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Abstract
In this paper, we consider the Cauchy problem to the generalized Fokas–Qiao–
Xia–Li/generalized Camassa–Holm-modified Camassa–Holm (gFQXL/gCH-mCH)
equation, which includes the Camassa–Holm equation, the generalized Camassa–
Holm equation, the Novikov equation, the Fokas–Olver–Rosenau–Qiao/Modified
Camassa–Holm equation and the Fokas–Qiao–Xia–Li/Camassa–Holm-modified
Camassa–Holm equation. We prove the ill-posedness for the Cauchy problem of the
gFQXL/gCH-mCH equation in Bs

p,∞ with s > max{2 + 1/p, 5/2} and 1 ≤ p ≤ ∞
in the sense that the solution map to this equation starting from u0 is discontinuous at
t = 0 in the metric of Bs

p,∞.

Keywords FQXL/gCH-mCH equation · Ill-posedness · Besov space

Mathematics Subject Classification 35Q53 · 37K10

1 Introduction

In this paper, we consider the Cauchy problem of the following generalized Fokas–
Qiao–Xia–Li/generalized Camassa–Holm-modified Camassa–Holm (gFQXL/gCH-
mCH) equation:

⎧
⎪⎨

⎪⎩

mt + k1
(
(u2 − u2x )m

)

x + k2
(
ukmx + (k + 1)uk−1uxm

) = 0,

m = u − uxx ,

m(0, x) = m0(x),

(1.1)

where k1, k2 ∈ R and k ∈ Z
+. u = u(t, x) is a horizontal velocity.
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When k1 = 0 and k2 = 1, Eq. (1.1) reduces to the following generalized Camassa–
Holm (gCH) equation which was proposed in [1, 20, 24]:

⎧
⎪⎨

⎪⎩

mt + ukmx + (k + 1)uk−1uxm = 0,

m = u − uxx ,

m(0, x) = m0(x).

(1.2)

It is remarkable that Eq. (1.2) possesses peakon solutions u(t, x) = c1/ke−|x−ct | with
c > 0 (see [20, 29]). Himonas–Holliman [24] obtained the local well-posedness in
Sobolev spaces by means of the Galerkin approximation method, which was gen-
eralized to the Besov spaces by Zhang and Liu [54]. It was further proved that the
data-to-solution map is continuous [31] but not uniformly continuous [51].

Equation (1.2) can also be a special case of the g-kbCH equation

⎧
⎪⎨

⎪⎩

mt + ukmx + buk−1uxm = 0, b ∈ R,

m = u − uxx ,

m(0, x) = m0(x).

(1.3)

Zhao–Li–Yan [55] obtained the well-posedness of the Cauchy problem (1.3) in Besov
space Bs

p,r (R) with s > max{1+1/p, 3/2} and 1 ≤ p, r ≤ ∞. However, for r = ∞,
they established the continuity of the data-to-solutionmap in aweaker topology. Chen–
Li–Yan [5] solved the critical case for (s, p, r) = (3/2, 2, 1). Li–Yu–Zhu [38] proved
the sharp ill-posedness of the Cauchy problem for the g-kbCH equation in Bs

p,∞ with
s > max{1 + 1/p, 3/2} and 1 ≤ p ≤ ∞ in the sense that the solution map to this
equation starting from u0 is discontinuous at t = 0 in the metric of Bs

p,∞.
When k = 1, Eq. (1.2) becomes the well-known Camassa–Holm (CH) equation

{
ut − uxxt + 3uux = 2uxuxx + uuxxx ,

u(0, x) = u0(x).
(1.4)

The CH equation was originally derived as a bi-Hamiltonian system by Fokas and
Fuchssteiner [17] in the context of the KdV model and gained prominence after
Camassa–Holm [3] independently re-derived it from the Euler equations of hydro-
dynamics using asymptotic expansions. The CH equation is completely integrable [3,
8] with a bi-Hamiltonian structure [7, 17] and infinitely many conservation laws [3,
17]. Also, it admits exact peaked soliton solutions (peakons) of the form ce−|x−ct |
with c > 0, which are orbitally stable [9] and models wave breaking (i.e., the solu-
tion remains bounded, while its slope becomes unbounded in finite time [10–12]).
In 1998, Misiołek [42] showed that the CH equation re-expresses geodesic motion
on the Bott–Virasoro group. Subsequently, the CH equation with periodic boundary
conditions had been recast as a geodesic flow on the diffeomorphism group of the
circle by Kouranbaeva [35] and Constantin–Kolev [13, 14].
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When k = 2, Eq. (1.2) is the famous Novikov equation [23, 43, 44, 49, 51]

