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Abstract
The main result of this paper is that for any norm on a complex or real n-dimensional
linear space, every extremal basis satisfies inverted triangle inequality with scaling
factor 2n −1. Furthermore, the constant 2n −1 is tight. We also prove that the norms of
any two extremal bases are comparablewith a factor of 2n−1,which, intuitively,means
that any two extremal bases are quantitatively equivalent with the stated tolerance.
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1 Introduction

Extremal bases, originally introduced in [3, 7], have been established as a useful tool
in the study of the properties of the so called C-convex domains, D. On the one hand
side they induce a natural orthonormal coordinate system around any given point z in
the interior of the domain D. On the other hand, under certain assumptions, see below,
every extremal basis B at point z enjoys the following inequalities:
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(∑
b∈B

| 〈b, v〉 |
dD(z; b)

)−1

� dD(z; v) �
(∑
b∈B

| 〈b, v〉 |
dD(z; b)

)−1

, (1)

where dD(z; v) corresponds to the distance from z to the boundary of D in direction
v, i.e.:

dD(z; v) = sup{r ∈ R
+| z + λv ∈ D whenever |λ| < r}.

This means that the extremal bases provide a convenient linear approximation of the
structure of the body D in a neighbourhood of any given point z in the interior of the
body.

The property (1) of extremal bases has facilitated the construction of plurisubhar-
monic functionswith boundedHessians and for obtaining of estimates for theBergman
kernels, [7, 8]. In [3, 4], Hefer states and uses the estimates (1) to obtain Hölder and L p

estimates for the solutions of Cauchy-Riemann equations on smooth bounded pseudo-
convex domains D of finite type. Estimates (1) have been also applied in the study of
the Kobayashi and Bergman metrics, [7, 9–11] and more recently, [12]. For a survey
on the geometry of extremal bases and their applications we refer to [2].

The construction of maximal bases can be described as a greedy procedure. One
starts with an arbitrary point z in the interior of a C-convex domain D and an empty
set of vectors/directions B0. Next, inductively, the current set Bk is extended to Bk+1
by adding an extremal direction vk+1 that is orthogonal to the subspace spanned by
Bk . The process terminates once the set B := Bn spans the entire space in which case
B is the desired basis.

The notion of extremity can be specified as maximal, [7, 8], or as minimal, [3, 4],
and the difference consists in whether one selects:

vk+1 ∈ argmax{dD(z; v) | v ⊥ span(Bk)} or
vk+1 ∈ argmin{dD(z; v) | v ⊥ span(Bk)}.

Though important for the applications, the proofs of the estimates (1) departing from
geometric or analytical view points, depend on some kind of smoothness conditions
for the domain D, [7, 8, 10], and often provide only implicit or rough estimates for the
hidden constant. In particular, it is not evident if and how it depends on the domain D.

In this paper, we give answer to the above questions by proving that the estimates (1)
are valid with constant 2n − 1 where n is the dimensionality of the space in which
the (so called weakly linear) convex domain D resides. In this sense this constant is
independent of D. Furthermore it turns out that the constant 2n − 1 is sharp, that is it
cannot be improved.

Our approach is algebraic. It departs from the observation that for a weakly linear
convex domain D and any particular point z in the interior of D, the function:

f (v) = 1

dD(z; v)
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is a semi-norm. If further the domain D does not contain complex lines, then f is a
norm, but see Remark 1 which suggests that this assumption is not essential and it
is only for technical reasons that we restrict our considerations to norms. Thus the
estimates (1) can be restated as:

∑
b∈B

| 〈b, v〉 | f (b) � f (v) �
∑
b∈B

| 〈b, v〉 | f (b) (2)

and whereas the first inequality is satisfied with constant 1, as it easily follows by the
triangle inequality, the second inequality seems to be more challenging.

To keep the outline self-contained, in Sect. 2 we prove that every (bounded on the
unit sphere) norm can be represented as:

f (v) = sup
u∈U

| 〈v, u〉 |

for an appropriate set of vectorsU . The geometric interpretation ofU is that the vectors
u ∈ U define the supporting hyperplanes to the body D centred at z.

In Sect. 3 we state and prove that for any extremal basis B:

(2n − 1) f (v) ≥
∑
b∈B

| 〈b, v〉 | f (b).

We should stress that the definition of maximal and minimal in our notation, see
Definition2, are reciprocal to the notions used for bodies. The reason is thatmaximising
dD(z; .) is equivalent to minimising f and vice versa. Thus, Theorem 4 proves the
statement for maximal bases w.r.t. dD(z; .) and for minimal bases w.r.t. f , whereas
Theorem 5 proves the statement for minimal bases w.r.t. dD(z; .) and maximal bases
w.r.t. f .

In Sect. 3 we prove that 2n − 1 is the best possible bound. Namely, we show that
for every ε > 0 there are norms whose maximal, resp. minimal, bases violate the
inequality:

(2n − 1 − ε) f (v) ≥
∑
b∈B

| 〈b, v〉 | f (b)

for at least one vector v. Since every normgives rise to a convex body D′ = {v | f (v) ≤
1} such that dD′(0; v) = 1

f (v)
, the results translate immediately for convex bodies.

Again, Proposition 6 handles the case of maximal basis w.r.t. dD(z; .) and minimal
basis w.r.t. f , whereas Proposition 7 handles the case of minimal basis w.r.t. dD(z; .)

and maximal basis w.r.t. f .
In Sect. 5 we show that minimal and maximal bases are equivalent in their norms.

