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Abstract
In this article, we address sparse bounds for a class of spectral multipliers that include
oscillating multipliers on stratified Lie groups. Our results can be applied to obtain
weighted bounds for general Riesz means and for solutions of dispersive equations.
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1 Introduction

On R
n, operators of the form ̂T f (ξ) = mθ,β(ξ) ̂f (ξ), where mθ,β = |ξ |− θβ

2 ei |ξ |θ

χ{|ξ |>1} are known as oscillatingmultipliers. They are extensively studied startingwith
the pioneering works of Hardy, Hirschman [26] and Wainger [50]. Charles Fefferman
proved the crucial weak type (1, 1) estimates in [22], and the sharp range for L p

estimates was obtained by Fefferman and Stein in [23]. They were also studied by
Hörmander [27]. We also refer to the articles [42, 43, 48] for results in the context
of the wave operators, that is, θ = 1. Weighted estimates for oscillating multipliers

Communicated by Karlheinz Gröchenig.

Michael Ruzhansky is supported by the FWO Odysseus 1 grant G.0H94.18N: Analysis and Partial
Differential Equations, the Methusalem programme of the Ghent University Special Research Fund
(BOF) (Grant number 01M01021). MR is also supported by EPSRC grant EP/R003025/2 and FWO
Senior Research Grant G01152.

B Abhishek Ghosh
abhi170791@gmail.com

Michael Ruzhansky
michael.ruzhansky@ugent.be

1 TIFR-Centre of Applicable Mathematics, Bangalore 560065, India

2 Department of Mathematics, Logic and Discrete Mathematics, Ghent University Krijgslaan 281,
Building S8, 9000 Ghent, Belgium

3 School of Mathematical Sciences, Queen Mary University of London, London, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00605-024-02000-x&domain=pdf


A. Ghosh, M. Ruzhansky

on R
n were initiated by Chanillo [13] and extended in [15]. In [16], weighted end-

point estimates were obtained by Chanillo, Kurtz, and Sampson. In this article, we
shall confine ourselves to weighted L p estimates for these operators on stratified Lie
groups. In order to do that, let us recall the following preliminaries.

Let g be a d-dimensional, graded nilpotent Lie algebra so that

g =
s

⊕

i=1

gi

as a vector space and [gi , g j ] ⊂ gi+ j for all i, j . Suppose that g1 generates g as a Lie
algebra. The associated, connected, simply connected Lie groupG is called a stratified
Lie group. The homogeneous dimension of G is defined as Q = ∑

j j dim(g j ).

Consider the sublaplacian L = −∑

k X
2
k on G, where {Xk} is a basis for g1. For any

Borel measurable function m on R+ = [0,∞), we can define the spectral multiplier
operator

m(
√
L) =

∫ ∞

0
m(λ) dEλ

where {Eλ}λ≥0 is the spectral resolution of
√
L. Since the exponential map is a global

diffeomorphism, the measure onG can be identified with the d-dimensional Lebesgue
measure. In this setting, analogue of the classical Hörmander-Mikhlin multiplier theo-
rem was established in the seminal work by Christ in [18], also fundamental end-point
estimates were obtained by Mauceri–Meda in [41], see also [44–46] for other influen-
tial works. In recent times, there are many important works in this context, we refer [3,
7–10, 14, 38–40, 49]. We are inspired by the recent work [14] where the authors have
introduced a general class of multipliers covering oscillating multipliers and obtained
important end-point estimates.Onmore general graded groups Fouriermultiplier oper-
ators are studied in [11, 12, 24, 25, 32] and references therein. Throughout this article,
for any Borel measurable set R and 1 ≤ p < ∞, 〈 f 〉p,R denotes ( 1

|R|
∫

R | f |p)1/p.
Also, a family of sets S is called η−sparse if for each R ∈ S there exists ER ⊂ R
such that |ER | ≥ η|R| and {ER}S are pairwise disjoint. Now we state our main result.

Statement of main results

Motivated by [14], we introduce the following class of multipliers. Let ν > 1 be a
number which will be specified later. Also, let φ be a smooth function on (0,∞),

supported on {ν−1 ≤ λ ≤ ν} and satisfying
∑

j φ(ν− jλ) = 1 for all λ > 0. Define

m j (λ) := m(ν jλ)φ(λ).

Definition 1.1 Let θ ∈ R \ {0} and β ≥ 0. We say m ∈ M (θ, β) if m is supported in
the set {λ ∈ R+ : λθ ≥ 1} and
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sup
jθ>0

ν jθβ/2‖m j‖L∞(R+) < ∞, (1)

and sup
jθ>0

ν− jθ(2s−β)/2‖m j‖L2
s (R+) < ∞ for all s ∈ N. (2)

Example 1.2 Let θ ∈ R \ {0}. Define mθ,β(λ) := eiλ
θ
λ− θβ

2 χ{λ∈[0,∞):λθ≥1}. Then it is
easy to see that mθ,β ∈ M (θ, β).

Now we state our main sparse domination principle for the multiplier class
M (θ, β).

Theorem 1.3 Let θ ∈ R \ {0} and β ≥ 0, and m ∈ M (θ, β). Then there exist sparse
families S and S ′ such that for all compactly supported bounded functions f , g we
have

|〈m(
√
L) f , g〉| �θ,β,r1,r2

∑

R∈S
|R|〈 f 〉r1,R 〈g〉r ′

2,R

and |〈m(
√
L) f , g〉| �θ,β,r1,r2

∑

R∈S ′
|R|〈 f 〉r ′

2,R
〈g〉r1,R ,

where r1, r2 satisfy

(

1

r1
− 1

2

)

<
β

2Q
, 1 ≤ r1 ≤ r2 ≤ 2, (3)

or

(

1

r1
− 1

r2

)

<
β

2Q
, 1 ≤ r1 ≤ 2 ≤ r2 ≤ r ′

1. (4)

As a special case, we obtain the following corollary.