{
ut − uxxt + 4u2ux = 3uuxuxx + u2uxxx ,

u(0, x) = u0(x).
(1.5)

Home–Wang [30] proved that the Novikov equation with cubic nonlinearity shares
similar properties with the CH equation, such as a Lax pair in matrix form, a bi-
Hamiltonian structure, infinitely many conserved quantities and peakon solutions.
The Novikov equation admits multi-peakon traveling wave solutions on both the line
and the circle. More precisely, on the line the n-peakon

u(x, t) =
n∑

j=1

p j (t)e
−|x−q j (t)|

is a solution to the Novikov equation if and only if the positions (q1, . . . , qn) and the
momenta (p1, . . . , pn) satisfy the following system of 2n differential equations

{
dq j
dt = u2(q j ),
dp j
dt = −u(q j )ux (q j )p j .

Himonas–Holliman–Kenig [26] constructed a 2-peakon solution with an asymmetric
antipeakon-peakon initial data and showed the Cauchy problem (1.5) on both the line
and the circle is ill-posed in Sobolev spaces Hs with s < 3/2. One may note that the
CH equation has quadratic rather than cubic nonlinearities, and this plays an important
role in the analysis of these two equations.

When k1 = 1 and k2 = 0, Eq. (1.1) reduces to the FORQ/MCH equation

⎧
⎪⎨

⎪⎩

mt + (
(u2 − u2x )m

)

x = 0,

m = u − uxx ,

m(0, x) = m0(x).

(1.6)

Equation (1.6) written in a slightly different form was first derived by Fokas [16] as an
integrable generalisation of the modified KdV equation. Fuchssteiner [18] and Olver–
Rosenau [45] independently obtained similar versions of this equation by performing a
simple explicit algorithm based on the bi-Hamiltonian representation of the classically
integrable system. Later, the concise form written above was recovered by Qiao [46]
from the two-dimensional Euler equations by using an approximation procedure. The
entire integrable hierarchy related to the FORQ equation was proposed by Qiao [47].
It also has bi-Hamiltonian structure, which was first derived in [45] and then in [46],
admits Lax pair [46] and peakon travelling wave solutions that are orbitally stable
[21, 39, 48]. It should be mentioned that this equation is also referred as the modified
Camassa–Holm equation in [4] (we may call it the FORQ/MCH hierarchy). The local
well-posedness and ill-posedness of the Cauchy problem for the FORQ equation (1.6)
in Sobolev spaces and Besov spaces were studied in the series of papers [19, 24, 25,
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27]. Himonas-Mantzavinos [28] showed that the Cauchy problem (1.6) is well-posed
in Sobolev space Hs with s > 5/2. Fu et al. [19] established the local well-posedness
in Besov space Bs

p,r with s > max{2 + 1/p, 5/2} and 1 ≤ p, r ≤ ∞. It was further
proved the data-to-solution map is continuous [28] but not uniformly continuous [32,
50].

When k = 1, Eq. (1.1) reduces to the FQXL/CH-mCH equation [6, 22, 40, 41] as
an extension of both the CH and FORQ/MCH equations

⎧
⎪⎨

⎪⎩

mt + k1
(
(u2 − u2x )m

)

x + k2 (umx + 2uxm) = 0,

m = u − uxx ,

m(0, x) = m0(x),

(1.7)

which was proposed by Fokas [16] from the two-dimensional hydrodynamical equa-
tions for surfacewaves by using tri-Hamiltonian duality to the bi-HamiltonianGardner
equation. Xia–Qiao–Li [52] discussed its integrability, bi-Hamilton structure, and con-
servation laws. Although these models mentioned above have similar properties in
several aspects, we would like to point out that these equations are truly different.
In fact, only a few of them have a geometrical interpretation as geodesic flow. One
of the distinctive features of the CH equation is that it comes up in the description
of the geodesic flow on the Bott–Virasoro group with respect to certain (weak) right
invariant Riemannian metrics [13–15, 35, 42]. For the CH equation, many interesting
results under geometric aspects can be found in Kolev’s papers [33, 34].

