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Abstract. For measures on the unit sphere in Rd , d53, we derive discrepancy estimates in terms
of the quality of corresponding quadrature formulas and in terms of bounds for potential differences.

1. Introduction and Statement of the Results

Distributing points on the unit sphere in R3 has attracted the interest of many
mathematicians (see [6] and [15] for an interesting overview). Although
applications go far beyond the construction of quadrature rules on the sphere,
this paper is devoted in part to a relationship between the equidistribution of points
and the quality of a corresponding quadrature formula. The other part, namely,
discrepancy estimates in terms of bounds for Newtonian potentials, has its roots in
the complex plane. Starting from quantitative equidistribution results by ERDOÈ S and
TURAÂ N [10] on the unit disk and unit interval for the zeros of polynomials, the
second author and GROTHMANN [7] were able to give a potential-theoretic
interpretation, which in the sequel led to various discrepancy estimates for the
distribution of zeros of polynomials (see, e.g., [21], [8], [1]).

We place ourselves in Rd, d53, and denote by � the surface measure on the
unit sphere S � fx 2 Rd : jxj � 1g, normalized to total mass 1. Here, j � j denotes
the euclidean norm. We are interested in the question, how well one can
approximate � by means of certain masses on S. More speci®cally, suppose � is a
unit measure on S. For reasonable classes B of test sets B � S we focus on the
discrepancy

sup
B2B
j��B� ÿ ��B�j:

Our choice of B is based on the following de®nition, introduced by SJOÈ GREN [20].
A measurable set B � S is said to be K-regular, if for

@ S
� B :� y 2 S j dist �y;B�4�; dist �y; S n B�4�f g

it holds that
��@S

� B�4K� �� > 0�:
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Here, dist �x;A� denotes the euclidean distance of a point x from a set A, where
dist �x; ;� :� 1.

Note that for � suf®ciently small, @ S
� B is the �-neighbourhood of the boundary

of B relative to S. It is not hard to see that so-called spherical caps, i.e.,
intersections of balls with the sphere, are K0-regular with some constant K0 > 0
depending only on the dimension d. In the case d � 3, SjoÈgren has shown that any
recti®able curve on S having length l is �K0 � l K1�-regular with absolute constants
K0; K1. In this paper we will see that the classes BK of K-regular sets in some
sense form the `̀ appropriate classes'' of test sets when dealing with quadrature
formulae or potential-theoretic estimates.

A relationship between discrepancy and the polynomial quality of the
corresponding quadrature formula is given in the following theorem. To formulate
the result we choose the integer s � s�d� minimal so that 2s5d � 2.

Theorem 1. There exists a constant C0 > 0 depending only on d such that for
every unit measure � on S and every K-regular set B � S it holds that

j��B� ÿ ��B�j4C0 inf
m2N

K

m
� C�m; �; d�

� �
;

where

C�m; �; d� :� sup

�
p d�ÿ

�
p d�

���� ���� :
p polynomial;

deg � p�4ms; j pj41 on S

� �
:

There are immediate consequences for so-called spherical designs: A spherical
�t; n�-design is a set of different points y1; . . . ; yn 2 S such that the corresponding
quadrature formula of Chebyshev type associating equal weight 1=n with each
point is exact up to order t, i.e.,�

p d� � 1

n

Xn

i�1

p�yi�

for all multivariate polynomials p of total degree at most t.

Corollary 1. There exists a constant C0 > 0 such that for all spherical �t; n�-
designs y1; . . . ; yn and all K-regular sets B � S it holds that

��B� ÿ#fi : yi 2 Bg
n

���� ����4C0 K
1

t
: �1�

Note that in the case d � 3 and when considering only spherical caps, an
estimate of the form (1) was derived by GRABNER and TICHY [12].

If d � 3, then from any n points y1; . . . ; yn 2 S more than
���
n
p

points of these
can be connected by a recti®able arc l on S of length L0 (L0 being an absolute
constant). In fact, any N points in the unit square �0; 1� � �0; 1� can be connected
by a path of length 4 c0

����
N
p

[17, Pr. 73]. Now, suppose w.l.o.g. that n be the fourth
power of an integer. Following an idea of V. Totik, we partition the unit square into���

n
p

subsquares of equal side length 1= 4
���
n
p

. If n points are placed on the unit square,
then there will be such a subsquare containing at least N :� ���

n
p

points. By the
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previous reasoning, they can be joined by a path of length 4c0

����
N
p

= 4
���
n
p � c0. The

assertion for points on the sphere now follows by means of a parametrization with
respect to a ®nite number of local coordinate systems.

