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Abstract
In this note, we solve the open problem posted by Tien and Khoi (Monatsh Math
188:183–193, 2019). We prove that when 0 < q < p < ∞, the difference of two
weighted composition operators between Fock spaces Wψ1,ϕ1 − Wψ2,ϕ2 : F p → Fq

is bounded if and only if bothWψ1,ϕ1 andWψ2,ϕ2 are bounded. Furthermore, we prove
that the same conclusion holds for the differences of a weighted composition operator
and a weighted composition-differential operator on F p.
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1 Introduction

Let C be the complex plane and H(C) be the space of all entire functions on C. For
0 < p < ∞, the classical Fock space F p is defined as

F p =
{
f ∈ H(C) : ‖ f ‖p

p = p

2π

∫
C

| f (z)|pe− p
2 |z|2d A(z) < ∞

}
,

where d A is the Lebesgue measure on C. Furthermore, the space F∞ consists of all
functions f ∈ H(C) such that

‖ f ‖∞ = sup
z∈C

| f (z)|e− |z|2
2 < ∞.
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It is known that F p is a Banach space for 1 ≤ p ≤ ∞. When 0 < p < 1, F p

is a complete metric space with distance d( f , g) = ‖ f − g‖p
p. In particular, F2 is a

Hilbert space with the following inner product

〈 f , g〉 = 1

π

∫
C

f (z)g(z)e−|z|2d A(z).

For each w ∈ C, the linear point evaluation of nth order f 	→ f (n)(w) is continuous
on F2. It follows from the Riesz representation theorem in Hilbert space theory that
there exsits a unique function K [n]

w in F2 such that

f (n)(w) = 〈 f , K [n]
w 〉

for all f ∈ F2. K [n]
w is called the reproducing kernel function in F2 at w of order n.

It is known that K [0]
w (z) = ewz and

K [n]
w (z) = ∂nK [0]

w

∂wn (z) = znewz

for n ≥ 1. Moreover, ‖K [0]
w ‖p = e

|w|2
2 and ‖K [n]

w ‖p � (1 + |w|)ne |w|2
2 for all w ∈ C

and 0 < p ≤ ∞. Let kw(z) = ewz− |w|2
2 , then each kw is a unit vector in F p and

converges to 0 uniformly on compact subsets of C as |w| → ∞. One can refer to the
monograph by Zhu [15] for more information about Fock spaces.

If ϕ,ψ ∈ H(C), the weighted composition operator Wψ,ϕ on H(C) is defined by
Wψ,ϕ f = ψ · ( f ◦ ϕ). When ψ = 1, it reduces to the composition operator Cϕ . The
relationship between the operator-theoretic properties ofCϕ and the function-theoretic
properties of ϕ has been studied extensively during the past several decades. We refer
the readers to monographs by Cowen and MacCluer [3] and by Shapiro [13] for more
details. The boundedness and compactness of Wψ,ϕ between Fock spaces have been
completely characterized in [7, 8, 10]. One could also see [12] for the case in several
variables and see [1] for large Fock spaces. Let Df = f ′ be the differentiation operator
on H(C) and Dn be the nth iterate of D. WriteW (n)

ψ,ϕ for the product of Dn andWψ,ϕ ,
i.e.

W (n)
ψ,ϕ f = Wψ,ϕD

n f = ψ · f (n) ◦ ϕ.

W (n)
ψ,ϕ is called a weighted composition-differential operator of order n. It is clear that

Wψ,ϕ is the special case n = 0. When n ≥ 1, the boundedness and compactness of

W (n)
ψ,ϕ between Fock spaces have been studied completely in [4].
In [9], Moorhouse characterized compactness of the difference of two composition

operators on classical weightedBergman spaces over the unit disk.Moorhouse showed
that the difference of two composition operators is compact when suitable cancelation
occurs and also that there exist two non-compact composition operators whose their
difference is compact. However, no cancelation phenomenon exists on Fock spaces.
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Precisely, Choe et al. [2] showed that a linear sum of two composition operators is
bounded (compact, resp.) on the Hilbert Fock spaces if and only if both composition
operators are bounded (compact, resp.) Tien and Khoi [11] studied the differences of
weighted composition operators between different Fock spaces and also showed that
no cancelation exists. They proved that Wψ1,ϕ1 − Wψ2,ϕ2 : F p → Fq is bounded
(compact, resp.) if and only if both Wψ1,ϕ1 and Wψ2,ϕ2 : F p → Fq are bounded
(compact, resp.) for 0 < p ≤ q < ∞. But this problem for the case 0 < q < p < ∞
is left open. In this paper, we completely solve this problem by using Khinchine’s
inequality. Our first main result reads as follows.

