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Abstract. Let
c

l

� �
be the binomial coef®cient modulo b (b prime), with

c

l

� �
� 0 if l is greater

than c, and let �l
c be the sum of binomial coef®cients modulo b, that is �l

c �
Pl

h�0

c

h

� �
(mod b). We

prove the following property: the �l
c for which the couples �c; l� verify 04l4c<bn and

c

l

� �
6� 0 are

uniformly distributed in the residue classes modulo b as n tends to in®nity. The method, using the

Perron-Frobenius theory, applies also to
c

l

� �
and gives a new proof of the well known result for the

non-zero binomial coef®cients modulo b.
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1. Introduction

The distribution of binomial coef®cients in the residue classes modulo a prime
number has been widely studied and precise results are now available; the last
related papers on this topic, as far as we know, are [1], [2] and [3]; they contain
many other interesting references, especially on the contributions of Carlitz,
Gar®eld and Wilf, Howard, Singmaster and Stein.

In this paper, we are interested in the same distribution property for the sums of
binomial coef®cients; but the classical method using character sums computations
do not apply here because there is no Lucas formula for these sums; in order to
obtain the desired uniform distribution property (see Theorem 2 below), we have
worked out a new method which applies also to the binomial coef®cients and
should be of some interest in this case (see Theorem 1).

Basically, the method consists in drawing out the algorithmic structure of the
matrix C of binomial coef®cients and of the corresponding matrix � of the sums of
binomial coef®cients. Then, it is possible to build up a universal matrix A�C�, resp.
A���, which gives a recursion formula for the number of entries of C, resp. �,
belonging to a ®xed class. Finally, by means of the Perron-Frobenius theory applied
to A, which is proved to be irreducible and primitive, we obtain the required
distribution property for both C and �.



At the origin, we have met these sums of binomial coef®cients modulo a prime
in the context of irregularities of distribution of sequences generated by means of
the binomial matrices (see [4] and [6]).

These results have been announced at the Conference on Algebraic Number
Theory and Diophantine Analysis held in Graz in 1998, with a sketch of the proof
in the proceedings [5]; the present full paper emphasizes the algorithmic structure
of � and outlines the main ideas of the method (in particular the construction of
A���) before it goes further in the very technical proofs of the lemmas (only stated
in [5]).

We should like to thank the referees for pointing out the lack of readability of
the ®rst version and suggesting the actual presentation; in particular, we omit huge
examples of matrices C;� and A��� and a recapitulation on Perron-Frobenius
(®rstly asked by the referee for the proceedings); we refer to Chapters 1 and 2 of
[7] for the required elements of this theory.

The second section contains the results, the third the case of C and the fourth
the case of �.

2. De®nitions and Theorems

Given an in®nite matrix M � �ml
c�c50;l50, we denote by M�c; c0; l; l0� the sub-

matrix of M obtained by keeping the rows between l and l0 ÿ 1 included and the
columns between c and c0 ÿ 1 included. To simplify, we write M�c; l� �
M�0; c; 0; l�. Moreover we set tA for the transpose matrix of A.

Let C � c

l

� �� �
be the binomial matrix mod b (b prime), with

c

l

� �
� 0 if

the row l is greater than the column c, and let � � ��l
c� be the matrix of the sums

of binomial coef®cients modulo b (c index of columns, l index of rows):

�l
c �

Xl

h�0

c

h

� �
�mod b�:

Theorem 1. The non-zero binomial coef®cients
c

l

� �
modulo b (b prime) with

04 c< bn and 04 l< bn are uniformly distributed in the non-zero residue classes
modulo b as n tends to in®nity. In other words, the non-zero entries of the matrix
C�bn; bn� are uniformly distributed in the �bÿ 1� non-zero residue classes modulo
b as n tends to in®nity.

Remark 1. This property is easily deduced from previous studies on binomial
coef®cients (see for instance [3]); we give our new proof for C in Section 3 to
introduce on a simple case the method to be used for � in Section 4.

Theorem 2. The coef®cients �l
c, with �c; l� such that 04 c< bn; 04 l< bn and

c

l

� �
6� 0 mod b (b prime), are uniformly distributed in the b residue classes

modulo b, as n tends to in®nity. In other words, the entries �l
c of the matrix

��bn; bn� with
c

l

� �
6� 0 mod b are uniformly distributed in the b residue classes

modulo b (included the zero class) as n tends to in®nity.
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Remark 2. For both the matrices C and �, the distribution of entries is quite
different under the diagonals and above (or on) the diagonals: under the diagonals
of C, the binomial coef®cients are all 0 whereas under the diagonals of �, the
entries �l

c are of the form a2c (mod b) with a5 0; above (or on) the diagonals of C
the binomial coef®cients are never 0 whereas above (or on) the diagonals of � the
entries �l

c can be 0 (see 3.1, 4.3 and 4.6 for more information). These properties
explain the different formulations of Theorems 1 and 2.

