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Abstract. We show how the singularities are propagated for the (spatially inhomogeneous)
Boltzmann equation (with the usual angular cut-off of Grad) in the context of the small solutions ®rst
introduced by Kaniel and Shinbrot.
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1. Introduction

The Boltzmann equation is a standard model of the kinetic theory of gases (cf.
[5], [6], [7], [23]). It reads

@t f � v � rx f � Q� f ; f �; �1�
where f �t; x; v� is the density of particles of the gas which, at time t 2 R� and
position x 2 R3, have velocity v 2 R3, and Q is a quadratic collision operator
which only acts on the variable v and reads

Q� f ; g� � Q�� f ; g� ÿ f Lg; �2�

Q�� f ; g��t; x; v� �
�

v�2R3

�
!2S2

f �t; x; v0�g�t; x; v0��B�v ÿ v�; !�d!dv�; �3�

Lg�t; x; v� �
�

v�2R3

�
!2S2

g�t; x; v��B�v ÿ v�; !�d!dv�: �4�

The post-collisional velocities v0 and v0� are here parametrized by

v0

v0�
�
�

v � ��v� ÿ v� � !�!;
v� ÿ ��v� ÿ v� � !�!:

�
Therefore,

Lg � A �v g;

with

A�z� �
�
!2S2

B�z; !�d!:



The cross section B depends on the type of interactions between the particles of
the gas. In this paper, we shall always make the so-called `̀ angular cutoff
assumption of Grad'' (cf. [12]). We shall even limit ourselves to cross sections
which satisfy the following assumption:

Assumption 1. The nonnegative cross section B lies in L1�S2; W1;1�R3��.
Note that the classical cross sections of Maxwellian molecules or regularized

soft potentials (with angular cutoff) satisfy this assumption. The case of hard
potentials (with angular cutoff), which do not satisfy this assumption, is brie¯y
discussed in a remark at the end of Section 2.

The Cauchy problem for equation (1) in R� � R3 � R3 has been studied by
various authors. Global renormalized solutions have been proven to exist for a
large class of initial data by DiPerna and P.-L. Lions in [9] (cf. also [17]). Global
solutions (in the whole space) close to the equilibrium have been studied by Imai
and Nishida in [15] and Ukai and Asano in [24].

Finally, global solutions for small initial data were introduced by Kaniel and
Shinbrot (cf. [16]) and studied by Bellomo, Palczewski and Toscani (cf. [1]),
Bellomo and Toscani (cf. [2]), Goudon (cf. [11]), Hamdache (cf. [13]), Illner and
Shinbrot (cf. [14]), Lu (cf. [18]), Mischler and Perthame (cf. [19]), Polewczak (cf.
[20]) and Toscani (cf. [21], [22]).

In this paper, we study how the L2 singularities of the initial datum are propagated
by equation (1). This question seems very dif®cult to tackle in the general framework
of renormalized solutions, because of the lack of L1-estimates in this setting.

We shall therefore concentrate on the case of small initial data, where such
estimates are available. We think that our work is likely to extend to solutions
close to the equilibrium, but we shall not investigate this case.

We recall one of the theorems of existence of such small solutions. We use a
formulation adapted to our study, which is inspired from [19].

Theorem 1. Let B be a cross section satisfying Assumption 1 and fin be an
initial datum such that, for all �x; v� 2 R3 � R3,

04 fin�x; v�4 �81kAkL1�ÿ1
exp ÿ 1

2
�jxj2 � jvj2�

� �
: �5�

Then there exists a global distributional solution f to (1) with initial datum fin, such
that for all T > 0; t 2 �0;T � and �x; v� 2 R3 � R3,

04 f �t; x; v�4CT exp ÿ 1

2
�jxÿ vtj2 � jvj2�

� �
:� MT�t; x; v�; �6�

where CT is a constant only depending on T and kAkL1 .

We give in Section 2 the precise form of the singularities of the solution to the
Boltzmann equation (in our setting). Our main theorem is

Theorem 2. Let B be a cross section satisfying Assumption 1 and fin be an initial
datum such that (5) holds. Then we can write, for all �t; x; v� 2 R� � R3 � R3,

f �t; x; v� � fin�xÿ vt; v�ÿ1�t; x; v� � ÿ2�t; x; v�:
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where ÿ1;ÿ2 2 H�
loc�R� � R3 � R3� for all � 2�0; 1=25�.

Remarks.
� This theorem shows that the singularities of the initial datum (that is, for

example, the points around which fin is in L2 but not in Hs for any s > 0) are
propagated with the free ¯ow, and decrease exponentially fast (since in fact ÿ1 has
an exponential decay).
� Theorem 2 ensures that, if f �t� 2 Hs�R3 � R3� for some t > 0, then

fin 2 Hs�R3 � R3� (for s < 1=25), so that no smoothing can occur. This (less
precise) result could however probably be obtained with a simpler method.
� The exponent 1/25 given here is probably not the best one. In order to get the

optimal result, one would need to perform many more complicated computations.
� Note that, in the setting of the Boltzmann equation we consider here, it has

already been noticed that some memory of the initial datum is preserved by
f �t; �; �� for all t > 0, as can be seen on the asymptotic behaviour when t goes to
�1, or, more precisely, on the limit when t! �1 of f �t; x� tv; v� (cf. [22],
[18]).