Whereas similar result has been previously proven in [10], the bounds in Sect. 5 are
based on more accurate analysis of the algebraic structure and improve the estimate
for the constants from 2nn! to 2n , thus reducing a factor of n!.

We conclude in Sect. 6 with some open problems.
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2 Preliminaries

In what follows we assume that V is a linear space on F = R or F = C and that V
is supplied with a scalar product 〈·, ·〉 : V × V → F. We denote with ‖.‖ : V → R

+
and S1 the induced norm and the unit sphere in V , respectively, i.e.:

‖u‖ = √〈u, u〉 for u ∈ V

S1 = {u ∈ V | 〈u, u〉 = 1}.

Lemma 1 Let f : V → R
+ be a norm. Assume that f is bounded on the unit sphere

S1 ⊂ V .

(1) There is a set of vectors U ⊆ V such that:

f (v) = sup
u∈U

| 〈v, u〉 |.

(2) If v0 ∈ V is a unit vector such that f (v0) = supv∈S1 f (v), then for all u ∈ V it
holds that:

f (u) ≥ | 〈v0, u〉 | f (v0).

Proof (1) The first part is an immediate consequence of Hahn-Banach Theorem.
Indeed, let v ∈ V . Then denoting by V0 = span(v), we define L0 : V0 → F

as L0(αv) = α f (v). Clearly, L0 is a linear functional on V0 and |L0(αv)| =
|α| f (v) = f (αv). By Hanh-Banach Theorem, since f is a norm, we can extend
L0 to a linear functional Lv : V → F such that |Lv(u)| ≤ f (u) for all u ∈ V . Since
Lv is linear on V and supu∈S1 Lv(u) is bounded above by supu∈S1 f (u) < ∞, it
follows that Lv is a bounded linear operator and cosequently there is a vector
v∗ ∈ V such that:

〈
u, v∗〉 = Lv(u) for all u ∈ V .

Let U = {v∗ | v ∈ V }. It is straightforward that for any u ∈ V and v∗ ∈ U ,
| 〈u, v∗〉 | = |Lv(u)| ≤ f (u). On the other hand f (u) = Lu(u) = | 〈u, u∗〉 |.
Therefore:

f (v) = sup
u∈U

| 〈v, u〉 |.

(2) For the second part, consider the linear functional L = Lv0 induced by v0. Since L
is linear, it is determined by its values on an orthonormal basis on V . Without loss
of generality we may and we do assume that (ei )i∈I is such a basis with e1 = v0.
Assume that L(ei ) �= 0 for some i > 1. Then we consider the vector:

u = L(e1)v0 + L(ei )ei = f (v0)v0 + L(ei )ei .
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Then we have that ‖u‖ = √
f 2(v0) + |L(ei )|2 and:

L(u) = f (v0)L(v0) + L(ei )L(ei ) = f (v0)
2 + |L(ei )|2.

Hence u′ = u
‖u‖ is a unit vector and L(u′) = √

f (v0)2 + |L(ei )|2 implying that
L(u′) > f (v0) since L(ei ) �= 0. However, f (u′) ≥ L(u′) > f (v0) and this
contradicts the maximality of v0. Consequently, L(ei ) = 0 for any i �= 1. This
proves that L(u) = 〈u, e1〉 L(e1) = 〈u, v0〉 f (v0) and therefore:

| 〈u, v0〉 | f (v0) = |L(u)| ≤ f (u)

as required. ��
Remark 1 We can view the first part of the above lemma as a characterisation of
(semi)norms. Indeed, if U ⊆ V , then fU : V → R

+ defined as:

fU (v) = sup
u∈U

| 〈v, u〉 |

is a semi-norm. Actually, it is a norm iff U⊥ = {v ∈ V | ∀u ∈ U (〈u, v〉 = 0)} is
the trivial set {0}. Since, U⊥ is a subspace of V , the properties of fU are uniquely
determined by the behaviour of fU on the orthogonal subspace of U⊥. Indeed, if
v = v′ + u with u ∈ U⊥ and v′ ⊥ U⊥ then:

fU (v′) ≤ fU (v) + fU (u) = f (v) and fU (v) ≤ fU (v′) + fU (−u) = fU (v′),

that is fU (v′) = fU (v).

3 Minimal andmaximal bases

In this section we assume that n is a positive integer, and V is an n-dimensional linear
space supplied with a scalar product 〈·, ·〉 : V × V → F where F ∈ {R,C}.
Definition 2 Let f : V → R

+ be a norm.We define an f -minimal ( f -maximal, resp.)
(orthonormal) basis for V inductively as follows:

• n = 1, then for any b ∈ S1, (b) is an f -minimal ( f -maximal, resp.) basis.
• n > 1, then let:

b1 ∈ argmin{ f (b) | b ∈ S1}(b1 ∈ argmax{ f (b) | b ∈ S1}, resp.)

V1 = {u ∈ V | 〈u, b1〉 = 0}
f1 = f � V1 be the restriction of f to V1.

If (b2, b3, . . . , bn) is an f1-minimal ( f1-maximal, resp.) basis for V1, then
(b1, b2, . . . , bn) is an f -minimal ( f -maximal, resp.) basis for V .
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Definition 3 We say that two orthonormal bases (b1, . . . , bn) and (e1, . . . , en) of V
are equivalent if for every i ≤ n, bi and ei are collinear, i.e. there is an element αi ∈ F

with |αi | = 1 such that ei = αi bi .

Theorem 4 For any norm f : V → R
+ and any f -minimal basis (b1, b2, . . . , bn) it

holds that:

(2n − 1) f (v) ≥
n∑

i=1

| 〈v, bi 〉 | f (bi ).