Equation (1.1) can be viewed as a generalization to the FQXL equation or a com-
bination of both gCH and mCH equtions. Based on this reason, we call Eq. (1.1)
the gFQXL/gCH-mCH equation. Very recently, based on the transport equation and
Littlewood–Paley theory, Yang–Han–Wang [53] proved that the gFQXL/gCH-mCH
equation is locally well-posed in Besov spaces. More precisely, they established

Lemma 1.1 [53] Let p, r ∈ [1,∞] and s > max
{
2 + 1

p , 5
2

}
. Assume that u0 ∈ Bs

p,r ,

then there exists a time T > 0 and a unique solution u to the Cauchy problem (1.7)
such that the map Bs

p,r � u0 �→ u ∈ C([0, T ]; Bs′
p,r )∩C1([0, T ]; Bs′−1

p,r ) is continuous
for every s′ < s when r = ∞ and s′ = s when r < ∞.

Naturally, we want to ask a question that whether or not the continuity of the
data-to-solution map with values in L∞(0, T ; Bs

p,∞) with s > max{2 + 1/p, 5/2}
and 1 ≤ p ≤ ∞ holds for the gFQXL/gCH-mCH equation. It should be noticed
that well-posedness of the Cauchy problem for the g-kbCH equation holds for s >

max{1+ 1/p, 3/2} while for the gFQXL/gCH-mCH equation holds for s > max{2+
1/p, 5/2}. This difference between the well-posedness index of g-kbCH equation and
gFQXL/gCH-mCH equation may be explained by the presence of the extra term u3x
in (1.7). Recently, Li–Yu–Zhu [38] (see also [37]) proved the solution map to the
g-kbCH equation starting from u0 is discontinuous at t = 0 in the metric of Bs

p,∞(R)

with s > max{1+ 1/p, 3/2}, which implies the ill-posedness of the Cauchy problem
for this equation in Bs

p,∞(R). However, this ill-posedness result do not cleanly to the
gFQXL/gCH-mCH equation. The main difficulty lies in the presence of the extra term
u3x . In this paper, motivated by the idea used in [38], we shall bypass this obstacle and
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prove the ill-posedness of the Cauchy problem for the gFQXL/gCH-mCH equation.
In order to present our main result, let us reformulate (1.1). Setting�−2 = (1−∂2x )

−1,
then �−2 f = G ∗ f where G(x) = 1

2e
−|x | is the kernel of the operator �−2. Thus,

we can transform (1.1) equivalently into the following transport type equation

⎧
⎪⎪⎨

⎪⎪⎩

ut +
(
k1u2 − k1

3 u
2
x + k2uk

)
ux + �−2

(
k1
3 u

3
x + k2(k−1)

2 uk−2u3x
)

+∂x�
−2

(
2k1
3 u3 + k1uu2x + k2uk+1 + k2(2k−1)

2 uk−1u2x
)

= 0,

u(0, x) = u0(x).

(1.8)

Now, we state our main result.

Theorem 1.1 Let k1 ∈ R\{0}, k2 ∈ R and k ∈ Z
+. Assume that 1 ≤ p ≤ ∞ and

s > max
{
2 + 1

p , 5
2

}
. There exists u0 ∈ Bs

p,∞(R) and a positive constant ε0 such

that the data-to-solution map u0 �→ St (u0) of the Cauchy problem (1.8) satisfies

lim sup
t→0+

‖St (u0) − u0‖Bs
p,∞ ≥ ε0.

Remark 1.1 Theorem 1.1 demonstrates the ill-posedness of the Cauchy problem (1.8)
in Bs

p,∞ with s > max{2 + 1/p, 5/2} and 1 ≤ p ≤ ∞ in the sense that the solution
map to this equation starting from u0 is discontinuous at t = 0 in the metric of Bs

p,∞.

Organization of our paper In Sect. 2 we present some preliminary results and intro-
duce notation used. In Sect. 3 we rewrite the original system (1.1) by introducing a
new unknown quantity. In Sect. 4 we give the proof of main Theorem.

