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Abstract
If G is a finite group, then the spectrum ω(G) is the set of all element orders of G.
The prime spectrum π(G) is the set of all primes belonging to ω(G). A simple graph
�(G) whose vertex set is π(G) and in which two distinct vertices r and s are adjacent
if and only if rs ∈ ω(G) is called the Gruenberg–Kegel graph or the prime graph of
G. In this paper, we prove that if G is a group of even order, then the set of vertices
which are non-adjacent to 2 in �(G) forms a union of cliques. Moreover, we decide
when a strongly regular graph is isomorphic to the Gruenberg–Kegel graph of a finite
group.

Keywords Finite group · Centralizer of involution · Gruenberg–Kegel graph (prime
graph) · Strongly regular graph · Complete multipartite graph
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1 Introduction

Throughout the paperwe consider only finite groups and simple graphs, and henceforth
the term group means finite group and the term graph means simple graph, that is, an
undirected graph without loops and multiple edges.

If G is a group, then the spectrum ω(G) is the set of all element orders of G. The
prime spectrum π(G) is the set of all primes belonging to ω(G). A graph �(G)whose
vertex set is π(G) and in which two distinct vertices r and s are adjacent if and only
if rs ∈ ω(G) is called the Gruenberg–Kegel graph or the prime graph of G. Denote
the number of connected components of �(G) by s(G), and the set of connected
components of �(G) by {πi (G) | 1 ≤ i ≤ s(G)}; for a group G of even order, we
assume that 2 ∈ π1(G). Denote by t(G) the independence number of �(G), that is,
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the maximal size of a coclique (i. e. induced subgraph with no edges) in �(G). If
r ∈ π(G), then denote by t(r , G) the maximal size of a coclique in �(G) containing
r .

Recently the question of characterization of a finite group by its Gruenberg–Kegel
graph is under active investigation. A survey of recent results in this direction can
be found, for example, in [5, 14]. For the question of characterization by Gruenberg–
Kegel graph, the caseswhen the graph is connected andwhen the graph is disconnected
are fundamentally different. If the graph is disconnected, then the Gruenberg–Kegel
theorem (see Lemma 2.2 below) is a helpful tool. In the case of a connected graph,
the situation is more complicated. In this case there exists a strong generalization of
the Gruenberg–Kegel theorem proved by A. Vasil’ev, see Lemma 2.3 below. In this
paper, we continue the investigation of the structure of Gruenberg–Kegel graphs of
finite groups and prove the following theorem which generalizes Lemma 2.3.

Theorem 1 Let G be a finite group of even order such that t(2, G) ≥ 2. Let τ be the
set of vertices of �(G) which are not adjacent to 2. Then the following statements
hold:

(1) If G is non-solvable, then G has the following normal series

1 � K � G0 � G,

where K is the largest solvable normal subgroup of G, G0/K ∼= S is a finite
non-abelian simple group and G/K is almost simple with socle S and either τ ⊆
π(K ) \ π(G/K ) or τ ⊆ π(S) \ (π(K ) ∪ π(G/G0)). In particular, t(2, G) = 2
or t(2, G) ≤ t(2, S).

(2) τ is a union of cliques.

Remark 1 Note that if p is an odd prime, then there exists a finite group such that the
set of the vertices which are not adjacent to p in�(G), is connected and is not a clique.
Indeed, let G = PGL2(pm), where m ≥ 5. Then by [4],ω(G) consists of the divisors
of the numbers from the following set {p, pm + 1, pm − 1}. By the Bang–Zsigmondy
Theorem (see Lemma 2.1 below), |π(pm − 1)| > 1 and |π(pm + 1)| > 1. Thus, the
set π(pm −1)∪π(pm +1) of primes which are not adjacent to p in�(G) is connected
and is not a clique in �(G).

A number of recent papers are devoted to investigation of combinatorial properties
of Gruenberg–Kegel graphs of finite groups. For example, Gruber et al. [10] have
proved that a graph is isomorphic to the Gruenberg–Kegel graph of a solvable group if
and only if its complement is 3-colorable and triangle-free. In this paper we continue
such investigations.