Theorem A Let 0 < q < p < ∞ and ϕ1 �= ϕ2. Then the following conditions are
equivalent:

(a) Wψ1,ϕ1 − Wψ2,ϕ2 : F p → Fq is bounded;
(b) Wψ1,ϕ1 − Wψ2,ϕ2 : F p → Fq is compact;
(c) Both Wψ1,ϕ1 and Wψ2,ϕ2 : F p → Fq are bounded;
(d) Both Wψ1,ϕ1 and Wψ2,ϕ2 : F p → Fq are compact.

Actually, we can characterize the differences of a weighted composition operator
and a weighted composition-differential operator. To the best of our knowledge, no
prior results on describing the compactness of two such operators on Fock spacesF p,
and even analytic function spaces on any other domains. Our second main result reads
as follows.

Theorem B Let n be a positive integer and ϕ1 �= ϕ2. Then Wψ1,ϕ1 −W (n)
ψ2,ϕ2

is bounded

(compact, resp.) on F p if and only if both Wψ1,ϕ1 and W (n)
ψ2,ϕ2

are bounded (compact,
resp.) on F p.

The paper is organized as follows. In Sect. 2, we present some known facts and
auxiliary lemmas that will be needed later. Section3 and Sect. 4 are devoted to the
proof of Theorem A and B, respectively.

Throughout the paper, we write A � B if there exists an absolute constant C > 0
such that A ≤ CB. As usual, A � B means A � B and B � A. We will be more
specific if the dependence of such constants on certain parameters becomes critical.

2 Preliminaries

In this section, we collet some preliminary facts and auxiliary lemmas which will be
used later. Firstly, according to [5] and [14], we have the following characterizations
for Fock spaces via higher order derivatives.

Lemma 2.1 Let 0 < p ≤ ∞ and f ∈ H(C). Then f ∈ F p if and only if

f (n)(z)

(1 + |z|)n e
− |z|2

2 ∈ L p(C, d A)
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for any non-negative integer n. Moreover,

‖ f ‖p �
n−1∑
j=0

| f ( j)(0)| +
(∫

C

| f (n)(z)|p
(1 + |z|)np e

− p
2 |z|2d A(z)

)1/p

for 0 < p < ∞. And

‖ f ‖∞ �
n−1∑
j=0

| f ( j)(0)| + sup
z∈C

| f (n)(z)|
(1 + |z|)n e

− |z|2
2 .

By Lemma 2.1, we can easily get the following estimate for derivatives of functions
in Fock space. See also [4] for details.

Lemma 2.2 Let 0 < p ≤ ∞ and n be a non-negative integer. Then

| f (n)(z)| � (1 + |z|)ne |z|2
2 ‖ f ‖p

for all f ∈ F p and z ∈ C.

For z ∈ C and r > 0, write

D(z, r) = {w ∈ C : |w − z| < r}

for the Euclidean disk centered at z with radius r . A sequence {a j } in C is called an
r -lattice if the following conditions are satisfied:

(i) ∪∞
j=1D(a j , r) = C,

(ii) {D(a j ,
r
2 )}∞j=1 are pairwise disjoint.

For example, the set of points on rZ2 is an r -lattice. With hypotheses (i) and (ii), it is
easy to check that

(iii) there exists a positive integer N (depending only on r ) such that every point in C

belongs to at most N of the sets {D(a j , r)}.
Lemma 2.3 ([6]) Let 1 ≤ s ≤ ∞, μ be a positive Borel measure on C and {a j } be an
r-lattice in C. Then the following conditions are equivalent:

(i) {μ(D(a j , r))} ∈ ls ,
(ii) μ(D(·, δ)) ∈ Ls(C, d A) for some (or any) δ > 0.