The proof of Theorem 2 uses the regularizing properties of the kernel Q�, ®rst
studied by P.-L. Lions in [17], and extended by Wennberg in [25] and by Bouchut
and Desvillettes in [3]. Note that those properties are exactly what is needed to give
the form of the singularities of the solutions to the spatially homogeneous
Boltzmann equation (with angular cutoff). In order to conclude in our inhomo-
geneous setting, we also have to use the averaging lemmas of Golse, P.-L. Lions,
Perthame and Sentis (cf. [10]).

In Section 3, we give a short proof of a complementary result (that is, the
propagation of smoothness instead of the propagation of singularities), under a
slightly more stringent assumption. Namely, we show that the smoothness (with
respect to t; x; v) of the solution f to equation (1) at time t > 0 obtained by theorem
1 is at least as good as that of fin�in x; v�. Note that since our solutions satisfy an
L1 bound, theorem 2 is enough to show this propagation of smoothness as long as
Sobolev spaces Hs with s < 1=25 are concerned. The theorem that we give here
deals with higher derivatives.

Theorem 3. Let B be a cross section satisfying Assumption 1 and such that
B 2 L1�R3 � S2� and fin be an initial datum such that (5) holds. If, moreover,
fin 2 Wk;1�R3 � R3� for some k 2 N [ f1g, then the solution f to (1) given by
Theorem 1 vari®es

f 2 W
k;1
loc �R�t � R3

x � R3
v�:

Remark. The propagation of smoothness in a very close setting, but only with
respect to the variable x, has already been obtained by Polewczak in [20].

2. Propagation of Singularities

This section is devoted to the proof of Theorem 2. The main idea is the
following: we write down the Duhamel form of the solution of equation (1). This is
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also called the mild exponential form. For �t; x; v� 2 R� � R3 � R3, we have

f �t; x; v� � fin�xÿ vt; v�exp ÿ
�t

0

Lf ��; xÿ v�t ÿ ��; v�d�
� �

�
�t

0

�
Q�� f ; f ��s; xÿ v�t ÿ s�; v�

exp ÿ
�t

s

Lf ��; xÿ v�t ÿ ��; v�d�
� ��

ds: �7�

We are going to prove that both Lf and Q�� f ; f � lie in L2
loc�R�; H�

loc�R3 � R3�� for
any � 2�0; 1=25�. In order to get this result, we use on the one hand the analysis of
regularity of Q� in the variable v initiated in [17] and developed in [25] and [3],
and on the other hand the averaging lemmas of [10].

2.1. Regularity of Lf . We here prove the following result.

Proposition 4. If B satis®es Assumption 1 and fin is such that (5) holds, for any
T > 0 and any R > 0, we have

kLfkL2��0;T �;H1=2�BR�BR��4KT ;RkAkL1�R3�;

where KT ;R is a constant which depends on T (more precisely, on the constant CT

in (6)) and R.

Let us choose T > 0. Since Lf is a convolution with respect to v, we obviously
have that, under Assumption 1, Lf 2 L2��0; T �t � R3

x ; H
1=2
loc �R3

v�� (in fact, it lies in
L2��0;T �t � R3

x ; W
1;1
loc �R3

v��) and satis®es

kLfkL2��0;T ��Br ;H1=2�Br��4K 0T ;rkAkL1�R3�:

It remains to prove that Lf 2 L2��0; T �t � R3
v; H

1=2
loc �R3

x��.
Let us de®ne the function T�; 0 < � < 1=2, by T��v�� � eÿ�v�, and study the

following quantity

kLfk2
L2��0;T �t�R3

v ;H1=2�R3
x��

�
�

t;v

�
x;h

�
v�

A�v ÿ v��� f �t; x� h; v�� ÿ f �t; x; v���dv�

���� ����2dx
dh

jhj4 dvdt: �8�

We want to use the averaging lemma of [10], which we here recall in a version
very close to that of [4], where the optimal smoothness in the variable t is not
given, but where the dependence with respect to the averaging function is kept.

Lemma 1. Let f 2 C��0;T �t; L2
w�R3

x � R3
v� �� solve the equation

@t f � v� � rx f � g in �0; T ��R3 � R3;

for some g 2 L2��0;T � � R3 � R3�. Then, for any  2 D�R3�, the average quantity
de®ned by

� � f ��t; x� �
�

v�2R3

f �t; x; v�� �v��dv�
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belongs to L2��0;T �; H1=2�R3�� and satis®es, for any s > 1,

k� � f �k2
L2��0;T �;H1=2�R3��4Cs

" �
x;v

j f �0; x; v��j2 j �v��j2�1� jv�j2�sdv�dx

�
�

t;x;v�
jg�t; x; v��j2j �v��j2�1� jv�j2�sdv�dxdt

#
;

where Cs is a constant only depending on s.