A graph � is called k-regular if each vertex degree of � is equal to k. A strongly
regular graph with parameters (v, k, λ, μ) is a connected k-regular graph � with v

vertices such that every two adjacent vertices have λ common neighbours and every
two non-adjacent vertices have μ common neighbours for some integers λ ≥ 0 and
μ ≥ 1. Note that the four parameters (v, k, λ, μ) in a strongly regular graph are not
independent. They must obey the following relation:

(v − k − 1)μ = k(k − λ − 1).
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The complement of a strongly regular graph with parameters (v, k, λ, μ) is either a
union of cliques or a strongly regular graph with parameters

(v, v − k − 1, v − 2 − 2k + μ, v − 2k + λ).

The following question was asked by Jack Koolen in a private communication with
the third author.

Question 1 (J. Koolen, 2016) What are strongly regular graphs which are isomorphic
to Gruenberg–Kegel graphs of finite groups?

As a corollary of Theorem1,we prove the following theoremwhich gives an answer
to Question 1.

Theorem 2 Let � be a strongly regular graph such that � is isomorphic to the
Gruenberg–Kegel graph �(G) of a finite group G. Then one of the following statements
holds:

(1) � is the complement to a triangle-free strongly regular graph;
(2) � is a complete multipartite graph with all parts of size 2.

Remark 2 Note that the complement to a complete multipartite graph with all parts of
size 2 is 2-colorable and triangle-free. Thus, by [10], each graph from Statement (2)
of Theorem 2 is isomorphic to the Gruenberg–Kegel graph of a solvable group.

An important step in proof of Theorem 2 is the following theorem.

Theorem 3 Let � be a complete multipartite graph with each part of size at least 3.
Then � is not isomorphic to the Gruenberg–Kegel graph of a finite group.

Note that in [13], the third author and D. Pagon have proved Theorem 3 for com-
plete bipartite graphs, i. e. they have proved that a complete bipartite graph Kn,m is
isomorphic to the Gruenberg–Kegel graph of a finite group if and only if m + n ≤ 6
and (n, m) �= (3, 3).

2 Preliminaries

Let n be an integer, π be a set of primes and G be a group. Denote by π(n) the set of
all prime divisors of n. Note that with respect to this notation, π(G) = π(|G|). The
largest divisor m of n such that π(m) ⊆ π is called the π -part of n and is denoted by
nπ . By π ′ we denote the set of primes which do not belong to π . If π consists of a
unique element p, then we will write n p and n p′ instead of n{p} and n{p}′ , respectively.
G is called a π -group if π(G) ⊆ π . A subgroup H of G is called a π -Hall subgroup
if π(H) ⊆ π and π(|G : H |) ⊆ π ′.

We will denote by S(G) the solvable radical of G (the largest solvable normal
subgroup of G), by F(G) the Fitting subgroup of G (the largest nilpotent normal
subgroup of G), and by Soc(G) the socle of G (the subgroup of G generated by the
set of all non-trivial minimal normal subgroups of G), by Oπ (G) the largest normal
π -subgroup of G, and if π = {p}, then we write Op(G) instead of O{p}(G).
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If n is an integer and r is an odd prime with (r , n) = 1, then e(r , n) denotes the
multiplicative order of n modulo r . Given an odd integer n, we put e(2, n) = 1 if
n ≡ 1 (mod 4), and e(2, n) = 2 otherwise.

The following lemma is proved in [3], and also in [22].

Lemma 2.1 (Bang–Zsigmondy) Let q be an integer greater than 1. For every positive
integer m there exists a prime r with e(r , q) = m except in the cases q = 2 and
m = 1, q = 3 and m = 1, and q = 2 and m = 6.

Fix an integer a with |a| > 1. A prime r is said to be a primitive prime divisor of
ai − 1 if e(r , a) = i . We write ri (a) (or just ri if a has been fixed) to denote some
primitive prime divisor of ai − 1 if such a prime exists, and Ri (a) to denote the set of
all such divisors.

Let m be a positive integer. Following [19], define

ν(m) =

⎧
⎪⎨

⎪⎩

m, m ≡ 0 (mod 4),

m/2, m ≡ 2 (mod 4),

2m, m ≡ 1 (mod 2);
η(m) =

{
m, m ≡ 1 (mod 2),

m/2, m ≡ 0 (mod 2).