The boundedness and compactness of Wψ,ϕ : F p → Fq for 0 < q < p < ∞ has
been charaterized in [10]. We state the results as follows.

Lemma 2.4 ([10]) Let 0 < q < p < ∞,ψ ∈ Fq and ϕ(z) = az+b with 0 < |a| ≤ 1.
Then the following conditions are equivalent:

(i) Wψ,ϕ : F p → Fq is bounded;
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(ii) Wψ,ϕ : F p → Fq is compact;

(iii) |ψ(z)|e |ϕ(z)|2−|z|2
2 ∈ L

pq
p−q (C, d A).

In order to study the difference Wψ1,ϕ1 − W (n)
ψ2,ϕ2

, we need to estimate the norm of
the reproducing kernels from below. The following lemmas play important roles in
our proof.

Lemma 2.5 Let n be a positive integer, α, β ∈ C\{0} and ε > 0. Then there exists a
contant C = C(ε, n) > 0, independent of α and β, such that

‖αKw1 + βK [n]
w2

‖∞ ≥ C
(
|α|‖Kw1‖∞ + |β|‖K [n]

w2
‖∞

)

for all w1, w2 ∈ C with |w1 − w2| ≥ ε.

Proof Put L = ‖αKw1 + βK [n]
w2 ‖∞ for brevity. It is enough to prove that L ≥

C |α|‖Kw1‖∞ for some C = C(ε, n) > 0. After achieving that, it follows imme-
diately from the triangle inequality that

|β|‖K [n]
w2

‖∞ ≤ ‖αKw1 + βK [n]
w2

‖∞ + |α|‖Kw1‖∞

≤ (1 + 1

C
)L.

Firstly, we know that

L ≥ |αKw1(z) + βK [n]
w2

(z)|e− |z|2
2 = |αew1z + βznew2z |e− |z|2

2 (1)

for all z ∈ C. By Lemma 2.1, there exists a constant C1 = C1(n) > 0 such that

C1L ≥ |αK (n)
w1 (z) + β(K [n]

w2 )(n)(z)|
(n + |z|)n e− |z|2

2

=
∣∣αw1

new1z + βh(w2z)ew2z
∣∣

(n + |z|)n e− |z|2
2

(2)

for all z ∈ C, where h(x) = ∑n
k=0

(n
k

) n!
(n−k)! x

n−k . Let R > 4 be a sufficiently large
number satisfying

Rn

(n + R)n
>

1

2
(1 + e− ε2

2 ).

If |w1| ≤ R, then

L ≥ |α| ≥ e− R2
2 |α|e |w1|2

2 .
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If |w1| > R and |w2| ≤ 1, then taking z = w2 + ζ in (1), where ζ = w2/|w2| if
w2 �= 0 and ζ = 1 if w2 = 0, we get

L ≥ e− 1
2 |β|(1 + |w2|)ne

|w2 |2
2 − |α|e |w1|2

2 e− |w1−w2−ζ |2
2

≥ e− 1
2 |β|(1 + |w2|)ne

|w2 |2
2 − e−2|α|e |w1|2

2 .

(3)

Taking z = w1 in (2), we have

C1L ≥ |α| |w1|n
(n + |w1|)n e

|w1|2
2 − |β| h(|w1w2|)

(n + |w1|)n e
|w2 |2
2 e− |w1−w2 |2

2

≥ 1

2
|α|e |w1|2

2 − e− 9
2 |β|(1 + |w2|)ne

|w2 |2
2 .

(4)

Adding (3) and (4), we obtain that

(1 + C1)L ≥ (
1

2
− 1

e2
)|α|e |w1|2

2 .

If |w1| > R and |w2| > 1, then taking z = w2 in (1) and taing z = w1 in (2), we
get

L ≥ |β||w2|ne
|w2 |2
2 − |α|e |w1|2

2 e− |w1−w2 |2
2

≥ |β||w2|ne
|w2 |2
2 − e− ε2

2 |α|e |w1|2
2

(5)

and

C1L ≥ |α| |w1|n
(n + |w1|)n e

|w1|2
2 − |β| h(|w1w2|)

(n + |w1|)n e
|w2 |2
2 e− |w1−w2 |2

2

≥ 1

2
(1 + e− ε2

2 )|α|e |w1|2
2 − |β||w2|ne

|w2 |2
2 .