Corollary 1.4 Let θ ∈ R \ {0} and β ≥ 0. Then there exist sparse families S and S ′
such that for all compactly supported bounded functions f , g we have

|〈mθ,β(
√
L) f , g〉| �θ,β,r1,r2

∑

R∈S
|R|〈 f 〉r1,R 〈g〉r ′

2,R

and |〈mθ,β(
√
L) f , g〉| �θ,β,r1,r2

∑

R∈S ′
|R|〈 f 〉r ′

2,R
〈g〉r1,R ,

where r1, r2 satisfy either condition (3) or (4).

The motivation for proving such an estimate arises from recent works [2, 4, 5, 19, 20,
30, 31, 33–36] where sparse domination is achieved for several classical operators in
Harmonic analysis in various settings. The key importance in proving such an estimate
lies in the fact that one can obtain a range of quantitative weighted estimates depending
on the decay parameter β,we state them here. TheMuckenhoupt class of weights (Ap)
and reverse Hölder’s classes (RHq ) are defined in details in Sect. 4.

Theorem 1.5 Let θ ∈ R \ {0}. We have the following results:
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i) Let m ∈ M (θ, 2Q). Then m(
√
L) maps L p(ω) to L p(ω) for all 1 < p < ∞ and

ω ∈ Ap.

ii) Let m ∈ M (θ, β) with Q ≤ β < 2Q. Then m(
√
L) maps L p(ω) to L p(ω) for

pβ < p < ∞ and ω ∈ Ap/pβ , where pβ := 2Q
β

.

iii) Let m ∈ M (θ, β) with 0 < β < Q. Then m(
√
L) : L p(ω) → L p(ω) for all

2 < p < sβ, ω ∈ Ap/2 ∩ RH(sβ/p)′ , where
1
sβ

:= 1
2 − β

2Q .

We believe these results are completely new in the setting of stratified Lie groups.
The article is organized as follows. In the next section, we recall some necessary
preliminaries and Sect. 3 contains the proof of Theorem 1.3. In Sect. 4, we prove
Theorem 1.5 and other applications of Theorem 1.3 to Riesz means and dispersive
equations.

2 Preliminaries

Let {δr }r>0 be the group of dilations associated to G and let | · | be a homogeneous
quasi-norm, i.e., |x | = 0 if and only if x = 0 where 0 denotes the group identity, and
|δr x | = r |x | for all r > 0 and x ∈ G. Moreover, the right convolution kernel of the
operator m(

√
L) will be denoted by Km, that is,

m(
√
L) f (x) =

∫

G
f (x · y−1) Km(y) dy.

In general, Km is just a distribution but whenever m is compactly supported, Km can
be identified with an L2 function on G. See [24] for more details regarding analysis
on these groups. The following estimates are well known.

Theorem 2.1 [49] For any function h and M > 0, we denote hM (t) := h(tM).

i) The following Plancherel-type identity holds

‖Kh‖2L2(G)
=

∫ ∞

0
|h(t)|2t Q−1 dt . (5)

In particular, if the multiplier is supported on [0, M] then ‖Kh‖2L2(G)
≤

MQ‖hM‖22.
ii) For any compactly supported multiplier h,

∫

G
|Kh(x)|2(1 + |x |s)2 dx � ‖h‖2L2

s (R+)
(6)

holds for any s > 0. As a consequence, ‖Kh‖L1 ≤ ‖h‖L2
s (R+) for s >

Q
2 .

We also need the following notion of dyadic grids in spaces of homogeneous type.
We refer to [17] and [29, 37] for details. Let 0 < c1 ≤ C1 < ∞ and μ ∈ (0, 1). By a
general dyadic grid D = ⋃

k∈Z
Dk on G, we mean a countable collection of sets Rα

k
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for k ∈ Z, each associated with a point zαk , α coming from a countable index set, with
the following properties:

• G = ⋃

α

Rα
k for every k ∈ Z.

• If l ≥ k, then either Rβ
l ⊂ Rα

k or Rβ
l ∩ Rα

k = ∅.
• For the constants c1,C1 > 0 we have B(Rα

k ) := B(zαk , c1μk) ⊂ Rα
k ⊂

B(zαk ,C1μ
k) =: C1B(Rα

k ).

• If l ≥ k and Rβ
l ⊂ Rα

k , then C1B(Rβ
l ) ⊂ C1B(Rα

k ).

For sufficiently small μ ∈ (0, 1), Hytönen and Kairema [29, Theorem 4.1] proved
the existence of a finite collection of dyadic grids Dn, n = 1, 2, . . . ,N, such that for
every ball B(z, r) ⊂ G with μk+2 ≤ r < μk+1, there exists some n ∈ {1, 2, . . . ,N}
and Rα

k ∈ Dn such that B(z, r) ⊂ Rα
k and diam (Rα

k ) ≤ C r , where C depends on μ.
For the purposes of this article, the number μ ∈ (0, 1) is now considered fixed and ν

will denote 1
μ
.

Remark 2.2 We remark that the sparse families S,S ′ in Theorem 1.3 consist of ele-
ments from the dyadic grids Dn, n = 1, 2, . . . ,N.