A group G is called a Frobenius group if there is a subgroup H of G such that
H ∩ H g = 1 whenever g ∈ G \ H . Let

K = {1G} ∪ (G \ (∪g∈G H g))

be the Frobenius kernel of G. It is well-known (see, for example, [2, 35.24 and 35.25])
that K � G, G = K � H , CG(h) ≤ H for each h ∈ H , and CG(k) ≤ K for each
k ∈ K . Moreover, by the Thompson theorem on finite groups with fixed-point-free
automorphisms of prime order [16, Theorem 1], K is nilpotent.

A 2-Frobenius group is a group G which contains a normal Frobenius subgroup R
with Frobenius kernel A such that G/A is a Frobenius group with Frobenius kernel
R/A.

Lemma 2.2 (Gruenberg–Kegel Theorem, [21, Theorem A]) If G is a group with
disconnected Gruenberg–Kegel graph, then one of the following statements holds:

(1) G is a Frobenius group;
(2) G is a 2-Frobenius group;
(3) G is an extension of a nilpotent π1(G)-group by a group A, where S � A ≤

Aut(S), S is a non-abelian simple group with s(G) ≤ s(S), and A/S is a π1(G)-
group.

Lemma 2.3 ([17]) Let G be a non-solvable group with t(2, G) ≥ 2. Then the following
statements hold.

(1) There exists a non-abelian simple group S such that S � G = G/K ≤ Aut(S),
where K is the solvable radical of G.

(2) For every coclique ρ of �(G) of size at least three, at most one prime in ρ divides
the product |K | · |G/S|. In particular, t(S) ≥ t(G) − 1.
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(3) One of the following two conditions holds: (3.1) S ∼= Alt7 or L2(q) for some
odd q, and t(S) = t(2, S) = 3. (3.2) Every prime p ∈ π(G) non-adjacent to 2
in �(G) does not divide the product |K | · |G/S|. In particular, t(2, S) ≥ t(2, G).

The following assertion is easy to prove, and can be found, for example, in [12,
Theorem 1].

Lemma 2.4 Let G be a group with t(G) ≥ 3. Then G is non-solvable.

Lemma 2.5 Let A and B be normal subgroups of a group G such that A ≤ B. If
r , s ∈ π(B/A) \ (π(A) ∪ π(G/B)), then r and s are adjacent in �(G) if and only if
r and s are adjacent in �(B/A).

Proof The proof of this lemma is elementary.

A subgroup H is pronormal in a group G if the subgroups H and H g are conjugate
in the subgroup 〈H , H g〉 for each g ∈ G.

Lemma 2.6 ([11, Lemma 4]) Let H ≤ A and A � G. The following statements are
equivalent:

(1) H is pronormal in G;
(2) H is pronormal in A and G = ANG(H).

Lemma 2.7 ([15, Lemma 1]) Let N be an elementary abelian normal subgroup of a
group G and H = G/N. Define a homomorphism φ : H → Aut(N ) as follows
nφ(gN ) = ng. Then �(G) = �(N �φ H).

Let � be a graph, V (�) be the vertex set of �, and u ∈ V (�). Denote by N (u) the
set of all vertices which are adjacent to u in �, and by N2(u) the set of vertices which
are at distance 2 from u in �. It is well-known that each strongly regular graph has
diameter 2. Thus, if � is strongly regular, then for each u ∈ V (�),

V (�) = {u} ∪ N (u) ∪ N2(u).

Lemma 2.8 ([7, Lemma 3.1]) Let � be a strongly regular graph. If there exists u ∈
V (�) such that N2(u) is disconnected, then � is a complete multipartite graph with
parts of the same size.

3 Vertices which are non-adjacent to 2 in the Gruenberg–Kegel graph
of a finite group

The aim of this section is to prove Theorem 1. We do this via the following series of
assertions.

The following two propositions can be proved by following the arguments in [17]
and [18]. Here we provide proofs that are case-free.