Remark 3. The algorithmic structure of � is much more complicated than that
of C; our method applies with a lot of technical dif®culties due to the nature of �
for which the construction needs b blocks instead of one for C (see Sections 3.1
and 4.8).

Remark 4. Both theorems are valid for arbitrary prime b, so their statement is
unavoidably general and somewhat vague; but for ®xed b, the method can lead to
the exact computation of the number of entries belonging to a given class (see the
examples).

Remark 5. All computations involving entries of C or � are performed modulo
b, so in most cases we omit (mod b) in these computations to lighten the formulas;
on the other hand, when we count the number of entries in the residue classes (in
sections 3.3, 3.4, 4.9 and 4.10), we deal of course with non negative integers and in
this case no confusion is possible.

3. The Case of C (Proof of Theorem 1)

In this section, we prove Theorem 1. We need two lemmas, the ®rst on the
structure of the matrix C, the second on linear algebra. For convenience of notations,
we set Cn � C�bn; bn�.

The idea is to use the simple recursion formula from Cn to Cn�1 (Lemma 3.1)
to obtain a relation between the number of entries, in Cn�1, belonging to some
non-zero residue class and the whole number of entries, in Cn, distributed in all the
non-zero residue classes; of course, such a relation for �bÿ 1� integers to be found
(for Cn�1) depending on �bÿ 1� integers already known (for Cn) should be given
by means of a �bÿ 1� � �bÿ 1� matrix, the so-called counting matrix of Section
3.3; then the problem of counting the entries in the non-zero residue classes is
brought back to a matrix iterative problem for which powerfull tools exist;
actually, this method has been ®rst worked out for the matrix � for which no
results by the classical way were available.

Recall that in the following lemmas all computations are modulo b, according
to remark 5 in section 2.

3.1 Lemma (Algorithmic construction of C). For all integers n5 1; 04 c< b,

04 l< b, we have C�cbn; �c� 1�bn; lbn; �l� 1�bn� � c

l

� �
Cn. In other words, the

square matrix Cn�1 arises from Cn by the algorithmic block construction

Cn�1 � c

l

� �
Cn

� �
.
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Proof. This property follows from
cbn � r

lbn � s

� �
� c

l

� �
r

s

� �
with 04 r< bn;

04 s< bn, which is a consequence of the Lucas formula:

c

l

� �
�
Y1
i�1

ci

li

� �
where c �P1i�0 cib

i and l �P1i�0 lib
i are the b-adic expansions of c and l. &

Corollary and De®nition. An arbitrary entry
c

l

� �
of C is naught if and only

if it is strictly under the diagonal of some block containing it. By de®nition, given a
prime b and an in®nite matrix M, an arbitrary entry ml

c of M is called (strictly)

under the diagonals if
c

l

� �
� 0 (mod b) and above (or on) the diagonals if

c

l

� �
6� 0 (mod b).

This corollary is a direct consequence of the lemma (i. e. of the Lucas formula)
and of the well known properties of C1, the ®rst block of the binomial matrix
modulo b.

3.2 Lemma. Let A � �al
c� be a d � d complex matrix such that

Pd
c�1 al

c �Pd
l�1 al

c � � with � simple eigenvalue of A; let A � PJPÿ1 with J the Jordan
normal form of A in which � is the ®rst entry of J. Then the ®rst column of P is
t�1; 1; . . . ; 1� and the ®rst row of Pÿ1 is dÿ1�1; 1; . . . ; 1�.

Proof. The ®rst part is straightforward since t�1; 1; . . . ; 1� is an eigenvector for
the eigenvalue �.

For the second part, we note that tA has the same eigenvalues as A and that
tA � t�Pÿ1�tJ tP; now, if B is a d � d complex matrix with the simple eigenvalue �
such that K � Qÿ1BQ is the Jordan normal form of B in which � is the ®rst entry,
then the ®rst column of Q is an eigenvector for the eigenvalue �, as veri®ed by
direct computation; applying this property with B � tA and Q � t�Pÿ1� � �tP�ÿ1

shows that the ®rst column of t�Pÿ1� is an eigenvector of tA for �; on the other
hand,

Pd
l�1 al

c � � implies that this eigenvector is proportional to t�1; 1; . . . ; 1�
and Pÿ1P � I gives dÿ1 for the constant. &

3.3. The counting matrix A�C�. Let �
�n�1�
l be the number of entries belonging

to the residue class l (mod b) in Cn�1 � C�bn�1; bn�1�.
With Lemma 3.1 or its corollary, it is easy to verify that

�
�n�1�
0 � b�bÿ1�

2
b2n � b�b�1�

2
�
�n�
0 , so that �

�n�
0 � b2n ÿ b�b�1�

2

� �n

. After this special

case of the zero class, we deal with the number of entries belonging to the class l
with 14 l< b.

