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Abstract
We obtain asymptotic formulae for the second discrete moments of the Riemann zeta
function over arithmetic progressions 1

2 + i(an + b). It reveals noticeable relation
between the discrete moments and the continuous moment of the Riemann zeta func-
tion. Especially, when a is a positive integer, main terms of the formula are equal to
those for the continuous mean value. The proof requires the rational approximation
of eπk/a for positive integers k.
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1 Introduction and statement of results

In this paper, we shall consider averages

∑

an+b≤T

∣∣∣∣ζ
(
1

2
+ i(an + b)

)∣∣∣∣
2

. (1)

This study is one of the attempts to enrich our knowledge on the vertical distribution
of the values of the Riemann zeta function ζ(s). Discrete moments of the Riemann
zeta function have relation to the distribution of the zeros. Putnam [12] showed that
there is no infinite arithmetic progression of non-trivial zeros of ζ(s). In this direction,
there is an important conjecture called the linear independence conjecture, which
states that the ordinates of non-trivial zeros of ζ(s) are linearly independent over Q.
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H. Kobayashi

In 1942, Ingham [3] found out the relation between the linear independent conjecture
and the oscillations of M(x) = ∑

n≤x μ(n), where μ(n) is the Möbius function. He
showed that the linear independent conjecture implies the failure of the inequality
M(x) � x1/2. For this reason, many mathematicians doubt this inequality.

We may need much more progress to solve the problem. However, we have an
easier conjecture in this direction, that is, there are no non-trivial zeros of ζ(s) in
any arithmetic progression of length more than two. To consider this problem, dis-
crete moments play an important role. Martin and Ng [7] attacked this conjecture
for Dirichlet L-functions by considering some kinds of discrete means of Dirichlet
L-functions. Later, Li and Radziwiłł [6] showed that at least one third of the values
of the Riemann zeta function on arithmetic progression does not vanish. One of their
results (Theorem 2) stated that we have, as T → ∞,

∑

n

∣∣∣∣ζ
(
1

2
+ i(an + b)

)∣∣∣∣
2

· φ
( n

T

)

=
∫

R

∣∣∣∣ζ
(
1

2
+ i(at + b)

)∣∣∣∣
2

· φ

(
t

T

)
dt(1 + δ(a, b) + oa,b,φ(1)),

(2)

where φ(·) is a smooth compactly supported function with support in [1, 2], and

δ(a, b) =
{
0 if e2πk/a is irrational for all k > 0

2
√
rs cos(b log(r/s))−2

rs+1−2
√
rs cos(b log(r/s))

if e2πk/a is rational for some k > 0,

with r/s �= 1 denoting the smallest reduced fraction having a representation in the
form e2πk/a for some k > 0. This clarify the notable correspondence of discrete means
to the continuous one. However, it is difficult to obtain asymptotic formula of the sum
(1), since the error term depends on φ.

Özbek and Steuding [11] proved asymptotic formulae for the first discrete moment
of ζ(s) on certain vertical arithmetic progressions inside the critical strip. The first
discrete moment have been studied recently by Özbek, Steuding and Wegert (see [13]
and [10]). Especially, in [10], they showed that

lim
T→∞

1

T

∑

0≤n<T

ζ(s0 + ina) =
{

(1 − l−s0)−1 if a = 2πq
log l , q ∈ N, 2 ≤ l ∈ N,

1 otherwise,

where s0 may be any complex number with real part in (0, 1).

Remark 1 Good [2] proved asymptotic formulae for fourth moments of the Riemann
zeta function on arbitrary arithmetic progressions to the right of the critical line.
Namely, he showed that for σ > 1

2

∑

0≤n<T

|ζ(σ + ind)|4 = T
∞∑

m=1

d(m)2

m2σ + o(T ) (T → ∞),
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The Riemann zeta function over arithmetic progressions

where d is not of the form 2πl/ log(k1/k2) with integral l �= 0 and positive integers
k1 �= k2.

Remark 2 van Frankenhuijsen [14] gave an explicit bound for the length of arithmetic
progressions of non-trivial zeros of the Riemann zeta function.

The object of this paper is to prove asymptotic formulae for discrete mean-squares
of the Riemann zeta function on vertical arithmetic progressions.