Proposition 3.1 Let G be a group and K be a solvable normal subgroup of G such
that G/K ∼= S is non-abelian simple. Then in �(G), 2 is adjacent to each odd prime
from π(K ) or 2 is adjacent to each odd prime from π(S).
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Proof Let G be a minimal counterexample and let τ be the set of odd vertices, which
are non-adjacent to 2 in �(G).

Assume that r ∈ τ ∩π(K ) and τ ∩π(S) �= ∅. Let H be a {2, r}-Hall subgroup of K .
Take any g ∈ G. Then H g ≤ K and the subgroup 〈H , H g〉 ≤ K is solvable, therefore
by the Hall theorem, H and H g are conjugate in 〈H , H g〉. Thus, H is pronormal in
G and by Lemma 2.6, G = K NG(H). We have G/K ∼= NG(H)/NK (H), therefore
π(S) ∪ {2, r} ⊆ π(NG(H)) and �(NG(H)) is a subgraph of �(G). Thus, NG(H)

is a counterexample to the statement of the proposition, therefore NG(H) = G by
minimality of G.

We now show that |H | is even. If |H | is odd, then each Sylow 2-subgroup of
G is isomorphic to a Sylow 2-subgroup of G/K , therefore by the Glauberman Z∗-
theorem [8], G has a subgroup isomorphic to the Klein 4-group, therefore by [9,
Theorem 10.3.1], a Sylow 2-subgroup of G can not act fixed-point-freely on any
group of odd order; a contradiction. Now by Lemma 2.2, we have that H is either a
Frobenius group or a 2-Frobenius group and π(H) = {2, r}.

Suppose that H is a Frobenius group with Frobenius kernel A, which is a 2-group
and Frobenius complement of odd order. Then G/A is also a counterexample to the
proposition and |G/A| < |G|, contradicting to the minimality of G.

Suppose that H is a 2-Frobenius group, where R is a normal subgroup of K , with
the property that R is a Frobenius group with Frobenius kernel A. Then G/A is also a
counterexample to the proposition and |G/A| < |G|, contradicting to the minimality
of G.

Thus, byminimality ofG, H is a Frobenius groupwith Frobenius kernel F = F(H)

such that π(F) = {r} and Frobenius complement D such that π(D) = {2}. Also by
minimality of G we can assume that F is an elementary abelian r -group, therefore
by Lemma 2.7, we can assume that G = F � C , where C ∼= G/F and in �(C), 2 is
adjacent to each odd prime in π(S(C)). Moreover, H/F ∼= O2(C) and |S(C)/O2(C)|
is odd.

Let Q be a Sylow 2-subgroup of C . Since Q acts on F fixed-point-freely by [9,
Theorem 10.3.1], we have Q is either cyclic or generalized quaternion. In any case,
Q has a unique involution i which is contained in each normal subgroup of Q, in
particular, i is contained in Z(Q) and in S(C) ∩ Q = O2(C). Thus, i is contained in
the center of each conjugate of Q. Consider a subgroup W = 〈Qc | c ∈ C〉 ofC which
is normal in C and such that |C : W | is odd. Then by the Feit-Thompson theorem,
C/W is solvable. Thus, W contains a unique non-abelian composition factor of C and
therefore π(S) ⊆ π(W ). But i is contained in Z(W ), therefore, 2 is adjacent to each
odd prime from π(W ) in �(W ) and so, 2 is adjacent to each odd prime from π(S)

in �(G), contradicting the assumption that G is a counterexample to the statement of
the proposition. �

Proposition 3.2 Let G be a non-solvable group and τ be the set of vertices which are
not adjacent to 2 in �(G). If |τ | ≥ 1, then G has the following normal series

1 � K � G0 � G,
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where K = S(G) is the solvable radical of G, G0/K ∼= S is a non-abelian simple
group and G/K is almost simple with socle S such that either τ ⊆ π(K ) \ π(G/K )

or τ ⊆ π(S) \ (π(K ) ∪ π(G/G0)).

Proof By Lemma 2.3, if G is non-solvable and |τ | ≥ 1, then G has the following
normal series

1 � K � G0 � G,

where K is the solvable radical of G, G0/K ∼= S is a non-abelian simple group and
G/K is almost simple with socle S.