In order to express �
�n�1�
l �14 l< b� by means of the ��n�c �14 c< b�,

applying Lemma 3.1, we must count the number Al
c of sub-matrices of Cn�1 with

the form �Cn where � � l=c (mod b); because by this way, an entry of Cn

belonging to the residue class c (counted in ��n�c ) becomes congruent to �c � l
and so must be counted in �

�n�1�
l .
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Collecting the numbers Al
c in rows of indexes l and columns of indexes c, we

obtain the �bÿ 1� � �bÿ 1� matrix A � A�C� � �Al
c� which gives the funda-

mental relation:

N�n�1� � AN�n� with N�n� � t���n�1 ; . . . ; �
�n�
bÿ1�:

It is easy to obtain the matrix A�C� for small b; for instance, with b � 3 and
b � 5, we have respectively:

A�C� � 5

1

1

5

� �
A�C� �

10

1

2

2

2

10

2

1

1

2

10

2

2

2

1

10

0BB@
1CCA:

But moreover, this matrix has two nice properties which allow us to apply the
Perron-Frobenius theory:

Proposition. The matrix A is positive (i.e. all entries are positive) andPbÿ1
c�1 Al

c �
Pbÿ1

l�1 Al
c � b�b�1�

2
for all integers c, l with 14 c4 bÿ 1 and

14 l4 bÿ 1.

Proof. We apply the ®rst lemma: A is positive because Cn�1 � c

l

� �
Cn

� �
and

�
1

� �
� �, so there is at least one sub-matrix of Cn�1 with the form �Cn, so

Al
c 5 1.

Moreover,
Pbÿ1

c�1 Al
c �

Pbÿ1
l�1 Al

c � b�b�1�
2

because there are
b�b�1�

2
sub-matrices

of the form �Cn, different from the zero matrix, in Cn�1. In other words, the ®rst
column A1 of A corresponds to the number of sub-matrices lCn�14 l< b�, and the
following columns Ac are obtained by permutations of the entries of A1, according
to the square table of values of � � l=c (mod b). &

Corollary. The spectral radius of A is � � b�b�1�
2

and A is primitive (i.e. all the
other eigenvalues � of A verify j�j<�).

Proof. Recall that the spectral radius � (the maximum of the absolute values of
the eigenvalues) is less than the maximum of the sums of the absolute values of the
rows (resp. of the columns); therefore � � b�b�1�

2
, since

b�b�1�
2

is an eigenvalue. On
the other hand, recall too that a positive matrix is primitive which proves the
second part. &

We remark that the eigenvalues of A�C� could be written in terms of the
character sums involved in the method of [3].

3.4 Proof of Theorem 1. According to 3.3, we have N�n� � AnN�0� with An �
PJnPÿ1 and N�0� � t�1; 0; . . . ; 0� (because �

�0�
l is the number of l in C0 � �1�);

computing the matrix product with the property of Lemma 3.2 for P and Pÿ1, see
for instance [7] for the expression of Jn, we get the entries of An in the form

1
bÿ1

�n �Pr
i�1 Pi��i� where Pi is a polynomial of degree n with less than �bÿ 1�

terms and where the �i are the other eigenvalues, so that j�ij<�.
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Finally, we get �
�n�
l � 1

bÿ1
�n � o��n� for 14 l< b and the theorem follows

since �n � b�b�1�
2

� �n

is the number of non-zero entries in Cn (compare with the

number of zero entries at the beginning of Section 3.3). &

Example. With b � 3, we obtain:

J � 6

0

0

4

� �
P � 1

1

1

ÿ1

� �
Pÿ1 � 1

2

1

1

1

ÿ1

� �
;

so that the number of entries in Cn congruent respectively to 1 and 2 is:

�
�n�
1 �

1

2
�6n � 4n� and �

�n�
2 �

1

2
�6n ÿ 4n�;

and with b � 5:

J �
15

0

0

0

0

9

0

0

0

0

8ÿ i

0

0

0

0

8� i

0BB@
1CCA

P �
1

1

1

1

1

ÿ1

ÿ1

1

1

ÿi

i

ÿ1

1

i

ÿi

ÿ1

0BB@
1CCA Pÿ1 � 1

4

1

1

1

1

1

ÿ1

i

ÿi

1

ÿ1

ÿi

i

1

1

ÿ1

ÿ1

0BB@
1CCA;

so that the number of entries in Cn congruent respectively to 1, 2, 3 and 4 is:

�
�n�
1 �

1

4
�15n � 9n � 2 cos�n���

�����
65
p
�n� �

�n�
2 �

1

4
�15n ÿ 9n ÿ 2 sin�n���

�����
65
p
�n�

�
�n�
3 �

1

4
�15n ÿ 9n � 2 sin�n���

�����
65
p
�n� �

�n�
4 �

1

4
�15n � 9n ÿ 2 cos�n���

�����
65
p
�n�;

where � � arctan 1
8

ÿ �
.

