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1. Introduction

The Boltzmann equation is a standard model of the kinetic theory of gases (cf.
[5], [6], [7], [23]). It reads

Of +v-Vif =0(f, f), (1)

where f(z,x,v) is the density of particles of the gas which, at time ¢ € R, and
position x € R3, have velocity v € R, and Q is a quadratic collision operator
which only acts on the variable v and reads

0" (F0x ) = | el B~ vowldedo, ()
Lg(t,x,v) = J J g(t,x,v,.)B(v — vy, w)dwdv,. (4)
0.€R Jwes?

The post-collisional velocities ' and v/, are here parametrized by

Vo= v+ (v —v) - ww,
v, = oo — (v —v) - ww.
Therefore,

Lg=Ax,g,

with

AZ) = J _ Blew)de
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The cross section B depends on the type of interactions between the particles of
the gas. In this paper, we shall always make the so-called ‘“‘angular cutoff
assumption of Grad” (cf. [12]). We shall even limit ourselves to cross sections
which satisfy the following assumption:

Assumption 1. The nonnegative cross section B lies in L®(S%; WH>(R?)).

Note that the classical cross sections of Maxwellian molecules or regularized
soft potentials (with angular cutoff) satisfy this assumption. The case of hard
potentials (with angular cutoff), which do not satisfy this assumption, is briefly
discussed in a remark at the end of Section 2.

The Cauchy problem for equation (1) in R, x R* x R* has been studied by
various authors. Global renormalized solutions have been proven to exist for a
large class of initial data by DiPerna and P.-L. Lions in [9] (cf. also [17]). Global
solutions (in the whole space) close to the equilibrium have been studied by Imai
and Nishida in [15] and Ukai and Asano in [24].

Finally, global solutions for small initial data were introduced by Kaniel and
Shinbrot (cf. [16]) and studied by Bellomo, Palczewski and Toscani (cf. [1]),
Bellomo and Toscani (cf. [2]), Goudon (cf. [11]), Hamdache (cf. [13]), Illner and
Shinbrot (cf. [14]), Lu (cf. [18]), Mischler and Perthame (cf. [19]), Polewczak (cf.
[20]) and Toscani (cf. [21], [22]).

In this paper, we study how the L? singularities of the initial datum are propagated
by equation (1). This question seems very difficult to tackle in the general framework
of renormalized solutions, because of the lack of L*>-estimates in this setting.

We shall therefore concentrate on the case of small initial data, where such
estimates are available. We think that our work is likely to extend to solutions
close to the equilibrium, but we shall not investigate this case.

We recall one of the theorems of existence of such small solutions. We use a
formulation adapted to our study, which is inspired from [19].

Theorem 1. Let B be a cross section satisfying Assumption 1 and f,, be an
initial datum such that, for all (x,v) € R* x R?,

0 < fuli ) < (1A exp (=55 + 1) ). )

Then there exists a global distributional solution f to (1) with initial datum fi,, such
that for all T > 0,t € [0,T] and (x,v) € R® x R?,

1
0 <f(t,x,v)<Cr exp<—5 (Ix — v + |v|2)> := Mr(t,x,v), (6)

where Cr is a constant only depending on T and ||A|| .

We give in Section 2 the precise form of the singularities of the solution to the
Boltzmann equation (in our setting). Our main theorem is

Theorem 2. Let B be a cross section satisfying Assumption 1 and f;, be an initial
datum such that (5) holds. Then we can write, for all (t,x,v) € R, x R® x R?,

f(t7x7 U) :ﬁn(x — L, U)Fl(t7x7 U) + FZ(ta X, ’U).
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where T'1,T5 € HZ (R, x R* x R®) for all o €]0,1/25].

Remarks.

e This theorem shows that the singularities of the initial datum (that is, for
example, the points around which f;, is in L? but not in H* for any s > 0) are
propagated with the free flow, and decrease exponentially fast (since in fact I'; has
an exponential decay).

e Theorem 2 ensures that, if f(r) € H*(R® x R®) for some >0, then
fin € H*(R® x R®) (for s < 1/25), so that no smoothing can occur. This (less
precise) result could however probably be obtained with a simpler method.

e The exponent 1/25 given here is probably not the best one. In order to get the
optimal result, one would need to perform many more complicated computations.

e Note that, in the setting of the Boltzmann equation we consider here, it has
already been noticed that some memory of the initial datum is preserved by
f(t,-,-) for all £ > 0, as can be seen on the asymptotic behaviour when ¢ goes to
+00, or, more precisely, on the limit when t — 400 of f(t,x + tv, v) (cf. [22],

[18]).