Let t ∈ τ . It is clear that �(G/K ) is a subgraph of �(G), therefore by [17,
Lemma 1.2], we have τ ∩ π(G/G0) = ∅, and therefore we have

τ ⊆ (π(S) ∪ π(K )) \ π(G/G0).

By Proposition 3.1, we have τ ∩ π(K ) = ∅ or τ ∩ π(S) = ∅. Thus, either
τ ⊆ π(K ) \ π(G/K ) or τ ⊆ π(S) \ (π(K ) ∪ π(G/G0)). �

Lemma 3.1 Let G be a non-abelian simple group and τ be the set of vertices which
are not adjacent to 2 in �(G). If τ �= ∅, then τ is a union of cliques.

Proof Proof of the lemma for sporadic simple groups follows directly from [6].
Assume that G = Altn for n ≥ 5 and p is non-adjacent to 2 in �(G). Then

p + 4 > n and therefore n ≥ p > n − 4. Note that between the numbers n, n − 1,
n − 2 and n − 3 there are at most 2 odd primes. Thus, if τ �= ∅, then τ consists either
from an only prime or from exactly two primes and is a union of cliques in any case.

Let G be a group of Lie type. Consider the possibilities for G case by case.
If G = An(q), then the statement of lemma follows directly from the adjacency

criterion for �(G), which can be found in [19, Propositions 2.1, 3.1, and 4.1].
If G = 2An(q), then the statement of lemma follows directly from the adjacency

criterion for �(G), which can be found in [19, Propositions 2.2, 3.1, and 4.2].
If G = Bn(q) or G = Cn(q), then the statement of lemma follows directly from

the adjacency criterion for �(G), which can be found in [19, Propositions 3.1 and 4.3]
and [20, Proposition 2.4].

If G = Dn(q) or G = 2Dn(q), then the statement of lemma follows directly from
the adjacency criterion for �(G), which can be found in [19, Propositions 3.1 and 4.4]
and [20, Proposition 2.5].

If G is isomorphic to one of the groups E8(q), E7(q), E6(q), 2E6(q), F4(q),
3D4(q), G2(q), then the statement of lemma follows directly from the adjacency
criterion for �(G), which can be found in [19, Propositions 3.2 and 4.5] and [20,
Proposition 2.7].

If G is isomorphic to one of the groups 2F4(q)′, 2G2(q), 2B2(q), then the statement
of lemma follows directly from the adjacency criterion for �(G), which can be found
in [19, Propositions 3.3 and 4.5] and [20, Proposition 2.9]. �

Proposition 3.3 Let G be a group of even order and τ be the set of vertices which are
not adjacent to 2 in �(G). If τ �= ∅, then τ is a union of cliques.
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Proof Assume that H is solvable. Let τ1 = τ ∪{2} and H be a τ1-Hall subgroup of G.
Then by the Hall theorem, primes p and q from τ1 are adjacent in �(G) if and only if
they are adjacent in �(H). Note that H is solvable and 2 is an isolated vertex in �(H).
Now if τ does not form a clique in �(H), then Lemma 2.4 gives a contradiction with
solvability of H .

Thus, we can assume that G is non-solvable and τ �= ∅. By Lemma 2.3,

S � G = G/K ≤ Aut(S),

where K is solvable and S in a non-abelian simple group. By Proposition 3.2, either
τ ⊆ π(K ) \ π(G/K ) or τ ⊆ π(S) \ (π(K ) ∪ π(G/S)).

Let τ ⊆ π(K ). Consider a Sylow 2-subgroup Q of G and let H = K Q. It is clear
that H is solvable and �(H) is a subgraph in �(G). From above, τ forms a clique in
�(H), therefore τ is a clique in �(G).

Let τ ⊆ π(S) \ (π(K ) ∪ π(G/S)). By Lemma 2.5, the primes p, q ∈ τ are non-
adjacent in �(G) if and only if they are non-adjacent in �(S). Moreover, τ is a subset
of the set σ of odd vertices which are non-adjacent to 2 in �(S). By Lemma 3.1, σ is
a union of cliques. Thus, τ is an induced subgraph of a union of cliques, therefore, τ
is also a union of cliques. �

Theorem 1 follows directly from Propositions 3.2 and 3.3. �

4 Strongly regular graphs which are isomorphic to Gruenberg–Kegel
graphs of finite groups

The aim of this section is to prove Theorems 2 and 3.