4. The Case of � (Proof of Theorem 2)

Again all computations implying entries of � are modulo b; as in 3.3 for C, we
set �n � ��bn; bn� and to avoid heavy indexes we write �l

c � ��c; l�.
4.1. Introduction. Before going ahead to the technical Lemmas 4.2 to 4.8

which describe the structure of �n�1 and, then, to construct the counting matrix
A���, we are going to set off this structure and to outline the de®nition of A���;
the end of the proof follows that for C, but requires a deeper analysis of A��� with
regards to Peron-Frobenius because it is only non-negative (see 4.9), contrary to
A�C� which is positive. In order to seize more easily the following statements, it
should be very useful for the reader to write down an example of �2 (with b � 3 or
5 or even 7).

From the de®nition of �, it is straightforward that the entries of the ®rst row
and the ®rst column are equal to 1 and that the main diagonal is formed by the
successive powers of 2 (mod b); also the entries under the main diagonal
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(included) are constant on the columns; more generally, we can prove that, as
for C, the structure under the diagonals (see Corollary and De®nition 3.1) is still
very simple: the entries are constant on the columns (see Lemma and Corollary
4.3).

On the contrary, the structure above the diagonals is much more complex, but
we can point out some basic facts:

Split �n�1 into b2 blocks of bn � bn sub-matrices; it is easy to see that the ®rst
row of such blocks is formed by repetitions of the ®rst one, that is Bn

1 :� �n (go to
Lemma 3.1 and sum the coef®cients).

Now, look at the second row of blocks above (or on) the main diagonal: there
are �bÿ 1� different blocks (noted Bn

i ; 24 i4 b�, the ®rst entries of which are
2; 3; . . . ; bÿ 1; 0 (go to Lemma 3.1 and sum with one more coef®cient); useful
properties on the last 2 columns of Bn

1; . . . ;Bn
b are given in Lemmas 4.6 and 4.7.

What's about the other blocks above (or on) the main diagonal? This is the
critical part of the algorithmic properties of �: it can be proved that these blocks
are the same as the b preceding ones, up to a constant factor! Essentially, the
reason is that the last column of any such block presents an alternance of two
different digits only (see Lemma and Corollary 4.5); Lemma 4.8 makes explicit
the relation between an arbitrary block and the block, among Bn

1; . . . ;Bn
b, from

which it results by multiplication via a constant factor.
Corollary 4.8 summarizes the algorithm; our knowledge of � is now suf®cient

to build the counting matrix and prove its primitivity in all generality (proposition
4.9), which brings us to the asymptotic result we are looking for (4.10).

As announced at the beginning, we shall now outline the construction of A���:
come back to the beginning of Section 3 where A�C� appeared to be the
�bÿ 1� � �bÿ 1� matrix relating �bÿ 1� integers to be found to �bÿ 1� integers
already known: here we have the same situation, but we must manage with b
blocks Bn

1; . . . ;Bn
b instead of one �Cn�; and get the number of entries, above (or on)

the diagonals belonging to some non-zero residue class l in Bn�1
j by means of the

whole number of entries (above (or on) the diagonals), in all the Bn
i , distributed in

all the non-zero residue classes c�14 c< b�; therefore, we are looking for
b�bÿ 1� integers to be found (for the Bn�1

j ) depending on b�bÿ 1� integers
already known (for the Bn

i ); so the counting matrix A��� in the present case is a
b�bÿ 1� � b�bÿ 1� matrix whose indexes are described by 4 variables, �l; j� for
the rows and �c; i� for the columns (see 4.9 for the explicit construction of that
matrix); so far, we have worked out the number of entries in non-zero residue
classes; now with �, the zero class occurs also above (or on) the diagonals, but the
number of such entries is the only one we don't know, so by difference with the
total number, we get it too (see the end of the proof, 4.10).

4.2 Lemma (Recursion formula). The sums of binomial coef®cients satisfy the
following relations: ��c; 0� � ��0; l� � 1 for all integers c5 0; l5 0 and

��c; l� � ��cÿ 1; l� � ��cÿ 1; lÿ 1� for all integers c5 1; l5 1:

In other words, the binomial coef®cients and their sums satisfy the same recursion
formula.
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Proof. The ®rst equalities follow directly from the de®nition of �; for the
recursion formula, we express the sum on the right hand side:

��cÿ 1; l� � ��cÿ 1; lÿ 1� �
Xl

h�0

cÿ 1

h

� �
�
Xlÿ1

h�0

� cÿ 1

0

� �

�
Xl

h�1

c

h

� �
ÿ cÿ 1

hÿ 1

� �� �
�
Xlÿ1

h�0

cÿ 1

h

� �

because

c

h

� �
� cÿ 1

h

� �
� cÿ 1

hÿ 1

� �
;

but

cÿ 1

0

� �
� c

0

� �
and

Xl

h�1

cÿ 1

hÿ 1

� �
�
Xlÿ1

h0�0

cÿ 1

h0

� �
;

so ®nally, the right hand side of the above equality is equal to ��c; l�. &

In the following lemmas, we are mainly concerned with the properties of the
bn � bn blocks issued from the splitting of �n�1; with the notations introduced at
the beginning of section 2, they read as ��rbn; �r � 1�bn; sbn; �s� 1�bn�; the
comments between brackets in the statements of lemmas refer to these blocks (for
instance entries of corners (4.4) means the left (resp. right) upper (resp. lower)
entries of such a block).