3 Proof of Theorems

We shall prove Theorem 1.3 for case θ > 0, other parts can be modified accordingly,
see Remark 3.7. Let us fix θ > 0, β ≥ 0, and m ∈ M (θ, β). Recall that m j (λ) :=
m(ν jλ)φ(λ) for j ≥ 0, where φ is a smooth function on (0,∞), supported on
{ν−1 ≤ λ ≤ ν}, satisfying ∑

j φ(ν− jλ) = 1. Then, m j satisfy the following

‖m j‖L∞(R+) � ν− jθβ/2 for j ≥ 0,

and ‖m j‖L2
s (R+) � ν jθ(2s−β)/2 for j ≥ 0, (7)

where the implicit constants are independent of j . We also introduce the follow-
ing notation m j (λ) := m(λ)φ(ν− jλ). Recall that

∑

j φ(ν− jλ) = 1, then m(λ) =
∑

j≥0 m j (λ). Moreover, m j (λ) = m j (ν− jλ). Then we have the following decompo-
sition

m(
√
L) =

∑

j≥0

Tj , where Tj f = f ∗ Km j .

It is easy to see by homogeneity that Km j = Km ∗ (ν j QKφ(δν j ·))(x). Motivated by
[4] we make a further decomposition in the space variable, namely

T l
j f (x) =

∫

f (z)Km j (z
−1x)φ(ν−l+ j(1−θ)|z−1x |) dz, l ∈ Z. (8)

Then Tj f = ∑

l∈Z
T l
j f and consequently m(

√
L) = ∑

j≥0
∑

l∈Z
T l
j . Now we shall

focus on proving certain crucial estimates and for some ε > 0 we group the terms
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according to their spatial scale, i.e.,

Tj f =
∑

l≤ jε

T l
j f +

∑

l> jε

T l
j f .

Let us start by proving L2 − L2 estimates for the pieces T l
j . Let l > jε and denote

g := Km j (·)φ(ν−l+ j(1−θ)| · |). By Young’s inequality we have

‖T l
j f ‖2 ≤ ‖ f ‖2‖g‖1 ≤ ‖ f ‖2

(∫

|x |�νl− j(1−θ)

|Km j (x)| dx
)

= ‖ f ‖2
(∫

|x |�νl− j(1−θ)

ν j Q |Km j (δν j x)| dx
)

≤ ‖ f ‖2
(∫

|x |�νl+ jθ
|Km j (x)| dx

)

= ‖ f ‖2
(∫

|x |�νl+ jθ
(1 + |x |s)(1 + |x |s)−1|Km j (x)| dx

)

≤ ‖ f ‖2
(∫

|x |�νl+ jθ
(1 + |x |s)2|Km j (x)|2 dx

)1/2

ν(l+ jθ)(
Q
2 −s)

� ν(l+ jθ)(
Q
2 −s)‖m j‖L2

s
‖ f ‖2 � ν(l+ jθ)(

Q
2 −s)ν jθ(s− β

2 )‖ f ‖2
� ν− jθβ

2 νl(
Q
2 − s

2 )ν
jθQ
2 ν−l s2 ‖ f ‖2 � νl(

Q
2 − s

4 )ν− ls
4 ν

jθQ
2 ν−l s2 ‖ f ‖2.

Observe that the term νl(
Q
2 − s

4 ) � 1 if s is chosen large enough. Moreover, as l > jε,

ν− ls
4 ν

jθQ
2 ≤ ν

jθQ
2 ν− jεs

4 � 1 provided s � � Qθ
ε

�. Finally, choose s large such that

ν−l s4 ≤ ν−Q(Q+ θβ
2 )l as well as ν−l s4 ≤ ν− jε s

4 ≤ ν−Q(Q+ θβ
2 ) j . Therefore, we obtain

‖T l
j f ‖2 ≤ cεν

−Q(Q+ θβ
2 )( j+l)‖ f ‖2 for l > jε. (9)

At this point we would like to remark that one can in fact improve the bounds for

T l
j , l > jε, to ‖T l

j f ‖2 �ε ν−CQ(Q+ θβ
2 )( j+l)‖ f ‖2 for any large constant C . Certainly,

‖Tj f ‖2 ≤ ν− jθβ
2 ‖ f ‖2 since ‖m j‖L∞ ≤ ν− jθβ

2 . Combining this with (9) we prove the
following lemma:

Lemma 3.1 We obtain the following estimates:

i)

‖T l
j f ‖2 �ε ν−CQ(Q+ θβ

2 )( j+l)‖ f ‖2 for l > jε.
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ii)

∥

∥

∥

∥

∥

∥

∑

l≤ jε

T l
j f

∥

∥

∥

∥

∥

∥

2

�ε ν− jθβ
2 ‖ f ‖2.

Now we shall prove L1 − L1 estimates for the pieces T l
j . Recall that g =

Km j (·)φ(ν−l+ j(1−θ)| · |). The previous argument shows that for any l > jε

‖T l
j f ‖1 ≤ ‖ f ‖1‖g‖1 �ε ν−CQ(Q+ θβ

2 )( j+l)‖ f ‖1. (10)

Another observation, together with (6), yields the following for any s >
Q
2

‖Tj f ‖1 ≤ ‖ f ‖1‖Km j ‖1 ≤ ‖ f ‖1‖Km j ‖1 � ν jθ(s− β
2 )‖ f ‖1. (11)

Consequently,

‖Tj f ‖1 � ν j(− θβ
2 + θQ

2 +ε)‖ f ‖1 for any ε > 0.

Moreover, summing (10) in l, we obtain

∥

∥

∥

∥

∥

∥

∑

l≤ jε

T l
j f

∥

∥

∥

∥

∥

∥

1

= ‖Tj f −
∑

l> jε

T l
j f ‖1 � ν j(− θβ

2 + θQ
2 +ε)‖ f ‖1.

