. The element given as Example 1 in Section 4
belongs to this class. For these elements the continued fraction expansion can be
explicitely described, and thus one can determine their approximation spectrum,
which is a ®nite set [23].

6. Badly Approximable Elements of Class I

In 1976, Baum and Sweet [1] were the ®rst to study the rational approximation
of particular algebraic elements of class I for K � F2. One famous example is the
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unique solution in F2��Tÿ1�� of the equation

TX3 � X � T � 0:

This cubic element � has the special property of being badly approximable. More
precisely we have

j�ÿ P=Qj5jT jÿ2jQjÿ2

for all P;Q 2 F2�T � with Q 6� 0. It is equivalent to say that the partial quotients of
the continued fraction expansion of this element are of degree bounded by 2.
Generalizing their methods, we have obtained the following result [9].

Theorem 6.1. Let l be a positive integer. Let D 2 F2�T � be such that D�0� � 1.
We consider the algebraic equation

Tx3 � Dx� Tl � 0: �E�
Let � be an irrational solution of �E� in F2��Tÿ1��. Then

(i) if j�j5jT jÿ�l�1�
, the sequence of the partial quotients of the continued

fraction expansion for � is bounded by jT jl�1:
(ii) if j�j < jT jÿ�l�1�

, the sequence of the partial quotients of the continued
fraction expansion for � is unbounded.

The existence of an irrational solution of �E� depends on the choice of D and l.
We can indicate some cases where this solution exists and is unique in F2��Tÿ1��.
So for l � 1 and D � 1, the solution of �E� is the cubic example given by Baum
and Sweet [BS1]. In this case we have j�j � 1, and the partial quotients of its
continued fraction expansion are bounded by jT j2. Also if m � deg D and if
14l4m with �l;m� 6� �1; 1� then equation �E� has a unique solution � with
j�j � jT jlÿm

. In this last situation, if this solution is irrational, the theorem implies
that the partial quotients of its continued fraction expansion are bounded by jT jl�1

if and only if bm=2c4l4m.
In 1986, Mills and Robbins [17] studied the continued fraction expansion for

the cubic example given by Baum and Sweet. They were the ®rst to consider the
subset of algebraic elements of class I. Then they were able to describe an
algorithm to compute the partial quotients of the continued fraction expansion for
an element of class I. As a consequence of this work, they gave for each prime
p53 an example of a non-quadratic algebraic power series with coef®cients in Fp

whose partial quotients are all of degree one. We have studied the case where the
base ®eld is F3. We looked for non-quadratic algebraic power series whose partial
quotients are all �T or �T � 1. We observed that a continued fraction with such
partial quotients can satisfy a quartic equation if these polynomials are arranged in
a precise pattern. We illustrate this with the following result [10].

Theorem 6.2. Let k be a non-negative integer. We de®ne the sequence of
integers �un�n50 by

u0 � k and un�1 � 3un � 4 for n50:

If a 2 F3�T � and n50 is an integer, a�n� denotes the sequence a; a; . . . ; a where a is
repeated n times and a�0� denotes the empty sequence. Then for n50, we de®ne a
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®nite sequence Hn�T� of elements of F3�T � by

Hn�T� � T � 1;T �un�;T � 1:

Let H1�k� be the in®nite sequence de®ned by juxtaposition

H1�k� � H0�T�;H1�ÿT�;H2�T�; . . . ;Hn��ÿ1�nT�; . . . :

Let !�k� be the element of F3��Tÿ1�� de®ned by the continued fraction expansion

!�k� � �0;H1�k��:
Let � pn�n50 and �qn�n50 be the usual sequences for the numerators and the
denominators of the convergents of !�k�.