2 Littlewood–Paley analysis

Notation A ≤ B (resp., A � B) means that there exists a harmless positive constant
c such that A ≤ cB (resp., A ≥ cB). Given a Banach space X , we denote its norm
by ‖ · ‖X . For I ⊂ R, we denote by C(I ; X) the set of continuous functions on I with
values in X . Sometimes we will denote L p(0, T ; X) by L p

T X . Next, we will recall
some facts about the Littlewood–Paley (L–P) decomposition, the nonhomogeneous
Besov spaces and some of their useful properties. Let B := {ξ ∈ R : |ξ | ≤ 4

3 } and
C := {ξ ∈ R : 3

4 ≤ |ξ | ≤ 8
3 }. There exist two radial functions χ ∈ C∞

c (B) and
ϕ ∈ C∞

c (C) both taking values in [0, 1] such that

χ(ξ) +
∑

j≥0

ϕ(2− jξ) = 1 ∀ ξ ∈ R.
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Definition 2.1 [2] For every u ∈ S ′(R), the L–P dyadic blocks � j are defined as
follows

� j u =
⎧
⎨

⎩

0, i f j ≤ −2;
χ(D)u = F−1(χFu), i f j = −1;
ϕ(2− j D)u = F−1

(
ϕ(2− j ·)Fu

)
, i f j ≥ 0.

Definition 2.2 [2] Let s ∈ R and (p, r) ∈ [1,∞]2. The nonhomogeneous Besov space
Bs
p,r (R) is defined by

Bs
p,r (R) :=

{
f ∈ S ′(R) : ‖ f ‖Bs

p,r (R) < ∞
}
, where

‖ f ‖Bs
p,r (R) =

{(∑
j≥−1 2

s jr‖� j f ‖rL p(R)

)1/r
, i f 1 ≤ r < ∞,

sup j≥−1 2
s j‖� j f ‖L p(R), i f r = ∞.

Remark 2.1 The fact Bs
p,∞(R) ↪→ Bt

p,∞(R) with s > t will be often used implicity.

We give some important properties which will be also often used throughout the paper.

Lemma 2.1 [2] (1) Let (p, r) ∈ [1,∞]2 and s > max
{
1 + 1

p , 3
2

}
. Then we have

‖uv‖Bs−2
p,r (R)

≤ C‖u‖Bs−2
p,r (R)

‖v‖Bs−1
p,r (R)

.

(2) For (p, r) ∈ [1,∞]2, Bs−1
p,r (R) with s > 1 + 1

p is an algebra. Moreover, for

any u, v ∈ Bs−1
p,r (R) with s > 1 + 1

p , we have

‖uv‖Bs−1
p,r (R)

≤ C‖u‖Bs−1
p,r (R)

‖v‖Bs−1
p,r (R)

.

(3) Let m ∈ R and f be an Sm-multiplier (i.e., f : R → R is smooth and satisfies
that ∀α ∈ N, there exists a constant Cα such that |∂α f (ξ)| ≤ Cα(1+ |ξ |)m−|α| for all
ξ ∈ R). Then the operator f (D) is continuous from Bs

p,r (R) to Bs−m
p,r (R).

(4) For any s ∈ R, (1−∂x )
−1 is an isomorphicmapping from Bs−1

p,r (R) into Bs
p,r (R).

(5) For 1 ≤ p ≤ ∞ and s > 0, there exists a positive constant C such that

∥
∥
∥2 js

∥
∥[� j , v]∂x f

∥
∥
L p

∥
∥
∥

�∞ ≤ C
(‖∂xv‖L∞‖ f ‖Bs

p,∞ + ‖∂x f ‖L∞‖∂xv‖Bs−1
p,∞

)
,

where we denote the standard commutator [� j , v]∂x f = � j (v∂x f ) − v� j∂x f .
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3 Reformulation of system

Due to the presence of the extra term u3x in (1.8), it seems difficult to deal with Eq.
(1.8) directly. From Eq. (1.1), we infer that

(
1 − ∂2x

) (
ut + (

k1
(
u2 − u2x

) + k2u
k)ux

)

= −2k1
(
u2xm

)

x − 2k1uuxm + k2(2k − 1)uk−1uxm

− k2k(k − 1)uk−2u3x − 3k2ku
kux ,

which implies

ut +
(
k1

(
u2 − u2x

) + k2u
k
)
ux

= k2�
−2

(
(2k − 1)uk−1uxm − k(k − 1)uk−2u3x − 3kukux

)

− 2k1∂x�
−2(u2xm

) − 2k1�
−2(uuxm). (3.9)

Differentiating (3.9) with respect to x yields

uxt +
(
k1

(
u2 − u2x

) + k2u
k
)
uxx

= k2∂x�
−2

(
(2k − 1)uk−1uxm − k(k − 1)uk−2u3x − 3kukux

)

− 2k1�
−2(u2xm

) − 2k1∂x�
−2(uuxm) − k2ku

k−1u2x . (3.10)

