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Abstract

In this article, we address sparse bounds for a class of spectral multipliers that include
oscillating multipliers on stratified Lie groups. Our results can be applied to obtain
weighted bounds for general Riesz means and for solutions of dispersive equations.
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1 Introduction

On R", operators of the form Tf(§) = mggﬁ(é)f(é), where mg g = |§|_%ei|§|9
X{€|>1) are known as oscillating multipliers. They are extensively studied starting with
the pioneering works of Hardy, Hirschman [26] and Wainger [50]. Charles Fefferman
proved the crucial weak type (1, 1) estimates in [22], and the sharp range for L”
estimates was obtained by Fefferman and Stein in [23]. They were also studied by
Hormander [27]. We also refer to the articles [42, 43, 48] for results in the context
of the wave operators, that is, § = 1. Weighted estimates for oscillating multipliers
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on R" were initiated by Chanillo [13] and extended in [15]. In [16], weighted end-
point estimates were obtained by Chanillo, Kurtz, and Sampson. In this article, we
shall confine ourselves to weighted L” estimates for these operators on stratified Lie
groups. In order to do that, let us recall the following preliminaries.

Let g be a d-dimensional, graded nilpotent Lie algebra so that

s
g = @gi
i=1

as a vector space and [g;, g;] C g;4; forall i, j. Suppose that g; generates g as a Lie
algebra. The associated, connected, simply connected Lie group G is called a stratified
Lie group. The homogeneous dimension of G is defined as 0 = ) j J dim(g;).

Consider the sublaplacian £ = — )", X,% on G, where { X} is a basis for g;. For any
Borel measurable function m on Ry = [0, 00), we can define the spectral multiplier
operator

m(L) = /mm(k)dm
0

where {E; },>0 is the spectral resolution of VL. Since the exponential map is a global
diffeomorphism, the measure on G can be identified with the d-dimensional Lebesgue
measure. In this setting, analogue of the classical Hormander-Mikhlin multiplier theo-
rem was established in the seminal work by Christ in [18], also fundamental end-point
estimates were obtained by Mauceri—-Meda in [41], see also [44—46] for other influen-
tial works. In recent times, there are many important works in this context, we refer [3,
7-10, 14, 38-40, 49]. We are inspired by the recent work [14] where the authors have
introduced a general class of multipliers covering oscillating multipliers and obtained
important end-point estimates. On more general graded groups Fourier multiplier oper-
ators are studied in [11, 12, 24, 25, 32] and references therein. Throughout this article,
for any Borel measurable set R and 1 < p < 00, (f), g denotes (ﬁ fR LFIH/P,
Also, a family of sets S is called n—sparse if for each R € S there exists Eg C R
such that |Er| > n|R| and { ER}s are pairwise disjoint. Now we state our main result.

Statement of main results

Motivated by [14], we introduce the following class of multipliers. Let v > 1 be a
number which will be specified later. Also, let ¢ be a smooth function on (0, 00),
supported on {v™! < A < v} and satisfying Zj ¢(v~7/A) = 1 forall L > 0. Define

mi (L) == miNp(L).

Definition 1.1 Let & € R\ {0} and B > 0. We say m € .# (0, B) if m is supported in
the set {A € Ry : A% > 1} and
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sup v/ lm|| Lo ) < o0, (1)
jo>0

and sup v /9% ﬂ)/2||mf||Lz(R y <oo forall s €N, 2)
jo>0

Example 1.2 Let 6 € R\ {0}. Define mg g(A) := eike)\_%)({xe[o,oo):)ﬁzly Then it is
easy to see that mg g € (0, B).

Now we state our main sparse domination principle for the multiplier class

A0, B).