Using Lemma 1, (8) becomes, for any s > 1 and any open ball BR of R3,

kLfk2
L2��0;T �t�BRv ;H1=2�R3

x��

4
�

v2BR

�A�v ÿ ��T� f

T�

� �



 



2

L2��0;T �;H1=2�R3��
dv

4Cs

�
v2BR

" �
x;v�

fin�x; v��
T��v��

���� ����2jA�v ÿ v��j2jT��v��j2�1� jv�j2�sdv�dx

�
�

t;x;v�
�@t � v� � rx� f

T�

���� ����2
� jA�v ÿ v��j2jT��v��j2�1� jv�j2�sdv�dxdt

#
dv

4CR;sM
2
�;skAk2

L1�R3�

� fin

T�





 



2

L2�R3�R3�
� �@t � v � rx� f

T�





 



2

L2��0;T ��R3�R3�

 !
; �9�

where CR;s is a constant and

M�;s � sup
v�2R3

jT��v���1� jv�j2�s=2j: �10�

Note that, since we have (5), the following estimate holds

04
fin�x; v�
T��v� 4� eÿjxj

2=2e��ÿ1=2�jvj2 ;

where � is an absolute constant, so that (recall that 0 < � < 1=2) we can ®nd a
constant C� > 0 such that

fin

T�





 




L2�R3�R3�

4C�: �11�

Moreover, we have

�@t � v � rx� f

T�

���� ����4 jQ�� f ; f �j
T�

� j fLf j
T�

: �12�
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It is clear, by (6), that

j f �t; x; v�Lf �t; x; v�j
T��v� 4

MT�t; x; v�LMT�t; x; v�
T��v�

4C2
T�2��3=2kAkL1eÿ

1
2
jxÿvtj2e �ÿ1

2� �jvj2 :
Hence there exists a constant C� such that

fLf

T�





 




L2��0;T ��R3�R3�

4C�: �13�

It is also clear that, for �t; x; v� 2 �0;T � � R3 � R3,

jQ�� f ; f ��t; x; v�j
T��v� � 1

T��v�
�

v�;!
f �t; x; v0�f �t; x; v0��B�v ÿ v�; !�d!dv�

���� ����
4

Q��MT ;MT��t; x; v�
T��v�

� MT�t; x; v�LMT�t; x; v�
T��v� ;

so that

Q�� f ; f �
T�





 




L2��0;T ��R3�R3�

4C�: �14�

Taking (13)±(14) into account, (12) implies that

�@t � v � rx� f

T�





 




L2��0;T ��R3�R3�

4C�: �15�

Then, using (11) and (15) in (9), we get

kLfk2
L2��0;T �t�R3

v ;H1=2�R3
x��4CsC

2
�M2

�;skAk2
L1 :

Recalling that Lf 2 L2��0; T �t � R3
x ; H

1=2
loc �R3

v��, we ®nally obtain that

Lf 2 L2��0;T �; H
1=2
loc �R3

x � R3
v��: �16�

2.2. Regularity of Q�� f ; f �.
2.2.1. Study of the average quantities of Q�� f ; f � with respect to the velocity.

This part is devoted to the proof of the

Proposition 5. Let � 2 D�R3
v�, B satisfying Assumption 1, and fin such that (5)

holds. Then we have, for any T > 0 and h 2 R3,�
t;x

�
v

�Q�� f ; f ��t; x� h; v� ÿ Q�� f ; f ��t; x; v����v�dv

���� ����2dxdt

4KTk�k2
W1;1�R3�jhj2=5; �17�

where KT is a constant that depends on T (more precisely on the constant CT in
(6)) and on kBkL1�S2;W1;1�R3��.
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Proof. Let � 2 D�R3
v�. We have�

R3

Q�� f ; f ��v���v�dv �
�

v;v�;!
f �v0� f �v0��B�v ÿ v�; !���v�d!dv�dv: �18�

By changing pre/post-collisional variables, (18) becomes�
R3

Q�� f ; f ��v���v�dv

�
�

v;v�
f �v� f �v��

�
!

B�v ÿ v�; !���v ÿ ��v ÿ v�� � !�!�d!
� �

dv�dv: �19�

Let us set

Z�v; v�� �
�
!

B�v ÿ v�; !���v ÿ ��v ÿ v�� � !�!�d!; �20�
which depends neither on t nor on x and belongs to L1�R3 � R3�. As a matter of
fact, we have

kZkL1�R3�R3�4 4�kBkL1�R3�S2�k�kL1�R3�:

Let us take a mollifying sequence � "�">0 of functions of v. Thanks to (19), we
get�

R3

Q�� f ; f ��v���v�dv

�
�

v;v�
f �v� f �v��

�
w;w�

Z�w;w�� "�v ÿ w� "�v� ÿ w��dw�dw

� �
dv�dv

�
�

v;v�
f �v� f �v��

� �
w;w�
�Z�v; v�� ÿ Z�w;w���

 "�v ÿ w� "�v� ÿ w��dw�dw

�
dv�dv: �21�

We name I1 (respectively I2) the ®rst (respectively second) integral in (21). They
are functions of t 2 R� and x 2 R3.
� Estimate on I1. The integral I1 can be rewritten as

I1 �
�

w;w�
Z�w;w��� "��ÿw�� f ��t; x�� "��ÿw��� f ��t; x�dw�dw;

where � � f � denotes the average quantity of f with respect to  .
Let us study the norm k�hI1 ÿ I1kL2��0;T ��R3�, for h 2 R3, with the notation