Proof First note that for any v ∈ V there are unique α ∈ F and vector u ∈
span(b2, . . . , bn) such that:

v = u + αb1.

The statement being obvious for v = 0, we assume that v �= 0 and set v′ = v
‖v‖ . Then

v′ ∈ S1 and by the definition of b1, we get that:

f (v′) ≥ f (b1) ≥ | 〈v, b1〉 |
‖v‖ f (b1) = |α|

‖v‖ f (b1),

where we used the Cauchy-Schwartz inequality. So far we have that:

f (v) = ‖v‖ f (v′) ≥ |α| f (b1).

This settles the case where n = 1. Alternatively, i.e. for n ≥ 2, we use the triangle
inequality for u = v − αb1 to conclude that:

f (u) = f (v − αb1) ≤ f (v) + |α| f (b1) ≤ f (v) + f (v) = 2 f (v).

With this inequality at hand we can conclude the proof of the theorem by induction
on n. As we noticed, the case n = 1 is settled. Assume that the conclusion of the
theorem holds for any (n − 1)-dimensional vector space V ′ and consider the vector
space V of dimension n. Let V ′ = span(b2, . . . , bn) and f ′ = f � V ′. It follows,
by definition, that (b2, . . . , bn) is an f ′-minimal basis for V ′ and therefore by the
induction hypothesis:

(2n−1 − 1) f ′(u) ≥
n∑

i=2

| 〈u, bi 〉 | f (bi ) for any u ∈ V ′.

Finally, for any non-zero v = u + αb1 with α ∈ F and u ∈ V ′ we have proven that:

f (v) ≥ 2 f (u) = 2 f (u′) and f (v) ≥ |α| f (b1).
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Summing up, and using that 〈v, bi 〉 = 〈u, bi 〉 for i ≥ 2, we conclude that:

(2n − 1) f (v) = 2(2n−1 − 1) f (v) + f (v)

≥ (2n−1 − 1) f (u) + |α| f (b1)

≥ |α| f (b1) +
n∑

i=2

| 〈u, bi 〉 | f (bi )

= | 〈v, b1〉 | f (b1) +
n∑

i=2

| 〈v, bi 〉 | f (bi )

=
n∑

i=1

| 〈v, bi 〉 | f (bi ).

��

Theorem 5 For any norm f : V → R
+ and any f -maximal basis (b1, b2, . . . , bn) it

holds that:

(2n − 1) f (v) ≥
n∑

i=1

| 〈v, bi 〉 | f (bi ).

Proof We proceed by induction on n = dim V . For n = 1 there is nothing to prove.
Assume that the statement of the theorem holds for vector spaces with dimensionality
n. Let f : V → R

+ be a norm. Since f (b1) = maxv∈S1 f (v), by Lemma 1 we have
that:

f (u) ≥ | 〈u, b1〉 | f (b1).

Let V1 = span(b2, . . . , bn) and consider an arbitrary vector u = αb1+v with v ∈ V1.
Then, we have:

f (u) ≥ |α| f (b1).

Furthermore, by the triangle inequality we have:

f (u) + |α| f (b1) = f (αb1 + v) + f (−αb1) ≥ f (v).

Summing up we obtain that 2 f (u) ≥ f (u) + |α| f (b1) ≥ f (v). To complete the
inductive step, we use that 〈u, bi 〉 = 〈v, bi 〉 for i ≥ 2 and the inductive hypothesis for
V1 and f1 = f � V1. Thus, we compute:
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(2n − 1) f (u) ≥ f (u) + 2(2n−1 − 1) f (u)

≥ |α| f (b1) + (2n−1 − 1) f (v)

≥ |α| f (b1) +
n∑

i=2

| 〈v, bi 〉 | f (bi )

= |α| f (b1) +
n∑

i=2

| 〈u, bi 〉 | f (bi )

where the second line follows by the fact f (u) ≥ |α| f (b1) and 2 f (u) ≥ f (v), and
the third line follows by the inductive hypothesis. ��

4 Lower bounds

In this section we prove that the results from Theorems 4 and 5 are sharp. Our con-
structions use the characterisation from Lemma 1 and Remark 1 as a basic tool to
define norms. In both cases given an ε > 0, we construct a finite set U ⊆ R

n that
defines a norm:

f : Cn → R
+ s.t. f (v) = max

u∈U | 〈v, u〉 |.

The set U is tailored in such a way that it admits:

(1) As f -minimal ( f -maximal, resp.) an orthonormal1 basis

(e1, . . . , en) ⊂ R
n

and
(2) A witness v0 ∈ R

n such that:

(2n − 1 − ε) f (v0) <

n∑
i=1

| 〈v0, ei 〉 | f (ei ).

SinceU ⊆ R
n , (e1, . . . , en) ⊆ R

n and v0 ∈ R
n , the restriction fR of f toRn provides

a norm:

fR : Rn → R
+ with fR(v) = f (v)

that admits as fR-minimal ( f -maximal, resp.) basis again (e1, . . . , en) and v0 is a
witnesses that:

(2n − 1 − ε) fR(v0) <

n∑
i=1

| 〈v0, ei 〉 | fR(ei ).

1 Actually, it is unique up to equivalence.
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Proposition 6 Let n ≥ 1 be an integer and V = C
n. Then for any ε > 0, there is a

norm f : V → R
+ and a nonzero vector v ∈ R

n such that:

(1) f admits a unique, up to equivalence, f -minimal basis

(e1, . . . , en) ⊆ R
n

and
(2)

(2n − 1 − ε) f (v) ≤
n∑

i=1

| 〈v, ei 〉 | f (ei ).