The proof of Theorem 2 uses the regularizing properties of the kernel O, first
studied by P-L. Lions in [17], and extended by Wennberg in [25] and by Bouchut
and Desvillettes in [3]. Note that those properties are exactly what is needed to give
the form of the singularities of the solutions to the spatially homogeneous
Boltzmann equation (with angular cutoff). In order to conclude in our inhomo-
geneous setting, we also have to use the averaging lemmas of Golse, P.-L. Lions,
Perthame and Sentis (cf. [10]).

In Section 3, we give a short proof of a complementary result (that is, the
propagation of smoothness instead of the propagation of singularities), under a
slightly more stringent assumption. Namely, we show that the smoothness (with
respect to ¢,x, v) of the solution f to equation (1) at time ¢ > 0 obtained by theorem
1 is at least as good as that of fi,(inx, v). Note that since our solutions satisfy an
L*> bound, theorem 2 is enough to show this propagation of smoothness as long as
Sobolev spaces H* with s < 1/25 are concerned. The theorem that we give here
deals with higher derivatives.

Theorem 3. Let B be a cross section satisfying Assumption 1 and such that
B € L'(R® x §?) and fi, be an initial datum such that (5) holds. If. moreover,
fin € WE(R? x R®) for some k € NU {oc}, then the solution f to (1) given by
Theorem 1 varifies

feWSP(Ry x B x R).
Remark. The propagation of smoothness in a very close setting, but only with

respect to the variable x, has already been obtained by Polewczak in [20].

2. Propagation of Singularities

This section is devoted to the proof of Theorem 2. The main idea is the
following: we write down the Duhamel form of the solution of equation (1). This is
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also called the mild exponential form. For (¢,x,v) € R, X R? x R®, we have
!
f(t,x,v) = fin(x — vt, v)exp (— J Lf(o,x — v(t — o), v)do)
0
!
[ |erwnea =90
0

exp (- JZ Lf(o,x — vt — o), v)do)] ds. (7)

s

We are going to prove that both Lf and Q* (£, f) lie in L2 .(R; HE (R* x R?)) for
any a €]0, 1/25[. In order to get this result, we use on the one hand the analysis of
regularity of Q% in the variable v initiated in [17] and developed in [25] and [3],

and on the other hand the averaging lemmas of [10].
2.1. Regularity of Lf. We here prove the following result.

Proposition 4. If B satisfies Assumption 1 and fi, is such that (5) holds, for any
T > 0 and any R > 0, we have

L | 220,770 2 (rx )y < KTRIIAl 1 (2)

where Kt g is a constant which depends on T (more precisely, on the constant Cr
in (6)) and R.

Let us choose T > 0. Since Lf is a convolution with respect to v, we obviously
have that, under Assumption 1, Lf € L*([0, T}, x [R{i;Hllo/cz([Ri)) (in fact, it lies in
L2([0,T], x R3; Wh(R3))) and satisfies

loc
LF 20,710, 0025,)) < Ko Al () -
It remains to prove that Lf € L*([0, T], x Rz;Hll/z([R?)).

ocC X

Let us define the function Ty,0 < A < 1/2, by Ty(v,) = e **, and study the
following quantity

2
LA N2 o,y x o2 (3

-1,

We want to use the averaging lemma of [10], which we here recall in a version
very close to that of [4], where the optimal smoothness in the variable 7 is not
given, but where the dependence with respect to the averaging function is kept.

Lemma 1. Let f € C([0,T],; L3(R} x R)))) solve the equation

w
Of +v.-Vof=g in]0,T[xR* x R?,

for some g € L*([0,T] x R® x R3). Then, for any 1) € Z(R?), the average quantity
defined by

2
J A(v—v)(f(t,x + h,v) — f(t,x, v,))dv, dx%dvdl. (8)

pHs) = | e )i(w)d,
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belongs to L*([0,T]; H'/>(R?)) and satisfies, for any s > 1,

||Pw(f)||i2([o,T];H1/2(R3)) <G

j £0,2, 0) P () (1 + o2 dv.d

+J |8(t,x, v ) P[p(v) P (1 + [v.]?) dv.ddt |
1.X,Uy

where Cy is a constant only depending on s.