For this arc l joining the points y1; . . . ; yn we thus always have the bounds

1���
n
p 4 ��l� ÿ#fi : yi 2 lg

n

���� ����4C0 �K0 � L0K1� 1

t
: �2�

This gives the previously known (cf. [13, p.108]) result of

Corollary 2. Let d � 3. There exists an absolute constant C0 such that for any
�t; n�-design, t4C0

���
n
p

.

It was the work of KOREVAAR and MEYERS [13] that connected polynomial
quality of quadrature formulas to the approximate Faraday cage effect, roughly
stating that in d � 3, y1; . . . ; yn 2 S are good points for Chebychev type quadrature
if and only if the difference�

1

jxÿ yj d��y� ÿ 1

n

Xn

j�1

1

jxÿ yjj
of the corresponding Newtonian potentials is small inside the sphere. For a precise
statement, see their equivalence principle (see also [14, p. 59]).

Some parts of this result can be generalized to arbitrary dimensions d 5 3 and
arbitrary (unit) measures � on S: In the following, jj � jj2 denotes the L2���-Norm
on S and

U��x� �
�

1

jxÿ yjdÿ2
d��y� �x 2 Rd�

the Newtonian potential of the unit measure �. Slightly modifying the technique of
Korevaar and Meyers one can prove the following result.

Theorem 2. There exists a constant C0 > 0 depending only on d such that for
all unit measures � on S, all 0 < r < 1 and all polynomials p of degree 4 n it
holds that �

p�z� d��z� ÿ
�

p�z� d��z�
���� ����4C0 jjpjj2 n rÿn jjU��r�� ÿ 1jj2: �3�

Combining Theorem 1 and 2 gives

Corollary 3. There exists a constant C0 depending only on d such that for
every unit measure � on S, every 1 > r > 0 and each K-regular set B � S it holds
that

j��B� ÿ ��B�j4C0 inf
m2N

K

m
� m rÿms "�r�

� �
;

where

"�r� :� sup
jzj�r

jU��z� ÿ U��z�j: �4�
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Note that U��z� � 1 for jzj41, since � is the equilibrium measure for the
sphere.

With the choice

m :� max 1 ;

log
1

min �"�r�; 1=2�
2s log

1

r

2664
3775

0BB@
1CCA

Corollary 3 implies

Corollary 4. There exists a constant C0 depending only on d such that for
every unit measure � on S, every 0 < r < 1 and every K-regular set B � S it holds
that

j��B� ÿ ��B�j4C0 K log
2

r
log

1

min �"�r�; 1=2�
� �ÿ1

;

where "�r� is de®ned in (4).

Corollary 4 has its two-dimensional counterpart in a theorem of ERDOÈ S and
TURAÂ N [9], where a similar estimate of discrepancy for the unit disk can be used to
give a quantitative equidistribution result for zeros of polynomials. This was quite
recently generalized by the ®rst two authors to discrepancy estimates on analytic
curves and Dini-smooth arcs [2], [3].

We now want to formulate a special case of Corollary 4, namely, when �
consists of point masses.

Corollary 5. Let 0 < r < 1, C; c; � > 0. There exists a constant C0 depending
only on d; r; C; c and � such that for all n 2 N, all y

�n�
1 ; . . . ; y�n�n 2 S with

sup
jxj4r

1ÿ 1

n

Xn

i�1

1

jxÿ y
�n�
i jdÿ2

�����
�����4C exp �ÿc n�� �5�

and for all K-regular sets B � S it holds that

��B� ÿ#fi : y
�n�
i 2 Bg
n

�����
�����4C0 K

1

n�
: �6�

The formulation of the last statement is related to the following. In [13],
KOREVAAR and MEYERS consider the case d � 3 and the problem of ®nding points
with property (5). Roughly speaking, they are seeking to approximate the Faraday
cage effect, i.e., constant potential on the conductor, exponentially well in the
interior of the unit ball. For n along some subsequence they construct points
satisfying (5) with parameter � � 1=3 and show, that point sequences for � > 1=2
do not exist (this also follows from Corollary 5 and (2)). In addition, they
conjecture that such a sequence of n-tupels of points can be found for � � 1=2. In
this case the discrepancy estimate (6) would at least up to a log-term be of the
order O� log n=

���
n
p � of the discrepancy estimate for Fekete-points as derived by the

third author in his Ph.D.-thesis [11].
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It is interesting to note that preliminary numerical results of Kuijlaars and
Voogd (see [14, p. 50]) give some evidence that for Fekete points there is no very
small potential difference in (5). Based on this observation we do not expect an
immediate converse to Theorem 1.