Proof Let (e1, e2, . . . , en) ⊆ R
n be a fixed orthonormal basis for V and ε > 0.

We set Vi = span(ei , . . . , en). Finally, let s ∈ (0, 1) whose value will be specified
appropriately later. We set out to inductively construct sets Ui ⊆ Vi ∩ R

n , norms
fi : Vi → R

+ and witnesses v(i) ∈ Vi ∩ R
n with the following properties:

(1) fi (v) = max{| 〈v, u〉 | | u ∈ Ui },
(2) fi (ei ) = 1 = minv∈S1∩Vi fi (v),
(3) fi (v) = 1

s2(2s+1)
fi+1(v) for all v ∈ Vi+1,

(4)
〈
v(i), e j

〉 = (2s2) j−i is such that fi (v(i)) ∈ [1, 1 + 2s) and:

(2n−i − 1) f (v(i)) <

n∑
j=i

|
〈
v(i), e j

〉
|(1 + 2s)2( j−i)+1 fi (e j ))

We start with Un = {en} and fn(αen) = |α|, v(n) = en . It is straightforward to see
that these objects satisfy the above properties. Assume that for some i > 1 the setUi ,
the norm fi and the witness v(i) are defined and have the above properties. We define
Ui−1, fi−1 and v(i−1) as follows. Let

U+
i = {u ∈ Ui |

〈
v(i), u

〉
≥ 0} and U−

i = {u ∈ Ui |
〈
v(i), u

〉
< 0}.

Next we define:

Ui−1 =
{
ei−1 + 1

s(2s+1)u | u ∈ U+
i

}
∪

{
ei−1 − 1

s2(2s+1)
u | u ∈ U+

i

}
∪

{
ei−1 − 1

s(2s+1)u | u ∈ U−
i

}
∪

{
ei−1 + 1

s2(2s+1)
u | u ∈ U−

i

}
.

Now, we define fi−1 and v(i−1) as:

fi−1 = max{| 〈v, u〉 | | u ∈ Ui−1}
v(i−1) = ei−1 + 2s2v(i).
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Note that since, by assumption, Ui ⊆ R
n and v(i) ∈ R

n , the sets U+
i and U−

i are
well-defined. Hence, it should be clear that the Ui−1 ⊆ R

n and v(i−1) ∈ R
n .

Now we verify that Ui−1, fi−1 and v(i−1) possess the desired properties:

(1) The first property is satisfied by definition.
(2) The third property is also clear for s ∈ (0, 1).
(3) To see that the second property holds, first note that:

〈ei−1, u〉 = 1 for all u ∈ Ui−1.

Next, consider an arbitrary element v ∈ Ui−1 ∩ S1. It has a unique representation
v = αei−1 + v′ with |α|2 + ‖v′‖2 = 1 with v′ ∈ Vi . By the induction hypothesis
we have that fi (v′) ≥ ‖v′‖. Since Ui is finite, the value fi (v′) = | 〈v′, u′〉 | is
attained for some u′ ∈ Ui . Let us fix such u′ and set a, b ∈ R such that:

〈
v′, u′〉 = a + ib.

We also set c, d ∈ R such that α = c+ id. Thus, for σ ∈ {s−1, s−2,−s−1,−s−2}
we have:

〈
v, ei−1 + σu′〉 = c + id + σ(a + ib) = (c + σa) + i(d + σb).

Consequently:

| 〈v, ei−1 + σu′〉 | = (c + σa)2 + (d + σb)2

= c2 + d2 + σ 2(a2 + b2) + 2σ(ac + bd)

= |α|2 + σ 2| 〈v′, u′〉 |2 + 2σ(ac + bd)

= |α|2 + σ 2 f 2i (v′) + 2σ(ac + bd)

≥ |α|2 + σ 2‖v′‖2 + 2σ(ac + bd).

By construction, we can always choose the sign of σ , i.e. we have either the option
σ ∈ {s−1,−s−2} or σ ∈ {−s−1, s−2}. Now, choosing σ such that the sign of σ is
the same as the sign of (ac + bd) we conclude that:

| 〈v, ei−1 + σu′〉 | ≥ |α|2 + σ 2‖v′‖2 + 2σ(ac + bd)

≥ |α|2 + σ 2‖v‖2
≥ |α|2 + ‖v′‖2
= 1,

where the first inequality follows by the choice of σ and the second by the fact that
|σ | > 1. Furthermore the last inequality turns into equality if and only if v′ = 0.
This proves that for any vector v ∈ S1 ∩ Vi−1 which is not collinear with ei−1, it
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holds that fi (v) > 1. Consequently:

fi−1(ei−1) = min
v∈Vi−1∩S1

fi−1(v)

and the minimum is attained only for vectors of the form αei−1 with |α| = 1.
Hence w.l.o.g. ei−1 belongs to the minimal basis.

(4) Finally, we check the last condition. Let v(i−1) ∈ Vi−1 be such that:

v(i−1) = ei−1 + 2s2v(i).

First, let u ∈ U+
i . In particular,

〈
u, v(i)

〉 ≥ 0. Therefore:

〈
v(i−1), ei−1 − 1

s2(2s + 1)
u

〉
=

〈
ei−1 + 2s2v(i), ei−1 − 1

s2(2s + 1)
u

〉

= 1 − 2

2s + 1

〈
v(i), u

〉
= 1 − 2

2s + 1
|
〈
v(i), u

〉
| ≤ 1.