(6)

Adding (5) and (6), we obtain that

(1 + C1)L ≥ 1

2

(
1 − e− ε2

2

)
|α|e |w1|2

2 .

Therefore, letting C = min{e− R2
2 , 1

1+C1
( 12 − 1

e2
), 1

2(1+C1)
(1 − e− ε2

2 )}, we have

L ≥ C |α|e |w1|2
2 = C |α|‖Kw1‖∞.

The proof is complete. ��
Lemma 2.6 Let n be a positive integer and α, β ∈ C\{0}. Then there exists a contant
C > 0, independent of α and β, such that

‖αKw1 + βK [n]
w2

‖2∞ ≥ C |α||β|e |w1|2+|w2 |2
2

|w1 − w2|4
(1 + |w1 − w2|2)2 .
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for all w1, w2 ∈ C.

Proof Put L = ‖αKw1 + βK [n]
w2 ‖∞ for brevity. Let R > 4 be a sufficiently large

number satisfying

Rn

(n + R)n
>

1

2
(1 + e− 1

2 ).

If |w1| ≤ R or |w1| > R with |w1 − w2| ≥ 1, then by Lemma 2.5, we have

L ≥ C
(
|α|‖Kw1‖∞ + |β|‖K [n]

w2
‖∞

)
≥ C(|α|e |w1|2

2 + |β|e |w2 |2
2 ),

where C is independent of α and β. It follow that L2 ≥ C |α||β|e |w1|2+|w2 |2
2 .

It remains to prove the results for the case where |w1| > R and |w1 − w2| < 1. If
|w2| ≥ |w1|, then taking z = w1 in (1), we have

L ≥ |αe|w1|2 + βwn
1e

w2w1 |e− |w1|2
2 (7)

And taking z = w2 in (1), we have

L ≥ |αew1w2 + βwn
2e

|w2|2 |e− |w2 |2
2 . (8)

Adding (7) and (8), we obtain that

L ≥ C |β||w2|ne
|w2 |2
2

(
1 −

∣∣∣∣w1

w2

∣∣∣∣
n

e− |w1−w2 |2
2

)

≥ C |β||w2|ne
|w2 |2
2

(
e

|w1−w2 |2
2 − 1

)

≥ C |β||w2|ne
|w2 |2
2 |w1 − w2|2

and

L ≥ C |α| 1

|w1|n e
|w1|2
2

(
1 −

∣∣∣∣w1

w2

∣∣∣∣
n

e− |w1−w2 |2
2

)

≥ C |α| 1

|w1|n e
|w1|2
2

(
e

|w1−w2 |2
2 − 1

)

≥ C |α| 1

|w1|n e
|w1|2
2 |w1 − w2|2.

Thus, L2 ≥ C |α||β|
∣∣∣w2
w1

∣∣∣n e |w1|2+|w2 |2
2 ≥ C |α||β|e |w1|2+|w2 |2

2 .

Now suppose |w1| > R, |w1 −w2| < 1 and |w2| < |w1|. Let ζ = √
3n w1−w2|w1−w2| i or

ζ = −√
3n w1−w2|w1−w2| i such that the included angle between ζ and w2 is not more than
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π
2 . Taking z = w2 + ζ in (1), we get

L ≥
∣∣∣αew1(w2+ζ ) + β(w2 + ζ )new2(w2+ζ )

∣∣∣ e |w2+ζ |2
2

≥ (|β||w2 + ζ |ne |w2 |2
2 − |α||ew1w2 |e− |w2 |2

2 |ew1−w2ζ |)e− |ζ |2
2

≥ C

(
|β|

(
|w2| + n

|w2|
)n

e
|w2 |2
2 − |α|e |w1|2

2 e− |w1−w2 |2
2

)
.