Theorem 1 Let a be a real number such that e2πk/a is irrational for all positive integer
k. We have, as T → ∞,

∑

an+b≤T

∣∣∣∣ζ
(
1

2
+ i(an + b)

)∣∣∣∣
2

= T

a
log T + oa(T log T ). (3)

Moreover, when a is a positive integer with a = o((log log T )ε), we have

∑

an+b≤T

∣∣∣∣ζ
(
1

2
+ i(an + b)

)∣∣∣∣
2

= T

a
(log T + 2γ − 1 − log 2π)

+OA(a−1T (log T )−A),

for any fixed A > 0.

This should be compared with the continuous mean-square

∫ T

0

∣∣∣∣ζ
(
1

2
+ i t

)∣∣∣∣
2

dt = T log T + (2γ − 1 − log 2π)T + E(T ),

where γ is Euler’s constant and E(T ) is an error term. Theorem 1 reveals that the
discretemeanvalues (3) equal to the continuousmeanvalue asT → ∞ asymptotically.

Our starting point is the approximate functional equation of ζ 2(s)

ζ 2(s) =
∑

n≤t/2π

d(n)

ns
+ χ2(s)

∑

n≤t/2π

d(n)

n1−s
+ R

(
s; t

2π

)
, (4)

where χ(s) = 2sπ s−1 sin(πs/2)
(1−s) and R(s; t/2π) is the error term.Motohashi
[8, 9] proved that

χ(1 − s)R

(
s; t

2π

)
= −√

2

(
t

2π

)−1/2

�

(
t

2π

)
+ O(t−1/4), (5)

where �(t/2π) is the error term in the Dirichlet divisor problem, defined by

�(x) =
∑′

n≤x

d(n) − x(log x + 2γ − 1) − 1

4
.
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Here
∑′ indicates that the last term is to be halved if x is an integer. We note that

Jutila [5] gave another proof of Motohashi’s result (5).
The key step in our proof is to estimate the sum

∑

1≤k<(a/2π) log(T /π)

eπk/a
∑

m<T e−2πk/a

d(m)e(−e2πk/am), (6)

where e(x) := exp(2π i x). Bugeaud and Ivić [1] also studied a quite similar sum to
evaluate the discretemean value of E(T ). Thus, the same problem arises in the discrete
mean value of E(T ) and discrete mean-squares of ζ(s). They gave the upper bound

∑

1≤(1/2π) log(T /π)

eπk

k

∑

m≤T e−2πk

d(m)e(e2πkm) � T log T exp

(
−C

log log T

log log log T

)
,

whereC > 0 is some constant. In our proof, we improve this bound. By the hyperbola
method, we obtain the upper bound derived from the exponential sum estimate. The
estimate requires a rational approximation of e2πk/a by Dirichlet’s approximation
theorem. Moreover, in the case when a is a positive integer, we have a better estimate
applying a result of Waldschmidt [15]. Finally, we apply the argument of Li and
Radziwiłł [6] to calculate the sum (6). Consequently, we have

∑

1≤k<(a/2π) log(T /π)

eπk/a
∑

m<T e−2πk/a

d(m)e(−e2πk/am)

=
{
oa(T log T ) (a is not a integer),
OA(T (log T )−A) (a is an integer),

for any fixed A > 0.

Remark 3 Bugeaud and Ivić [1] have asserted that

∑

n≤x

E(n) = πx + H(x), (7)

where, for some C > 0, unconditionally

H(x) � x log x exp

(
−C

log log x

log log log x

)
.

By our improvement of the upper bound of (6), this upper bound is also improved to

H(x) �A x(log x)−A

for any fixed A > 0. Thus we can clarify that the term πx in (7) is the main term.
Bugeaud and Ivić [1] suggested a conjecture on the upper bound. Now let

eπk = [a0(k); a1(k), . . . ]
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The Riemann zeta function over arithmetic progressions

be the expansion of eπk as a continued fraction for any non-zero integer k. From
the result of Wilton [16], if an(k) satisfies an(k) � n1+K (K ≥ 0), then

∑

m≤x

d(m) exp(2π ime2πk) � x1/2 log2+K x .

If this estimate is verified, we can improve the upper bound of H(x) and also
Theorem 1 with a = 1.

On the other hand, when e2πk0/a is rational for some k0, another main term appears.