�hg�x� � g�x� h�.
The following equality holds�

t;x

j�hI1 ÿ I1j2dxdt

�
�

t;x

���� �
w;w�

Z�w;w���� "��ÿw�� f ��t; x� h�� "��ÿw��� f ��t; x� h�

ÿ � "��ÿw�� f ��t; x�� "��ÿw��� f ��t; x��dw�dw

����2dxdt:
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We immediately get�
t;x

j�hI1 ÿ I1j2dxdt

4CkZk2
L1�R3�R3�

�
�

t;x

dtdx

���� �
w;w�
j�� "��ÿw�� f ��t; x�h�ÿ� "��ÿw�� f ��t; x��� "��ÿw��� f ��t; x�h�

� � "��ÿw�� f ��t; x��� "��ÿw��� f ��t; x� h� ÿ � "��ÿw��� f ��t; x��jdw�dw

����2
4CkZk2

L1�R3�R3�

�
� �

t;x

dtdx

���� �
w;w�

j���h ÿ Id�� "��ÿw�� f ���t; x��h� "��ÿw��� f ��t; x�jdw�dw

����2
�
�

t;x

dtdx

���� �
w;w�
j���h ÿ Id�� "��ÿw��� f ���t; x�� "��ÿw�� f ��t; x�jdw�dw

����2 �:
In the previous inequality, the two terms can be similarly treated. For example, let
us study the second one, which we name J.

J �
�

t;x

�
w

� "��ÿw�� f ��t; x�dw

� �2 �
w�
���h ÿ Id�� "��ÿw��� f ���t; x�
�� ��dw�

� �2

dxdt

4CT

�
t;x

�
w�
���h ÿ Id�� "��ÿw��� f ���t; x�
�� ��dw�

� �2

dxdt;

where CT is the constant in (6). Let us choose 0 < � < � < 1=2. Using the
notation T� as in Section 2.1, we have

J4CT

�
w�

eÿ�jw�j
2

dw�

� � �
t;x;w�
���h ÿ Id�� "��ÿw��� f ���t; x�2e�jw�j

2

dw�dxdt

� �
4CT ;�jhj

�
w�

dw�e�jw�j
2

� "��ÿw��T�
f

T�

� �



 



2

L2��0;T �;H1=2�R3��
:

Then, thanks to the averaging lemma (Lemma 1), we obtain

J4CT ;�;sjhj
�

w�
dw�e�jw�j

2

�
� �

x;v�

fin�x; v��2
T��v��2

 "�v� ÿ w��2T��v��2�1� jv�j2�sdv�dx

�
�

t;x;v�
�@t � v� � rx� f

T�

� �
�t; x; v��2

�  "�v� ÿ w��2T��v��2�1� jv�j2�sdv�dxdt

�
:
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Let us take care of the term with fin (the other one is treated in the same way thanks
to (15)). We notice that, for any w� 2 B�v�; "�,

e�jw�j
2

4 e2�jv�j2 e2�"2

:

We thus have�
w�

e�jw�j
2

�
x;v�

fin�x; v��2
T��v��2

 "�v� ÿ w��2T��v��2�1� jv�j2�sdv�dxdw�

4
�

x;v�

fin�x; v��2
T��v��2

T��v��2�1� jv�j2�s
�

w�2B�v�;"�
e�jw�j

2

 "�v�ÿ w��2dw�

 !
dv�dx

4
�

x;v�

fin�x; v��2
T��v��2

T�ÿ��v��2�1� jv�j2�se2�"2k "k2
L2 dv�dx

4
�e�M�ÿ�;s�2

"3

fin

T�





 



2

L2�R3�R3�
;

for 0 < " < 1. Note that we have used that k "k2
L2 4 "ÿ3 and M�ÿ�;s is de®ned by

(10). Hence we get, thanks to (11),

J 4
C�;�;s

"3
;

and ®nally

k�hI1 ÿ I1k2
L2��0;T ��R3�4C�;�;skZk2

L1�R3�R3�"
ÿ3jhj: �22�

� Estimate on I2. Let us now study the norm k�hI2 ÿ I2kL2��0;T ��R3�, with the
same notation �h as before. We successively have

k�hI2 ÿ I2k2
L2��0;T ��R3�

�
�

t;x

dtdx

���� �
v;v�
� f �t; x� h; v� f �t; x� h; v�� ÿ f �t; x; v� f �t; x; v���

�
�

w;w�
�Z�v; v�� ÿ Z�w;w��� "�v ÿ w� "�v� ÿ w��dw�dw

� �
dv�dv

����2
4CkZk2

W1;1�R3�R3�

�
w

jwj "�w�dw

� �2

�
t;x

dtdx

�
v;v�
��h � Id��j f �t; x; v� f �t; x; v��j�dv�dv

� �2

:

Thanks to (6), the second integral term is bounded by a constant KT 5 0. Hence
there exists a constant CT 5 0 such that

k�hI2 ÿ I2k2
L2��0;T ��R3�4CTkZk2

W1;1�R3�R3�"
2: �23�

On the Singularities of the Boltzmann Equation 99



� Estimate on the average quantity. Under Assumption 1, the following
inequalities clearly hold

kZkL1�R3�R3�4Ck�kL1�R3�; �24�
kZkW1;1�R3�R3�4Ck�kW1;1�R3�; �25�

where C is a constant depending on T and kBkL1�S2;W1;1�R3��. Consequently, using
(21)±(25), we get, for h 2 R3,�

t;x

���� �
v

�Q�� f ; f ��t; x� h; v� ÿ Q�� f ; f ��t; x; v����v�dv

����2dxdt

4KTk�k2
W1;1�R3��"2 � "ÿ3jhj�;

that gives (17), if we choose " ' jhj1=5
. &

2.2.2. Study of Q�� f ; f �. Let us once again choose a mollifying sequence
� ���>0 of functions of v. We obviously have, for all � > 0,