Introducing v := (1− ∂x )u, which implies u2 − u2x = (2u − v)v, then we have from
(3.9) and (3.10)

⎧
⎪⎨

⎪⎩

∂tv + (
k1(2u − v)v + k2uk

)
∂xv = �1(u) + �2(v) + �3(v),

u = (1 − ∂x )
−1v,

v0 = (1 − ∂x )u0,

(3.11)

where the terms �1(u),�2(v) and �3(v) are defined by

�1(u) = −k2ku
k−1u2x ,

�2(v) = 2k1∂x�
−2 (vxuxm) − 2k1�

−2(vuxm),

�3(v) = k2(1 − ∂x )�
−2

(
(2k − 1)uk−1uxm − k(k − 1)uk−2u3x − 3kukux

)
.

Since (1 − ∂x )
−1 is an isomorphic mapping from Bs−1

p,r (R) into Bs
p,r (R), the ill-

posedness of u in Bs+1
p,r can be transformed into that of v in Bs

p,r . Based on this
observation, we shall consider Eq. (3.11) satisfied by v in the rest of this paper. Now
we restate our main result as follows.
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Theorem 3.1 Let k1 ∈ R\{0}, k2 ∈ R and k ∈ Z
+. Assume that 1 ≤ p ≤ ∞ and

s > max
{
1 + 1

p , 3
2

}
. There exists v0 ∈ Bs

p,∞(R) and a positive constant ε0 such that

the data-to-solution map v0 �→ St (v0) of the Cauchy problem (3.11) satisfies

lim sup
t→0+

‖St (v0) − v0‖Bs
p,∞ ≥ ε0.

4 Proof of Theorem 3.1

In this section, we will give the proof of Theorem 3.1.

4.1 Construction of initial data

We need to introduce smooth, radial cut-off functions to localize the frequency region.
Precisely, let φ̂ ∈ C∞

0 (R) be an even, real-valued and non-negative function on R and
satisfy

φ̂(ξ) =
{
1, i f |ξ | ≤ 1

4 ,

0, i f |ξ | ≥ 1
2 .

Remark 4.1 By the Fourier–Plancherel formula, we have φ(x) = F−1(φ̂(ξ)).
Obviously

φ(0) = 1

2π

∫

R

φ̂(ξ)dξ > 0.

Lemma 4.1 [36] Let n � 1. Define the function fn(x) by

fn(x) = φ(x) sin

(
17

12
2nx

)

or

fn(x) = φ(x) cos

(
17

12
2nx

)

.

Then we have

� j ( fn) =
{
fn, i f j = n,

0, i f j �= n.

Lemma 4.2 Define the initial data u0(x) and v0(x) as

u0(x) :=
∞∑

n=0

2−n(s+1)φ(x) sin

(
17

12
2nx

)

,
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v0(x) := (1 − ∂x )u0(x).

Then for any s > max
{ 3
2 , 1 + 1

p

}
and k ∈ Z

+, we have for some n large enough

‖v0‖Bs
p,∞ ≈ ‖u0‖Bs+1

p,∞ ≤ C, (4.1)
∥
∥
∥
(
k1(2u0 − v0)v0 + k2u

k
0

)
∂x�nv0

∥
∥
∥
L p

≥ c0c1
2

2n(1−s), (4.2)

where C and c0, c1 are some positive constants. In particular,

c0 :=
{(

δ
π

∫ π

0 | sin x |pdx)1/p , if p ∈ [1,∞),

1, if p = ∞,
and c1 := |k1|

(1 − 2−s)2
φ3(0).

Proof Using Lemma 4.1 yields

�nu0(x) = 2−n(s+1)φ(x) sin

(
17

12
2nx

)

. (4.3)

By the definition of Besov space, we have

‖u0‖Bs+1
p,∞ = sup

j≥−1
2(s+1) j‖� j u0‖L p = sup

j≥0

∥
∥
∥
∥φ(x) sin

(
17

12
2 j x

)∥
∥
∥
∥
L p

≤ C .

Due to the relation u0 = (1−∂x )
−1v0, we have ‖u0‖Bs+1

p,∞ � ‖v0‖Bs
p,∞ , which implies

(4.1).