Proof of Theorem 2 Let � be a strongly regular graph and suppose that there exists a
group G such that � is isomorphic to �(G). If |G| is odd, then by the Feit–Thompson
theorem, G is solvable. Thus, by Lemma 2.4 the complement of � is either a triangle-
free strongly regular graph or a union of cliques of size 2. So, we can assume that |G|
is even. Then by Theorem 1, N2(2) is a union of cliques.

Assume that N2(2) is a clique. Then from strong regularity of �, it follows that
N2(v) is a clique for each vertex v of �. Thus, in the complement of � any two
adjacent vertices do not have a common neighbour. Therefore, again � is a complete
multipartite graphwith parts of size 2 or the complement of� is a triangle-free strongly
regular graph.

Assume that N2(2) is a union of more than one cliques. Then by Lemma 2.8, � is
a complete multipartite graph with parts of the same size t .

Now to complete proof of Theorem 2 it is sufficient to prove Theorem 3. ��
Proof of Theorem 3 Let � be a complete multipartite graph with each part of size at
least 3. Assume that � is isomorphic to �(G), where G is a group. Then t(G) ≥ 3
and therefore by Lemma 2.4, G is non-solvable. By the Feit–Thompson theorem, |G|
is even.

123



On combinatorial properties...

Let σ be a part of �(G) which contains 2, and then τ = σ \ {2} is exactly the set
of the vertices which are not adjacent to 2 in �. By Theorem 1, G has the following
normal series

1 � K � G0 � G,

where K is solvable, G0/K ∼= S is a non-abelian simple group and G/K is almost
simple with socle S and τ ⊆ π(S)\ (π(K )∪π(G/G0)). In particular, by Lemma 2.5,
σ forms in �(S) a coclique containing the vertex 2 and t(2, S) ≥ t(2, G) = |σ | ≥ 3.

Let μ �= σ be another part of �. Since μ is a coclique, by Statement (2) of
Lemma 2.3, there are at least two primes x and y with

{x, y} ⊆ μ ∩ (π(S) \ (π(K ) ∪ π(G/G0))).

Therefore x and y are non-adjacent in �(G) and by Lemma 2.5, each vertex from
{x, y} is adjacent in �(S) to each vertex from τ .

Assume that �(S) is disconnected. Let i > 1 and u ∈ τ ∩ πi (S). If x is adjacent
to u and y is adjacent to u in �(S), we have {x, y} ⊆ πi (S) and therefore x and
y are adjacent, a contradiction. Thus, τ ∩ πi (S) = ∅ for each i > 1. Similarly,
{x, y} ∩ πi (S) = ∅ for each i > 1.

By [6], S is not a sporadic simple group, and it is clear that S is not an alternating
simple group. Thus, S is a simple group of Lie type. From [1, Tables 1–3], [19,
Propositions 2.1, 2.2, 3.1, 3.2, 3.3, 4.1, 4.2, 4.3, 4.4, and 4.5], [20, Proposition 2.4,
2.5, 2.7, and 2.9] and [19, Tables 2–7], taking into account corrections from [20,
Appendix], we conclude that one of the following statements holds:

(1) S ∼= A1(q), or q is even and S ∼= A2(q) or 2A2(q) with some extra conditions
on q;

(2) S ∼= An−1(q), n > 3, q is even, (n, q) �= (6, 2), (7, 2), and τ = {rn−1, rn};
(3) S ∼= 2An−1(q), n > 3, q is even, and one of the following statements holds:

(3i) n ≡ 0 (mod 4), (n, q) �= (4, 2), and τ = {r2n−2, rn};
(3ii) n ≡ 1 (mod 4), and τ = {rn−1, r2n};
(3iii) n ≡ 2 (mod 4), and τ = {r2n−2, rn/2};
(3iv) n ≡ 3 (mod 4), and τ = {r(n−1)/2, r2n};