Theorem 1.3 Let € R\ {0} and 8 > 0, and m € .# (0, B). Then there exist sparse
families S and S’ such that for all compactly supported bounded functions f, g we
have

m(VL) £, &) So.pnr Y IR n R (&) R

ReS
and |(m(VE) . &) Soprirs D IRy R (&)
ReS’
where ry, ry satisfy
1 1 B
—— =)<z, 1=rn=<rn=<2, 3)
r 2 20
1 1 B ,
or | ——— )<=, 1=rn=<2<rnc=r. 4)
roon 20

As a special case, we obtain the following corollary.

Corollary 1.4 Let 0 € R\ {0} and B > 0. Then there exist sparse families S and S’
such that for all compactly supported bounded functions f, g we have

[mo s (VL) £ ) So..rirs Y IRIF ey (

ReS

and |(mg g(VEVF, &) So.p.rirs D IR R (&) k5

ReS’
where ry, rp satisfy either condition (3) or (4).

The motivation for proving such an estimate arises from recent works [2, 4, 5, 19, 20,
30, 31, 33-36] where sparse domination is achieved for several classical operators in
Harmonic analysis in various settings. The key importance in proving such an estimate
lies in the fact that one can obtain a range of quantitative weighted estimates depending
on the decay parameter 8, we state them here. The Muckenhoupt class of weights (A )
and reverse Holder’s classes (R H, ) are defined in details in Sect. 4.

Theorem 1.5 Let 6 € R\ {0}. We have the following results:
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i) Letm € 4 (0,2Q). Then m(v/L) maps L? (w) to L?(w) forall 1 < p < oo and
W€ Ap.
ii) Let m € .#0,B) with Q < B <2Q. Then m(\/Z) maps LP (w) to L? (w) for
pp<p<oocandw € Ap/p,, where pg 1= %
iii) Let m € #(6,B) with0 < B < Q. Then m(«/—) Lﬁl’(w) — LP(w) for all

1.
2 < p <sg, a)eAp/gﬁRH(vﬁ/I,)/ where—ﬂ._ 20"

We believe these results are completely new in the setting of stratified Lie groups.
The article is organized as follows. In the next section, we recall some necessary
preliminaries and Sect.3 contains the proof of Theorem 1.3. In Sect.4, we prove
Theorem 1.5 and other applications of Theorem 1.3 to Riesz means and dispersive
equations.

2 Preliminaries

Let {5, },~0 be the group of dilations associated to G and let | - | be a homogeneous
quasi-norm, i.e., |x| = 0 if and only if x = 0 where O denotes the group identity, and
|6;x| = r|x| forall » > 0 and x € G. Moreover, the right convolution kernel of the
operator m(\/Z) will be denoted by K, that is,

m(L) f(x) = /Gﬂx-y*‘)Km(y)dy.

In general, K, is just a distribution but whenever m is compactly supported, K, can
be identified with an L? function on G. See [24] for more details regarding analysis
on these groups. The following estimates are well known.

Theorem 2.1 [49] For any function h and M > 0, we denote hp(t) := h(tM).
i) The following Plancherel-type identity holds

(0.¢]
1Koy = [ 1P ar )
0
In particular, if the multiplier is supported on [0, M] then |Kp|>

MO |\hp3-
ii) For any compactly supported multiplier h,

LZ(G) S

LK @Ra 192 S i ®)

holds for any s > 0. As a consequence, | K| ;1 < ||h||L3(R+)f0rs > %

We also need the following notion of dyadic grids in spaces of homogeneous type.
We refer to [17] and [29, 37] for details. Let 0 < ¢; < C; <ocoand u € (0,1). By a
general dyadic grid = | <z Zk on G, we mean a countable collection of sets Ry

@ Springer



Sparse bounds for oscillating...

for k € Z, each associated with a point z,f, « coming from a countable index set, with
the following properties:

o G =|JR{ forevery k € Z.
o

o If/ > k, then either Rf C RY or R/ N RY = 0.
e For the constants ¢;,C; > 0 we have B(R}) := B(z}, cpk) Ry C
Bz, Cipk) =: C1B(RY).