Q�� f ; f � � �Q�� f ; f � ÿ  � �v Q�� f ; f �� �  � �v Q�� f ; f �:
Note that, thanks to (17), for any h 2 R3 and � > 0,�

t;x

���� �
w

�Q�� f ; f ��t; x� h;w� ÿ Q�� f ; f ��t; x;w�� ��v ÿ w�dw

����2dxdt

4Ck ��v ÿ ��k2
W1;1�R3�jhj2=5

4C�ÿ8jhj2=5: �26�
On the other hand, we know that thanks to the regularizing properties of Q�

(cf. [3]), for all R > 0,

kQ�� f ; f � ÿ  � �v Q�� f ; f �kL2��0;T ��BR�BR�4C�: �27�
Using again the translations �h �h 2 R3� in the variable x, and assuming that

jhj4 1, we successively have�
�t;x;v�2�0;T��BR�BR

��hQ�� f ; f � ÿ Q�� f ; f ��j j2dvdxdt

4C

� �
t;x;v

�Q�� f ; f � ÿ  � �v Q�� f ; f ���t; x; v�j j2dvdxdt

�
�

t;x;v

��h� � �v Q�� f ; f �� ÿ  � �v Q�� f ; f ���t; x; v�j j2dvdxdt

�
4CR��2 � jhj2=5�ÿ8�; �28�

thanks to (26)±(27). Then for a good choice of ��' jhj1=25� in (28), we ®nd the
following estimate�T

0

�
�BR�x

�
�BR�v
j�hQ�� f ; f � ÿ Q�� f ; f �j2dvdxdt

 !1=2

4Cjhj1=25;

that ensures that Q�� f ; f �2 L2��0;T �� �BR�v; H���BR�x��, for any 0<�<1=25.
Besides, we already know that Q�� f ; f � 2 L2��0;T � � ��BR�x�; H1��BR�v��.
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Then, by a standard interpolation result, we can state that for all � 2�0; 1=25�,
Q�� f ; f � 2 L2��0;T �; H�

loc�R3 � R3��: �29�
Let us now justify (7). Note that, at least formally, (7) is easily rewritten as

f #�t; x; v� � exp ÿ
�t

0

Lf #��; x; v�d�
� �

�
�

fin�x; v� �
�t

0

�
Q�� f ; f �#�s; x; v�

exp

��s

0

Lf #��; x; v�d�
��

ds

�
; �30�

where we set

h#�t; x; v� � h�t; x� vt; v�:
In (30), we name E1 the ®rst exponential term in the previous product, and E2 the
whole integral term with Q�.

We ®rst notice that since Lf has the same H1=2 smoothness in both variables x
and v, it is clear that Lf # 2 L2��0; T �; H

1=2
loc �R3 � R3��. In the same way, Q�� f ; f �#

lies in L2��0; T �; H�
loc�R3 � R3�� for all � 2�0; 1=25�.

Besides, we have, for any h 2 L2��0; T � : H��BR �BR��;R > 0; � 2 �0; 1=25�,�T

0

�t

0

h���d�




 



2

L2��0;T �;H��BR�BR��
dt 4T2khk2

L2��0;T �;H��BR�BR��: �31�

Using (31) with h � Lf #, we immediately obtain that for any t 2 �0;T �,�t

0

Lf #���d� 2 L2��0; T �; H
1=2
loc �R3 � R3��:

Its time derivative is exactly Lf # which also lies in L2��0; T �; H
1=2
loc �R3 � R3��.

Consequently, we have proven that�t

0

Lf #���d� 2 H1
loc�R�; H

1=2
loc �R3 � R3�� � H

1=2
loc �R� � R3 � R3�:

Since x 7! ex is a bounded C1 function on �ÿT max Lf ; T max Lf �, we can
conclude that E1 belongs to H

1=2
loc �R� � R3 � R3�.

Then we notice that E2 is the integral of the product of two terms which are
both in A � L2��0; T �; H�

loc�R3 � R3�� \ L1�R� � R3 � R3� for all � 2 �0; 1=25�.
The previous vector space A is in fact an algebra, so E2 is the integral of a term that
lies in A. Using once again (31), we ®nd that E2 belongs to H�

loc�R� � R3 � R3�
for all � 2 �0; 1=25�.

Since E1 and E2 are obviously in A; ~ÿ1 � E1 and ~ÿ2 � E1 � E2 lie in A too, so
that both quantities belong to H�

loc�R� � R3 � R3� for all � 2�0; 1=25�.
And then, from (30) back to the standard formulation, we obtain (7) with the

required smoothness on both ÿ1 and ÿ2, because ~ÿ1 and ~ÿ2 have the same
smoothness in the three variables t, x and v.