(9)

By Lemma 2.1, we have

L ≥ C sup
|z|>1

∣∣αw1
new1z + βh(w2z)ewz z

∣∣
|z|n e− |z|2

2

≥ C
|αw1

ne|w1|2 + βh(w2w1)ew2w1 |
|w1|n e− |w1|2

2

≥ C |α|e |w1|2
2 − |β|

(
|w2| + n

|w2|
)n

e
|w|2
2 e− |w1−w2 |2

2

(10)

Thus, adding (9) and (10), we obtain that

L ≥ C(|α|e |w1|2
2 + |β||w2|ne

|w2 |2
2 )(1 − e− |w1−w2 |2

2 )

≥ C(|α|e |w1|2
2 + |β|e |w2 |2

2 )
|w1 − w2|2

1 + |w1 − w2|2 .

It follows that L2 ≥ C |α||β|e |w1|2+|w2 |2
2

|w1−w2|4
(1+|w1−w2|2)2 . The proof is complete. ��

3 The proof of Theorem A

In order to prove Theorem A for the case 0 < q < p < ∞, we also need to use the
classical Khinchine’s inequality, which is an important tool in complex and functional
analysis. Here we recall the basic facts about this inequality.

Let {rk(t)} denotes the sequence of Rademacher functions defined by

r0(t) =
{
1, if 0 ≤ t − [t] < 1

2

−1, if 1
2 ≤ t − [t] < 1,

where [t] denotes the largest integer not greater than t and rk(t) = r0(2k t) for k =
1, 2, · · · . If 0 < p < ∞, then Khinchine’s inequality states that

(∑
k

|ck |2
)p/2

�
∫ 1

0

∣∣∣∣∣
∑
k

ckrk(t)

∣∣∣∣∣
p

dt
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for complex sequences {ck}.
Now we are ready to prove Theorem A.

Proof of TheoremA It is obvious that (d) implies (b) and (b) implies (a). The equiva-
lence of (c) and (d) follows from Proposition 3.1, Corollary 3.2 in [10] and Lemma
2.4. Thus we only need to prove (a) implies (d).

Suppose Wψ1,ϕ1 − Wψ2,ϕ2 : F p → Fq is bounded. Let

Mi = sup
z∈C

|ψi (z)|e
|ϕi (z)|2−|z|2

2 , i = 1, 2.

By [11, Proposition 2.2], we have Mi < ∞ and ϕi (z) = ai z + bi with |ai | ≤ 1 for
i = 1, 2. We consider the following three cases.

Case 1. a1 = a2 = 0, i.e. ϕ1(z) ≡ b1 and ϕ2(z) ≡ b2 with b1 �= b2 since ϕ1 �= ϕ2.
Then

ψ1 − ψ2 = (Wψ1,ϕ1 − Wψ2,ϕ2)1 ∈ Fq (11)

and b1ψ1 − b2ψ2 = (Wψ1,ϕ1 − Wψ2,ϕ2)z ∈ Fq . Thus ψ1, ψ2 ∈ Fq . It follows that
both Wψ1,ϕ1 and Wψ2,ϕ2 : F p → Fq are compact by [10, Corollary 3.2].

Case 2. a1 = 0, a2 �= 0 (it is similar for the case a1 �= 0, a2 = 0). Then

ψ2(z) ≤ M2e
|z|2−|a2z−b2 |2

2 � M2e
(1−|a2 |2)|z|2

2 , (12)

which means that ψ2 ∈ Fq . Combining this with (11), we also have ψ1 ∈ Fq . By
[10, Corollary 3.2] again, we have Wψ1,ϕ1 : F p → Fq is compact, then so is Wψ2,ϕ2 .

Case 3. a1 �= 0 and a2 �= 0. In this case, a similar argument as (12) gives ψ1, ψ2 ∈
Fq . Let {a j } be an r−lattice in C. For any {λ j } ∈ l p, we set

f (z) =
∑
j

λ j ka j (z).