o If/ > kand R’ C RY, then C;B(R) C C|B(RY).
For sufficiently small © € (0, 1), Hytonen and Kairema [29, Theorem 4.1] proved
the existence of a finite collection of dyadic grids 2", n = 1, 2, ..., I, such that for
every ball B(z,r) C G with u*t2 < r < p**!, there exists some n € {1,2,..., 9}
and R} € 9" such that B(z,r) C R and diam (R{) < Cr, where C depends on .
For the purposes of this article, the number u € (0, 1) is now considered fixed and v
will denote ﬁ

Remark 2.2 'We remark that the sparse families S, S" in Theorem 1.3 consist of ele-
ments from the dyadic grids 2", n =1,2,...,9.

3 Proof of Theorems

We shall prove Theorem 1.3 for case 6 > 0, other parts can be modified accordingly,
see Remark 3.7. Letus fix 0 > 0,8 > 0, and m € .# (6, 8). Recall that mi(\) =
m(wiN)@(n) for j > 0, where ¢ is a smooth function on (0, 00), supported on
{(v=! < A < v}, satisfying > ¢(v/1) = 1. Then, m/ satisfy the following

Imd ||,y S vI%7% for j >0,

and m/ll 2,y S pI0Cs=B2 for j >0, (7

where the implicit constants are independent of j. We also introduce the follow-
ing notation m ;(A) := m(L)¢(v~/1). Recall that Z/. ¢(w=/r) = 1, then m(L) =
> j=0m (). Moreover, m (1) = m’ (v=/1). Then we have the following decompo-
sition

m(JZ):ZT-, where Tjf = fx Kp;.

j=0

It is easy to see by homogeneity that ij = K, * (vaK¢ (6,7))(x). Motivated by
[4] we make a further decomposition in the space variable, namely

T}f(x)=/f(z)ij(z*lx)qs(v*’ﬂ'“*@)|z*1x|) dz, leZ. 8)

Then T f =),z T;f and consequently m (/L) = 220 2otz T}. Now we shall
focus on proving certain crucial estimates and for some € > 0 we group the terms
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according to their spatial scale, i.e.,

Tif =Y Tif+ ) Tif.

I<je I>je

Let us start by proving L? — L? estimates for the pieces Tl Let! > je and denote
g := Kp; (¢ (v /1= ) By Young’s inequality we have

17} fll2 < £ 1l2llglh < 11112 </|

x|vl—id=

=i ([ L VoK Gl)
X| =yt T/ T

= Ifll2 (f K ()] dx>
|x\2ul+!9

= 1112 </| R R |x|S>—1|ij(x>|dx>

|ij ()] dx)
)

12
0y (<2 _
=1l (/ (14 x[9)2|K,,; (x)] dx) MEIDICED!
x| vl +7

0 N0 e B
SVIHOE D | o £l S vEHOE I £

s Is Q

19/3 2_s s J9Q s
W33 DTV .

XS]

990 s 1
R PP

Observe that the term v (-9 « 1 if s is chosen large enough. Moreover, as [ > je,
s 0 jo
v v% <v e Vo - <« 1 provided s > L%J. Finally, choose s large such that

_7s _ o8 _s S _ 0By .
vls <y o+ as well as v™'7 < p=J€1 < y=C2(@+73)J  Therefore, we obtain

0B, -
1T} fll2 < ccv™ CCTDUD £y for I > je. ©)

At this point we would like to remark that one can in fact improve the bounds for
. _ 9By (i .
T;,l > je, to ||T;f||2 < v CRW@+IGHD)| £, for any large constant C. Certainly,

jop . 98 . .
I17; fll2 < T | £ll2 since ||m j||p < i Combining this with (9) we prove the
following lemma:

Lemma 3.1 We obtain the following estimates:
i)
_ 9By .
17! fll2 Se v™CCCTDUD| £lly for > je.