Lemma 3.2 Combining (10) and the above discussionwe have the following estimates:

i) For any ε > 0

∥

∥

∥

∥

∥

∥

∑

l≤ jε

T l
j f

∥

∥

∥

∥

∥

∥

1

�ε ν j(− θβ
2 + θQ

2 +ε)‖ f ‖1.

ii) For any l > jε, we have

‖T l
j f ‖1 �ε ν−CQ(Q+ θβ

2 )( j+l)‖ f ‖1.

Finally, we need L1 − L∞ estimates for the operators T l
j . In order to do that we first

need to prove pointwise estimates for the kernel Kh of the operator h(
√
L) where h

is supported on [M/4, M] for some M > 0. Let pt denote the convolution kernel
associated with the heat operator e−tL. Recall the following Gaussian estimate (see
e.g. [6])

|pt (x)| ≤ C

tQ/2 e
− |x |2

c t . (12)
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We just sketch the proof, see [9] for details. Denote H(λ) = e
λ2

M2 h(λ), then

h(λ) = e− λ2

M2 H(λ). Also, ‖HM‖2 � ‖hM‖2 as h is supported on [M/4, M]. There-
fore, Kh(y−1x) = ∫

G p 1
M2

(z−1x)KH (y−1z) dz. Hölder’s inequality and (5) implies

|Kh(y−1x)| ≤ ‖p1/M2 (z−1x)‖L2(dz,G)‖KH (y−1z)‖L2(dz,G) � MQ‖HM‖2 � MQ‖hM‖2. (13)

Observe that a factor of MQ/2 appears from (5) and another from
‖p1/M2(z−1x)‖L2(dz,G). Using Fourier inversion, we can write

Kh(y
−1x) = 1

2π

∫

R

̂G(t)p(1−i t)/M2(y−1x) dt, (14)

where G(λ) := h(M
√

λ)eλ. Note that supp(G) is contained [0, 1] due to the support
condition on h, so eλ and its derivatives are always bounded. At this point we use the
following estimate from [47]

|p(1−i t)/M2(y−1x)| ≤ CMQe
− M2 |y−1x |2

(1+t2) ≤ CMQ(1 + M |y−1x |)−s(1 + |t |)s .

Therefore, from the above bound with (14), we have for any s > 0

|Kh(y
−1x)| ≤ CMQ(1 + M |y−1x |)−s

∫

|̂G(t)|(1 + |t |)s dt
� MQ(1 + M |y−1x |)−s‖G‖L2

s+κ+ 1
2

� MQ(1 + M |y−1x |)−s‖hM‖L2
s+κ+ 1

2

, (15)

for any small κ > 0. Using complex interpolation of (13) and (15), as in [21], we
remove the extra exponent 1/2 in the Sobolev exponent to obtain

|Kh(y
−1x)| � MQ(1 + M |y−1x |)−s‖hM‖L2

s+κ

(16)

for any s > 0 and any arbitrarily small κ > 0. Now we prove the following lemma
regarding L1 − L∞ estimates for T l

j .

Lemma 3.3 i) For l > jε

‖T l
j f ‖L∞ �ε ν−CQ(Q+ θβ

2 )( j+l)‖ f ‖1.

ii) We also have

∥

∥

∥

∥

∥

∥

∑

l≤ jε

T l
j f

∥

∥

∥

∥

∥

∥∞
≤ ν j Qν− jθQ

2 ‖ f ‖1.
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Proof Let l > jε. Then we have

|T l
j f (x)| ≤

(

sup
{y:|y−1x |�νl− j(1−θ)}

|Km j (y
−1x)|

)

∫

| f (y)| dy

≤
(

sup
{y:|y−1x |�νl− j(1−θ)}

|ν j QKm j (δν j (y−1x))|
)

‖ f ‖1

≤ ν j Q

(

sup
{y:|y−1x |�νl+ jθ }

|Km j ((y−1x))|
)

‖ f ‖1

≤ ν j Q

(

sup
{y:|y−1x |�νl+ jθ }

(1 + |y−1x |)−s‖m j‖L2
s+κ

)

‖ f ‖1 (using(16))

� ν j Qν−s(l+ jθ)ν jθ(s+κ− β
2 )‖ f ‖1,

for any s > Q and a fixed small κ > 0 from (16). Since, l > jε, we may choose s
sufficiently large, as done in the proof of Lemma 3.1, depending on Q, θ, ε, κ such
that

‖T l
j f ‖L∞ �ε ν−CQ(Q+ θβ

2 )( j+l)‖ f ‖1.

For the second part, observe that

∣

∣

∣

∣

∣

∣

∑

l≤ jε

T l
j f (x)

∣

∣

∣

∣

∣

∣

= ∣

∣

∫

f (z)Km j (z
−1x)

∑

l≤ jε

φ(ν−l+ j(1−θ)|z−1x |)∣∣

≤
∫

| f (z)||Km j (z
−1x)| dz

using (13)

� ν j Q‖m j‖L∞‖ f ‖1 � ν j Qν− jθQ
2 ‖ f ‖1,

completing the proof. ��
Lemma 3.4 (Lr1 − Lr1 estimates) Let 1 ≤ r1 ≤ 2. Then interpolating Lemmas 3.2
and 3.1 we obtain the following:

i) For any ε > 0

∥

∥

∥

∥

∥

∥

∑

l≤ jε

T l
j f

∥

∥

∥

∥

∥

∥

r1

�ε ν− jθβ
2 ν

j( θQ
2 +ε)( 2

r1
−1)‖ f ‖r1 . (17)

ii) For any l > jε

‖T l
j f ‖r1 �ε ν−CQ(Q+ θβ

2 )( j+l)‖ f ‖r1 . (18)
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The next lemma concerns the key estimate which is required for our sparse domination
estimates.