4.3 Lemma (Entries of columns rbn). Given integers n5 1; r 5 0; s5 0, we
have ��rbn; l� � ��rbn; sbn� for all integers l with sbn 4 l< �s� 1�bn. In other
words, the entries of columns �rbn� are constant.

Proof. We have

��rbn; l� �
Xl

h�0

rbn

h

� �
�
Xsbn

h�0

rbn

h

� �
�

Xl

h�sbn�1

rbn

h

� �
� ��rbn; sbn�;

because Xl

h�sbn�1

rbn

h

� �
�
Xlÿsbn

h0�1

rbn

sbn � h0

� �
�
Xlÿsbn

h0�1

r

s

� �
0

h0

� �
� 0;

which is a consequence of the Lucas formula, see the proof of Lemma 3.1. &

Corollary (Structure under the diagonals). The entries under the diagonal
(included) of columns of ��rbn; �r � 1�bn; sbn; �s� 1�bn� are constant of the form
a2c with ®xed a �04 a< b� and c � 0; 1; 2; . . ..

Proof. By Lemma 4.3, the ®rst column is a constant, say a; then, by the
recursion formula 4.2, we get a� a � 2a for the entries under the diagonal of the
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second column; and so on until the last column (reduced to its diagonal entry) for
which we obtain a2bnÿ1 � a. &

4.4 Lemma (Entries of corners). Given integers n5 1; r 5 0; s5 0, we have
��r; s� � ��rbn; sbn� � ��rbn; �s� 1�bn ÿ 1� � ���r � 1�bn ÿ 1; �s� 1�bn ÿ 1� �
���r � 1�bn ÿ 1; sbn�.

Proof. First we have:

��rb; sb� �
Xsb

h�0

rb

h

� �
�
Xsÿ1

l�0

Xbÿ1

h0�0

rb

lb� h0

� �
� rb

sb

� �

�
Xsÿ1

l�0

Xbÿ1

h0�0

r

l

� �
0

h0

� �
� r

s

� �
� ��r; s�:

Then the ®rst equality results by iteration and the second is a direct consequence
of Lemma 4.3; for the third, we note that if ��rbn; �s� 1�bn ÿ 1� � a, then,
by Corollary 4.3, ���r � 1�bn ÿ 1; �s� 1�bn ÿ 1� � a2bnÿ1 � a; ®nally, for the
fourth equality, we use the recursion formula 4.2 with the last row of ��rbn;
�sÿ 1�bn� and get ���r � 1�bn ÿ 1; sbn� � a� �� 2�� � � � � 2bnÿ2� (see
Corollary 4.3) where � � ��rbn; sbn ÿ 1�; therefore ���r � 1�bn ÿ 1; sbn� �
a� ��2bnÿ1 ÿ 1� � a. &

4.5 Lemma (Entries of columns �rbn ÿ 1�). Given integers n5 1; s5 0; r> s,
we have ��rbn ÿ 1; l� � ��rbn ÿ 1; l� 2� and ��rbn ÿ 1; l� 6� ��rbn ÿ 1; l� 1� for
all integers l with sbn 4 l< �s� 1�bn ÿ 2. In other words, the entries of columns
�rbn ÿ 1� present an alternance of two different digits only.

Proof. To prove the equality, we ®rst use the recursion formula 4.2:
��rbnÿ 1; l� � ��rbn ÿ 1; l� 1� � ��rbn; l� 1� and ��rbn ÿ 1; l� 1�� ��rbn ÿ 1;
l� 2� � ��rbn; l� 2�; then, from Lemma 4.3, we see that ��rbn; l� 1� �
��rbn; l� 2�, so we get ��rbn ÿ 1; l� � ��rbn ÿ 1; l� 2�.

For the inequality, we note, from the de®nition of �, that ��rbn ÿ 1;

l� 1� ÿ ��rbn ÿ 1; l� � rbn ÿ 1

l� 1

� �
6� 0, as usual with binomial coef®cients

modulo a prime. &

Corollary (Structure above the diagonals). Given integers s5 0 and r 5 s, the
entries above the diagonal (not included) of ��rbn; �r � 1�bn; sbn; �s� 1�bn� are
completely determined by the last (or ®rst) two entries of the last column.

Proof. This corollary results from the recursion formula 4.2: the diagonal is
already known by Corollary 4.3 and starting from the right corner down, by
difference with 4.2, we get step by step all the entries above the diagonal. &

4.6 Lemma (Properties of Bn
1 :� �n). Given integers n5 1; 04 c< bn,

04l<bn, we have ��c; 1� � c� 1,

��bn ÿ 1; l� � 1

0

if l is even

if l is odd

�
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and

��bn ÿ 2; l� � 1� l=2

ÿ�l� 1�=2

if l is even

if l is odd:

�
Proof. The ®rst formula results by induction from Lemma 4.2 (with the ®rst

row ��c; 0� � 1).
For the second one, we note that, from Lemma 4.5, ��bn ÿ 1; l� can take only

two values; but ��bn ÿ 1; 0� � 1 and ��bn ÿ 1; 1� � bn � 0 from the ®rst formula
of the present lemma.