@ Springer



Sparse bounds for oscillating...

ii)
_ 1%
DT Sev 2 Ul
I<je 2

Now we shall prove L' — L! estimates for the pieces T; . Recall that g =
ij(-)¢(v_’+f(l_9)| - |). The previous argument shows that for any [ > je

_ 9By ;
IIT}f||1 < Iflhlgl Se v CQ@TDUH £y, (10
Another observation, together with (6), yields the following for any s > %
i0(s—B
1T fl < WA IKm e < I K il S w06 £ (11)
Consequently,

.. 08,00
IT; £l SvETH2T+)| £y forany & > 0.
Moreover, summing (10) in /, we obtain

p_ 0B, 00
Sorlf| =0T = 3 T S VTR p

I<je 1 I>je

Lemma 3.2 Combining (10) and the above discussion we have the following estimates:

i) Foranye > 0

i i(—2 00
Y Tlf| S vICT T A
I<je 1

ii) Foranyl > je, we have

0B,
1] £l Se v QLT py.

Finally, we need L' — L™ estimates for the operators T} . In order to do that we first

need to prove pointwise estimates for the kernel Kj, of the operator /(+/L£) where &
is supported on [M /4, M] for some M > 0. Let p; denote the convolution kernel
associated with the heat operator e~ L Recall the following Gaussian estimate (see

e.g. [6])

C _u?
Ipi()| = e < 12)
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A2
We just sketch the proof, see [9] for details. Denote H(A) = em?h(}), then

h(A) =e M2 H(\). Also, |Hyll2 = \hapll2 as h is supported on [M /4, M]. There-
fore, K;,(y~'x) = fG p%(z 'x)K 5 (y~'z) dz. Holder’s inequality and (5) implies
M

IKn OOl < 1Py a2 @ 0 20006 IKH O™ Dl 200269 S MO HM N2 S MClhla. (13)

Observe that a factor of M2/2 appears from (5) and another from
I p1/m2 (Z_lx)IILz(dZ,G). Using Fourier inversion, we can write

B 1 ~ _
Kn(y™ho) = o fR GOpa—inme (v~ dt, (14)

where G (1) := h(M~/1)e*. Note that supp(G) is contained [0, 1] due to the support
condition on £, so ¢* and its derivatives are always bounded. At this point we use the
following estimate from [47]

M2y~ 12

1Pa—inr (TN < CMZe” T < M2+ My~ x )T+ o))’

Therefore, from the above bound with (14), we have for any s > 0

1Kn(y™'x)] < CMQ<1+M|y—1x|)—S/|G(t>|<1+|r|>*‘ dt
<SMO+ My 'xD)TFIG 2
stxtry
SMeA+ My XD bl (15)

s+t

for any small ¥ > 0. Using complex interpolation of (13) and (15), as in [21], we
remove the extra exponent 1/2 in the Sobolev exponent to obtain

[Kn(y™ 0l S MO+ My~ 5Dl 2, (16)

for any s > 0 and any arbitrarily small sz > 0. Now we prove the following lemma
regarding L' — L estimates for T;.

Lemma3.3 i) Forl > je
_ 9y (i
IT] fllLoe Se v CCCHDITHD) £yl
ii) We also have

0 192
dYorlrl = v ST i

I<je 00
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Proof Let! > je. Then we have

! o) 5( sup |Km,.<y—1x>|>/|f<y)|dy

{yily=tax|zpl =i (=00}

IA

( sup [V CK,,i (8, (y—1x>>|> I £
{

yily x|zl =i 1=0))

IA

/@ ( sup IKm.f((y_lx))l) £ 1l

{yily=tx|=vi 7%}

IA

v/€Q < sup I+ 1y 'xp~* ||mj||Lg+%> I fll1 (using(16))
{y:ly~ ‘

lx‘:UHjl?}
< Qs UHI0) jOG+=5)) o1
for any s > Q and a fixed small » > 0 from (16). Since, [ > je, we may choose s

sufficiently large, as done in the proof of Lemma 3.1, depending on Q, 6, €, s« such
that