Then !�k� is the unique solution in F3��Tÿ1�� of the irreducible quartic
equation

qkx4 ÿ pkx3 � qk�3xÿ pk�3 � 0:

For example, if k � 0 then

!�0� � �0; T � 1; T � 1;ÿT � 1;ÿT �4�;ÿT � 1; T � 1; T �16�;T � 1;ÿT � 1; . . .�
and this element satis®es the equation x � �T2 � 1�=�T3 � T2 ÿ T ÿ x3�: To prove
this theorem, we ®rst show, with the above notations, that for n50 we have

p3n�k�3=q3n�k�3 � �pkp3
n � q3

npk�3�=�qkp3
n � q3

nqk�3�:
Since limm!1pm=qm � !�k�, this equality implies that !�k� satis®es the desired
equation.

At last, concerning badly approximable elements of class I, we mention here
recent work by Robbins [21], in which he studied systematically the roots of a
cubic equation with polynomial coef®cients in F2�T �. Also when the base ®eld is a
®nite extension of F2, Thakur [24] has given examples of algebraic elements of
class I with bounded partial quotients. The question of determining which
elements of class I are badly approximable remains open.

7. Determination of the Approximation Exponent

It is clear that the approximation exponent and the approximation spectrum can
be determined when the continued fraction of the element is explicitly known, as
we have seen for the two previous examples in Section 4. It is important to notice
that in this manner Schmidt [23] and Thakur [24] have independently obtained the
following result.

Theorem 7.1. Let K be a ®nite ®eld. For every rational number � > 2 there
exists an algebraic element � 2 K��Tÿ1�� of class IA such that ���� � �.

Now we will show how it is possible in some cases to compute the approxi-
mation exponent for an algebraic element, without knowing the whole continued
fraction. This will be possible if this approximation exponent is large enough, that is
to say not close to 2. We will give applications to algebraic elements which are of
class I and also to others which are not.
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The basic idea in the following result is due to Voloch [27]. It has been
improved by de Mathan [16].

Theorem 7.2. Let K be a ®eld and � 2 K��Tÿ1��. Assume that there is a
sequence �Pn;Qn�n50, with Pn;Qn 2 K�T �, satisfying the following conditions:
�1� There are two real constants � > 0 and � > 1, such that

jQnj � �jQnÿ1j� and jQnj > jQnÿ1j for all n51:

�2� There are two real constants � > 0 and 
 > 1� ���
�
p

, such that

j�ÿ Pn=Qnj � �jQnjÿ
 for all n50:

Then we have ���� � 
. Further, if gcd�Pn;Qn� � 1 for n50, we have
B��; ����� � �; and if the sequence �gcd�Pn;Qn��n50 is bounded then
B��; ����� 6� 0;1.

Using this proposition it is possible to compute the approximation exponent for
many elements of class I. We give as an example the following result.

Theorem 7.3. Let K be a ®eld of characteristic p. Let n > 2 be an integer
prime with p. Let P;Q 2 K�T � coprime, of same degree and unitary. Assume that
P=Q =2K�T�n. Let q be the smallest power of p such that n divides qÿ 1. Set
� � deg�Pÿ Q�=deg Q. Then the equation xn � P=Q has a unique root � in
K��Tÿ1�� with j�ÿ 1j < 1. If � � 0 or � < 1ÿ �1� ���

q
p �=n then ���� �

n�1ÿ ��. Moreover, we have ���� � n if and only if there exist P0;Q0 and
C 2 K�T � such that P=Q � �P0=Q0�n�1� 1=C�.

It was proved by Osgood (see [19] p. 109) that if gcd�n; p� � 1, then the n-th
root of 1� 1=T in Fp��Tÿ1�� has an approximation exponent equal to n. We have
obtained in Theorem 7.3 the converse of this result. In some cases it is possible to
improve the above theorem. For instance, with p � 2 and n � 3 and with the same
conditions and notation as above, we have ���� � 3�1ÿ �� if � < �2ÿ ���

2
p �=3.

We give another application to algebraic elements which are not of class I.
These algebraic elements are also de®ned by an equation involving the Frobenius
homomorphism. We have just selected an example.