Finally, the third formula is a consequence of the second together with
lemma 4.2: ��bn ÿ 2; l� � ��bn ÿ 2; l� 1� � ��bn ÿ 1; l� 1�, so starting with

��bn ÿ 2; 0� � 1, step by step we get ��bn ÿ 2; l� 1� � ÿ 1� l
2

ÿ � � ÿ �l�1��1
2

if l
is even and ��bn ÿ 2; l� 1� � 1� l�1

2
if l is odd. &

4.7 Lemma (Properties of Bn
i :� ���iÿ 1�bn; ibn; bn; 2bn�). Given integers

n51; 24i4b; bn4l<2bn, we have

��ibn ÿ 1; l� � i

1

if l is odd

if l is even
;

�
moreover, there exist bnÿ1 integers l such that ��ibn ÿ 2; l� � 0.

Proof. From Lemma 4.4, we have ��ibn ÿ 1; bn� � ���iÿ 1�bn; bn� �
��iÿ 1; 1� � i (by Lemma 4.6); then Lemma 4.5 implies that ��ibn ÿ 1; l� � i if
l is odd; on the other hand, from Lemma 4.3, ��ibn; l� � ��ibn; bn� � i� 1 (by
Lemma 4.4 and 4.6); but ��ibn ÿ 1; l� � ��ibn ÿ 1; l� 1� � ��ibn; l� 1� � i� 1,
so that ��ibn ÿ 1; l� 1� � 1 if l is odd and the ®rst part is proved.

For the second part, it suf®ces to look at ��ibn ÿ 2; l� for bn 4 l< bn � b; these
entries are the sum of a power of 2 (sum of binomial coef®cients from 0 to bn ÿ 1)
and of entries given by the third part of Lemma 4.6 times �iÿ 1� (because of the
structure of the matrix C, see Lemma 3.1, the second row of blocks is �iÿ 1�C1 in
the present case); therefore we add a power of 2 to �iÿ 1� times the integers
between 1 and bÿ 1 in the order 1; bÿ 1; 2; bÿ 2; . . . ; b�1

2
; necessarily, we must

get a zero entry. &

4.8 Lemma (Property of the sub-matrix ��rbn; �r � 1�bn; sbn; �s� 1�bn�).
Given integers n5 1; s5 0; r 5 s, we have (with the notations of Lemmas 4.6
and 4.7):

��rbn; �r � 1�bn; 0; bn� � Bn
1

and for s5 1;��rbn; �r � 1�bn; sbn; �s� 1�bn�� � uBn
� with

u � ��r; sÿ 1� and
� � ��r; s�=��r; sÿ 1�

� � b

if ��r; s� 6� 0

if ��r; s� � 0

�
,

if ��r; sÿ 1� 6� 0 and (u � ��r; s� and � � 1) if ��r; sÿ 1� � 0.
In particular,

���bÿ 1�bn; bn�1; lbn; �l� 1�bn�� � Bn
1

Bn
b

if l is even

if l is odd
�04 l< b�

�
,
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for 24 i< b

���ibÿ 1�bn; ibn�1; �b� l�bn; �b� l� 1�bn�� � Bn
i

iBn
1=i

if l is even

if l is odd
�04 l< b�

�
and

���b2 ÿ 1�bn; bn�2; �b� l�bn; �b� l� 1�bn� � Bn
b

Bn
1

if l is even

if l is odd
�04 l< b�:

�

Proof. The ®rst part is straightforward since the entries of the ®rst row of � are
equal to 1 and the entries under the diagonal are constant.

The second part is a direct consequence of Corollary 4.5: the last two entries
�c; d� of the last column of a given block B determine the good multiple u of the
good block Bn

� (with �1; �� for the last two entries of the last column), such that
B � uBn

�: one has u � c and �c � d; by reduction of the entries of the corners
(Lemma 4.4) and taking into account the special cases ��r; s� � 0 and
��r; sÿ 1� � 0, we get the formula of the second part of the lemma.