Since u ∈ Ui , we have that fi (v(i)) ≥ | 〈v(i), u
〉 | and by the assumption that

fi (v(i)) ≤ 1 + 2s we conclude that:

〈
v(i−1), ei−1 − 1

s2(2s + 1)
u

〉
= 1 − 2

2s + 1
|
〈
v(i), u

〉
| > 1 − 2 = −1.

Hence |
〈
v(i−1), ei−1 − 1

s2(2s+1)
u
〉
| ≤ 1 for all u ∈ U+

i . On the other hand:

〈
v(i−1), ei−1 + 1

s(2s + 1)
u

〉
= 1 + 2s2

s(2s + 1)

〈
v(i), u

〉

= 1 + 2s

1 + 2s
|
〈
v(i), u

〉
| ∈ [1, 1 + 2s).

Similarly, for u ∈ U−
i we have that:

〈
v(i−1), ei−1 + 1

s2(2s + 1)
u

〉
= 1 − 2

2s + 1
|
〈
v(i), u

〉
| ∈ (−1, 1]〈

v(i−1), ei−1 − 1

s(2s + 1)
u

〉
= 1 + 2s

2s + 1
|
〈
v(i), u

〉
| ∈ [1, 1 + 2s).
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Hence the maximum value of
〈
v(i−1), u′〉 when u′ ∈ Ui−1 is attained for some u′

of the form

u′ = ei−1 + 1

s(2s + 1)
u with u ∈ U+

i or

u′ = ei−1 − 1

s(2s + 1)
u with u ∈ U−

i

such that | 〈v(i), u
〉 | is maximised. This shows that

fi−1(v
(i−1)) = 1 + 2s

2s + 1
fi (v

(i)).

So far we have that fi−1(v
(i−1)) ∈ [1, 1 + 2s). We proceed to show that the last

inequality holds. To this end, first note:

〈
v(i−1), ei−1

〉
= 1〈

v(i−1), e j
〉
= 2s2

〈
v(i), e j

〉
for j ≥ i .

Recalling that fi−1(ei−1) = 1 and fi (e j ) = s2(2s + 1) fi−1(e j ) for j ≥ i , we
conclude that:

(1 + 2s)|
〈
v(i−1), e j

〉
| fi−1(e j ) = 2|

〈
v(i), e j

〉
| fi (e j ) for j ≥ i .

Therefore, using that fi−1(v
(i−1)) < 1 + 2s ≤ (1 + 2s) fi (v(i)), we compute:

(2n−i+1 − 1) fi−1(v
(i−1)) = fi−1(v

(i−1)) + 2(2n−i − 1) fi−1(v
(i−1))

< 1 + 2s + 2(2n−i − 1) fi−1(v
(i−1))

≤ (1 + 2s)(1 + 2 fi (v
(i))(2n−i − 1))

(inductive hypothesis) ≤ (1 + 2s)

⎛
⎝1 + 2

n∑
j=i

|
〈
v(i), e j

〉
|(1 + 2s)2( j−i)+1 fi (e j )

⎞
⎠

≤ (1 + 2s)(|
〈
v(i−1), ei−1

〉
| f (ei−1)

+
n∑
j=i

(1 + 2s)2( j−i)+3|
〈
v(i−1), e j

〉
| fi−1(e j ))

( setting i ′ = i − 1) =
n∑

j=i ′
(1 + 2s)2( j−i ′)+1|

〈
v(i ′), e j

〉
| fi ′ (e j )

as required.

Now letting s tend to zero, we see that f1(v(1)) satisfies the conclusion of the lemma.
��
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Proposition 7 Let n ≥ 1 be an integer and V = C
n. For any real number ε > 0, there

is a norm f : V → R
+ and a non-zero vector v ∈ R

n such that:

(1) f admits a unique up to equivalence f -maximal basis

(e1, e2, . . . , en) ⊆ R
n,

(2)

(2n − 1 − ε) f (v) <

n∑
i=1

| 〈v, ei 〉 | f (ei ).

Proof Let ε > 0 be fixed and e1, . . . , en ∈ R
n be an orthonormal basis of V . We

are going to construct a norm f : V → R
+ whose unique f -maximal basis is

(e1, . . . , en) and satisfies the conclusion of the proposition. To this end consider a real
number c ∈ (0, 1) and an angle α ∈ (0, π) whose precise values will be determined
appropriately.

Given, the constants c and α we define the vector u′
k ∈ V for k = 1, 2 . . . , n as

follows:

u′
1 = e1

u′
k+1 =

k∑
j=1

e j sin
j−1 α cosα + ek+1 sin

k α.

We set uk = ck−1u′
k and define the norm f : V → R

+ as:

f (v) = sup{| 〈v, uk〉 | | k ≤ n}.

By Remark 1 we know that f is a semi-norm. Since f (ek) ≥ | 〈ek, uk〉 | > 0, we see,
again by Remark 1, that f is a norm. Further, by Lemma 1, we know that themaximum
value f (v) on S1 is attained at a vector that is collinear to some of the vectors uk and
is equal to f (v) = ‖uk‖. Since ‖uk‖ = ck−1, we conclude that the first vector of the
maximal basis is e1 = u1. Next, the subspace, V1, of V that is orthogonal to e1 is
spanned by (e2, . . . , en) and therefore f1 = f � V1 is actually:

f1(v) = sup{| 〈v, uk − u1 cosα〉 | k ≤ n}.