Remark. In this proof, we have only considered cross sections B lying in
L1�S2; W1;1�R3��, which covers the case of Maxwellian molecules and regularized
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soft potentials (with angular cutoff). We brie¯y explain here how to transform the
proof to get a result in the case of hard potentials (with angular cutoff) or hard
spheres.

Note ®rst that the solutions of [19], which have an exponential decay in both x
and v, are replaced by solutions with an algebraic decay in at least one of the
variables, like those of [2] or [20]. Then, throughout the proof, if the algebraic decay
concerns the variable v, the function T� is replaced by S��v�� � �1� jv�j2�ÿ

�
2. The

estimate on
Q�� f ; f �

S�
becomes then more intricate (but is still valid).

Then, one has to replace the estimates in W1;1 by estimates in C0;� (except for
hard spheres) because the cross sections of hard potentials are only H�older
continuous, not Lipschitz continuous.

Finally, the L1 estimates must be replaced by weighted L1 estimates because
the cross sections of hard potentials (and hard spheres) tend to in®nity when jv ÿ v�j
tends to in®nity. At the end, the exponent in the Sobolev space is less than 1/25 (and
may be very small for hard potentials close to Maxwellian molecules).

3. Smoothness Estimates

We give in this section the proof of theorem 3. Thanks to our assumption on B
and to the L1-estimate (6) of theorem 1, we can directly estimate the derivatives of
f using a Gronwall type lemma, namely

Lemma 2. We suppose that, for some T > 0; �Ut�t2�0;T � is a family of uniformly

bounded linear operators from L1�R3
x � R3

v�P to L1�R3
x � R3

v�P, for P 2 N, and
S 2 L1��0;T �t � R3

x � R3
v�P. We also assume that g 2 L1��0;T �t � R3

x � R3
v�P\

C��0; T �t; L1w� �R3
x � R3

v�P� satis®es the equation

@tg� v � rxg � Utg� S; �32�
in the sense of distributions. Then there exists a constant CT only depending on T,
supt2�0;T �jkUtjkL1�R3�R3�P and kSkL1��0;T ��R3�R3�P , such that

kgkL1��0;T ��R3�R3�P 4CT�1� kg�0�kL1�R3�R3�P�:
Proof. We use, for any h 2 L1��0; T � � R3 � R3�P, the standard notation

h#�t; x; v� � h�t; x� vt; v�: �33�
Equation (32) can be written under the Duhamel's form

g#�t; x; v� � g�0; x; v� �
�t

0

S#�s; x; v�ds�
�t

0

�Us�g��#�s; x; v�ds:

Taking L1 norms, we get

kg�t�kL1�R3�R3�P 4 kg�0�kL1�R3�R3�P � TkSkL1��0;T ��R3�R3�P

� sup
�2�0;T �

jkU�jkL1�R3�R3�P
�t

0

kg�s�kL1�R3�R3�P ds:

Then lemma 2 is an immediate consequence of Gronwall's lemma. &
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3.1. Derivatives with respect to x. We ®rst study the derivatives of f with
respect to x. Using the fact that Q only acts on the variable v, we can give an
intermediate result, in which the smoothness of fin with respect to v is not required.
We recall that a very similar result, in a slightly different context, is given in [20].

Proposition 6. Let B be a cross section satisfying Assumption 1 and such that
B 2 L1�R3 � S2� and fin be an initial datum such that (5) holds. If, moreover,
rp

x fin 2 L1�R3
x � R3

v� for p � 1; . . . ; k, then the solution f to (1) given by Theorem
1 is such that rp

x f 2 L1��0; T �t � R3
x � R3

v� for p � 1; . . . ; k and T > 0.

Proof. We introduce the quantities

�1
h f �t; x; v� � f �t; x1 � h; x2; x3; v�; �34�

R1
h f � �

1
h f ÿ f

h
; h 6� 0; �35�

and, in the same way, �2
h ; �

3
h ;R

2
h and R3

h.
Applying Ri

h to (1), we get

@t�Ri
h f � � v � rx�Ri

h f � � �Ri
h f ��� i

hLf � � f �LRi
h f �

� Q��Ri
h f ; � i

h f � � Q��f ;Ri
h f �: �36�

We now use Lemma 2 with S � 0; g � Ri
h f and

Ut � Q���; � i
h f �t�� � Q�� f �t�; �� ÿ ��� i

hLf �t�� ÿ f �t��L��: �37�
Since f 2 L1��0;T � � R3 � R3�, it is quite easy to see that each term of Ut is
a bounded operator of L1�R3 � R3� the norm of which is smaller than
kAkL1�R3�k fkL1��0;T ��R3�R3�. We just show the computation for the ®rst term.

kQ��g; � i
h f �kL1�R3�R3�

� sup
�x;v�2R3�R3

�
v�2R3

�
!2S2

g�x; v0�� i
h f �x; v0��B�v ÿ v�; !�d!dv�

���� ����;
and then it is clear that

kQ��g; � i
h f �kL1�R3�R3�4 kgkL1�R3�R3�k fkL1��0;T ��R3�R3�kAkL1�R3�:

Thanks to Lemma 2, we obtain for any T > 0 a constant CT independent on h such
that

kRi
h fkL1��0;T ��R3�R3�4CT�1� kRi

h finkL1�R3�R3��:
Using now the fact that rx fin 2 L1�R3 � R3�, we see that, for all i 2 f1; 2; 3g;Ri

h

is uniformly bounded with respect to h in L1��0; T � � R3 � R3�, so that

rx f 2 L1��0; T � � R3 � R3�
for any T > 0.