Using Lemma 1, (8) becomes, for any s > 1 and any open ball % of R®,

2
LAz 10,7, x 0, 1728

f
< J pA( = )T (T—)

o [ [t
vERBR X, Vs

Tx(v)
|
1,X,0,

x |A(v = v)[F|Ta(v) (1 + |v*|2)sdv*dxdt] dv

2

dv
L2([0,T];H'2(RY))

2
A (0 = 0) P Ta (0) (1 + [0 ) dv.dx

2

S
(8t + Uy Vx) T/\

2
<CR,SM§.5||A||L°O(R3>
2

2
X ‘fm +H(8,+U~Vx)f , 9)
) L2(R3xR3) ) L2([0,T]xR* xR?)
where Cg is a constant and
Mys = sup [T(v.)(1+]o.]*)"?). (10)

v, €R?

Note that, since we have (5), the following estimate holds

< Jin(x, v) < e /2601720
T\(v)
where k is an absolute constant, so that (recall that 0 < A < 1/2) we can find a
constant Cy > 0 such that

‘ fin <G (11)
Ty L(R*xR)
Moreover, we have
f|_ 107 ) | IS
V)| < . 12
‘(3;—1—1} V)T)\ T)\ + T)\ ( )
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It is clear, by (6), that
|f(t,x, v)Lf (¢, x, v)| - My (t, x, v)LM7(t, x, v)
Tx(v) b Tx(v)
< G 2m) | A e T,
Hence there exists a constant C) such that

Mf
Ty

< C). (13)
L2([0,T]x R3x R3)

It is also clear that, for (¢,x,v) € [0,T] x R* x R?,

’Q+<f7f)(tax7v)|_ 1 / / — Vs, w)dwdv
(o) =T.00) L*.wf(t,x,v)f(t,x, v, )B(v — vy, w)dwdv,
< Q+(MT,MT)([ X, ’U)
Tx(v)
_ My(t,x, v)LMr(t,x, v)
T)\(U) ’

so that

| &L <. (14)

L2([0,T] xR3 < R?)
Taking (13)—(14) into account, (12) implies that

f

o +0-v0

< C). (15)
L2([0,T]x R*x R?)

Then, using (11) and (15) in (9), we get
||Lf||i2([07 XREHV2 () S CyCIMS, JIA |7~
Recalling that Lf € L*([0,T], x R?; H, l/ 2([R@)) we finally obtain that

loc
Lf € L2([0, T); Hy (R} x RY)). (16)
2.2. Regularity of Q" (f, f).

2.2.1. Study of the average quantities of Q" (f, f) with respect to the velocity.
This part is devoted to the proof of the

Proposition 5. Let ¢ € 2(R3), B satisfying Assumption 1, and fi, such that (5)
holds. Then we have, for any T > 0 and h € R,
2

J J[Q+<f,f><r,x+h, 0) = O (f. ) (t.x, 0)]C(0)do| duds

< KT||§||€vlm(R3)|h\2/5a (17)

where K is a constant that depends on T (more precisely on the constant Cr in
(6)) and on HB||LOC(S2;W1.OC(R3)).
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Proof. Let ¢ € Z(R?). We have
| o neswan=| e sBo - nwsdsdndn. (8)

V, Vs, W

By changing pre/post-collisional variables, (18) becomes

| ot pen

= J f(v)f(vy) (J B(v— v, w)(v— ((v—vy) -w)w)dw)dv*dv. (19)
Let us ;et
Z(v,v,) = J B(v— v.,w)((v— ((v— ) - w)w)dw, (20)

which depends neither on # nor on x and belongs to L>(R* x R*). As a matter of
fact, we have

1210 g ey < 4B e (g o) €l oo -

Let us take a mollifying sequence (1).)_. , of functions of v. Thanks to (19), we
get

| e N
- | s (J 2000 )00 = w b o )
w| s H (Z(0,0.) — Z(w,w.)

Ye (v — w)he (v, — w*)dw*dw] dv.dv. (21)

We name I, (respectively ) the first (respectively second) integral in (21). They
are functions of 1 € R, and x € R>.
e FEstimate on I,. The integral I; can be rewritten as

I = J Z(Wa W*)pwg(-fw) (f) (ta x)pwg(.,wﬁ(f)(t,x)dw*dw,

where py(f) denotes the average quantity of f with respect to .

Let us study the norm 741y — 1| 2o 1wy, fOr h € R®, with the notation
8(x) = g(x + h).