Theorem 7.4. Let p be a prime number with p511. We consider the algebraic
equation

x � Tÿ1 � xp � Tÿ2xp2

:

This equation has p roots in Fp��Tÿ1�� denoted �i for i � 0; . . . ; pÿ 1 with
j�0j < 1. There exist ! 2 Fp��Tÿ1�� with j!j � 1 and �i � �0 � i! for
i � 1; . . . ; pÿ 1. We have

���0��p�p2 ÿ 1�=� p2�1� and ���i��� p2ÿ1�=�2p� for i � 1; . . . ; pÿ 1:

Now we consider the image under a rational function of an element � of class
I. This image is generally no longer an element of class I. If we know the
approximation exponent of �, it is sometimes possible to deduce that of its image.
This phenomenon was observed by Voloch (see [28] p. 322). We have the
following result.
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Theorem 7.5. Let K be a ®eld of characteristic p. Let � 2 K��Tÿ1�� be an
algebraic element of class I. Let q be a power of p involved in an equation satis®ed
by �. Let R 2 K�T ��X�. Assume that R0X��� 6� 0. If R � U=V where U and V are
two coprime polynomials in K�T ;X�, we set d � max�degXU; degXV�. Then, if
���� > d� ���qp � 1�, we have

��R���� � ����=d and B�R���; ��R����� 6� 0;1:
We give here a special application of this proposition to the two examples

mentioned in Section 4:
For Example 1, we have ���� � q� 1. Let k be a positive integer prime with p.

Then if k < �q� 1�=� ���qp � 1�, one has ���k� � �q� 1�=k.
For Example 2, we have ���� � q. Let k be a positive integer prime with p.

Then if k < q=� ���qp � 1�, one has ���k� � q=k.
The proofs of Theorems 7.2, 7.3, 7.4 and 7.5 can be found in my Ph.D. thesis [7].

8. Thue's Method

In 1908, Thue [25] proved a famous theorem which was the ®rst step on the
path leading to Roth's theorem. This result is the following.

Theorem 8.1. Let � be a real algebraic number of degree n > 1, then for all
� > 0 we have

j�ÿ p=qj5 qÿ�n=2�1���

for all � p; q� 2 Z2 with q > 0 suf®ciently large.

We have tried to adapt his proof in our context in order to obtain a similar
result. Of course we had to consider algebraic elements which are not too well
approximable by rationals. As we have seen such elements exist in class I. In joint
work with de Mathan, we have proved the following theorem [11].

Theorem 8.2. Let K be a ®eld of positive characteristic. Let � be an element of
K��Tÿ1��, algebraic over K�T�, of degree n > 1. Assume that � is not an element
of class I. Then for every positive real number � we have

j�ÿ P=Qj5jQjÿ��n=2��1���

for all pairs �P;Q� 2 K�T � � K�T � with jQj suf®ciently large.

The conclusion of this theorem is equivalent to ����4�n=2� � 1. This theorem
highlights the speci®city of the algebraic elements of class I. We may see that this
theorem is nearly optimal. Indeed let � be the element given as Example 2 in
Section 4. For p large, let us consider the element � � �2. We can show that � is
algebraic of degree p, not of class I, and with ���� � p=2. This remark is due to
Voloch (see [28] p. 321).

We indicate here the main steps of the proof. First we show that, for each
integer s5 1, there are two polynomials Us and Vs in K�T ��X� such that

Us��ps� ÿ �Vs��ps� � 0
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with

�s � max�degX Us; degXVs�4�n=2�
and

max�degT Us; degT Vs�4Cps

where C is a positive constant depending upon �. Here, since � is not of class I, we
have �s52. Then the proof is obtained from the following intermediary result:

Theorem 8.3. Suppose � is as in Theorem 8.2. With the above notation, if � is
a real number such that �s4� for all s51, then for all positive real �, and for all
pairs �P;Q� in K�T � � K�T � with deg Q suf®ciently large, we have

jPÿ �Qj5jQjÿ�����:
The proof is obtained by contradiction. We assume that the inequality

jPÿ �Qj < jQjÿ����� has solutions with deg Q arbitrarily large. Then we show that
there are two pairs �P1;Q1� and �P2;Q2� satisfying this inequality and also an
integer s such that psdeg Q1=deg Q2 is close to 1. At last we obtain a contradiction
using the elements of K�T �, de®ned by