The particular cases will be useful in the next paragraphs; they describe the
blocks of the last column of blocks of Bn�1

i and they follow by direct computation of
the convenient uBn

� from the results of the preceding lemmas: the ®rst with r � bÿ1
and s � l, so that u � ��r; sÿ 1� � 1 or 0, and � � 1 or b; the second with
r � �iÿ 1�b� bÿ 1 � ibÿ 1 and s � b� l, so that u � 1 or i and � � i or 1=i;
and the third with r � b2 ÿ 1 and s � b� l, so that u � 1, and � � 1 or b. &

Corollary (Algorithmic construction of �). Above the diagonal (included), the
bn�1 � bn�1 matrix �n�1 � Bn�1

1 is formed by
b�b�1�

2
bn � bn sub-matrices which

arise by multiplication from Bn
1;B

n
2; � � � ;Bn

b, the sub-matrices of the ®rst two rows
of �n�1; therefore, it suf®ces to know the algorithm by which Bn

1;B
n
2; � � � ;Bn

b arise
from Bnÿ1

1 ;Bnÿ1
2 ; � � � ;Bnÿ1

b to pass through n to n� 1 and get �n�1 from �n.
See the example b � 3 in the next paragraph.

4.9 The counting matrix A���. From Lemma and Corollary 4.8, we know the
algorithmic construction of � involves b blocks, Bn

1; . . . ;Bn
b instead of one in the

case of C; so we must take into account the composition of each block Bn�1
j by

means of the b blocks Bn
i if we want to obtain the induction formula for the number

of entries as in 3.3.
In the following, the indexes i; j; c; l are integers with 14 i4 b; 14 j4 b;

14 c< b; 14 l< b.

Let �
�n�1�
l; j be the number of entries in Bn�1

j , above (or on) the diagonals,
belonging to the residue class l (remember corollary and de®nition 3.1 for the
meaning of above (or on) the diagonals).

In order to express �
�n�1�
l;j by means of the �

�n�
c;i , we need to compute the number

A
l;j
c;i of blocks of the form �Bn

i , where � � l=c (mod b), appearing in Bn�1
j ; because

again, in this way, an entry of Bn
i belonging to the residue class c (counted in �

�n�
c;i )

becomes congruent to �c � l and so must be counted in �
�n�1�
l;j .
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And again, as in 3.3, collecting the numbers A
l;j
c;i in rows of indexes �l; j� and

columns of indexes �c; i�, we obtain the b�bÿ 1� � b�bÿ 1� matrix A � A��� �
�Al; j

c;i� which gives the fundamental relation:

N�n�1� � AN�n� with tN�n� � ���n�1;1 ; � � � ; ��n�1;b ; �
�n�
2;1 ; � � � ; ��n�2;b ; � � � ; ��n�bÿ1;1; � � � ��n�bÿ1;b�:

Remark. For our purpose, we need only the �
�n�1�
l;1 , because �n�1 � Bn�1

1 and

we are only interested by the entries of this matrix; but to obtain the �
�n�1�
l;1 , we

must compute all the �
�n�
c;i and so we need the general recursion formula for all the

blocks Bn�1
j .

Example. For b � 3, applying 4.8, we get the following expressions for the
Bn�1

j , from which we deduce the matrix A��� (see [5] appendix for b � 5 and 7):

Bn�1
1 �

Bn
1 Bn

1

Bn
2

Bn
1

Bn
3

Bn
1

0B@
1CA; Bn�1

2 �
Bn

2 2Bn
3

Bn
1

Bn
2

2Bn
2

Bn
2

0B@
1CA;

Bn�1
3 �

Bn
3 2Bn

2

Bn
3

Bn
3

Bn
1

Bn
3

0B@
1CA; A��� �

4

1

1

0

0

0

1

3

0

0

1

1

1

0

4

0

1

0

0

0

0

4

1

1

0

1

1

1

3

0

0

1

0

1

0

4

0BBBBBBBB@

1CCCCCCCCA
:

By construction, the matrix A��� consists of b� b sub-matrices according to
the following rule: given the ®rst column (or row) of sub-matrices, the next ones
result by permutations according to the square table of values of � � l=c (mod b),
as in 3.3.

Proposition. The matrix A��� is non-negative, irreducible, primitive andP
c;i A

l;j
c;i �

P
l;j A

l;j
c;i � b�b�1�

2
for all integers i, j, c, l with 14 i4 b; 14 j4 b;

14 c< b and 14 l< b.

Proof. For the irreducibility, we show that the directed graph associated to A is
strongly connected (see [7]); we proceed in two steps: ®rst, we prove that the
diagonal b� b sub-matrix is irreducible; secondly we note that the connexions
between the partial graphs corresponding to the diagonal sub-matrices exist if
there is a non-zero entry in the non-diagonal sub-matrices, which is proved in the
second step.

The ®rst step is essentially a consequence of Lemmas 4.7 and 4.8: in each
block Bn�1

j there is a block of the form Bn
1 or Bn

b, because the naught entry of the
penultimate column gives rise to the block Bb if the entry on its right is 1 and if
not, it is the entry below which gives rise to the block B1 (due to the structure of
the last column and to Lemma 4.2); next the structure of B1 (Lemma 4.6) shows
that the ®rst row of the diagonal b� b sub-matrix has non-zero entries and the
structure of Bb (last column) shows that A

1;b
1;1 � �bÿ1�

2
6� 0; this achieves the ®rst

part: the directed graph of the diagonal b� b sub-matrix is strongly connected.
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The second step follows from the second particular case of Lemma 4.8: the last
column of blocks in Bn�1

� contains bÿ1
2

blocks of the form �Bn
1=�, so we have

A
l;j
c;i 6� 0 with � � l=c 6� 0 corresponding to the non diagonal sub-matrix, j � �

and i � 1=�; qed for the second step.
The primitivity is straightforward because the diagonal entries of A are

different from zero (see [7]) and the sums with ®xed rows also, because we have
exactly

b�b�1�
2

blocks of order n in Bn�1
j .