Lemma 3.5 Let 1 ≤ r1 ≤ r2 ≤ 2. Then we have the following estimates:

i) For l > jε

‖T l
j f ‖r2 �ε ν−CQ(Q+ θβ

2 )( j+l)ν
j Q

(

1
r1

− 1
r2

)

‖ f ‖r1 . (19)

ii) For any ε > 0

∥

∥

∥

∥

∥

∥

∑

l≤ jε

T l
j f

∥

∥

∥

∥

∥

∥

r2

�ε ν− jθβ
2 ν

j( θQ
2 +ε)( 2

r2
−1)

ν
j Q

(

1
r1

− 1
r2

)

‖ f ‖r1 . (20)

Proof Let us introduce a smooth cutoff function ψ such that ψ = 1 on the support of
φ. Then m j (λ) = m(λ) φ(ν− jλ) = m(λ) φ(ν− jλ)ψ(ν− jλ) = m j (λ)ψ(ν− jλ). Let
Kψ be the kernel of ψ(

√
L). Therefore, for l > jε, using Lemma 3.4 and Young’s

inequality, we obtain

‖T l
j f ‖r2 �ε ν−Q(Q+ θβ

2 )( j+l)‖ f ∗ Kψ(ν− j ·)‖r2 �ε ν−CQ(Q+ θβ
2 )( j+l)‖ f ‖r1‖Kψ(ν− j ·)‖t ,

(21)

where 1
t = 1

r2
+ 1 − 1

r1
. Next recall from (16) and homogeneity that

|Kψ(ν− j ·)(x)| = ν j Q |Kψ(δν j x)| ≤ ν j Q C

(1 + |δν j x |)N ≤ ν j Q C

(1 + ν j |x |)N

for any N > 0. From (21) and the above pointwise estimate we obtain the following

‖T l
j f ‖r2 �ε ν−CQ(Q+ θβ

2 )( j+l)‖ f ∗ Kψ(ν− j ·)‖r2

�ε ν−CQ(Q+ θβ
2 )( j+l)‖ f ‖r1‖Kψ(ν− j ·)‖t �ε ν−CQ(Q+ θβ

2 )( j+l)ν
j Q

(

1
r1

− 1
r2

)

‖ f ‖r1 ,

where we have used that ‖Kψ(ν− j ·)‖t � ν j Q(1− 1
t ) by choosing N sufficiently large.

Similarly, modifying the above arguments together with (17), we have

∥

∥

∥

∥

∥

∥

∑

l≥ jε

T l
j f

∥

∥

∥

∥

∥

∥

r2

�ε ν− jθβ
2 ν

j( θQ
2 +ε)( 2

r2
−1)‖ f ‖r1ν j Q

(

1
r1

− 1
r2

)

for any ε > 0. ��
We also need the following L p improving estimate.

Lemma 3.6 Let 1 ≤ r1 ≤ 2 ≤ r2 ≤ r ′
1. Then the following estimates hold true:
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i) For l > jε

‖T l
j f ‖r2 �ε ν−CQ(Q+ θβ

2 )( j+l)ν
j Q( 1

r1
− 1

r ′2
)‖ f ‖r1 . (22)

i) We also have

∥

∥

∥

∥

∥

∥

∑

l≤ jε

T l
j f

∥

∥

∥

∥

∥

∥

r2

�ε ν− jθβ
2 ν

j Q( 1
r1

− 1
r2

)‖ f ‖r1 . (23)

Proof Interpolating Lemmas 3.1 and 3.3 we obtain that for any 1 ≤ r1 ≤ 2

‖T l
j f ‖r ′

1
�ε ν−CQ(Q+ θβ

2 )( j+l)‖ f ‖r1 for l > jε, (24)

and

∥

∥

∥

∥

∥

∥

∑

l≤ jε

T l
j f

∥

∥

∥

∥

∥

∥

r ′
1

�ε ν− jθQ
2 ν

j Q(1− 2
r ′1

)‖ f ‖r1 . (25)

Recall from the previous lemma that m j (λ) = m j (λ)ψ(ν− jλ) where ψ is introduced
in Lemma 3.5. Also recall

|Kψ(ν− j ·)(x)| ≤ ν j Q C

(1 + ν j |x |)N for any N > 0. (26)

For l > jε, employing Young’s inequality we obtain

‖T l
j f ‖2 �ε ν−CQ(Q+ θβ

2 )( j+l)‖ f ∗ Kψ(ν− j ·)‖2 ≤ ν−CQ(Q+ θβ
2 )( j+l)‖Kψ(ν− j ·)‖t‖ f ‖r1 ,

where 1
t = 1

2 + 1
r ′
1
. Therefore, combining the above with (26) yields the following for

l > jε

‖T l
j f ‖2 �ε ν−CQ(Q+ θβ

2 )( j+l)ν
j Q( 1

r1
− 1

2 )‖ f ‖r1 . (27)

Arguing similarly we obtain

∥

∥

∥

∥

∥

∥

∑

l≤ jε

T l
j f

∥

∥

∥

∥

∥

∥

2

�ε ν− jθβ
2 ν

j Q( 1
r1

− 1
2 )‖ f ‖r1 . (28)

Interpolating (24) and (27) we obtain that

‖T l
j f ‖r2 �ε ν−CQ(Q+ θβ

2 )( j+l)ν
j Q( 1

r1
− 1

r ′2
)‖ f ‖r1 , holds for all l > jε.
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Similarly, interpolating (25) and (28), we get

∥

∥

∥

∥

∥

∥

∑

l≤ jε

T l
j f

∥

∥

∥

∥

∥

∥

r2

�ε ν− jθβ
2 ν

j Q( 1
r1

− 1
r2

)‖ f ‖r1 .