The following equality holds

J |Th11 — 11|2dxdl
[

J tx

| z0nw oD+ B (P4 1)

2
= Pipe(-—w) (f)(fax)ﬂwg(-—w*)(f) (tv)C)]dw*dw dxdt.
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We immediately get

J |Th11 -1 |2dxdt
tx
2
<C||Z||L°G(R3><R3)

| 008 = po (D01 (1)

2

X J dtdx
t,x

+ Py (=) () (&, %) (i () () (8, + 1) — w ()8, %)) |dw.dw

2
SClZ| o xme)

X “ dtdx J
tx WW,

(7 = 1) Py, (- (F)) (8 X) T, () () (£, ) | dw.dw

2

+J dtdx
t.x

2
J |((Th - Id)p’l/’s('fw*)(f))(tvx)pd)s('fw) (f)(tvx)‘dw*dw :| .

In the previous inequality, the two terms can be similarly treated. For example, let
us study the second one, which we name J.

- (] p¢5<-—w>(f)(t7X)dW>2 ([ 163 = 13w x>|dw*)2dxdt

<Cr j (JW | (71 = 1d)pys () () (1, ) |dw*) 2dxdt,

where Cr is the constant in (6). Let us choose 0 < 8 < A < 1/2. Using the
notation 7 as in Section 2.1, we have

J<Cr (J eew*|2dw*> (J ((h = 1d) pys (- ( f))(t,x)zeew”zdw*dxdt)

f) :
P (-—w. T,\( ~
‘ N M go.myn ey

Then, thanks to the averaging lemma (Lemma 1), we obtain

J< Crlh| J dw, el

Wiy

< Crolh| J dw, eI

Wi

X [J fnlx,v.)° (v, — w, ) Ta(v) 2 (1 + |v,]*) dv,dx

w Th(v)?

+ Jr ((al + v, - Vy) ;:) (t,x,v,)*

X b (v, — wy) T (v,)*(1 + |v*|2)“'dv*dxdt].
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Let us take care of the term with fi, (the other one is treated in the same way thanks
to (15)). We notice that, for any w, € %(vs,¢),

ofw.l® < 20lv.[ o266
We thus have
[ et [ Bt 2020+ P,
Wi X, Vs T/\(U*)

<J B0 7 21 + o P J e (v, — . dw, | dv.d
X, T,\(’U*) Wi EB(vs,€)

2
in (X, Uk
S J I 0o )21+ o e s
X

5 Vs T/\('U*)z
< (eeM)\*G,S)z ‘
ST 3 )
€ MR xR?)

for 0 < € < 1. Note that we have used that ||'¢)5||iz < e and M)_y,, is defined by
(10). Hence we get, thanks to (11),
Cro,s

J =

N

)

and finally
2 2 _
Il = Tl 20 17xm%) < Onosl1Z ] oy LAl- (22)

e Estimate on L. Let us now study the norm |75 — D[ 2o 7jxre)> With the
same notation 7, as before. We successively have

2
[7ul> — 12||L2([0,T]xR3)

= J dtdx
tx

X <JWM (Z(0,0.) — Z(w, w))- (v — )b (v, — w*)dw*dw> dv.dv

j (Fx+ by ) £ty 02) — £(1, 3, 0) £ (1,3, 02)

2

2
< CZI P (} |w|¢5<w>dw)

Lx drdx (J (e300, 0) )dv*dv) }

5 Use

Thanks to (6), the second integral term is bounded by a constant Ky > 0. Hence
there exists a constant Cr = 0 such that

2 2
171d2 = Bl 20,115 < CrlIZllpnoe o iy €7 (23)
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e Estimate on the average quantity. Under Assumption 1, the following
inequalities clearly hold

||Z||L°Q(R3><[R3)gCHCHL%‘([R?)v (24)

1Z1 e e ey < ClICH e ety (25)
where C is a constant dependlng on Tand [|B||; (s y1(re))- Consequently, using
(21)—(25), we get, for h € R,

2

J J (O (f, )(t,x + h,v) — QT (f, £)(t,x,v)]¢(v)dv| dxdt

<KrCllinoe ) (€ + 7 D),
that gives (17), if we choose € ~ |h|1/5 O

2.2.2. Study of Q" (f, f). Let us once again choose a mollifying sequence
(1)s)s-( of functions of v. We obviously have, for all 6 > 0,