The sums with ®xed columns need more explanation: for c; i ®xed, we are
interested in the terms �Bn

i , with � � l=c, appearing in Bn�1
j (for variable l; j); we

show below that at the same place in every block Bn�1
j we have blocks uBn

� with
distincts values of �; in other words the correspondance j! � is one to one; so, for
®xed c; i we get exactly

b�b�1�
2

blocks uBn
i with various u according to the value of l

and to the selected place in Bn�1
j , hence

P
l;j A

l;j
c;i � b�b�1�

2
.

To prove our assertion above, we consider a ®xed block in Bn�1
j � j52� de®ned

by the pair �r; s� with 04s4r<b:

��� jÿ 1�bn�1 � rbn; � jÿ 1�bn�1 � �r � 1�bn; bn�1 � sbn; bn�1 � �s� 1�bn��;

from Lemma 4.8, we have � � 1� � jÿ 1� r

s

� �
=�2r � � jÿ 1���r; sÿ 1�� except

for particular cases corresponding to � � 1 or � � b; hence the correspondance
j! � is one to one. &

4.10 Proof of Theorem 2. The spectral radius of A��� is again � � b�b�1�
2

and,
from the primitivity, all the other eigenvalues � of A��� verify j�j<�. According

to 4.8, we have Nn � AnN0 with N0 � t���0�l;j � where �
�0�
l;l � 1 and �

�0�
l; j � 0 for l 6� j

(because �
�0�
l; j is the number of l in B0

j � � j�, matrix of order 1); moreover we have
again An � PJnPÿ1 with J the Jordan normal form of A and computing the matrix
product with lemma 3.2 as in 3.4, we get the entries of An in the form

1
b�bÿ1� �

n �Pr
i�1 Pi��i� where Pi is a polynomial of degree n with less than

b�bÿ 1� terms and where the �i are the other eigenvalues.
Now, the vector N�0� has �bÿ 1� entries equal to 1 and all other naught, so that

all the entries of N�n� are of the form 1
b
�n � o��n�, in particular the �

�n�
l;1 (for

14l<b) which are the number of entries in �n � Bn
1, above (or on) the diagonals,

belonging to the residue class l; it remains the zero class which occurs also for the

entries above (or on) the diagonals; but since �n � b�b�1�
2

� �n

is the total number of

these entries, by difference, we obtain the same proportion for the zero class. &

Example. For b � 3, we obtain:

J �

6

5 O

4

3

O 3

1

0BBBBBB@

1CCCCCCA;
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P �

1

1

1

1

1

1

1

0

1

ÿ1

0

ÿ1

1

1

ÿ1

ÿ1

ÿ1

1

1

ÿ1

0

1

ÿ1

0

1

0

ÿ1

1

0

ÿ1

1

ÿ2

ÿ1

ÿ1

2

1

0BBBBBB@

1CCCCCCA;

Pÿ1 � 1

12

2

3

2

2

2

1

2

0

2

ÿ4

2

ÿ2

2

3

ÿ2

2

ÿ4

ÿ1

2

ÿ3

ÿ2

2

2

ÿ1

2

0

ÿ2

ÿ4

2

2

2

ÿ3

2

2

ÿ4

1

0BBBBBB@

1CCCCCCA
so that the number of entries above (or on) the diagonals of �n equal respectively
to the digits 1, 2 and 0 is:

�
�n�
1;1 � 1

12
�4� 6n � 3� 5n � 2� 3n � 3�

�
�n�
2;1 � 1

12
�4� 6n ÿ 3� 5n � 2� 3n ÿ 3�

�
�n�
0;1 � 1

12
�4� 6n ÿ 4� 3n�:

4.11 Problem. It is possible to de®ne generalized binomial coef®cients by the

relation
c

l

� �
f

� c

l

� �
f cÿl (mod b), where 14 f < b, for which the Lucas formula

and the recursion formula
c

l

� �
f

� f
cÿ 1

l

� �
f

� cÿ 1

lÿ 1

� �
f

hold.

It is easy to verify that Theorem 1 is still valid for the
c

l

� �
f

; but concerning

the corresponding matrix � f , we have no proof for the irreducibility of its
counting matrix A�� f � in all generality; nevertheless, in each case where we have
effectively computed A�� f �, we have deduced this property by means of its
associated directed graph; on the other hand, the other properties of proposition 4.9
are still veri®ed, so we state the hypothesis that Theorem 2 is also valid for � f .
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