0B, -
1] fllzee Se v™CCCTDUH £y,

For the second part, observe that

Y T )| = |/f(Z)ij(z_1x)Z¢(U_l+j(l_9)|z_1x|)|

I<je I<je
s/|f<z>||Km_,(z-1x)|dz
using (13) . . 00
S vl el £l S V0T A I,
completing the proof. O

Lemma3.4 (L™ — L" estimates) Let 1 < r; < 2. Then interpolating Lemmas 3.2
and 3.1 we obtain the following:

i) Foranye > 0

—i%j(eE e (EF-1)
STl Sev T TR p, (17)
I<je "

ii) Foranyl > je

_ By (i
IT] fllry Se v™COCTDUHDY £, (18)

@ Springer



A. Ghosh, M. Ruzhansky

The next lemma concerns the key estimate which is required for our sparse domination
estimates.

Lemma3.5 Let 1 <ry <ry < 2. Then we have the following estimates:

i) Forl > je
. io(L_-L
1T £llr, Se p-ceetin, i)y gy, (19)
ii) Foranye > 0
I i j(R+er2-n jo(E-%)
Y oTlf| Sevm T T ETOE TR g (20)
I<je

r2

Proof Let us introduce a smooth cutoff function ¥ such that ¥/ = 1 on the support of
¢. Thenm;j(A) = m(A) (v /1) = m(A) (v WY 7A) = m;j(L) y(v/1). Let
K be the kernel of 1//(\/2). Therefore, for [ > je, using Lemma 3.4 and Young’s
inequality, we obtain

_ 9Byci _ 6B, -
1T} Fllry Se v™@@HFDTHD Y fac Ky ()l Se v CLLHDITDY p1 11Ky i I,
1)

where % = % +1- % Next recall from (16) and homogeneity that
. . C . C
Kyoin@)| =12 Ky@,x) <v/@— <0 —
| Y=/ )( )| | gb( v/ )= 1+ |5vjx|)N = (1 +v1|x|)N
for any N > 0. From (21) and the above pointwise estimate we obtain the following

— 98y (i
IT! Fllry Se v €T kil

_ UNT _ NT io(L—~L
Se v CCEDTD I £l 1K syl Se v7CLCHDIITY! G2,

where we have used that || K.~ < piQU=1) by choosing N sufficiently large.
Similarly, modifying the above arguments together with (17), we have

I % j(%2+e)(Z-1) jio(#+-%
YT Sev T TRV fpw )
[>je rs
for any ¢ > 0. O

We also need the following L? improving estimate.

Lemma3.6 Let]l <ri <2<mr < r{. Then the following estimates hold true:
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i) Forl > je
B 9B (ivn JOGT—)
1T Fllyy Se v=COOH G ST oy 22)
i) We also have
08 jo(L—L
STl g VTR £ (23)
I<je

r2

Proof Interpolating Lemmas 3.1 and 3.3 we obtain that forany 1 < r; <2

0B, -
UT} fllyp Se v= QLT £, for 1> je, (24)

2

7)
TSN (25)

_Jjoe joU-
and ZT;f SevZw
I<je
=J ri

Recall from the previous lemma that m ;(A) = m; (A)w(v’j A) where v is introduced
in Lemma 3.5. Also recall

|Kyv-iy ()] < /@ forany N > 0. (26)

(1 4 vijxp¥

Forl > je, employing Young’s inequality we obtain

— 9By (i _ 6B, -
IT] fll2 Se v™CCCTDUD| £k syl < v LCLHDTDK il Fll

|—

where % = % + —. Therefore, combining the above with (26) yields the following for

g
> je

0B\ : io(L—1
17} Fll2 Se v CQCTDURDICETD) @7)
Arguing similarly we obtain
08 jo(L—1
STlr| S v TV T 7 (28)
I<je )

Interpolating (24) and (27) we obtain that

1

9 iap JOGE—T)
1T} fllry Se v™CQCHDUFDLTZ ) £, holds forall 1> je.
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Similarly, interpolating (25) and (28), we get

1 % OG-
DT SevT TV SR TR £,
I<je rz

This completes the proof. O

Now we are in a position to prove our main Theorem 1.3 for the case 6 > 0. After
having the key unweighted estimates, the proof of sparse domination is now quite
standard and we provide a brief sketch, for more details we refer to [4].