Theorem 2 Let r , s be co-prime with r > 2s. Let a be a real number such that

e2πk0/a = r

s

for some positive integer k0. We have, as T → ∞,

∑

an+b≤T

∣∣∣∣ζ
(
1

2
+ i(an + b)

)∣∣∣∣
2

= T

a
log T

(
1 + 2

√
rs cos(b log(r/s)) − 2

rs + 1 − 2
√
rs cos(b log(r/s))

+ oa,b(1)

)
.

(8)

Moreover, when k0 = 1, we have

∑

an+b≤T

∣∣∣∣ζ
(
1

2
+ i(an + b)

)∣∣∣∣
2

= T

a
(log T + 2γ − 1 − log 2π)

(
1 + 2

√
rs cos(b log(r/s)) − 2

rs + 1 − 2
√
rs cos(b log(r/s))

)

− 2
√
rs cos(b log(r/s)) − 2

rs + 1 − 2
√
rs cos(b log(r/s))

√
rs log(rs)√
rs − 1

T

a
+ ob(T ).

(9)

In this case, the sum (6) turns out to be

∑

1≤k<log(T /π)/ log(r/s)

∑

m≤T (s/r)k

d(m)e

(
−m

(r
s

)k)
.

Another main term comes from this sum.
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2 The proof of Theorem 1.1

By (4), (5) and the functional equation ζ(1 − s) = χ(1 − s)ζ(s), we have

ζ(s)ζ(1 − s) = χ(1 − s)
∑

n≤t/2π

d(n)

ns
+ χ(s)

∑

n≤t/2π

d(n)

n1−s

−√
2

(
t

2π

)− 1
2

�

(
t

2π

)
+ O(t−1/4).

It is known that �(t) � t1/3+ε. Thus, taking s = 1/2 + i t , we have

∣∣∣∣ζ
(
1

2
+ i t

)∣∣∣∣
2

= 2�χ

(
1

2
− i t

) ∑

n≤t/2π

d(n)

n1/2+i t
+ O(t−1/6+ε).

Hence we consider

∑

an+b≤T

∣∣∣∣ζ
(
1

2
+ i(an + b)

)∣∣∣∣
2

= 2�
∑

an+b≤T

χ

(
1

2
− i(an + b)

) ∑

m≤(an+b)/2π

d(m)

m1/2+i(an+b)

+ O

⎛

⎝
∑

an+b≤T

(an + b)−1/6+ε

⎞

⎠ .

As for the error term, it is clear that

∑

an+b≤T

(an + b)−1/6+ε � a−1T 5/6.

To consider the main term, we note the following formula

χ(1 − s) = e−π i/4
(

t

2π

)σ−1/2

exp

(
i t log

t

2πe

)
(1 + O(t−1))
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The Riemann zeta function over arithmetic progressions

for fixed σ and t ≥ 1. Using this, we have

∑

T<an+b≤2T

χ

(
1

2
− i(an + b)

) ∑

m≤(an+b)/2π

d(m)

m1/2+i(an+b)

= e−π i/4
∑

T<an+b≤2T

exp

(
i(an + b) log

an + b

2πe

) ∑

m≤(an+b)/2π

d(m)

m1/2+i(an+b)

+ O

⎛

⎝
∑

T<an+b≤2T

1

an + b

∑

m≤(an+b)/2π

d(m)

m1/2

⎞

⎠

= e−π i/4
∑

m≤T /π

d(m)

m1/2

∑

max(2πm,T )<an+b≤2T

exp

(
i(an + b) log

an + b

2πem

)

+ O(a−1T 1/2 log T )

= e−π i/4
∑

m≤T /2π

d(m)

m1/2

∑

T<an+b≤2T

exp

(
i(an + b) log

an + b

2πem

)

+ e−π i/4
∑

T /2π<m≤T /π

d(m)

m1/2

∑

2πm<an+b≤2T

exp

(
i(an + b) log

an + b

2πem

)

+ O(a−1T 1/2 log T )

= e−π i/4(S1 + S2) + O(a−1T 1/2 log T ),

say. To obtain the second equality, we used

∑

m≤T

d(m)

m1/2 � T 1/2 log T .

For the convenience, we put

f (x) := ax + b

2π
log

ax + b

2πem

and

gk(x) := f (x) − kx .

To calculate S1 and S2, we use the saddle-point method.