(4) S ∼= Bn(q) or Cn(q), n > 1 is odd, q is even, (n, q) �= (3, 2), and τ = {rn, r2n};
(5) S ∼= Dn(q), n ≥ 4, q is even, (n, q) �= (4, 2), and one of the following statements

holds:

(5i) n ≡ 0 (mod 2) and τ = {rn−1, r2n−2};
(5ii) n ≡ 1 (mod 2), and τ = {rn, r2n−2};

(6) S ∼= 2Dn(q), n ≥ 4, q is even, (n, q) �= (4, 2), and one of the following
statements holds:

(6i) n ≡ 0 (mod 2) and τ ⊆ {rn−1, r2n−2, r2n};
(6ii) n ≡ 1 (mod 2), and τ = {r2n−2, r2n};
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(7) S ∼= E7(q), q is even, and τ ⊆ {r7, r9, r14, r18};
(8) S ∼= E7(q), q is odd, and one of the following statements holds:

(8i) q ≡ 1 (mod 4) and τ = {r14, r18};
(8ii) q ≡ 3 (mod 4), and τ = {r7, r9};

(9) S ∼= An−1(q), n > 3, q is odd, n2 = (q − 1)2 > 2, and τ = {rn−1, rn};
(10) S ∼= 2An−1(q), n > 3, q is odd, n2 = (q + 1)2 > 2, and τ = {r2n−2, rn};
(11) S ∼= Dn(q), n > 4 is odd, q ≡ 5 (mod 8), and τ = {rn, r2n−2};
(12) S ∼= 2Dn(q), n > 4 is odd, q ≡ 3 (mod 8), and τ = {r2n−2, r2n}.

Assume that Statement (1) holds. If S ∼= A1(q), then by [19, Propositions 2.1, 3.1,
and 4.1], �(S) is a union of 3 cliques. In particular, �(S) does not contain induced
4-cycles, a contradiction. If q is even and S ∼= A2(q) or 2A2(q), then the picture of
a compact form of �(S) can be found on Pic. 7 in [20]. It is clear that �(S) does not
contain an induced 4-cycle with two non-adjacent vertices both non-adjacent to 2, a
contradiction.

Further let p be the characteristic of the field over which S is defined, x ∈ π(S)

with x adjacent to each element from τ , and if x �= p, then put k = e(x, q).
Assume that Statement (2) or Statement (9) holds. If p is odd, then since x is

adjacent both to rn and rn−1 by [19, Proposition 3.1], we have x �= p. Assume that
k > 1. Since x is adjacent to rn , it follows from [19, Proposition 2.1] that k divides n.
On the other hand, x is adjacent to rn−1, therefore k divides n − 1 which is coprime
to n, a contradiction. Thus, k = 1. Since x was chosen arbitrarily, each two elements
adjacent to both to rn and rn−1 are forced to be adjacent in �(S), a contradiction.

Assume that Statement (3) or Statement (10) holds. If p is odd, then since x is
adjacent both to rn (with ν(n) = n) and to r2n−2 (with ν(2n − 2) = n − 1) by [19,
Proposition 3.1], x �= p. Using [19, Proposition 3.1] if p = 2 and [19, Proposition 4.2]
if p is odd, we conclude that τ consists of two primes {a, b} with ν(e(a, q)) = n,
ν(e(b, q)) = n − 1. Let ν(k) > 1, i. e. k �= 2. Since x is adjacent to a, it follows
from [19, Proposition 2.2] that ν(k) divides n. On the other hand, x is adjacent to b,
therefore ν(k) divides n −1 which is coprime to n, a contradiction. Thus, k = 2. Since
x was chosen arbitrarily, each two elements adjacent to both to a and b are forced to
be adjacent in �(S), a contradiction.

Assume that Statement (4) holds. Note that k ≤ 2n and η(k) ≤ n. Thus, by [20,
Proposition 2.4], if x is adjacent both to rn and to r2n , then n/k and 2n/k are both odd
integers, a contradiction.