O (f, f) = (Q7(f. f) — s % QT (f, f)) + ths %0 QT (f, ).
Note that, thanks to (17), for any & € R and 6§ > 0,
2

J J'[Q+(f>f)(l,x+h,W)—Q+(f,f)(t,x,w)]@/15(v—w)dw dxdt

<Clls(v = ey [0
<C§5 3 |h*>. (26)

On the other hand, we know that thanks to the regularizing properties of Q"
(cf. [3]), for all R > O,

107 (f, f) = W5 %0 Q" (Fs Pl 20,17 x e x 0y < C6- (27)

Using again the translations 7, (h € R? ) in the variable x, and assuming that
|h| < 1, we successively have

Q" (f, f) — O (f, )] dvdxdt

J(t.x,v)e[O,T] X BRrXBR

<CH Q7 (f, £) = s %0 O (f+ 1)) (1, x, v)|dudxd

+ J |(Th(w5 *u Q+(f7 f)) - 7705 *p Q+(f7 f))(t,x, U)|2dUdth:|

< Cr(& + [n[PP57%), (28)

thanks to (26)—(27). Then for a good choice of §(~ |h\l/ 25) in (28), we find the
following estimate

. 1/2
(j j j 707 (f.f) — O (. f>|2dvdxdr> < Cln/>,
(%R), J (#r),

0

that ensures that Q" (f, f) € L*([0,T)x (%) ,; H*((#r),)), for any 0<a<1/25.
Besides, we already know that Q" (f, f) € L*([0,T] x ((#r),); H'((%&),))-
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Then, by a standard interpolation result, we can state that for all a €]0, 1/25],
Q" (f.f) € L([0.T]; Hiyo (R x RY)). (29)
Let us now justify (7). Note that, at least formally, (7) is easily rewritten as

f#(t,x,v) = exp (— Jt Lf* (o, x, v)da)

0

x (fin<x, 0+ L [Q*(f, £ (s.5,0)
exp ( L Lf* (o, x, v)da) } ds> , (30)

where we set
W (t,x,v) = h(t,x + ot, v).

In (30), we name E; the first exponential term in the previous product, and E, the
whole integral term with Q7.

We first notice that since Lf has the same H'/?> smoothness in both variables x
and v, it is clear that Lf# € L?(]0, T];HIIO/CZ(IRE3 x R?)). In the same way, O™ (f, )"
lies in L2([0, T]; H.(R® x R?)) for all a €]0, 1/25].

Besides, we have, for any h € L2([0,T] : H*(%x x %g)),R > 0,a € ]0,1/25],

JO J Woydo]|

2
. dt < T2||h||L2([O,T];H“(.:%R><;%R)). (3])
Using (31) with & = Lf#, we immediately obtain that for any ¢ € [0, T],

LZ([O,T];H”(-%R X%R))

t
| 17t € 20, 1 LR < ),
0
Its time derivative is exactly Lf# which also lies in L?(]0, T];Hllo/cz([RQ3 x RY)).
Consequently, we have proven that
t
J If*(0)do € HL (R, HYZ(RP x R?)) ¢ HZ(R, x RY x R?).
0

Since x+—e* is a bounded C* function on [—7 max Lf, 7T max Lf], we can
conclude that E; belongs to HIIO/CQ(R+ x RY x RY).
Then we notice that E, is the integral of the product of two terms which are
both in A = L2([0, T]; HZ.(R® x R*)) NL=(Ry x R? x R?) for all a € 10, 1/25].
The previous vector space A is in fact an algebra, so E, is the integral of a term that
lies in A. Using once again (31), we find that E, belongs to H (R x R? x [RE3)
for all a € ]0,1/25][. } 3

Since E; and E; are obviously in A,I'} = E| and I', = E; X E; lie in A too, so
that both quantities belong to HZ_ (R, x R* x R?) for all a €]0, 1/25].

And then, from (30) back to the standard formulation, we obtain (7) with the
required smoothness on both I'j and I';, because I'y and I', have the same
smoothness in the three variables ¢, x and v.

Remark. In this proof, we have only considered cross sections B lying in
L>® (8%, W' (R*)), which covers the case of Maxwellian molecules and regularized
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soft potentials (with angular cutoff). We briefly explain here how to transform the
proof to get a result in the case of hard potentials (with angular cutoff) or hard
spheres.