Then f ∈ F p with ‖ f ‖p � ‖{λ j }‖l p . If Wψ1,ϕ1 − Wψ2,ϕ2 : F p → Fq is bounded,
then ∫

C

∣∣∣∣∣∣
∑
j

λ j (Wψ1,ϕ1 − Wψ2,ϕ2)ka j (z)

∣∣∣∣∣∣
q

e− q
2 |z|2d A(z) � ‖{λ j }‖ql p . (13)

In (13), we replace λ j by r j (t)λ j , so that the right-hand side does not change. Then
we integrate both sides with respact to t from 0 to 1 to obtain

∫ 1

0

∫
C

∣∣∣∣∣∣
∑
j

r j (t)λ j (Wψ1,ϕ1 − Wψ2,ϕ2)ka j (z)

∣∣∣∣∣∣
q

e− q
2 |z|2d A(z) � ‖{λ j }‖ql p .
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By Fubini’s Theorem and Khinchine’s inequality,

∫
C

⎛
⎝∑

j

|λ j |2|(Wψ1,ϕ1 − Wψ2,ϕ2)ka j (z)|2e−|z|2
⎞
⎠

q
2

d A(z)

�
∫
C

∫ 1

0

∣∣∣∣∣∣
∑
j

r j (t)λ j (Wψ1,ϕ1 − Wψ2,ϕ2)ka j (z)e
− 1

2 |z|2
∣∣∣∣∣∣
q

dtd A(z)

�
∫ 1

0

∫
C

∣∣∣∣∣∣
∑
j

r j (t)λ j (Wψ1,ϕ1 − Wψ2,ϕ2)ka j (z)e
− 1

2 |z|2
∣∣∣∣∣∣
q

d A(z)dt

� ‖{λ j }‖ql p .

Recall that there is a positive N such that each point z ∈ C belongs to at most N of
the disks {D(a j , r)}. Let

E = {z ∈ C : |ϕ1(z) − ϕ2(z)| > 3r}.

Applying Minkowski’s inequality if 2
q ≤ 1 and Hölder’s inequality if 2

q > 1, we
obtain

∫
ϕ−1
1 (D(a j ,r))

∑
j

|λ j |q |(Wψ1,ϕ1 − Wψ2,ϕ2 )ka j (z)|qe−
q
2 |z|2χE (z)d A(z)

≤ max{1, N1− q
2 }

∫
ϕ−1
1 (D(a j ,r))∩E

⎛
⎝∑

j

|λ j |2|(Wψ1,ϕ1 − Wψ2,ϕ2 )ka j (z)|2e−|z|2
⎞
⎠

q
2

d A(z)

�
∫
C

⎛
⎝∑

j

|λ j |2|(Wψ1,ϕ1 − Wψ2,ϕ2 )ka j (z)|2e−|z|2
⎞
⎠

q
2

d A(z)

� ‖{λ j }‖ql p .

It follows from duality argument that

∫
ϕ−1
1 (D(a j ,r))

|(Wψ1,ϕ1 − Wψ2,ϕ2)ka j (z)|qe− q
2 |z|2χE (z)d A(z) ∈ l

p
p−q .

If z ∈ ϕ−1
1 (D(a j , r)) ∩ E , then

|(Wψ1,ϕ1 − Wψ2,ϕ2)ka j (z)|e− 1
2 |z|2

≥ |ψ1(z)|e
|ϕ1(z)|2−|z|2

2 e− |a j−ϕ1(z)|2
2 − |ψ2(z)|e

|ϕ1(z)|2−|z|2
2 e− |a j−ϕ2(z)|2

2

≥ e− 1
2 r

2
(

|ψ1(z)|e
|ϕ1(z)|2−|z|2

2 − e− 3
2 r

2 |ψ2(z)|e
|ϕ1(z)|2−|z|2

2

)
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Thus

∫
ϕ−1
1 (D(a j ,r))∩E

(
|ψ1(z)|e

|ϕ1(z)|2−|z|2
2 − e− 3

2 r
2 |ψ2(z)|e

|ϕ2(z)|2−|z|2
2

)q

d A(z) ∈ l
p

p−q .

It follows from Lemma 2.3 that

∫
ϕ−1
1 (D(w,r))∩E

(
|ψ1(z)|e

|ϕ1(z)|2−|z|2
2 − e− 3

2 r
2 |ψ2(z)|e

|ϕ2(z)|2−|z|2
2

)q

d A(z) ∈ L
p

p−q (C, d A).