As � Q
�sp

s

1 Us��P1=Q1�p
s� and Bs � Q

�sp
s

1 Vs��P1=Q1�p
s�:

We have to observe that, in some cases, because of Theorem 8.3, it is possible
to get a better conclusion in Theorem 8.2. For instance, for elements satisfying an
equation such as the one mentioned in Theorem 7.4 it is possible to show that the
approximation exponent must be smaller or equal to p� 1 (see [11], p 203±204).
In the next paragraph, we will return to this example and prove a better upper
bound for its approximation exponent.

As Theorem 8.2 is in some sense an analogue of Theorem 8.1, it is natural to
expect to improve it in the direction of an analogue of Roth theorem. Evidently
this can only be obtained by throwing away some other exceptional cases of too
well aproximable numbers. We have to mention here a recent work in that
direction, using tools of algebraic geometry, due to Kim, Thakur and Voloch [6].

9. The Differential Method

The use of differential algebra in rational approximation to formal power series
was initiated by Kolchin [5], developed by Osgood ([18] [19]), and further by
Schmidt [22].

We have a formal derivation by differentiating the series term by term. If K has
characteristic 0, then the ®eld of constants is K, and if K has characteristic p > 0,
then the ®eld of constants is K��Tÿp��. If � 2 K��Tÿ1�� is algebraic over K�T�,
then it satis®es an algebraico-differential equation. Indeed, let F 2 K�T ;X� be the
minimal polynomial of �, with degXF � n. We have F�T ; �� � 0, and
differentiating this equality we get F0T�T ; �� � �0F0X�T ; �� � 0. This shows that
�0 2 K�T ; ��. Thus there is G 2 K�T��X� such that �0 � G��� with
04 degXG4 nÿ 1.
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If we have degX G4 2, we will say that � satis®es a Riccati differential
equation. In 1974, Osgood [19] established the following theorem.

Theorem 9.1. Let K be a ®eld. Let � 2 K��Tÿ1�� be an algebraic element over
K�T� of degree n > 1. Assume that � does not satisfy a Riccati differential
equation. Then there exists a positive real constant C depending only upon � such
that

j�ÿ P=Qj5CjQjÿ��n=2��1�

for all �P;Q� 2 K�T � � K�T � with Q 6� 0.

The conclusion of this theorem is equivalent to B��; �n=2� � 1� > 0. We give
here a sketch of the proof. First we show that there are two polynomials U and V
of K�T ��X� such that

H��� � U��� ÿ �0V��� � 0

with

Q�n=2��1H�P=Q� 2 K�T � for P;Q 2 K�T � and Q 6� 0:

Now assume that H�P=Q� 6� 0. Then we can easily prove that P and Q satisfy the
inequality in Theorem 9.1. We use the following argument. Given x0 2 K��Tÿ1��,
there exist two positive real numbers � and C1 such that for x 2 K��Tÿ1�� with
jxÿ x0j < � we have jH�x� ÿ H�x0�j4C1jxÿ x0j. Consequently we obtain

j�ÿ P=Qj5Cÿ1
1 jH��� ÿ H�P=Q�j � Cÿ1

1 jH�P=Q�j5Cÿ1
1 jQjÿ��n=2��1�:

The end of the proof is based on the following technical lemma which has been
exposed by Schmidt (see [22] p. 762).

Lemma 9.2. Let R and S be two coprime polynomials in K�T ;X�. We consider
the differential equation

X0R�X� � S�X� �1�
Assume that we do not simultaneously have degX R � 0 and degX S4 2, i.e. that
the differential equation is not Riccati. There is a positive constant C depending on
R and S, such that if P;Q 2 K�T � and P=Q is a solution of (1), then jQj4C.