From (4.3), we have

∂x�nu0(x) = 2−n(s+1)φ′(x) sin
(
17

12
2nx

)

+ 17

12
2−nsφ(x) cos

(
17

12
2nx

)

. (4.4)

Then

∂x∂x�nu0(x) = 2−n(s+1)φ′′(x) sin
(
17

12
2nx

)

+ 17

6
2−nsφ′(x) cos

(
17

12
2nx

)

−
(
17

12

)2

2n2−nsφ(x) sin

(
17

12
2nx

)

. (4.5)

Combining (4.4) and (4.5) directly gives that

∂x�nv0 = ∂x�nu0 − ∂x∂x�nu0

=
(
17

12

)2

2n2−nsφ(x) sin

(
17

12
2nx

)
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+ 2−n(s+1)(φ′(x) − φ′′(x)) sin
(
17

12
2nx

)

+ 17

12
2−ns (

φ(x) − 2φ′(x)
)
cos

(
17

12
2nx

)

.

Since u0(x), v0(x) and φ(x) are real-valued and continuous functions onR, then there
exists some δ > 0 such that for any x ∈ Bδ(0)

|[(k1(2u0 − v0)v0 + k2u
k
0

)
φ](x)|

≥ 1

2
|[(k1(2u0 − v0)v0 + k2u

k
0

)
φ](0)| = |k1|

2
|v20(0)|φ(0)

= |k1|
2

(
17

12
φ(0)

∞∑

n=0

2−ns

)2

φ(0) ≥ c1. (4.6)

Obviously,

‖(k1(2u0 − v0)v0 + k2u
k
0

)
(x)‖L∞(R) ≤ C . (4.7)

Thus, for some n large enough, we have from (4.6) and (4.7)

‖(k1(2u0 − v0)v0 + k2u
k
0

)
∂x�nu0‖L p

≥ c12
n2−ns

∥
∥
∥
∥sin

(
17

12
2nx

)∥
∥
∥
∥
L p(Bδ(0))

− C2−ns
∥
∥
∥
∥(φ′(x) − φ′′(x)) sin

(
17

12
2nx

)∥
∥
∥
∥
L p

− C2−ns
∥
∥
∥
∥

(
φ(x) − 2φ′(x)

)
cos

(
17

12
2nx

)∥
∥
∥
∥
L p

≥ (c0c12
n − C)2−ns,

where we have used
∥
∥
∥
∥sin

(
17

12
2nx

)∥
∥
∥
∥
L p(Bδ(0))

≥ c0 > 0.

In fact, for p ∈ [1,∞), we have

∥
∥
∥
∥sin

(
17

12
2nx

)∥
∥
∥
∥

p

L p(Bδ(0))
= 2δ

λn

∫ λn

0
| sin x |pdx with λn := 17

12
δ2n .

Due to the fact

lim
n→∞

1

λn

∫ λn

0
| sin x |pdx = 1

π

∫ π

0
| sin x |pdx,
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then there exists a positive integer number N such that for n > N

1

λn

∫ λn

0
| sin x |pdx ≥ 1

2π

∫ π

0
| sin x |pdx,

For p = ∞, we have for some n large enough

∥
∥
∥
∥sin

(
17

12
2nx

)∥
∥
∥
∥
L∞(Bδ(0))

= ‖sin x‖L∞(Bλn (0)) .

We choose n large enough such that C ≤ c0c1
2 2n and then finish the proof of Lemma

4.2. ��

4.2 Error estimates

From now on, we denote v(t) = St (v0) for the sake of convenience.

Lemma 4.3 Assume that ‖v0‖Bs
p,∞ � 1. Under the assumptions of Theorem 1.1, we

have

‖(v2 − 2uv)∂xv‖Bs−1
p,∞ + ‖uk∂xv‖Bs−1

p,∞ ≤ 1,

‖�1(u)‖Bs
p,∞ + ‖�2(v)‖Bs

p,∞ + ‖�3(v)‖Bs
p,∞ ≤ 1.

Proof By the local well-posedness result [53], there exists a short time T =
T (‖u0‖Bs+1

p,∞) such that Eq. (1.1) has a unique solution u(t) ∈ C([0, T ]; Bs+1
p,r ).

Moreover, for all t ∈ [0, T ], there holds

‖u(t)‖Bs+1
p,∞ ≤ C‖u0‖Bs+1

p,∞ or ‖v(t)‖Bs
p,∞ ≤ C‖v0‖Bs

p,∞ . (4.8)

It can be inferred from (4.8) that which will be frequently used later

‖v‖Bs−1
p,∞ � ‖v0‖Bs−1

p,∞ � ‖v0‖Bs
p,∞ � 1.