Since ‖uk − u1 cosα‖ = ck−1 sin α, applying again Lemma 1, we conclude that the
maximal value of f1 on S1 is attained at e2. Proceeding inductively, we may prove
that (e1, . . . , en) is the unique, up to equivalence, f -maximal basis. Note that:

f (ei ) = 〈ei , ui 〉 = ci−1 sini−1 α.
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Let w1 > 0 and wi = w1tgi−1 α
2 . It should be clear that:

wi cosα + wi+1 sin α = wi (cosα + sin αtg
α

2
)

= wi (2 cos
2 α/2 − 1 + 2 sin2 α/2) = wi .

Therefore, setting w = ∑n
i=1 wi ei , we obtain that

〈w, uk〉 = ck−1 〈
w, u′

k

〉 = ck−1w1

and thus | 〈w, uk〉 | = ck−1w1 ≤ w1 with equality if and only if k = 1. Hence
f (w) = w1.
On the other hand:

wi f (ei ) = ci−1w1tg
i−1α

2
sini−1 α

= ci−1w1

(
2 sin2

α

2

)i−1

= 2i−1ci−1w1 sin
(2(i−1)) α

2
.

It follows that:

n∑
i=1

wi f (ei ) ≥ w1

n∑
i=1

2i−1[ci−1 sin2(i−1) α

2
].

Clearly, letting c tend to 1 and α tend to π − 0, the right hand side tends to
w1

∑n
i=1 2

i−1 = (2n − 1)w1 = (2n − 1) f (w). Thus, for any ε > 0, we can find
appropriate c ∈ (0, 1) and α ∈ (0, π) such that (2n − 1 − ε) f (w) <

∑n
i=1 wi f (ei ).

��

5 Equivalence of bases

Definition 8 Let f : V → R
+ be a norm. Let (e1, e2, . . . , en) be an orthonormal basis

for V arranged in increasing order w.r.t. f , i.e.:

f (e1) ≤ f (e2) ≤ · · · ≤ f (en).

(1) For a constant c ∈ R
+, we say that (e1, e2, . . . , en) satisfies the property Pf (c) if

for every β1, β2, . . . , βn ∈ F it holds:

c f

(
n∑

i=1

βi ei

)
≥

n∑
i=1

|βi | f (ei ).
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(2) More generally, for constants c1, c2, . . . , cn ∈ R
+, we say that (e1, . . . , en) satis-

fies the property HPf (c1, c2, . . . , cn) if for every i and every βi , βi+1, . . . , βn it
holds that:

ci f

⎛
⎝ n∑

j=i

βi ei

⎞
⎠ ≥

n∑
j=i

|βi | f (ei ).

Remark 2 With these notions, Theorem 5 states that there is an f -maximal basis
that satisfies Pf (2n − 1). Furthermore, since every prefix of an f -maximal basis,
(b1, b2, . . . , bn), is a maximal basis for its linear span, it follows that the f -maximal
basis from Theorem 5 actually satisfies HPf (2n − 1, 2n−1 − 1, . . . , 1).

On the other hand, Theorem4 states that every f -minimal basis satisfies Pf (2n−1).
It is also obvious that if a basis (e1, . . . , en) satisfies Pf (c), then it satis-

fies HPf (c, c, . . . , c). Conversely, if an orthonormal basis (e1, . . . , en) satisfies
HPf (c1, . . . , cn), then it satisfies Pf (c1).

Lemma 9 Let (b1, b2, . . . , bn) and (e1, e2, . . . , en) be orthonormal bases on V and
f : V → R

+ be a norm such that:

f (b1) ≤ f (b2) ≤ · · · ≤ f (bn) and

f (e1) ≤ f (e2) ≤ · · · ≤ f (en).

Then:

(1) If (b1, . . . , bn) is f -minimal, then for every i ≤ n, f (bi ) ≤ √
i f (ei ),

(2) If (e1, e2, . . . , en) satisfies H Pf (c1, c2, . . . , cn), then for every i ≤ n it holds that
f (ei ) ≤ ci

√
i f (bi ).

Proof Let i ≤ n and note that (b1, b2, . . . , bi−1) spans an (i − 1)-dimensional sub-
space of V , whereas (e1, e2, . . . , ei ) spans an i-dimensional subspace of V . Hence
there is a non-zero vector b′ ∈ span(e1, . . . , ei ) that is orthogonal to all the vectors
b1, b2, . . . , bi−1. Indeed, it is straightforward that the system:

i∑
j=1

α j
〈
e j , bk

〉 = 0 for k ≤ i − 1

is overdetermined. Hence it admits a non-zero solution α = (α1, . . . , αi ) and since
e1, . . . , ei are independent, b′ = ∑i

j=1 α j e j is non-zero. Next, without loss of gen-
erality, we may and we do assume that ‖b′‖ = 1. Thus b′ ∈ S1 and b′ is orthogonal to
all the vectors b1, . . . , bi−1. By the definition of bi , it follows that:

f (bi ) ≤ f (b′) = f

⎛
⎝ i∑

j=1

α j e j

⎞
⎠ ≤

i∑
j=1

|α j | f (e j ),
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where the last inequality follows by the triangle inequality. Finally, by the arrangement
of the vectors e1, . . . , ei we have f (e j ) ≤ f (ei ) for every j ≤ i and by the Cauchy-

Schwartz inequality we have
∑i

j=1 |α j | ≤ √
i
√∑i

j=1 |α j |2 = √
i . Summing up we

obtain:

f (bi ) ≤
i∑

j=1

|α j | f (e j ) ≤
i∑

j=1

|α j | f (ei ) ≤ √
i f (ei ).