Proof of Theorem 1.3 Recall the dyadic families 2" forn = 1,---,0M and 2" =
Ukez, @,Z’. Let us define the operators

1 . 1 .
T f = > T;(f XegB(R) for I < je,
. nRG@”:
RED;1_)— jes10)

T;’nf = Z T}(chcB(R)) for I > je,

. ,{?E@":
ReD(1_g)—1+10)

where the universal constant ¢ is chosen sufficiently small (by rescaling the metric)
to ensure that the support of T; (f XegB(R)) 1s contained in R. Therefore, it is enough
to obtain sparse domination for

T, :=ZT;,,1, forn=1,---,M.
j=0
leZ

Hence, we only prove sparse domination for one of the 7,, and suppress the index n
for simplicity. By localisation and Lemma 3.5, we obtainfor 1 <ry <rp <2

(5

I<je

<X > (Z T xegaa) | e lexel,g

Jj=0 ReZ: I<je r
REZ | j(1-6)—je+10)

(20) joB (02 2 _piof(l_L

—LZEj(==+e) D jo .

Se > v 2 (r ’2>HfXRHr1HgXRH,/
; 2
Jj=0 ~ ReZ:

REZ | j(1-0)—je+10)
1 1
At _jeB 992 12 1) jo(Ll_L
Se2 2 PSS S rz)|R|<f>,~l,R<g>r3.R

Jj=0  ReZ:
REZ | j(1-6)—je+10)

0Ge—ja-0)(+4-1) o .00, 2 . o1 1
< Z Z ) O AT RV l)U]Q(,-l r2)|R|<f)r1,R(g>r/,R
j=0 ReZ: 2

RET | j(1-6)—je+10)
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) 6
< YT R GG et ) > IRy & (©)
j=0 Re:
REZ | j(1-0)—je+10)

(29)

since € and ¢ are sufficiently small the above gives a geometrically decaying sparse
collection if

1 1 0B 00 (2 1 1 B
00(2-L)-%+%(2-1)<0e= L-1<4

r rn

A similar argument for T}, I > je, with Lemma 3.5, yields the following

<Z > T;(fX¢-GB(R))~,g>
jz01>je
<Yy > ITECE Xeg BR)XR I I8 XR 1, (30)
Jj=01>je ReZ: 2
REZ | j(1-6)—1+10)
19 (—j—ey(L—L [J:] 1_ 1
< ZZ Z ,20-iC ))(, rz) —CO(Q+5)(j+D /Q(; r>|R|(f>f1=R<g>ré,R
j=01>je ReZ:

REZ | j(1-6)—1+10]

< 3 OCGA)ce ) o o(G-p)-clorF) 5 Ry 1.

j=0 I>je ReZ:
REZ | j(1-6)~1+10)

€1y

As mentioned earlier, the constant C can be chosen sufficiently large, indeed we can
always ensure that (Q(rl ) C(O+ 9'3)) < 0and ((; — —) —C(O+ %)) <0.
Therefore, we again obtain geometrlcally decaying (r1, r) sparse domination. Hence,
combining (29) and (31), we obtain (rp, ré) sparse domination for 1 <r; <rp <2
provided rl - l < %

Arguing simllarly inthecase ] <r; <2<r < ri with Lemma 3.6 yields

<Z T;(chGB(R))v g>

I<je

Y Y (i TN e ) xalln el
Jj>0 Re9:
ReD|j1-0)- je+10)