Using the fact that Bs−1
p,r is a Banach algebra with s − 1 > max{ 1p , 1

2 } and Lemma
2.1, one has

‖(v2 − 2uv)∂xv‖Bs−1
p,∞ + ‖uk∂xv‖Bs−1

p,∞

≤ ‖(v2 − 2uv)‖Bs−1
p,∞‖∂xv‖Bs−1

p,∞ + ‖u‖k
Bs−1
p,∞

‖v‖Bs
p,∞

≤ ‖v‖2
Bs−2
p,∞

‖v‖Bs
p,∞ + ‖v‖3

Bs−1
p,∞

≤ 1.

Similarly, one has

‖�1(u)‖Bs
p,∞ ≤ ‖uk−1u2x‖Bs

p,∞ ≤ ‖u‖k−1
Bs
p,∞‖u‖2

Bs+1
p,∞

≤ 1,
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‖�2(v)‖Bs
p,∞ ≤ ‖vxuxm‖Bs−1

p,∞ + ‖vuxm‖Bs−1
p,∞ ≤ ‖v‖Bs

p,∞‖u‖Bs
p,∞‖u − uxx‖Bs−1

p,∞ ≤ 1,

‖�3(v)‖Bs
p,∞ ≤ ‖uk−1uxm‖Bs−1

p,∞ + ‖uk−2u3x‖Bs−1
p,∞ + ‖ukux‖Bs−1

p,∞ ≤ 1.

Thus, we finish the proof of Lemma 4.3. ��
Proposition 4.1 Assume that ‖v0‖Bs

p,∞ � 1. Under the assumptions of Theorem 1.1,
we have

‖St (v0) − v0‖Bs−1
p,∞ � t .

Proof By the mean value theorem and the Minkowski inequality, we obtain

‖v(t) − v0‖Bs−1
p,∞ ≤

∫ t

0
‖∂τ v‖Bs−1

p,∞dτ

≤ k1

∫ t

0
‖(v2 − 2uv)∂xv‖Bs−1

p,∞dτ + k2

∫ t

0
‖uk∂xv‖Bs−1

p,∞dτ

+
∫ t

0
‖�1(u)‖Bs−1

p,∞dτ +
∫ t

0
‖�1(v)‖Bs−1

p,∞dτ +
∫ t

0
‖�2(v)‖Bs−1

p,∞dτ.

Thus, using Lemma 4.3 enable us to finish the proof of Proposition 4.1. ��
Next, we shall establish the key estimate which plays an important role in the proof

of main Theorem.

Proposition 4.2 Assume that ‖v0‖Bs−1
p,∞ � 1. Under the assumptions of Theorem 1.1,

there holds

‖w‖Bs−2
p,∞ � t2,

where we denote w := St (v0) − v0 − tU0 and

U0 :=
(
k1(2u0 − v0)v0 + k2u

k
0

)
∂xv0 + �1(u0) + �2(v0) + �3(v0). (4.9)

Proof Using differential mean value theorem and (3.11), we obtain

‖w‖Bs−2
p,∞ ≤

∫ t

0
‖∂τ v − U0‖Bs−2

p,∞dτ

≤
∫ t

0
‖v2∂xv − v20∂xv0‖Bs−2

p,∞dτ +
∫ t

0
‖uv∂xv − u0v0∂xv0‖Bs−2

p,∞dτ

+
∫ t

0
‖�1(u) − �1(u0)‖Bs−2

p,∞dτ +
∫ t

0
‖�2(v) − �2(v0)‖Bs−2

p,∞dτ

+
∫ t

0
‖�3(v) − �3(v0)‖Bs−2

p,∞dτ. (4.10)
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Now we need to estimate each term on the right hand side of (4.10). Notice that Bs−1
p,r

is a Banach algebra with s − 1 > max{ 1p , 1
2 }, combining with Lemma 2.1 yields

‖v3 − v30‖Bs−2
p,∞ ≤ ‖(v − v0)(v

2 + vv0 + v20)‖Bs−1
p,∞ � ‖v − v0‖Bs−1

p,∞ ,

‖uv∂xv − u0v0∂xv0‖Bs−2
p,∞ = ‖(u − u0)v∂xv + u0(v∂xv − v0∂xv0)‖Bs−2

p,∞

� ‖u − u0‖Bs−2
p,∞‖v∂xv‖Bs−1

p,∞ + ‖u0‖Bs−1
p,∞‖v2 − v20‖Bs−1

p,∞
� ‖v − v0‖Bs−1

p,∞ .