This implies that

∫
D(w, r

|a1| )

(
|ψ1(z)|e

|ϕ1(z)|2−|z|2
2 − e− 3

2 r
2 |ψ2(z)|e

|ϕ2(z)|2−|z|2
2

)q

χE (z)d A(z) ∈ L
p

p−q (C, d A).

(14)
Similarly, we have

∫
D(w, r

|a2 | )

(
|ψ2(z)|e

|ϕ2(z)|2−|z|2
2 − e− 3

2 r
2 |ψ1(z)|e

|ϕ1(z)|2−|z|2
2

)q

χE (z)d A(z) ∈ L
p

p−q (C, d A).

(15)
Letting δ = min{ r

|a1| ,
r

|a2| } and adding (14) and (15), we obtain

∫
D(w,δ)

|ψi (z)|qe q
2 (|ϕi (z)|2−|z|2)χE (z)d A(z) ∈ L

p
p−q (C, d A), i = 1, 2.

It follows that

∫
D(w,δ)

|ψi (z)|qe q
2 (|ϕi (z)|2−|z|2)d A(z) ∈ L

p
p−q (C, d A), i = 1, 2

since Mi < ∞ and Ec is bounded in C. Notice that

|ψi (z)|e
|ϕi (z)|2−|z|2

2 = |ψi (z)e
ai bi z |e (|ai |2−1)|z|2+|bi |2

2 .

By [15, Lemma 2.32], there exists a constant C = C(q, r) such that

∫
D(w,δ)

|ψi (z)|qe q
2 (|ϕi (z)|2−|z|2)d A(z) ≥ C |ψi (w)|qe q

2 (|ϕi (w)|2−|w|2)

for i = 1, 2. Therefore, |ψi (w)|e |ϕi (w)|2−|w|2
2 ∈ L

pq
p−q (C, d A). Then the compactness

of Wψi ,ϕi for i = 1, 2 is established by Lemma 2.4. The proof is complete. ��
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4 The proof of Theorem B

In this section, we give the proof of Theorem B.

Lemma 4.1 Let 0 < p ≤ ∞, n be a positive integer and ϕ1 �= ϕ2. If Wψ1,ϕ1 −W (n)
ψ2,ϕ2

is bounded on F p, then ϕ1(z) − ϕ2(z) = az + b for some a, b ∈ C.

Proof Suppose Wψ1,ϕ1 − W (n)
ψ2,ϕ2

is bounded on F p. By Lemma 2.2, we have

‖Wψ1,ϕ1 − W (n)
ψ2,ϕ2

‖ ≥ ‖(Wψ1,ϕ1 − W (n)
ψ2,ϕ2

)kw‖p

≥ |(Wψ1,ϕ1 − W (n)
ψ2,ϕ2

)kw(z)|e− |z|2
2

= |ψ1(z)Kw(ϕ1(z)) − ψ2(z)K
(n)
w (ϕ2(z))|e− |w|2

2 e− |z|2
2

= |ψ1(z)Kϕ1(z)(w) − ψ2(z)K
[n]
ϕ2(z)

(w)|e− |w|2
2 e− |z|2

2

(16)

for all z, w ∈ C. This means that

‖ψ1(z)Kϕ1(z) − ψ2(z)K
[n]
ϕ2(z)

‖∞e− |z|2
2 ≤ ‖Wψ1,ϕ1 − W (n)

ψ2,ϕ2
‖ (17)

for all z ∈ C. Combining this with Lemma 2.6, we get

|ψ1(z)ψ2(z)|e
|ϕ1(z)|2+|ϕ2(z)|2

2 −|z|2 |ϕ1(z) − ϕ2(z)|4
1 + |ϕ1(z) − ϕ2(z)|4 � ‖Wψ1,ϕ1 − W (n)

ψ2,ϕ2
‖

for all z ∈ C. Therefore

sup
z∈C

|ψ1(z)ψ2(z)| |ϕ1(z) − ϕ2(z)|4
1 + |ϕ1(z) − ϕ2(z)|4 e

∣∣∣ ϕ1(z)−ϕ2(z)
2

∣∣∣2−|z|2
< ∞.

Modifying the proof of [8, Proposition 2.1], we obtain ϕ1(z) − ϕ2(z) = az + b for
some a, b ∈ C. The proof is complete. ��

We are now ready to prove Theorem B. For any t > 0, we denote


t = {z ∈ C : |ϕ1(z) − ϕ2(z)| < t}.