We have also seen that when d � 3, the discrepancy, based on the concept of
K-regular sets, between � and a measure �n giving mass to at most n points is
bounded from below by C0=

���
n
p

, which then gives lower bounds for potentials and
for quadrature formula estimates. However, in taking as test sets the class Bcaps of
spherical caps, one can do much better w.r.t. discrepancy. This was shown by BECK

[5], who proved that a previously known lower bound due to SCHMIDT [19] is
optimal up to a logarithmic term. Thus, no sharp estimates for Bcaps by means of
potential bounds can be expected. For an extensive list of references on the
spherical cap discrepancy and for a discussion of other concepts in the Weyl-
Hlawka discrepancy theory, see [6].

2. Proofs of the Results

Our proof of Theorem 1 is based on the following construction using a
convolution technique of NIKOL'SKIIÆ and LIZORKIN [18]. In the sequel, by C0 we
denote positive constants, depending at most on d and possibly different at
different occurences, even if they appear in the same formula or estimate.

For the integer s5 d=2� 1 introduced earlier we consider the generalized
Jackson kernel

Dm�t� :�
sin

m� 1

2
t

sin
t

2

0B@
1CA

2s

�t 2 R�;

which has a representation of the form

Dm�t� � Pm�cos t� �t 2 R� �7�
with a real, algebraic polynomial Pm of degree m s. If B � S is a measurable set,
we de®ne

Tm�x;B� :� 1

�m

�
B

Pm�hx; yi� d��y� �x 2 S�; �8�

where the constant �m is chosen so that Tm��; S� � 1. Tm��;B� is a polynomial and
due to the representation (7), �m Tm��;B� is the spherical convolution of the
indicator function of B with the Jackson kernel Dm,

Tm�x;B� � 1

�m

�
1B�y�Dm�^xy� d��y� �x 2 S�;

where
^
xy denotes the angle between x and y. In addition we note that for a certain

constant c > 0 independent of m the norming constant �m satis®es the inequalities

1

c
m2sÿd�1 4�m 4 c m2sÿd�1 �9�
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(see [18 p. 217]). Because of (8) we have that Tm�� ;B� is the restriction to S of a
polynomial in d variables of degree 4m s having the property�

Tm�z;B� d��z� � ��B�:

We derive other speci®c properties of Tm�� ;B�.
Lemma 1. There exists a constant C0 > 0 depending only on d such that for

every measurable set B � S and all x 2 S with dist �x; SnB�5 1=m we have:

Tm�x;B�5C0:

Proof. Let x 2 S. For 25 r > 0 we consider the spherical cap

S \ B�x; r� � f y 2 S : jxÿ yj < r g � f y 2 S : hx; yi > 1ÿ r2

2
g:

We have

Tm�x; S \ B�x; r�� � �dÿ1

�m

�1

1ÿr2=2

Pm�u� �1ÿ u2��dÿ3�=2
du

� �dÿ1

�m

�arccos�1ÿr2=2�

0

Dm�t� �sin t�dÿ2
dt:

By de®nition of the Jackson kernel, for �=�m� 1�5 v > 0 the following estimate
holds:

�v

0

Dm�t� �sin t�dÿ2
dt 5

�v

0

sin
m� 1

2
t

� �2s

�t=2�2sÿd�2
dt

� 2 �m� 1�2sÿd�1

��m�1�v=2

0

sin y

y

� �2s

ydÿ2 dy

5C0 �m� 1�2sÿd�1 m� 1

2
v

� �dÿ1

:

If dist �x; SnB�5 1=m, then chosing r � 1=m in the previous inequality gives

Tm�x;B�5Tm x; S \ B x;
1

m

� �� �
5

C0

�m

�m� 1�2sÿd�1

From this taking into account (9) the assertion follows. &

Lemma 2. There exists a constant C0 > 0 depending only on d such that for
all measurable sets B � S, all k 2 N and all x 2 S with

k

m
4 dist �x;B�;

184 V. V. ANDRIEVSKII et al.



it holds that:

Tm�x;B�4C0

1

k3
:

Proof. We again look at the spherical cap S \ B�x; r� considered above, where
this time we choose r :� dist �x;B�. We have

Tm�x;B�4Tm�x; S nB�x; r�� � �dÿ1

�m

��
arccos�1ÿr2=2�

Dm�t� �sin t�dÿ2
dt:

Since for 0 < u < �,��
u

Dm�t� �sin t�dÿ2
dt 4

��
u

�2s 1

t2s
tdÿ2 4C0 �

2s 1

u2sÿd�1
;

it follows that

Tm�x;B�4C0
1

�m

�dist �x;B��ÿ2s�dÿ1:

Taking into account (9) and the choice of s, the asserted estimate follows. &

Proof of Theorem 1. For every measurable set B � S and every m 2 N it holds
that 04Tm��;B�4Tm��; S� � 1 and, consequently,�

Tm�z;B� d��z� ÿ
�

Tm�z;B� d��z�
���� ����4C�m; �; d�: �10�

Now, suppose B � S is K-regular. For k � 0; 1; 2; . . . set

Ak :� y 2 S :
k

m
< dist �y;B�4 k � 1

m

� �
and

~Ak :� y 2 S : dist �y;Ak�4 1

m

� �
:

We have ~Ak � @ S
�k�2�=mB and thus �� ~Ak�4C0 K�k � 1�=m. Because of Lemma 1

and (10) we have that for k � 0; 1; . . .,

C0 ��Ak�4
�

Ak

Tm�y; ~Ak� d��y�

4C�m; �; d� �
�

Tm�y; ~Ak� d��y�

4C�m; �; d� � C0 K
k � 1

m
:

We have established that

��Ak�4C0
�k � 1�K

m
� C�m; �; d�

� �
�k � 0; 1; . . .�:
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Taking into account (10) and Lemma 2, this estimate implies that

��B�5
�

B

Tm�x;B�d�

�
�

Tm�x;B� d� ÿ
X1
k�0

�
Ak

Tm�x;B� d�

5
�

Tm�x;B� d��x� ÿ C�m; �; d� ÿ C0 ��A0� �
X1
k�1

1

k3
��Ak�

 !

5��B� ÿ C0
K

m
� C�m; �; d�

� �
:

From this, the desired upper estimate for ��B� ÿ ��B� follows. The corresponding
lower estimate follows from the upper one when replacing B by SnB, which is also
a K-regular set. &

For completeness, we present also a proof of Theorem 2, which in major parts
follows the ideas of Korevaar and Meyers.

Proof of Theorem 2. Let �; z 2 S, let r 2 �0; 1�. Because of the representation

[16, p. 3] of the Gegenbauer polynomials C
���
k by a generating function, the

Newtonian kernel has a development

1

jr � ÿ zjdÿ2
� �1ÿ 2 r h�; zi � r2�ÿ�dÿ2�=2 �

X1
k�0

rk C
���
k �h�; zi�;

where � :� �d ÿ 2�=2. Consequently,

U��r�� ÿ 1 �
�X1

k�1

rk C
���
k �h�; zi� d��z� �

X1
k�1

rk

�
C
���
k �h�; zi� d��z�: �11�

If one sets

Qk��� :�
�

C
���
k �h�; zi� d��z� �� 2 S�;

then the functions Qk are spherical harmonics of degree k and in particular form an
orthogonal system for integration with respect to the surface measure on S.
Squaring and integrating (11) yields

jjU��r�� ÿ 1jj22 �
� X1

k�1

rkQk���
�����

�����
2

d���� �
X1
k�1

r2k jjQkjj22: �12�

Now, let p be an arbitrary polynomial of degree 4 n. Any such polynomial can be
developed into a series

p�z� �
Xn

k�0

Yk�z� �z 2 S� �13�
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with respect to orthogonal spherical harmonics Yk � Yk��; p� of degree k. Because
of orthogonality, we have

jj pjj22 �
Xn

k�0

jjYkjj22:

The Yk's can be continued into Rd admitting a representation

Yk�z� � Yk�z; p� �
�

p��� Zk�z; �� d���� �z 2 Rd�; �14�

where Zk��; �� denotes the zonal spherical harmonic of degree k with pole in �.
Following [4, Th. 5.24], for x 2 Rd and � 2 S, the zonal function Zk�x; �� is

equal to the expression

�d � 2k ÿ 2�
X�k=2�

j�0

�ÿ1� j d �d � 2� . . . �d � 2k ÿ 2jÿ 4�
2 j j ! �k ÿ 2j�! �hx; �i�kÿ2j jxj2j;

and applying formula [16, p. 50] yields the identity

Zk�z; �� � d � 2k ÿ 2

d ÿ 2
C
���
k �hz; �i� �z; � 2 S�:

In particular, when inserting in (13) and (14) the function p � Yk, it follows that

Yk�z� � d � 2k ÿ 2

d ÿ 2

�
Yk���C���k �hz; �i� d���� �z 2 S�:

Because of �
p d� � Y0 �

�
Y0 d�

this implies that�
p d� ÿ

�
p d� �

Xn

k�1

�
Yk d� �

Xn

k�1

d � 2k ÿ 2

d ÿ 2

�
Yk���Qk��� d����

�
� Xn

k�1

d � 2k ÿ 2

d ÿ 2
rÿk Yk���

 ! Xn

j�1

r j Qj���
 !

d����:

Squaring this identity and applying the Cauchy-Schwarz inequality yields�
p d�ÿ

�
p d�

���� ����2
4

Xn

k�1

d � 2k ÿ 2

d ÿ 2

� �2

rÿ2k jjYk�z�jj22
 ! Xn

j�1

r2j jjQj���jj22
 !

4
d � 2nÿ 2

d ÿ 2

� �2

rÿ2n jj pjj22
Xn

j�1

r2 j jjQjjj22:

The assertion of the theorem now follows by inserting (12) into this inequality. &

Discrepancy Estimates on the Sphere 187



References

[1] ANDRIEVSKII VV, BLATT H-P (1997) A discrepancy theorem on quasiconformal curves. Constr
Approx 13: 363±379

[2] ANDRIEVSKII VV, BLATT H-P (1997) On the distribution of zeros of polynomials on an analytic
curve. East J Approx 3: 485±493

[3] ANDRIEVSKII VV, BLATT H-P Discrepancy Theorems and Polynomial Approximation. Heidelberg:
Springer (in preparation)

[4] AXLER S, BOURDON P, RAMEY W (1992) Harmonic Function Theory. New York: Springer
[5] BECK J (1984) Sums of distances between points on a sphere ± an application of the theory of

irregularities of distribution to discrete geometry. Mathematika 31: 33±41
[6] DRMOTA M, TICHY RF (1997) Sequences, Discrepancies and Applications. Lect Notes Math 1651

Berlin Heidelberg New York: Springer
[7] BLATT H-P, GROTHMANN R (1991) ErdoÈs-TuraÂn Theorems on a System of Jordan Curves and

Arcs. Constr Approx 7: 19±47
[8] BLATT H-P, MHASKAR HN (1993) A general discrepancy theorem. Ark Mat 31: 219±246
[9] ERDOÈ S P, TURAÂ N P (1948) On a problem in the theory of uniform distribution. I and II. Indag

Math 10: 310±378, 406±413
[10] ERDOÈ S P, TURAÂ N P (1950) On the distribution of roots of polynomials. Ann of Math 51: 105±119
[11] GOÈ TZ M (1998) DiskrepanzabschaÈtzungen fuÈr Ma�e und Quantitative Verteilungsaussagen fuÈr

Energieextremale Punktsysteme. Dissertation: Kath Univ EichstaÈtt. Aachen: Shaker Verlag.
[12] GRABNER PJ, TICHY RF (1993) Spherical designs, discrepancy and numerical integration. Math of

Computation 60: 327±336
[13] KOREVAAR J, MEYERS JLH (1993) Spherical Faraday cage for the case of equal point charges and

Chebyshev-type quadrature on the sphere. Integral Transforms Special Functions 1: 105±117
[14] KOREVAAR J (1996) Fekete extreme points and related problems. In: Approximation Theory and

Function Series, Bolyai Soc Math Studies 5: 35±62
[15] SAFF EB, KUIJLAARS ABJ (1997) Distributing Many Points on a Sphere. Math Intelligencer 19:

5±11
[16] MCBRIDE EB (1971) Obtaining Generating Functions. New York: Springer
[17] NEWMAN DJ (1982) A Problem Seminar. New York: Springer
[18] NIKOL'SKIIÆ SM, LIZORKIN PI (1986) Approximation by Spherical Polynomials. Proc Steklov Inst

Math 166: 207±222
[19] SCHMIDT W (1969) Irregularities of distribution IV. Invent Math 7: 55±82
[20] SJOÈ GREN P (1972) Estimates of mass distributions from their potentials and energies. Ark Mat

10: 59±77
[21] TOTIK V (1993) Distribution of Simple Zeros of Polynomials. Acta Math 170: 1±28

V. V. ANDRIEVSKII

H.-P. BLATT

M. GOÈ TZ

Mathem.-Geogr. FakultaÈt
Katholische UniversitaÈt
D-85071 EichstaÈtt
Germany
e-mail:
va@ku-eichstaett.de
hans.blatt@ku-eichstaett.de
mario.goetz@ku-eichstaett.de

188 V. V. ANDRIEVSKII et al.: Discrepancy Estimates on the Sphere