Here, we need only to estimate ‖vxuxm − v0xu0xm0‖Bs−2
p,∞ since the other terms can

be processed in a similar more relaxed way. Using Lemma 2.1 yields

‖vxuxm − v0xu0xm0‖Bs−2
p,∞

≤ ‖(v − v0)xuxm‖Bs−2
p,∞ + ‖v0x (u − u0)xm‖Bs−2

p,∞
+ ‖v0xu0x (m − m0)‖Bs−2

p,∞
≤ ‖v − v0‖Bs−1

p,∞‖u‖Bs
p,∞‖m‖Bs−1

p,∞ + ‖v0‖Bs
p,∞‖u − u0‖Bs

p,∞‖m‖Bs−1
p,∞

+ ‖v0‖Bs
p,∞‖u0‖Bs

p,∞‖m − m0‖Bs−2
p,∞

≤ ‖v − v0‖Bs−1
p,∞ .

Putting the above estimates into (4.10) and using Proposition 4.1 yield

‖w‖Bs−1
p,∞ �

∫ t

0
‖v(τ) − v0‖Bs−1

p,∞dτ � t2.

Thus, we complete the proof of Proposition 4.2. ��
Now we present the proof of Theorem 3.1.

Proof of Theorem 3.1 Notice that St (v0) − v0 = tU0 + w where U0 is given by (4.9),
and

�n

((
k1(2u0 − v0)v0 + k2u

k
0

)
∂xv0

)
=

(
k1(2u0 − v0)v0 + k2u

k
0

)
∂x�nv0

+ [�n,
(
k1(2u0 − v0)v0 + k2u

k
0

)]∂xv0,

by the triangle inequality and Proposition 4.2, we deduce that

‖St (v0) − v0‖Bs
p,∞ ≥ 2ns ‖�n (St (v0) − v0)‖L p

= 2ns ‖�n (tU0 + w)‖L p

≥ t2ns‖�nU0‖L p − 22n2n(s−2)‖�nw‖L p

≥ t2ns
∥
∥
∥�n

(
(k1(2u0 − v0)v0 + k2u

k
0

)
∂xv0)

∥
∥
∥
L p
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− t2ns ‖�n (�1(u0) + �2(v0) + �3(v0))‖L p − C22n‖w‖Bs−2
p,∞

≥ t2ns
∥
∥
∥

(
k1(2u0 − v0)v0 + k2u

k
0

)
∂x�nv0

∥
∥
∥
L p

− t2ns
∥
∥
∥[�n,

(
k1(2u0 − v0)v0 + k2u

k
0

)
]∂xu0

∥
∥
∥
L p

− t ‖�1(u0) + �2(v0) + �3(v0)‖Bs
p,∞ − C22nt2

≥ t2ns
∥
∥
∥

(
k1(2u0 − v0)v0 + k2u

k
0

)
∂x�nv0

∥
∥
∥
L p

− Ct
∥
∥
∥2ns[�n,

(
k1(2u0 − v0)v0 + k2u

k
0

)]∂xu0‖L p

∥
∥
∥

�∞

− Ct − C22nt2, (4.11)

where we have used Lemma 4.2 and the commutator estimate

∥
∥2ns‖[�n,

(
k1(2u0 − v0)v0 + k2u

k
0

)]∂xv0‖L p
∥
∥

�∞

≤ ‖∂x
(
k1(2u0 − v0)v0 + k2u

k
0

)‖L∞‖v0‖Bs
p,∞

+ ‖∂xv0‖L∞‖∂x
(
k1(2u0 − v0)v0 + k2u

k
0

)‖Bs−1
p,∞ ≤ 1.

Gathering all the above estimates and Lemma 4.2 together with (4.11), we obtain

‖St (v0) − v0‖Bs
p,∞ ≥ c0c1

2
t2n − Ct − C22nt2.

Taking large n such that c0c1
2 2n ≥ 2C , we have

‖St (v0) − v0‖Bs
p,∞ ≥ c0c1

4
t2n − C22nt2.

Thus, picking t2n ≈ ε with small ε, we have

‖St (v0) − v0‖Bs
p,∞ � c0c1

4
ε − ε2 � c0c1

8
ε.

This completes the proof of Theorem 3.1. ��
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