Note first that the solutions of [19], which have an exponential decay in both x
and v, are replaced by solutions with an algebraic decay in at least one of the
variables, like those of [2] or [20]. Then, throughout the proof, if the algebralc decay
concerns the variable v, the function T) is replaced by Sy(v.) = (1 + |0, )? )" The
estimate on < A /-f) hecomes then more intricate (but is still valid).

Then, one has to replace the estimates in W' by estimates in C%” (except for
hard spheres) because the cross sections of hard potentials are only Holder
continuous, not Lipschitz continuous.

Finally, the L™ estimates must be replaced by weighted L>™ estimates because
the cross sections of hard potentials (and hard spheres) tend to infinity when |v — v,
tends to infinity. At the end, the exponent in the Sobolev space is less than 1/25 (and
may be very small for hard potentials close to Maxwellian molecules).

3. Smoothness Estimates

We give in this section the proof of theorem 3. Thanks to our assumption on B
and to the L>-estimate (6) of theorem 1, we can directly estimate the derivatives of
fusing a Gronwall type lemma, namely

Lemma 2. We suppose that, for some T > 0, (U,),E[O 7] is a family of uniformly

bounded linear operators from L¥(R} x R? ) 1o L"O([R{3 X [R{3) ,for P e N, and
S e L>([0,T], x R? x [R{3) We also assume that g € L([0, T} x R x R?})Pﬂ
Cc([0,7],; LDO(R3 X [R{3 VP satisfies the equation

1w
og+v-Vg=Ug+S, (32)

in the sense of distributions. Then there exists a constant Cy only depending on T,
sup;cfo.7] 1 Uil [l e (mo ey @ |IS] < 0.1y xey? » Such that

Hg||Lw([07T]XR3X[R3)P < CT(l + ||g(0)HL°°(R3><R3)P)’
Proof. We use, for any h € L>([0,T] x R* x R*)”, the standard notation
h* (t,x,v) = h(t,x + vt, v). (33)

Equation (32) can be written under the Duhamel’s form

1

g (t,x,v) = g(0,x,v) + L S* (s, x, v)ds + JO(US(g))#(s, x, v)ds.

Taking L*™ norms, we get

llg( )HLx RS xR3)” < |lg(0 )HLoc(R&R»*)P + THS”Loc([O,T]xR&RﬂP
t
S LAY G ECTATARE

Then lemma 2 is an immediate consequence of Gronwall’s lemma. ]
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3.1. Derivatives with respect to x. We first study the derivatives of f with
respect to x. Using the fact that Q only acts on the variable v, we can give an
intermediate result, in which the smoothness of f;;, with respect to v is not required.
We recall that a very similar result, in a slightly different context, is given in [20].

Proposition 6. Let B be a cross section satisfying Assumption 1 and such that
B e L'Y(R? x §?) and fi, be an initial datum such that (5) holds. If, moreover,
VP fin € L°(R3 x R3) for p = 1,.. ., k, then the solution f to (1) given by Theorem
1 is such that VP f € L*([0,T], x R} x R?) forp = 1,...,k and T > 0.

Proof. We introduce the quantities

T f(t,x,0) = f(t;x1 + h,x2, X35 0), (34)
1 T;}f—f
Rf ==5—=, h#0, (35)

and, in the same way, 7;;,7;,R; and R}.
Applying R;, to (1), we get

(R,f) + v Ve(R,f) + (RS (ThLf) + f (LR}, f)

= O (Ryf,7f) + Q7 (F, Ry.f)- (36)
We now use Lemma 2 with § = 0,g = R f and
Ur = 0" (i f(0) + QT (£(1),) — (mLf (1)) — f(£)(L-). (37)

Since f € L*([0,T] x R?> x R?), it is quite easy to see that each term of U is
a bounded operator of L*(R®x R3?) the norm of which is smaller than
ANz o) 1F 1 2 (0,71 < w?)- We just show the computation for the first term.

107 (g, T;i,f) ||L°°(R3><R3)

= sup J J g(x, V)7 f(x, v))B(v — v, w)dwdv,|,
v, €R® Jwes?