(23) e—i—on(L—L) _ig jol_L
N ) Z Z UQ(JG J( ))(r| VZ)U_TUJQ(" r2)|R| (f>r1,R <g)ré*R
j=0 ReZ:
RG.@U(]—G)—/’EJHUJ

<. Z -Q(1-0) 7_%) 0ﬂ+Q(%—%)+aQ) Z IRICS )i R (&) R >

j=0 Re:
RED|j(1-6)—je+10)

(32)
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since € > 0 is sufficiently small we have a geometrically decaying (r1, ) sparse
domination for I <r; <2 <rp <rjif

Lol Ly g L1

1
—_—— < —.
o rn 2 o rn o rn 20

—0(1 - 0)(

A similar argument also produces (r1, r}) sparse domination for the pieces T} > je,

in the range 1 < ri < 2 < rp < r{. Our proof only produces geometrically decay-
ing sparse domination since in the dyadic scale 2| j(1-6)— je+10) cubes are disjoint,
however, to obtain a true sparse bound a similar argument can be produced as in [4],
see also [35]. Since m(VL)* = m(VL), (r1, r5) sparse domination implies (r2, 7})
sparse domination. This completes the proof of Theorem 1.3 for the case § > 0. O

Remark 3.7 Let6® < Oandm € .# (0, B). The case & < 0 represents low frequencies,
hence we need to decompose the multiplier as done in [4, 14]. Therefore,

m) =Y mi®),

Jij=0
where m; = m(A)q&(v‘M). We can rewrite the above as m(A) = Zk:kzom*k ),

where m_; = m(A) ¢ (vk1r) for k > 0. Also m (1) := m(v= 1)@ (1). Then the facts
that [m K|z < CVAP/2 and |m~K|| 2 < Cv™M@=P/2 for all k > 0 and for

s € N, yield the following estimate as in Lemma 3.1 by choosing s > L—%J

0B
IT! fll2 Se ve T =D D) £y for I > ke,

also,

k0B
1Tk flla Sv2 for k>0.

Now one can modify Lemmas 3.2, and 3.3 appropriately to obtain similar results in
this case.

4 Applications
4.1 Quantitative estimates
In this subsection we obtain several weighted estimates for oscillating multipliers

m(+/L). Recall the following notion of Muckenhoupt weights on homogeneous spaces
from [2]. Let1 < p <00, w € A, if

= ! : =) 33
v = (g ) G foe o) e
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where the supremum is over all balls. Also, we say @ € RH, for 1 < g < oo,
if [w]grH, = sup (a))l_}9 ()4, < oo. Corresponding to a sparse family S, and
B ,

1 <r,rp=<00 letAg,,. v denote the following bilinear form

Asr(f28) =Y IRy RS

ReS
The following quantitative estimate was proved in [2].
Lemma4.2 [2] Foranyry < p <ry,and w € Apry N RH(,/py, we have

271

max{—-—
e n ”f”LP(w)”g”Lp (wl=r'y-

AS»"IJ’é (fs g) Srl,rz,p,S ([C()]Ap/r1 [w]RH(rz/p)/)

As a consequence of Theorem 1.3, we now prove Theorem 1.5 concerning weighted
estimates for m (v/L).

Proof of Theorem 1.5 We first prove part (i) and (ii). Assume m € . (0, ) with
0 € R\ {0} with O < B < 2Q. The proof follows from Theorem 1.3 and reverse
Holder’s property of A, weights, see [28]. It is easy to observe from Theorem 1.3 that
we have (r1, 1) sparse domination for all 71 such that 0 < % < i .Let pg < p < 00,

and o € Ap/p,. We can always choose ¢ > 0 such that - < # — <. Denote
1 1

T o T % Moreover, reverse Holder’s inequality ensures that the quantlty )
can be chosen such that w € A - Theorem 1.3 and Lemma 4.2 imply that for any

compactly supported f and g, there exists a sparse family S such that

|<m(«/Z)f, g>‘ S Asr1(f28) S Clwla, I e llglp q-ry-

Now duality concludes the proof.