The equation satis®ed by @xi
f is the same as (36), but with h � 0, namely

@t�@xi
f � � v � rx�@xi

f � � Q��@xi
f ; f � � Q�� f ; @xi

f �
ÿ �@xi

f �Lf ÿ f �L@xi
f �: �38�
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Applying R
j

h to this equation, we get

@t�R j
h@xi

f � � v � rx�R j
h@xi

f �
� Q��R j

h@xi
f ; � j

h f � � Q��@xi
f ;R j

h f �
� Q��R j

h f ; � j
h @xi

f � � Q�� f ;Rj
h@xi

f �
ÿ �R j

h@xi
f ��� j

h Lf � ÿ �@xi
f ��LR

j
h f � ÿ �R j

h f ��� j
h L@xi

f � ÿ f �LR
j

h@xi
f �:

At this level, we use Lemma 2 with

S � Q��@xi
f ;R j

h f � � Q��R j
h f ; � j

h @xi
f �

ÿ �@xi
f ��LR

j
h f � ÿ �R j

h f ��� j
h L@xi

f �
and Ut is still given by (37).

Using the fact that f ;rx f 2 L1��0; T � � R3 � R3�, it is easy to see that S is
bounded in L1��0;T � � R3 � R3� uniformly with respect to h.

Thanks to lemma 2 and the assumption that rxrx fin 2 L1�R3 � R3�, we see
that R

j
h@xi

f is bounded (uniformly in h) in L1��0; T � � R3 � R3� for all T > 0,
i; j 2 f1; 2; 3g, so that ®nally rxrx f 2 L1��0;T � � R3 � R3�.

The derivatives of higher order of f w. r. t. x are then obtained by a simple
induction, in which only the source term is changed. &

3.2. Derivatives with respect to v. We now turn to the derivatives with respect
to v. Since the proof gets quite intricate, we shall directly use derivatives in the
sense of distributions, instead of precisely writing down quantities like Rh f . Note
however that a complete justi®cation of our computations would require the use of
such quantities.

We ®rst write down the equation satis®ed by @vi
f for i 2 f1; 2; 3g:

@t�@vi
f � � v � rx�@vi

f � � ÿ@xi
f ÿ �@vi

f ��Lf � ÿ f �L@vi
f � � @vi

Q�� f ; f �: �39�
Using [3], note that we could immediately deduce from (39) that rv f lies in
L1loc��0;T �t � R3

x ; L2
loc�R3

v��, under a slightly more stringent assumption on B.
However, we rather use a more elementary method, which directly gives

estimates in the L1 setting.
Thanks to our study of the derivatives of f with respect to x, we shall be able to

put the term rx f in the source, and conclude with Lemma 2. Note that it was
important to ®rst treat the derivatives with respect to x.

We now study @vi
Q�� f ; f �. Let us denote, for a given �t; x� 2 R� � R3, the

functions

F : R3 � R3 � S2 ! R

�Z; z; !� 7! f �Z � ��zÿ Z� � !�!�
f �zÿ ��zÿ Z� � !�!�;

and

G : R3 � R3 ! R

�Z; z� 7!
�

z�2R3

�
!2S2

F�Z; z�; !�B�zÿ z�; !�d!dz�:
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Note that

G�Z; z� �
�
!2S2

�F�Z; �; !� �z B��; !���z�d!;

and that

G�v; v� � Q�� f ; f ��v�; v 2 R3:

We have, for i 2 f1; 2; 3g,

@vi
Q�� f ; f ��v� � @G

@Zi

�v; v� � @G

@zi

�v; v�

�
�
!2S2

@F

@Zi

�v; �; !� � @F

@zi

�v; �; !�
� �

� B��; !�
� �

�v�d!: �40�

With obvious notations, it is easy to compute

@F

@Zi

�Z; z; !� � ��ei ÿ !i!� � rv f �Z 0�� f �z0� � �!i! � rv f �z0�� f �Z 0� �41�

and, in the same way,

@F

@zi

�Z; z; !� � �!i! � rv f �Z 0�� f �z0� � ��ei ÿ !i!� � rv f �z0�� f �Z 0�: �42�

Taking (40)±(42) into account, it is clear that @vi
Q�� f ; f � � Ht�rv f � is linearly

depending on rv f , and that

@F

@zi

� @F

@Zi





 




L1

4 2k fkL1krv fkL1 : �43�

Using the L1-estimate (6) on f, we get, for some constant CT > 0,

krvQ�� f ; f ��t�kL1�R3�R3�4CTkrv f �t�kL1�R3�R3�; 04 t < T : �44�
We are now in a position to apply Lemma 2, with