This completes the proof. ��
Now we are in a position to prove our main Theorem 1.3 for the case θ > 0. After
having the key unweighted estimates, the proof of sparse domination is now quite
standard and we provide a brief sketch, for more details we refer to [4].

Proof of Theorem 1.3 Recall the dyadic families Dn for n = 1, · · · ,N and Dn =
∪k∈ZD

n
k . Let us define the operators

T l
j,n f :=

∑

R∈Dn :
R∈Dn

� j(1−θ)− jε+10�

T l
j ( f χcG B(R)) for l ≤ jε,

T l
j,n f :=

∑

R∈Dn :
R∈Dn

� j(1−θ)−l+10�

T l
j ( f χcG B(R)) for l > jε,

where the universal constant cG is chosen sufficiently small (by rescaling the metric)
to ensure that the support of T l

j ( f χcG B(R)) is contained in R. Therefore, it is enough
to obtain sparse domination for

Tn :=
∑

j≥0
l∈Z

T l
j,n, for n = 1, · · · ,N.

Hence, we only prove sparse domination for one of the Tn and suppress the index n
for simplicity. By localisation and Lemma 3.5, we obtain for 1 ≤ r1 ≤ r2 ≤ 2
∣

∣

∣

∣

∣

∣

〈

∑

l≤ jε

T l
j f , g

〉

∣

∣

∣

∣

∣

∣

�
∑

j≥0

∑

R∈D :
R∈D � j(1−θ)− jε+10�

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

l≤ jε

T l
j ( f χcG B(R))

⎞

⎠χR

∥

∥

∥

∥

∥

∥

r2

‖gχR‖r ′2

(20)

� ε

∑

j≥0

∑

R∈D :
R∈D � j(1−θ)− jε+10�

ν
− jθβ

2 ν
j( θQ

2 +ε)( 2
r2

−1)
ν
j Q

(

1
r1

− 1
r2

)

‖ f χR‖r1‖gχR‖r ′2

�ε

∑

j≥0

∑

R∈D :
R∈D � j(1−θ)− jε+10�

|R|
1
r1

+ 1
r ′2

−1
ν
− jθβ

2 ν
j( θQ

2 +ε)( 2
r2

−1)
ν
j Q

(

1
r1

− 1
r2

)

|R| 〈 f 〉r1,R 〈g〉r ′2,R

�ε

∑

j≥0

∑

R∈D :
R∈D � j(1−θ)− jε+10�

ν

Q( jε− j(1−θ))
( 1
r1

+ 1
r ′2

−1
)

ν
− jθβ

2 ν
j( θQ

2 +ε)( 2
r2

−1)
ν
j Q

(

1
r1

− 1
r2

)

|R| 〈 f 〉r1,R 〈g〉r ′2,R
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�ε

∑

j≥0

ν
j
(

θQ( 1
r1

− 1
r2

)− θβ
2 + θQ

2
( 2
r2

−1
)+ε

( 2
r2

−1
)+εQ( 1

r1
− 1
r2

)
)

∑

R∈D :
R∈D � j(1−θ)− jε+10�

|R| 〈 f 〉r1,R 〈g〉r ′2,R ,

(29)

since ε and ε are sufficiently small the above gives a geometrically decaying sparse
collection if

θQ
(

1
r1

− 1
r2

)

− θβ
2 + θQ

2

(

2
r2

− 1
)

< 0 ⇐⇒ 1
r1

− 1
2 <

β
2Q .

A similar argument for T l
j , l > jε, with Lemma 3.5, yields the following

∣

∣

∣

∣

∣

∣

〈

∑

j≥0

∑

l> jε

T l
j ( f χcG B(R)), g

〉

∣

∣

∣

∣

∣

∣

�
∑

j≥0

∑

l> jε

∑

R∈D :
R∈D � j(1−θ)−l+10�

‖T l
j ( f χcG B(R))χR‖r2 ‖gχR‖r ′2 (30)

(19)

�
∑

j≥0

∑

l> jε

∑

R∈D :
R∈D � j(1−θ)−l+10�

ν
Q(l− j(1−θ))

( 1
r1

− 1
r2

)

ν
−CQ(Q+ θβ

2 )( j+l)
ν
j Q

(

1
r1

− 1
r2

)

|R| 〈 f 〉r1,R 〈g〉r ′2,R

�
∑

j≥0

ν
j Q

(

θ
( 1
r1

− 1
r2

)−C
(

Q+ θβ
2

))

∑

l> jε

ν
Ql

(( 1
r1

− 1
r2

)−C
(

Q+ θβ
2

))

∑

R∈D :
R∈D � j(1−θ)−l+10�

|R| 〈 f 〉r1,R 〈g〉r ′2,R .

(31)

As mentioned earlier, the constant C can be chosen sufficiently large, indeed we can
always ensure that

(

θ
( 1
r1

− 1
r2

)−C(Q+ θβ
2 )

)

< 0 and
(( 1

r1
− 1

r2

)−C(Q+ θβ
2 )

)

< 0.
Therefore, we again obtain geometrically decaying (r1, r ′

2) sparse domination. Hence,
combining (29) and (31), we obtain (r1, r ′

2) sparse domination for 1 ≤ r1 ≤ r2 ≤ 2
provided 1

r1
− 1

2 <
β
2Q .