Now with the above notations, if H�P=Q� � 0 this lemma implies that
j�ÿ P=Qj5C2 for a certain positive constant. Therefore the inequality in
Theorem 9.1 holds for all P and Q 6� 0 with C � min�Cÿ1

1 ;C2�.
We will now state a result which is easily obtained using the same arguments as

above in Theorem 9.1 and Lemma 9.2. The basic idea is the one introduced by
Liouville but using a differential equation instead of the minimal polynomial.
Because of this analogy the following result can be seen as a differential version of
Mahler's theorem.

Theorem 9.3. Let K be a ®eld. Let � 2 K��Tÿ1�� be an algebraic element over
K�T� of degree n > 1. Then we can write �0 � G��� with G 2 K�T��X� and
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degX G < n. Assume that k � degX G > 2. Then there exists a positive real
constant C depending only upon � such that

j�ÿ P=Qj5CjQjÿk

for all �P;Q� 2 K�T � � K�T � with Q 6� 0.

Let us apply this theorem to an element � satisfying the equation introduced in
Theorem 7.4. We have

� � Tÿ1 � �p � Tÿ2�p2

and this implies

�0 � Tÿ2 ÿ 2Tÿ1�� 2Tÿ1�p:

Therefore, by Theorem 9.3, we have ����4p. Observe that for the element �0 of
Theorem 7.4 the approximation exponent which is explicitly computed tends to
this upper bound when p tends to in®nity.

10. Elements of Class I and Riccati Differential Equation

In this section we suppose that the base ®eld K has positive characteristic p.
The similarly between Theorem 8.2 and Theorem 9.1 leads to a natural question.
What is the link between elements of class I and Riccati differential equations?

It is easy to show that an element of class I satis®es a Riccati differential
equation and that this equation has a rational solution. On the other hand if �
satis®es a Riccati differential equation which has a rational solution then there is
some � 2 K��Tÿ1�� such that � � f ��p�, where f is a linear fractional
transformation with coef®cients in K�T �.

Using these remarks and Theorem 9.1, in joint work with de Mathan we have
obtained a theorem similar to Theorem 8.2 [12]. We need a stronger hypothesis but
get a stronger conclusion.

Theorem 10.1. Let K be a ®nite ®eld. Let � 2 K��Tÿ1�� be an algebraic
element over K�T� of degree n > 1. Assume that � is not an element of class I.
Then there exists a positive real constant C depending only upon � such that

j�ÿ P=Qj5CjQjÿ��n=2��1�

for all �P;Q� 2 K�T � � K�T � with Q 6� 0.

The proof is obtained by contradiction. Thus we assume that
B��; �n=2� � 1� � 0. Then Theorem 9.1 implies that � satis®es a Riccati
differential equation with a rational solution (see below in Section 11). It follows
that there is an �1 and a linear fractional transformation f1 with polynomial
coef®cients such that � � f1��p

1�. We show that � and �1 have the same degree
over K�T� and that B��1; �n=2� � 1� � 0. By iteration, for all n51 there exists an
�n and a linear fractional transformation fn with polynomial coef®cients such that
� � fn��pn

n �. Then we consider the cross-ratio of � and of three of its conjugates
and show that it belongs to L, a ®nite extension of K. Finally we prove that � is of
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class I and that the power of p involved in the equation satis®ed by � is
q � card�L�.

When we started our investigations we had in mind Theorem 8.1 and Theorem
9.1. In a ®rst step towards Theorem 8.2, we could prove, by elementary methods
and using Theorem 9.1, the statement of Theorem 10.1 for K � F2 and n � 4. This
con®rmed the intuition that the subset of elements of class I was the right set of
exceptional cases. Then we turned to the proof of Theorem 8.2, following Thue's
ideas. The proof of Theorem 9.1 in the general case was later made possible by
using the argument of the cross-ratio. This argument was introduced by Voloch
(see [28] p 324).