S � ÿrx f

and

Ut � Ht��� ÿ ��Lf � ÿ fL���:
We get at the end that, for any T > 0, there exists CT > 0 such that

krv fkL1��0;T ��R3�R3�4CT�1� krv finkL1�R3�R3��:
Note that the constant CT in (44) depends in fact on krx finkL1 , so that we really
need that fin 2 W1;1�R3 � R3� to conclude that

rv f 2 L1��0; T � � R3 � R3�:
In order to study the second derivatives of f with respect to v, we are led to

consider the derivatives @2
xivj

f and @2
vivj
�Q�� f ; f ��. More precisely, we ®rst prove

that rxrv f 2 L1, and then we can conclude that rvrv f 2 L1.
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We recall that, for a given i 2 f1; 2; 3g; @xi
f satis®es equation (38). Conse-

quently, the derivative @2
xivj

f ; j 2 f1; 2; 3g, veri®es

@t�@2
xivj

f � � v � rx�@2
xivj

f � � ÿ �@2
xivj

f ��Lf � ÿ f �L@2
xivj

f �
� @vj

�Q��@xi
f ; f � � Q�� f ; @xi

f ��
ÿ �@xi

f ��L@vj
f � ÿ �@vj

f ��L@xi
f � ÿ @2

xixj
f : �45�

We want to apply Lemma 2. It is clear that the last three terms in (45) lie in
L1��0; T � � R3 � R3�. In the same way as in the study of rvQ�� f ; f ��t�, we can
prove that both @vj

Q��@xi
f ; f ��t� and @vj

Q�� f ; @xi
f ��t� are linearly depending on

rv�@xi
f � and that

krvQ��@xi
f ; f ��t�kL1�R3�R3�

krvQ�� f ; @xi
f ��t�kL1�R3�R3�

�
4KTkrv�@xi

f ��t�kL1�R3�R3�;

for some constant KT > 0.
Then, using Lemma 2, we get

rv�@xi
f � 2 L1��0; T � � R3 � R3�

for any T > 0.
Let us study the second derivatives of Q�� f ; f � with respect to v. From (40),

we immediately compute that

@2
vivj

Q�� f ; f ��v�

�
�
!2S2

��@2
ZiZj

F � @2
Zizj

F � @2
ziZj

F � @2
zizj

F��v; �; !� � B��; !���v�d!:

It is then clear that rvrvQ�� f ; f ��t� � It�rvrv f � linearly depends on
rvrv f and that, for any T > 0, there exists a constant KT depending on
T ; k fkL1��0;T ��R3�R3� and krv fkL1��0;T ��R3�R3�, such that

krvrvQ�� f ; f ��t�kL1�R3�R3�4KTkrvrv f �t�kL1�R3�R3�:

We are now able to prove that the derivative rvrv f lies in L1��0; T ��
R3 � R3� for any T > 0. Let us write down the equation satis®ed by @2

vivj
f . For

i; j 2 f1; 2; 3g, we have

@t�@2
vivj
� � v � rx�@2

vivj
�

� ÿ�@2
xivj

f � @2
vixj

f � �@vj
f ��L@vi

f � � �@vi
f ��L@vj

f ��
ÿ �@2

vivj
��Lf � ÿ f �L@2

vivj
� � @2

vivj
Q�� f ; f �: �46�

We apply Lemma 2 with P � 6, where S is the vector whose coordinates are like
the term in brackets in (46), and Ut � ÿ � �Lf � ÿ fL��� � It���. Then, for any
T > 0, we ®nd a constant CT > 0 such that

krvrv fkL1��0;T ��R3�R3�4CT�1� krvrv finkL1�R3�R3��:
That ends the study of the second derivatives of f with respect to x; v.

106 L. Boudin and L. Desvillettes



In order to study the smoothness of the derivatives of p-th order, p5 3, of f
with respect to x; v, we use an induction on p. Once we know that all derivatives of
f with respect to x; v of order 4 pÿ 1 is bounded, we study, for any i1; � � � ; ip 2
f1; 2; 3g; @ pf

@xi1
� � � @xipÿ1

@vip

, then
@ pf

@xi1 � � � @xipÿ2
@vipÿ1

@vip

; . . ., up to
@ pf

@vi1
� � � @vip

(in

this order).

Note that we do need that fin 2 Wp;1 of both x and v variables to conclude that
the derivatives of p-th order with respect to v only lie in L1��0; T � � R3 � R3� for
all T > 0.

3.3. Derivatives with respect to t. As we did in Subsection 3.2, we use
derivatives in the sense of distributions.

From (1)±(2), we immediately obtain that

@t f � ÿv � rx f � Q�� f ; f � ÿ f Lf : �47�
Using (6), it is clear that

@t f 2 L1loc�R� � R3 � R3�: �48�
We next study, for a given i 2 f1; 2; 3g, the term @2

txi
f . In fact, we know that

@xi
f satis®es equation (38), which similarly implies that

@2
txi

f 2 L1loc�R� � R3 � R3�: �49�
Then we differentiate (47) with respect to t and get

@2
tt f � ÿv � rx�@t f � � Q�� f ; @t f � � Q��@t f ; f � ÿ �@f f ��Lf � ÿ f �L@t f �:

Using (6), (48) and (49), we obtain that

@2
tt f 2 L1loc�R� � R3 � R3�:

Besides, from (39) and the estimates on f ;rx f ;rv f ;rxrv f ;rvQ�� f ; f �, it is
clear that

@2
tvi

f 2 L1loc�R� � R3 � R3�:
Then we conclude by induction in the same way as in Subsection 3.2, by ®rst

studying the mixed derivatives with respect to x and t, and next ®nding the
smoothness of the mixed derivatives with respect to t, x and v.
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