Arguing similarly in the case 1 ≤ r1 ≤ 2 ≤ r2 ≤ r ′
1 with Lemma 3.6 yields

∣

∣

∣

∣

∣

∣

〈

∑

l≤ jε

T l
j ( f χcG B(R)), g

〉

∣

∣

∣

∣

∣

∣

�
∑

j≥0

∑

R∈D :
R∈D� j(1−θ)− jε+10�

‖
(

∑

l≤ jε T
l
j ( f χcG B(R))

)

χR‖r2‖gχR‖r ′
2

(23)

� ε

∑

j≥0

∑

R∈D :
R∈D� j(1−θ)− jε+10�

ν
Q( jε− j(1−θ))

(

1
r1

− 1
r2

)

ν− jθβ
2 ν

j Q( 1
r1

− 1
r2

)|R| 〈 f 〉r1,R 〈g〉r ′
2,R

�ε

∑

j≥0

ν
j
(

−Q(1−θ)
(

1
r1

− 1
r2

)

− θβ
2 +Q

(

1
r1

− 1
r2

)

+εQ
)

∑

R∈D :
R∈D� j(1−θ)− jε+10�

|R| 〈 f 〉r1,R 〈g〉r ′
2,R

,

(32)
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since ε > 0 is sufficiently small we have a geometrically decaying (r1, r ′
2) sparse

domination for 1 ≤ r1 ≤ 2 ≤ r2 ≤ r ′
1 if

−Q(1 − θ)
( 1

r1
− 1

r2

) − θβ

2
+ Q

( 1

r1
− 1

r2

)

< 0 ⇐⇒ 1

r1
− 1

r2
<

β

2Q
.

A similar argument also produces (r1, r ′
2) sparse domination for the pieces T l

j , l > jε,
in the range 1 ≤ r1 ≤ 2 ≤ r2 ≤ r ′

1. Our proof only produces geometrically decay-
ing sparse domination since in the dyadic scale D� j(1−θ)− jε+10� cubes are disjoint,
however, to obtain a true sparse bound a similar argument can be produced as in [4],
see also [35]. Since m(

√
L)∗ = m(

√
L), (r1, r ′

2) sparse domination implies (r2, r ′
1)

sparse domination. This completes the proof of Theorem 1.3 for the case θ > 0. ��

Remark 3.7 Let θ < 0 andm ∈ M (θ, β). The case θ < 0 represents low frequencies,
hence we need to decompose the multiplier as done in [4, 14]. Therefore,

m(λ) =
∑

j : j≤0

m j (λ),

where m j = m(λ)φ(ν− jλ). We can rewrite the above as m(λ) = ∑

k:k≥0 m−k(λ),

where m−k = m(λ)φ(νkλ) for k ≥ 0. Also m−k(λ) := m(ν−kλ)φ(λ). Then the facts
that ‖m−k‖L∞ ≤ Cνkθβ/2, and ‖m−k‖L2

s
≤ Cν−kθ(2s−β)/2 for all k ≥ 0 and for

s ∈ N, yield the following estimate as in Lemma 3.1 by choosing s � �− θβ
2ε �

‖T l
k f ‖2 �ε νQ(

θβ
2 −Q)(k+l)‖ f ‖2 for l > kε,

also,

‖Tk f ‖2 � ν
kθβ
2 for k ≥ 0.

Now one can modify Lemmas 3.2, and 3.3 appropriately to obtain similar results in
this case.

4 Applications

4.1 Quantitative estimates

In this subsection we obtain several weighted estimates for oscillating multipliers
m(

√
L).Recall the following notion ofMuckenhoupt weights on homogeneous spaces

from [2]. Let 1 < p < ∞, ω ∈ Ap if

[ω]Ap := sup
B

(

1

|B|
∫

B
ω

) (

1

|B|
∫

B
ω1−p′

)p−1

< ∞, (33)
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where the supremum is over all balls. Also, we say ω ∈ RHq for 1 < q < ∞,

if [ω]RHq := sup
B

〈ω〉−1
1,B 〈ω〉q,B < ∞. Corresponding to a sparse family S, and

1 ≤ r1, r2 ≤ ∞, let �S,r1,r ′
2
denote the following bilinear form

�S,r1,r ′
2
( f , g) :=

∑

R∈S
|R| 〈 f 〉r1,R 〈g〉r ′

2,R
.

The following quantitative estimate was proved in [2].

Lemma 4.2 [2] For any r1 < p < r2, and ω ∈ Ap/r1 ∩ RH(r2/p)′ , we have

�S,r1,r ′
2
( f , g) �r1,r2,p,S

([ω]Ap/r1
[ω]RH(r2/p)′

)max{ 1
p−r1

,
r2−1
r2−p }‖ f ‖L p(w)‖g‖L p′ (w1−p′ ).

As a consequence of Theorem 1.3, we now prove Theorem 1.5 concerning weighted
estimates for m(

√
L).

Proof of Theorem 1.5 We first prove part (i) and (i i). Assume m ∈ M (θ, β) with
θ ∈ R \ {0} with Q ≤ β ≤ 2Q. The proof follows from Theorem 1.3 and reverse
Hölder’s property of Ap weights, see [28]. It is easy to observe from Theorem 1.3 that
we have (r1, 1) sparse domination for all r1 such that 0 < 1

r1
< 1

pβ
. Let pβ < p < ∞,

and ω ∈ Ap/pβ . We can always choose ε > 0 such that 1
p < 1

pβ
− ε

p . Denote
1
r1

:= 1
pβ

− ε
p . Moreover, reverse Hölder’s inequality ensures that the quantity ε

can be chosen such that ω ∈ A p
r1

. Theorem 1.3 and Lemma 4.2 imply that for any

compactly supported f and g, there exists a sparse family S such that

∣

∣

〈

m(
√
L) f , g

〉

∣

∣ � �S,r1,1( f , g) � C([ω]Ap/pβ
)‖ f ‖L p(w)‖g‖L p′ (w1−p′ ).