11. Badly Approximable Elements and Riccati Differential Equation

Let us consider a Riccati differential equation

x0 � ax2 � bx� c with a; b; c 2 K�T�:
We set H�x� � x0 ÿ ax2 ÿ bxÿ c. Then it is easy to see that there exist D 2 K�T �
such that, for all P;Q 2 K�T � with Q 6� 0, we have DQ2H�P=Q� 2 K�T �.

Let � 2 K��Tÿ1�� be an irrational element. Suppose that � satis®es �R�. Let
P;Q 2 K�T �, with Q 6� 0, and assume that H�P=Q� 6� 0. Consequently we have
jDQ2H�P=Q�j51. Then we use the argument which has been exposed for the
proof of Theorem 9.1. There is a positive real number C such that

j�ÿ P=Qj5Cÿ1jH��� ÿ H�P=Q�j � Cÿ1jH�P=Q�j5Cÿ1jDjÿ1jQjÿ2:

Now we suppose ®rst that K has characteristic 0. In this case Osgood [18] has
remarked that if u; v 2 K��Tÿ1�� with u 6� v are such that H�u� � 0 and H�v� � 0,
then there is a positive real constant C0 such that juÿ vj5C0. Therefore, in this
case, if H�P=Q� � 0 we have j�ÿ P=Qj5C0.

Observe that this is false if K has positive characteristic. Indeed consider
Example 2 of Section 4. We have � �Pk50 Tÿqk

. Set �n �
P

04k4n Tÿqk

. We
see that � and �n satisfy the same Riccati differential equation x0 � ÿ1=T2. But
j�ÿ �nj tends to 0, when n tends to 1.

In conclusion we have the following theorem.

Theorem 11.1. Let K be a ®eld. Let � 2 K��Tÿ1�� be an irrational solution of
�R�. Assume that either K has characteristic 0, or K has positive characteristic
and �R� has no rational solution. Then there exists a positive real constant C such
that

j�ÿ P=Qj5CjQ jÿ2

for all �P;Q� 2 K�T � � K�T � with Q 6� 0.
Observe that the conclusion of this theorem is equivalent to saying that the

partial quotients in the continued fraction for � are bounded, i.e. � is badly
approximable. The constant C in the inequality can easily be made explicit and
depends only on the coef®cients of the Riccati differential equation satis®ed by �.

In the case of characteristic 0, for instance every algebraic element of degree 3
satis®es a Riccati differential equation and is therefore badly approximable. This
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case has been considered by Osgood [18] and later by Schmidt [22], obtaining
explicit values for the constant C in the above inequality.

Osgood has also considered the nth root of a rational function with rational
coef®cients (see [18], p. 7). Such an element satis®es a Riccati differential
equation. As an illustration, let us consider for n52 the element � 2 Q��Tÿ1��
de®ned by �n � 1� 1=T. Then we have �0 � ÿ�nT�T � 1��ÿ1� and, by applying
Theorem 11.1, it can be proved that j�ÿ P=Qj > jT jÿ2jQjÿ2

. In other words, the
degree of the partial quotients in the continued fraction for � are all equal to 1. It is
natural to ask what these partial quotients really are. In fact this question can be
answered and the continued fraction can be explicitly described. We have

�1� 1=T�1=n � �1; nT ÿ �nÿ 1�=2; u2�T � 1=2�; . . . ; uk�T � 1=2�; . . .�
with for even k,

uk � ÿ4�2k ÿ 1�n
Y

14i4�kÿ2�=2

�4i2n2 ÿ 1�=
Y

14i4k=2

��2iÿ 1�2n2 ÿ 1�;

and for odd k,

uk � �2k ÿ 1�n
Y

14i4�kÿ1�=2

��2iÿ 1�2n2 ÿ 1�=
Y

14i4�kÿ1�=2

�4i2n2 ÿ 1�:

For n � 2 these formulas show that the continued fraction expansion is periodic.
Indeed we get �1� 1=T�1=2 � �1; 2T ÿ 1=2; �ÿ8T ÿ 4; 2T � 1��. The above
formulas can be obtained by an adaptation of some other formulas which
apparently go back to Euler.