Assume that Statement (5) holds. Up to the end of this paragraph, we refer to [20,
Proposition 2.5]. If n is odd, then x is adjacent to rn (with η(n) = n) and to r2n−2
(with η(2n −2) = n −1). Since x is adjacent to rn , we have that n/k is an odd integer
or k/n is an odd integer, therefore k is odd. Since x is adjacent to r2n−2, we have

2(n − 1) + 2k > 2n − (1 − (−1)2n−2+k) = 2n − 2,

therefore again (2n − 2)/k is an odd integer or k/(2n − 2) is an odd integer, a
contradiction. If n is even, then x is adjacent to rn−1 and to r2n−2. We have

n − 1 = η(n − 1) = η(2n − 2).
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Moreover, if k is odd, then

2(n − 1) + 2k > 2n − (1 − (−1)2n−2+k),

therefore (2n − 2)/k is an odd integer, a contradiction. If k is even, then

2(n − 1) + k > 2n − (1 − (−1)n−1+k),

therefore (n − 1)/k is an odd integer or k/(n − 1) is an odd integer, a contradiction.
Assume that Statement (11) holds. Since n is odd and x is adjacent to rn (with

η(n) = n) and to r2n−2 (with η(2n − 2) = n − 1), by [19, Proposition 3.1], x �= p.
Then by [20, Proposition 2.5], n/k is an odd integer or k/n is an odd integer, therefore
k is odd. Then

2(n − 1) + 2k > 2n − (1 − (−1)2n−2+k) = 2n − 2,

therefore (2n −2)/k is an odd integer or k/(2n −2) is an odd integer, a contradiction.
Assume that Statement (6) holds. Up to the end of this paragraph, we again refer

to [20, Proposition 2.5]. If n > 4 is odd, then x adjacent to r2n (with η(2n) = n) and
to r2n−2 (with η(2n − 2) = n − 1). Since x adjacent to r2n , we have 2n/k is an odd
integer or k/2n is an odd integer, therefore k is even. Since x adjacent to r2n−2, we
have

2(n − 1) + k > 2n − (1 + (−1)2n−2+k) = 2n − 2,

therefore again (2n − 2)/k is an odd integer or k/(2n − 2) is an odd integer, a con-
tradiction. If n ≥ 4 is even, then x is adjacent to at least two primes from the set
{rn−1, r2n−2, r2n}. Let η(k) > 1, i. e. k /∈ {1, 2}. Similarly as in Statement (5) we
prove that r can not be adjacent to both rn−1 and r2n−2. Thus, x is adjacent to r2n . This
implies that 2n/k or k/2n is an odd integer and therefore k is even. If x is adjacent to
r2n−2, then

2(n − 1) + k > 2n − (1 + (−1)2n−2+k) = 2n − 2,

and so, (2n − 2)/k is an odd integer or k/(2n − 2) is an odd integer, a contradiction.
If x is adjacent to rn−1, then

2(n − 1) + k > 2n − (1 + (−1)n−1+k) = 2n,

and so, (n − 1)/k is an odd integer or k/(n − 1) is an odd integer, a contradiction.
Thus, η(k) = 1. Since x was chosen arbitrarily, every two distinct vertices adjacent to
at least two primes from the set {rn−1, r2n−2, r2n} are forced to be adjacent in �(S), a
contradiction.

Assume that Statement (12) holds. Since n is odd and x is adjacent to r2n (with
η(n) = n) and to r2n−2 (with η(2n−2) = n−1), by [19, Proposition 3.1], x �= p. Then
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by [20, Proposition 2.5], 2n/k is an odd integer or k/2n is an odd integer, therefore k
is even. Then

2(n − 1) + k > 2n − (1 + (−1)2n−2+k) = 2n − 2,

therefore (2n −2)/k is an odd integer or k/(2n −2) is an odd integer, a contradiction.
Assume that Statement (7) or Statement (8) holds. The picture of a compact form

of �(S) can be found on Pic. 4 in [20]. It is clear that if q is even, then there are no
two non-adjacent vertices in �(S) that are adjacent to at least two vertices from the set
{r7, r9, r14, r18}, a contradiction. If q is odd, then any two vertices that are adjacent
both to r7 and to r9 or both to r14 and to r18, are adjacent; a contradiction.

The proof of Theorem 3 is complete. �

The proof of Theorem 2 is also complete. �
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