(x,v)ER*x R?

and then it is clear that

107 (& T () < &l ey | Lo o,y ey 1Al o oy -

Thanks to Lemma 2, we obtain for any 7" > 0 a constant C7 independent on /4 such
that

”R;zf”L”([O,T]XR}xR}) < Cr(l+ ‘|R2ﬁn||L%([R3><R3))'

Using now the fact that V, f;, € L®(R® x R?), we see that, for all i € {1,2,3},R}
is uniformly bounded with respect to & in L*([0, 7] x R® x R®), so that

V.f € L*([0,T] x R* x R%)
for any 7 > 0.
The equation satisfied by 0, f is the same as (36), but with 2 = 0, namely

8t(aXif) + v- vx<axif) = Q+(6X,f7 f) + Q+(f7 a/‘Cif)
- (8x,f)Lf _f(Lax,f> (38)
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Applying R,{ to this equation, we get
O(R}Ox f) + v+ Vi(R]O, f)
= Q+(R}{8Xifa Thjf) + Q+(8Xif7 R]i )
+ Q" (R f 7/ 0x f) + QT (f, R, 0x.f)
— (R0 ) (T Lf) — (Ox.f) (LR, f) — (R f)(7/LOy, f) — f(LR; Oy, f)-
At this level, we use Lemma 2 with
S = Q" (0yf,R\f) + Q* (Rf, 70 f)
— (O S)LR;Lf) — (Ryf) (7] L0y f)
and U, is still given by (37).

Using the fact that f, V. f € L>([0,T] x R* x R?), it is easy to see that S is
bounded in L*([0, 7] x R? x R?) uniformly with respect to A.

Thanks to lemma 2 and the assumption that V,V, fi, € L°(R® x R?), we see
that R/, f is bounded (uniformly in /) in L=([0, 7] x R* x R®) for all T > 0,
i,j € {1,2,3}, so that finally V.V, f € L*([0, T] x R® x R?).

The derivatives of higher order of f w. r. t. x are then obtained by a simple
induction, in which only the source term is changed. O

3.2. Derivatives with respect to v. We now turn to the derivatives with respect
to v. Since the proof gets quite intricate, we shall directly use derivatives in the
sense of distributions, instead of precisely writing down quantities like R, f. Note
however that a complete justification of our computations would require the use of
such quantities.

We first write down the equation satisfied by 0, f for i € {1,2,3}:

af(avff) +tv- vx(avff) = _axif - (817,f>(Lf> _f(LaU,f) + 8171Q+<f7 f) (39)
Using [3], note that we could immediately deduce from (39) that V,f lies in
> ([0,7], x R} L2 (R?)), under a slightly more stringent assumption on B.

However, we rather use a more elementary method, which directly gives
estimates in the L™ setting.

Thanks to our study of the derivatives of f with respect to x, we shall be able to
put the term V,f in the source, and conclude with Lemma 2. Note that it was
important to first treat the derivatives with respect to x.

We now study 8,,0" (f, f). Let us denote, for a given (¢,x) € R, x R3, the
functions

F:R xR x$* =R
(Z,2,w) = f(Z+ (= 2) - w)w)

fz=(z=2) w),

and

G:RxR SR
<z,z>Hj

z€R3

J F(Z,z.,w)B(z — 24, w)dwdz,.
wes?
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Note that

62.2)= | _(FZw) 5Bl
wes?
and that
G(U,U):Q+(f,f)(’l)), CAS R3'
We have, for i € {1,2,3},
0G 0G
oz, (v,v) +87i(v, v)

| (G + ) | aw. @0

05, Q" (f, )(v) =

With obvious notations, it is easy to compute

OF

9z (Z,z,w) = [(e — wiw) - Vo f(Z)f(Z) + [wiw - Vo f(F(Z) (41)
and, in the same way,

oF

o (Z,2,0) = [ww - Vo f(Z)]f (&) + [(ei = wiw) - Vo f ()] F(Z). (42)

Taking (40)—(42) into account, it is clear that 9,,0"(f, f) = H,(V,f) is linearly
depending on V, f, and that

s e TN #3)
Using the L*°-estimate (6) on f, we get, for some constant Cr > 0,
IV (s Ol o xmy < CrlVof ()l (@oxmry, 0<t<T. (44)
We are now in a position to apply Lemma 2, with
S=-V.f

and
Ur=H,() = (Lf) = /L")
We get at the end that, for any 7 > 0, there exists Cr > 0 such that
||va||Lw([o,T]xR3xR3) <Cr(l+ vaﬁn||L°C([R3><R3))'
Note that the constant C7 in (44) depends in fact on ||V, fin||,~. so that we really
need that f;, € W'°(R® x R*) to conclude that
V.f € L*([0,T] x R* x R?).