For the second part of the statement, we proceed similarly. Let i ≤ n. Then
(b1, . . . , bi ) span a linear space of dimensionality i whereas (e1, . . . , ei−1) span
a linear space of dimensionality i − 1. Then, as above, there is a non-zero vector
v ∈ span(b1, . . . , bi ) that is orthogonal to all the vectors e1, . . . , ei−1. Without loss
of generality we may and we do assume that v is a unit vector. Since v is orthogonal
to e1, . . . , ei−1, it belongs to the linear space spanned by (ei , . . . , en). Hence v can
be written as v = ∑n

j=i α j e j . By the HPf (c1, . . . , cn) of the basis (e1, . . . , en), we
conclude that:

ci f (v) = ci f

⎛
⎝ n∑

j=i

α j e j

⎞
⎠ ≥

n∑
j=i

|α j | f (e j ) ≥
n∑
j=i

|α j | f (ei ) ≥ f (ei ),

where the last but one inequality follows by the ordering of the vectors (e1, . . . , en)
and the last inequality follows by the fact that

∑n
j=i |α j |2 = 1, as v is a unit vector.

On the other hand, v ∈ span(b1, . . . , bi ) and hence v = ∑i
j=1 β j b j . Since ‖v‖ =

1, we have that
∑i

j=1 |β j |2 = 1. Therefore, applying the triangle inequality, we
obtain:

f (v) = f

⎛
⎝ i∑

j=1

β j b j

⎞
⎠ ≤

i∑
j=1

|β j | f (b j ) ≤
i∑

j=1

|β j | f (bi ) ≤ √
i f (bi ),

where the last but one inequality follows by the order of (b1, . . . , bn) and the last one
is a trivial application of the Cauchy-Schwartz inequality.

Summing up we get:

f (ei ) ≤ ci f (v) ≤ ci
√
i f (bi )

as claimed. ��
Corollary 10 Let f : V → R

+ be a norm and (b1, b2, . . . , bn) and (e1, e2, . . . , en)
be orthonormal bases such that:

f (b1) ≤ f (b2) ≤ · · · ≤ f (bn) and

f (e1) ≤ f (e2) ≤ · · · ≤ f (en).
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(1) If (b1, . . . , bn) and (e1, . . . , en) are f -minimal, then

1√
i

≤ f (bi )

f (ei )
≤ √

i .

(2) If (b1, . . . , bn) is an f -minimal and (e1, . . . , en) is an f -maximal basis, then
1√

i(2n−i+1−1)
≤ f (bi )

f (ei )
≤ √

i .

(3) If (b1, . . . , bn) and (e1, . . . , en) are f -maximal, then

1√
i(2n−i+1 − 1)

≤ f (bi )

f (ei )
≤ √

i(2n−i+1 − 1).

Under certain additional assumptions, Lemma 9 can be inverted as follows:

Proposition 11 Assume that f : V → R
+ is a normand (b1, . . . , bn) and (e1, . . . , en)

and c ≥ 1 are orthonormal bases for V such that:

f (b1) ≤ f (b2) ≤ · · · ≤ f (bn)

f (e1) ≤ f (e2) ≤ · · · ≤ f (en)

∀i( f (ei )/c ≤ f (bi ) ≤ c f (ei )).

If (b1, . . . , bn) satisfies H f (c1) and additionally there is α ≥ 1 such that:

∀i �= j∃αi, j (|αi, j | < α and
〈
ei − bi , e j − αi, j b j

〉 = 0),

then (e1, . . . , en) satisfies H f (αc2c1).

Proof Since (b1, . . . , bn) satisfies H f (c1), it follows that:

c1 f (ei ) ≥
n∑
j=1

| 〈ei , b j
〉 | f (b j ).

Hence:

f (bi ) ≥ f (ei )/c

≥ c1 f (ei )/(cc1)

≥
n∑
j=1

| 〈ei , b j
〉 | f (b j )/c

≥ 1

c2

n∑
j=1

| 〈ei , b j
〉 | f (e j ).

Note that the condition
〈
ei − bi , e j − αi, j b j

〉 = 0 can be rewritten as:

〈
ei , e j

〉 + αi, j
〈
bi , b j

〉 − 〈
bi , e j

〉 − αi, j
〈
ei , b j

〉 = 0.
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For i �= j it holds that
〈
bi , b j

〉 = 〈
ei , e j

〉 = 0 and therefore for i �= j we have:

| 〈bi , e j 〉 | = |αi, j ||
〈
ei , b j

〉 | ≤ α| 〈ei , b j
〉 |.

Hence the above inequality implies that:

f (bi ) ≥ 1

c2

n∑
j=1

| 〈ei , b j
〉 | f (e j ) ≥ 1

αc2

n∑
j=1

| 〈bi , e j 〉 | f (e j ).
Therefore:

αc2 f (bi ) ≥
n∑
j=1

| 〈bi , e j 〉 | f (e j ).
Finally, for arbitrary v the above inequality and the validity of H f (c1) for the basis
(b1, . . . , bn) imply:

αc2c1 f (v) ≥ αc2
n∑

i=1

| 〈v, bi 〉 | f (bi )

≥
n∑

i=1

n∑
j=1

| 〈v, bi 〉 || 〈bi , e j 〉 | f (e j )
=

n∑
j=1

f (e j )
n∑

i=1

| 〈v, bi 〉
〈
bi , e j

〉 |
≥

n∑
j=1

f (e j )

∣∣∣∣∣
n∑

i=1

〈v, bi 〉
〈
bi , e j

〉∣∣∣∣∣
=

n∑
j=1

| 〈v, e j
〉 | f (e j ).