Let us now prove part (iii). Let m € .# (6, 8) with0 < B < Q. Theorem 1.3
implies that we have a (2, s”) sparse domination for all s” such that % < % < % + %
Let2 < p < sg, and w € Ap» N RH(s,/py- By self-improving property of reverse
Holder’s classes, w € RH s,/ py (1+5), for sufﬁciently small § > O Itis easy to choose

ssuchthat2 < p <5 < s satisfying% < & < 2 + 2ﬁQ = , and @ € RHs/py
58

simultaneously. Therefore,

(VD £, )| S As2(f:8) S CU@la s [@lrA, I F L0 18] -0y
Now the proof follows from duality. O
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4.3 Riesz means

For k, o, t > 0, we define the Riesz means
t
Lot (L) i= ke ™* / (t — sk 1esVD" g, (34)
0

Without loss of generality, let us assume that # = 1 and simply denote I o 1 (L) by
Ii o (£). Itis well-known that the operator I o (£) can be written as & ((VL£)%), where
the spectral multiplier o can be decomposed as o (1) = cx ¥ (M)A "¥e'* +071 (1), where
o1 is a smooth function satisfying the Mikhlin—-Hormander condition, and ¢ is a C*
function such that ¢y = 0if0 < A < 1 and ¢ = 1 for A > 2. We refer to [1, 8, 42,
43] and references therein. As o ((v/£)%) always satisfy (1, 1) sparse domination, the
following sparse domination follows from Corollary 1.4

{Ia(D) f, &) Skarir ) IR ) & (@7

ReS

and [(Te.o (L) £, &) Skarirs D IR g (@) ks
ReS'

where ry, rp satisfy

11\ & 11 k ,
——z)<—=, 12rn=srn=<2 o |———|)<—, 1=rn=<2<rn=rn.
re 2 0 reon 0

The above sparse domination and Theorem 1.5 yield the following weighted estimates.

i) Letk > Q. Then Ij (L) maps L?(w) to LP(w) foralll < p <occandw € A,.

ii) Let % < k < Q. Then I} (L) maps L?(w) to L?(w) for py < p < oo and
® € Ap/p,» Where py 1= %

iii) Let 0 < k < % Then Iy o (L) : LP(w) — LP(w) forall2 < p < 53, o €

Ap2 N RH, /py, Where % = % - 6

4.4 Dispersive equations
Let f € C§°(G) and o € N. Consider the dispersive equation
i du+ (VLY u=0, u(-,0) = f.

Then u(x,t) = ei’(‘/z)af(x, t). For a fixed time ¢, rescaling the operator NJS by
117/, one can prove the following as a consequence of Corollary 1.4

(e, 1), ) Spariri D IRNA + VLN ik (2)s.-

ReS
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WheneVef<l—%><0%,1§r1§r2§20r<i—i)< B l<r<2

T r r «Q’
ra < rj. Let W¥ denotes the non-homogeneous weighted Sobolev space W,” =
{f W e == 11T + \/Z)sf||Lp(w) < 00}. As an application of Theorem 1.5, we
can derive the following weighted estimates:

IA

i) Letl < p <ooandw € Ap,. Then |u(-, )|lrr@w) S ||f||W,3,p provided 8 > o Q.
ii) Let% <B <aQ.Then|u(, Hrrw S ”f“Wf"’ holds forall py g < p < 00

and w € Ap/p, ,» Where py g i= %
iii) Finally, let0 < 8 < % We also have that |[u(-, )| Lrw) S ”f”W/S,p holds for
all2 < p <sqp, w€AppN RH(‘Yu,ﬂ/py, where ﬁ = % — %
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