The second case where K has positive characteristic p is interesting too. In joint
work with de Mathan, we have obtained the following result [12].

Theorem 11.2 Let � 2 F2��Tÿ1�� such that j�j41. There exists a unique
� 2 F2��Tÿ1�� such that

�2 � T�� 1 � �T � 1��2:

Then � is a solution of a Riccati differential equation which has no rational
solution. Consequently we have, for all P;Q 2 F2�T � with Q 6� 0,

j�ÿ P=Qj5jT jÿ1jQjÿ2:

This result was ®rst proved by Baum and Sweet [2], without any use of
differential methods. Observe that if � is algebraic then � is also algebraic.
Moreover, if � is algebraic and non-quadratic then � is not an element of class I,
since an element of class I satis®es a Riccati differential equation which has a
rational solution and this equation is unique if � is not quadratic. In connection to
Theorem 11.2, we must mention recent work by Lauder [13] who has followed the
original ideas introduced by Baum and Sweet [2] and could extend their results.

When the characteristic of the base ®eld K is p > 2, we have used elementary
methods to prove the following result (see [12] p. 5).
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If K has characteristic p � 3 and if there is some � 2 K��Tÿ1��, neither
rational nor quadratic, satisfying a Riccati differential equation, then this equation
has in®nitely many rational solutions.

Van der Put [20] has studied such differential equations and it follows from his
work that the same holds for all p53.

12. A Normally Approximable Algebraic Element

Mills and Robbins [17] have considered the following algebraic equation

x4 � x2 ÿ Tx� 1 � 0:

They observed that, if the base ®eld is F3, this equation has a unique root in
F3��Tÿ1�� and that this root appears to have a continued fraction with a very
peculiar pattern. Later, Buck and Robbins [3] proved the following theorem.

Theorem 12.1. Let 
0 � ;, 
1 � T, and for n52, let 
n be the ®nite sequence
of polynomials de®ned by


n � 
nÿ1; 2T ;

�3�
nÿ2; 2T ;
nÿ1;

where commas indicate juxtaposition of sequences, and 

�3�
k is obtained by

cubing every element of 
k. Let us denote by 
1 the sequence beginning by 
n

for all n, and consider in F3��Tÿ1�� the element � de®ned by the continued
fraction expansion � � �0;
1�. Then � is the unique root in F3��Tÿ1�� of
x4 � x2 ÿ Tx� 1 � 0:

Their proof is obtained by considering some subsequences of convergents of the
above continued fraction, say p1;n=q1;n; p2;n=q2;n; . . . ; pk;n=qk;n. Then they prove an
equality, say F�p1;n=q1;n; p2;n=q2;n; . . . ; pk;n=qk;n� � 0, satis®ed for all n50. Finally
by letting n go to in®nity this implies that � satis®es the desired algebraic equation
f ��� � 0. The original proof can be made shorter (see [23] Section 10). The basic
idea can be used for other algebraic elements (see the proofs of Theorem 4.1 and
Theorem 6.2 for instance).

We have observed that the solution of the above quartic equation is directly
connected to Example 1 in Section 4 when p � q � 3. This has allowed us to
consider the corresponding element for a general q. In this context we have
obtained another proof of Theorem 12.1 in [8].

Let p be an odd prime and q a positive power of p. We consider �q 2 Fp��Tÿ1��,
de®ned by �q � �0;T ; Tq; . . . ; Tqn

; . . .�. This element is the unique root, in
Fp��Tÿ1��, of the equation x � �1=T��1ÿ xq�1�. We set r � �q� 1�=2 and
�q � �r

q. Then we see that �q is the unique root in Fp��Tÿ1�� of the equation

x � �1=Tr��1ÿ x2�r:
Now if p � q � 3 then r � 2 and this equation becomes x4 � x2 ÿ T2x� 1 � 0.
Thus the theorem of Buck and Robbins can be expressed by the following formula
in F3��Tÿ1��:

�0; T ; T3; . . . ;T3n

; . . .�2 � �0;
1�2��;
where 
1�2� denotes the sequence obtained from 
1 by changing T into T2.
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We have studied the continued fraction de®ned in Fp��Tÿ1�� by

�q � �0; T ; Tq; . . . ; Tqn

; . . .�r:
If q � 3, we can prove that the above formula holds. In the general case q > 3, we
can only describe partially the pattern of the continued fraction expansion for �q. If
we put �n;q � �0; T ;Tq; . . . ; Tqnÿ1 �, we show that �r

n;q is a convergent to �q. Thus
we de®ne, for n50, a sequence of polynomials in Fp�T �, 
1;n, by �r

n;q � �0;
1;n�.
We have 
1;0 � ; and 
1;1 � Tr. We give here a description of 
1;n which is only
partially proved.

Conjecture 12.2. There exist r ÿ 2 sequences of ®nite sequences of
polynomialsin Fp�T �, denoted �
i;n�n51 for 24i4r ÿ 1, such that, for n51, we
have


1;n�1 � 
1;n; 2Tr;
2;n; 2Tr; . . . ;

�q�
1;nÿ1; . . . ; 2Tr;
02;n; 2Tr;
01;n:

In this formula, if 
 � !1; !2; . . . ; !k, we denote 
0 � !k; !kÿ1; . . . ; !1, and


�q�
1;nÿ1 is obtained by raising every element of 
1;nÿ1 to the qth power.

Observe that 
1;n�1 is split in q blocks with 2Tr between two blocks. In the
general case, it is not a full conjecture since we are not able to describe the
intermediary blocks 
i;n for 24i4r ÿ 1. For p � q � 3, we have r ÿ 2 � 0 and
there are no intermediary blocks, thus the previous formula contains only 3 blocks
and in this case it is possible to get a proof of the conjecture.

Now we come back to the rational approximation to �q. Since �q is the unique
root in Fp��Tÿ1�� of the equation x � �1=Tr��1ÿ x2�r, we see that �q 2 Fp��Tÿr��.
Thus we can de®ne ��q by ��q�Tr� � �q�T�. So ��3 is the element introduced by Mills
and Robbins. We recall that the approximation exponent of �q is q� 1. In the
remark following Theorem 7.5, we have seen that ���k

q� � �q� 1�=k, if k is prime
to p and small enough. Observe that for k � �q� 1�=2 this formula would give
���q� � 2. Besides it is clear that �q and ��q have the same rational approximation
properties. In fact we proved the following theorem [8].

Theorem 12.3. Let ��3 be the unique root in F3��Tÿ1�� of the equation

x4 � x2 ÿ Tx� 1 � 0:

We have ����3� � 2 and B���3; 2� � 0. More precisely, there exist two explicit real
constants �1 and �2 such that there is a sequence of rationals Pn=Qn with jQnj
tending to in®nity for which we have

j��3 ÿ Pn=Qnj4jQnjÿ�2��1=
����������
deg Qn

p
�;

and for all rationals P=Q with jQj suf®ciently large we have

j��3 ÿ P=Qj5jQjÿ�2��2=
��������
deg Q
p

�:

We can choose �1 � 2=
���
3
p

and �2 > 2=
���
3
p

.

Observe, with our de®nitions, that ��3 is normally approximable and therefore is
not an element of class I. The proof of Theorem 12.3 is obtained by means of the
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continued fraction for ��3. Thus, because of the partial description for the continued
fraction for ��q exposed in Conjecture 12.2, we make a ®nal conjecture.

Conjecture 12.4. Let p 6� 2 be a prime number and q a positive power of p. Let
��q be the unique solution in Fp��Tÿ1�� of the equation

x � �1=T��1ÿ x2��q�1�=2:

Then the same theorem as Theorem 12.3 holds for ��q, but with 2=
���
3
p

replaced by����������������������
2�qÿ 1�=q

p
.
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