This proves that (e1, . . . , en) satisfies H f (αc2c1). ��

6 Open problems

The definitions of f -minimal and f -maximal bases of a norm suggest a simple greedy
strategy to find an orthonormal basis (e1, . . . , en) which satisfies the inequality:

f

(
n∑

i=1

αi ei

)
≥ 1

2n − 1

n∑
i=1

|αi | f (ei ).
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Of course, the feasibility of this approach depends on the possibility to efficiently
solve the optimisation problem:

max
v∈S1

f (v) or min
v∈S1

f (v).

Yet, since every (semi)norm f is convex and S1 is compact, especially the second
problem is well studied and efficient methods for its solution stay at hand.

However, the problem with the greedy approach is that the constant 2n − 1 grows
exponentially with n and it may be inconvenient to prove precise bounds in general.
As we have proven in Proposition 6 and Proposition 7, the constant 2n − 1 cannot be
improved under the suggested greedy strategy. Thus, the natural question that arises
is how this constant can be improved while preserving the clear structure of the bases
that it implies. In this respect, we consider the following theoretical problems.

First, for a natural number n ≥ 1, and a linear vector space V with inner product,
where V = C

n or V = R
n we define c⊥

n := c⊥
n (V ) to be the least real number such

that for every norm f : V → R
+ there is an orthonormal basis (b1, . . . , bn) such

that:

f

(
n∑

i=1

αi bi

)
≥ 1

c⊥
n

n∑
i=1

|αi | f (bi ) for all α1, . . . , αn ∈ F.

It is known that for V = R
2, c⊥

2 = 2, [6]. The construction in [6] relies upon defining
appropriate areas and the continuity principle to showexistence. Is there amore explicit
way to define such a basis? To the best knowledge of the authors, the techniques from
n = 2 do not extend to higher dimensions.

Secondly, for a natural number n ≥ 1, and a linear vector space V with inner
product, where V = C

n or V = R
n we define c∠

n = c∠
n (V ) to be the least real number

such that for every norm f : V → R
+ there is a basis (b1, . . . , bn) of unit vectors

such that:

f

(
n∑

i=1

αi bi

)
≥ 1

c∠
n

n∑
i=1

|αi | f (bi ) for all α1, . . . , αn ∈ F.

It is known that for V = R
2, c∠

2 = 3
2 , [1]. This question is tightly related with John’s

Theorem [5] which relies on volumes’ optimisation.
Both questions can be uniformly stated as follows. Let n ≥ 1, and V = C

n or
V = R

n and α ∈ [0, 1]. Define cα
n := cα

n (V ) to be the least real number such that for
every norm f : V → R

+ there is a basis (b1, . . . , bn) of unit vectors such that:

f

(
n∑

i=1

αi bi

)
≥ 1

cα
n

n∑
i=1

|αi | f (bi ) for all α1, . . . , αn ∈ F

subject to : | 〈bi , b j
〉 | ≤ α for all i �= j .
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In this framework, c⊥
n (V ) = c0n(V ) and c∠

n (V ) = c1n(V ).We consider that the freedom
to vary α may be useful in applications where this kind of inequalities are to be
combined with other classical inequalities where the scalar products of the basis’
vectors has to be controlled.

References

1. Asplund, E.: Comparison between plane symmetric convex bodies and parallelograms. Marh. Scand.
8, 171–180 (1960)

2. Charpentier, P., Dupain,Y.: Extremal bases, geometrically separated domains and applications.Algebra
and Analysis 26(1), 196–269 (2014)

3. Hefer, T.: Hölder and l p estimates for ∂ on convex domains of finite type depending on Catlin’s
multiptype. Mathematische Zeitschrift 242, 367–398 (2002)

4. Hefer, T.: Extremal bases and Hölder estimates for ∂ on convex domains of finite type. MichiganMath.
J. 52, 573–602 (2004)

5. John, F.: Extremum Problems with Inequalities as Subsidary Conditions. In In Studies and Essays
presented to R. Courant on his 60th birthday, pp. 187–204. Interscience Publishers Inc., )1948)

6. Lassak, M.: Approximation of convex bodies by axially symmetric bodies. Proc. Am. Math. Soc.
130(10), 3075–3084 (2002)

7. McNeal, J.D.: Convex domains of finite types. J. Funct. Anal. 108, 361–373 (1992)
8. McNeal, J.D.: Estimates on the bergman kernels of convex domains. Adv. Math. 109, 108–139 (1994)
9. Nikolov, N., Pflug, P.: Estimates for the bergman kernel and metric of convex domains in C

n . Ann.
Polonici Math. 81(1), 73–78 (2003)

10. Nikolov, N., Pflug, P., Thomas, P.J.: On different extremal bases for C-convex domains. Proc. Am.
Math. Soc. 141(9), 3223–3230 (2013)

11. Nikolov, N., Pflug, P., Zwonek, W.: Estimates for invariant metrics on C-convex domains. Trans. Am.
Math. Soc. 363(12), 6245–6256 (2011)

12. Wang, H.: Estimates of the KobayashiMetric and GromovHyperbolicity on Convex Domains of Finite
Type, (2022)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	Some sharp inequalities for norms in mathbbRn and mathbbCn
	Abstract
	1 Introduction
	2 Preliminaries
	3 Minimal and maximal bases
	4 Lower bounds
	5 Equivalence of bases
	6 Open problems
	References