Proof of Theorem B The “if part” is trivial, we only need to prove the “only if part”.
First assume Wψ1,ϕ1 − W (n)

ψ2,ϕ2
is bounded on F p. Lemma 4.1 tells us that ϕ1(z) −

ϕ2(z) = az + b. Let t = b
2 if a = 0 and t = 1 if a �= 0. Then there exists R > 0

such that {|z| > R} ⊂ 
c
t . By (17) and Lemma 2.5, we can find a constant C > 0,

independent of ψ1 and ψ2, such that

‖Wψ1,ϕ1 − W (n)
ψ2,ϕ2

‖ ≥ C |ψ1(z)|e
|ϕ1(z)|2−|z|2

2
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for all z ∈ 
c
t . It follows that supz∈C |ψ1(z)|e

|ϕ1(z)|2−|z|2
2 < ∞ since 
t is bounded in

C. Obviously,ψ1 = (Wψ1,ϕ1 −W (n)
ψ2,ϕ2

)1 ∈ Fq . Thus according to [10, Theorem 3.4],

Wψ1,ϕ1 is bounded, then so is W (n)
ψ2,ϕ2

.

Now suppose Wψ1,ϕ1 − W (n)
ψ2,ϕ2

is compact on F p, then both Wψ1,ϕ1 and W (n)
ψ2,ϕ2

are bounded. It follows from [10, Propsition 3.1] and [4, Lemma 4.3] that

M1 = sup
z∈C

|ψ1(z)|e
|ϕ1(z)|2−|z|2

2 < ∞

and

M ′
2 = sup

z∈C
|ψ2(z)||ϕ2(z)|ne

|ϕ2(z)|2−|z|2
2 < ∞.

Moreover, ϕi (z) = ai z + bi for i = 1, 2. If a1 = 0, then [10, Corollary 3.2] tells us
that Wψ1,ϕ1 is bounded on F p. So is W (n)

ψ2,ϕ2
. Now we consider the case a1 �= 0.

Taking w = ϕ1(z) in (16), we obtain

|ψ1(z)|e
|ϕ1(z)|−|z|2

2 − M ′
2

∣∣∣∣ϕ1(z)

ϕ2(z)

∣∣∣∣
n

e− |ϕ1(z)−ϕ2(z)|2
2

≤‖(Wψ1,ϕ1 − W (n)
ψ2,ϕ2

)kϕ1(z)‖p.

(18)

The compactness of Wψ1,ϕ1 − W (n)
ψ2,ϕ2

yields that ‖(Wψ1,ϕ1 − W (n)
ψ2,ϕ2

)kϕ1(z)‖p → 0
as |z| → ∞. If a1 �= a2, then lim|z|→∞ |ϕ1(z) − ϕ2(z)| = ∞. Then by (18), we have

lim|z|→∞ |ψ1(z)|e
|ϕ1(z)|−|z|2

2 = 0.

If 0 �= a1 = a2, then b1 �= b2 and |ϕ1(z)|, |ϕ2(z)| → ∞ as |z| → ∞. By the proof of
Lemma 2.5, we obtain

|ψ1(z)|e
|ϕ1(z)|−|z|2

2

�‖(Wψ1,ϕ1 − W (n)
ψ2,ϕ2

kϕ1(z)‖p + ‖(Wψ1,ϕ1 − W (n)
ψ2,ϕ2

kϕ2(z)‖p

for |z| large enough. Then the compactness of Wψ1,ϕ1 − W (n)
ψ2,ϕ2

yields that

lim|z|→∞ |ψ1(z)|e
|ϕ1(z)|−|z|2

2 = 0.

Therefore, by [10, Theorem 3.4], Wψ1,ϕ1 is compact. Then so is W (n)
ψ2,ϕ2

. The proof is
complete. ��
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Remark The methods in this paper can be applied to study the difference W (m)
ψ1,ϕ1

−
W (n)

ψ2,ϕ2
: F p → Fq with p �= q, ϕ1 �= ϕ2 and m �= n through more elaborate

computations.
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