Now duality concludes the proof.

Let us now prove part (i i i). Let m ∈ M (θ, β) with 0 < β < Q. Theorem 1.3
implies that we have a (2, s′) sparse domination for all s′ such that 1

2 ≤ 1
s′ < 1

2 + β
2Q .

Let 2 < p < sβ, and ω ∈ Ap/2 ∩ RH(sβ/p)′ . By self-improving property of reverse
Hölder’s classes, ω ∈ RH(sβ/p)′(1+δ), for sufficiently small δ > 0. It is easy to choose

s such that 2 < p < s < sβ satisfying 1
2 < 1

s′ < 1
2 + β

2Q = 1
s′β

and ω ∈ RH(s/p)′

simultaneously. Therefore,

∣

∣

〈

m(
√
L) f , g

〉

∣

∣ � �S,2,s′( f , g) � C([ω]Ap/2 , [ω]RH(sβ/p)′ )‖ f ‖L p(w)‖g‖L p′ (w1−p′ ).

Now the proof follows from duality. ��
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4.3 Riesz means

For k, α, t > 0, we define the Riesz means

Ik,α,t (L) := kt−k
∫ t

0
(t − s)k−1eis(

√L)α ds. (34)

Without loss of generality, let us assume that t = 1 and simply denote Ik,α,1(L) by
Ik,α(L). It is well-known that the operator Ik,α(L) can be written as σ((

√
L)α),where

the spectral multiplier σ can be decomposed as σ(λ) = ckψ(λ)λ−keiλ +σ1(λ),where
σ1 is a smooth function satisfying the Mikhlin–Hörmander condition, and ψ is a C∞
function such that ψ = 0 if 0 ≤ λ ≤ 1 and ψ ≡ 1 for λ ≥ 2. We refer to [1, 8, 42,
43] and references therein. As σ1((

√
L)α) always satisfy (1, 1) sparse domination, the

following sparse domination follows from Corollary 1.4

|〈Ik,α(L) f , g〉| �k,α,r1,r2

∑

R∈S
|R|〈 f 〉r1,R 〈g〉r ′

2,R

and |〈Ik,α(L) f , g〉| �k,α,r1,r2

∑

R∈S ′
|R|〈 f 〉r ′

2,R
〈g〉r1,R ,

where r1, r2 satisfy

(

1

r1
− 1

2

)

<
k

Q
, 1 ≤ r1 ≤ r2 ≤ 2, or

(

1

r1
− 1

r2

)

<
k

Q
, 1 ≤ r1 ≤ 2 ≤ r2 ≤ r ′

1.

The above sparse domination and Theorem 1.5 yield the followingweighted estimates.

i) Let k ≥ Q. Then Ik,α(L) maps L p(ω) to L p(ω) for all 1 < p < ∞ and ω ∈ Ap.

ii) Let Q
2 ≤ k < Q. Then Ik,α(L) maps L p(ω) to L p(ω) for pk < p < ∞ and

ω ∈ Ap/pk , where pk := Q
k .

iii) Let 0 < k <
Q
2 . Then Ik,α(L) : L p(ω) → L p(ω) for all 2 < p < sk, ω ∈

Ap/2 ∩ RH(sk/p)′ , where
1
sk

:= 1
2 − k

Q .

4.4 Dispersive equations

Let f ∈ C∞
0 (G) and α ∈ N. Consider the dispersive equation

i ∂t u + (
√
L)α u = 0, u(·, 0) = f .

Then u(x, t) = eit(
√L)α f (x, t). For a fixed time t, rescaling the operator

√
L by

t1/α
√
L, one can prove the following as a consequence of Corollary 1.4

|〈u(·, t), g〉| �β,α,r1,r2,t

∑

R∈S
|R|〈(I + √

L)β f 〉r1,R 〈g〉r ′
2,R
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whenever
(

1
r1

− 1
2

)

<
β

αQ , 1 ≤ r1 ≤ r2 ≤ 2 or
(

1
r1

− 1
r2

)

<
β

αQ , 1 ≤ r1 ≤ 2 ≤
r2 ≤ r ′

1. Let W
s,p
ω denotes the non-homogeneous weighted Sobolev space Ws,p

ω =
{ f : ‖ f ‖Ws,p

ω
:= ‖(I + √

L)s f ‖L p(ω) < ∞}. As an application of Theorem 1.5, we
can derive the following weighted estimates:

i) Let 1 < p < ∞ andω ∈ Ap.Then ‖u(·, t)‖L p(ω) � ‖ f ‖
Wβ,p

ω
providedβ ≥ α Q.

ii) Let α Q
2 ≤ β < αQ.Then ‖u(·, t)‖L p(ω) � ‖ f ‖

Wβ,p
ω

holds for all pα,β < p < ∞
and ω ∈ Ap/pα,β , where pα,β := Q α

β
.

iii) Finally, let 0 < β <
α Q
2 . We also have that ‖u(·, t)‖L p(ω) � ‖ f ‖

Wβ,p
ω

holds for

all 2 < p < sα,β, ω ∈ Ap/2 ∩ RH(sα,β/p)′ , where
1

sα,β
:= 1

2 − β
αQ .
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