In order to study the second derlvatives of f with respect to v, we are led to
consider the derivatives 82 oS and 0 (Q+ (f, f))- More precisely, we first prove
that V,V, f € L™, and then we can conclude that Vo Vof € L.
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We recall that, for a given i € {1,2,3},0,,f satisfies equation (38). Conse-
quently, the derivative 83”},_ f,Jj €{1,2,3}, verifies
MR f) + - VDR, f) = — (82, )(LF) —F(LOE, f)
+ 0y, (0" (0 f, f) + Q7 (f,051))
- (8X,f> (Lav,f) - (avlf> (Laxzf) - af,x,f (45>
We want to apply Lemma 2. It is clear that the last three terms in (45) lie in
L®([0,T] x R® x R?). In the same way as in the study of V,Q" (f, f)(), we can

prove that both 9,,Q0" (0, f, f)(t) and 0,,0" (f, 0,,f)(t) are linearly depending on
V(0 f) and that

||V'UQ+(ax,-f7 f)(t)||L°°(R3><R3) }
19,0 (£, 8 ) Oy | S KNVl

for some constant K7 > 0.
Then, using Lemma 2, we get

V(0. f) € L*([0,T] x R* x RY)

for any T > 0.
Let us study the second derivatives of Q" (f, f) with respect to v. From (40),
we immediately compute that

0, Q" (f, F)(®)
= J (0, F + 05 F + 02, F + 02_F)(v, -,w) * B(-,w)](v)dw.
wes? j iZj i L iZj

It is then clear that V,V,0"(f, f)(¢) =1(V,V,f) linearly depends on
V,V.,f and that, for any T > 0, there exists a constant Ky depending on

T ([ £l oy xme ey @nd [V fll e (0,77 x 0 xr3)» Such that
||VUV’UQ+(f7 f)(t)HLﬁo(WxU@) < KT||vvaf(t)||L°C(R3><R3)‘

We are now able to prove that the derivative V,V,f lies in L>([0, T]x
R® x R3 ) for any T > 0. Let us write down the equation satisfied by 612}1_1)1_ f. For
i,j€{1,2,3}, we have

af(ai-’uj> +v- Vx(ai'vj)
= =0, f + 02 [+ 0y f) (LD ) + (8, ) (LD, f)]
— (02, )(Lf) = f(LD:,) + 82,0 (f, f)- (46)

We apply Lemma 2 with P = 6, where S is the vector whose coordinates are like
the term in brackets in (46), and U, = — - (Lf) — fL(-) + L,(+). Then, for any
T > 0, we find a constant C7 > O such that

vavvf||Lw([o,T]xR-‘xR3) < Cr(1+ vavvﬁn||Lo<(R3xR3))~

That ends the study of the second derivatives of f with respect to x, v.
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In order to study the smoothness of the derivatives of p-th order, p > 3, of f
with respect to x, v, we use an induction on p. Once we know that all derivatives of

S with respect to x, v of order < p — 1 is bounded, we study, for any i,---,i, €
{1,2,3} 81’f then o' up to o (in
T ’axil e 8xl~p71811lp (9X,1 -8xl~p726v,~p718v,~p ’ v (91),'1 e 8’01])

this order).

Note that we do need that f;;, € WP*> of both x and v variables to conclude that
the derivatives of p-th order with respect to v only lie in L*([0, 7] x R® x R?) for
all T > 0.

3.3. Derivatives with respect to r. As we did in Subsection 3.2, we use
derivatives in the sense of distributions.
From (1)—(2), we immediately obtain that

Of =—v-Vif + Q" (f. f) = fLf. (47)
Using (6), it is clear that
of € L2 (R, x R* x RY). (48)
We next study, for a given i € {1,2,3}, the term 8;)_ f. In fact, we know that
O, f satisfies equation (38), which similarly implies that
O feLm(Ry x R x RY). (49)
Then we differentiate (47) with respect to ¢ and get
Of = —v-VAf) + Q7 (f.00) + Q(Of. ) = (Ff)(Lf) — F(LALS).
Using (6), (48) and (49), we obtain that
Df e L (R x R* x R?).

Besides, from (39) and the estimates on f, V. f,V,f, V.V,f,V,0"(f, f), it is
clear that

€L (R, x R® x R).
+

loc

Then we conclude by induction in the same way as in Subsection 3.2, by first
studying the mixed derivatives with respect to x and #, and next finding the
smoothness of the mixed derivatives with respect to ¢, x and v.
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