2.1 An estimate of S1

Since the first and second derivative of f (x) are

f ′(x) = a

2π
log

ax + b

2πm
, f ′′(x) = a2

2π(ax + b)
,
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we have (see Proposition 8.7. in [4])

∑

T<an+b≤2T

e2π i f (n)

=
∑

(a/2π) log(T /2πm)−θ<k<(a/2π) log(T /πm)+θ

∫ (2T−b)/a

(T−b)/a
e(gk(x))dx

+ O(θ−1 + log(a + 2)),

where θ is any number with 0 < θ ≤ 1. We choose θ = a/2π(a + 1) and assume
a > 2π/ log(T /π) hereafter. If a ≤ 2π/ log(T /π), we see that k = 0 and then, the
integral is � a−1T 1/2 by the second derivative test.

Here S1 can be rewritten as

∑

m≤T /2π

d(m)

m1/2

∑

(a/2π) log(T /2πm)−θ<k<(a/2π) log(T /πm)+θ

∫ (2T−b)/a

(T−b)/a
e(gk(x))dx

+ O(T 1/2 log T (θ−1 + log(a + 2)))

=
∑

0≤k≤(a/2π) log(T /π)+θ

×
∑

(T /2π)e−2π(k+θ)/a<m<(T /π)e−2π(k−θ)/a

d(m)

m1/2

∫ (2T−b)/a

(T−b)/a
e(gk(x))dx

+ O(T 1/2 log T (θ−1 + log(a + 2))).

We note that the saddle-point of gk(x), (2πme2πk/a − b)/a, is in ((T e−2πθ/a −
b)/a, (2T e2πθ/a − b)/a) by the condition in the inner sum. We divide the inner sum
((T /2π)e−2π(k+θ)/a, (T /π)e−2π(k−θ)/a) into the following five intervals:

1.

(
T

2π
e−2π(k+θ)/a,

T

2π
e−2πk/a − c

]
,

2.

(
T

2π
e−2πk/a − c,

T

2π
e−2πk/a + c

)
,

3.

[
T

2π
e−2πk/a + c,

T

π
e−2πk/a − c

]
,

4.

(
T

π
e−2πk/a − c,

T

π
e−2πk/a + c

)
,

5.

[
T

π
e−2πk/a + c,

T

π
e−2π(k−θ)/a

)
,

where c = c(a) := 1/4e(1 + a). Since θ = a/2π(a + 1), inequalities

T

2π
e−2π(k+θ)/a <

T

2π
e−2πk/a − c,

T

2π
e−2πk/a + c <

T

π
e−2πk/a − c,
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The Riemann zeta function over arithmetic progressions

and

T

π
e−2πk/a + c <

T

π
e−2π(k−θ)/a

are valid.
(i)
By the first derivative test, we have

∣∣∣∣∣

∫ (2T−b)/a

(T−b)/a
e(gk(x))dx

∣∣∣∣∣ ≤ 8π

a log
T

2πme2πk/a

,

and
∣∣∣∣∣log

T

2πme2πk/a

∣∣∣∣∣ =
∣∣∣∣− log

(
1 − T − 2πme2πk/a

T

)∣∣∣∣ ∼ T − 2πme2πk/a

T
.

Therefore, in this case, the contribution is

� a−1
∑

0≤k≤(a/2π) log(T /π)

∑

m≤(T /2π)e−2πk/a−c

d(m)

m1/2

T

T − 2πme2πk/a

� a−1T ε
∑

0≤k≤(a/2π) log(T /π)

∑

m≤(T /2π)e−2πk/a−c

T

2π
e−2πk/a m1/2

m

(
T

2π
e−2πk/a − m

)

� a−1T ε
∑

0≤k≤(a/2π) log(T /π)

∑

m≤(T /2π)e−2πk/a−c

m1/2

⎛

⎜⎜⎝
1

m
+ 1

T

2π
e−2πk/a − m

⎞

⎟⎟⎠

� a−1T 1/2+ε
∑

0≤k≤(a/2π) log(T /π)

e−πk/a

⎛

⎝
∑

m≤T /2π

1

m
+ a

⎞

⎠ � a−1T 1/2+ε.

(v)
In a similar manner, we can see that the contribution of this case is � a−1T 1/2+ε.
(ii), (iv)
First we note that the number of m in each interval is at most one and

m  T e−2πk/a � T .

By the second derivative test, we have

∣∣∣∣∣

∫ (2T−b)/a

(T−b)/a
e(gk(x))dx

∣∣∣∣∣ ≤ 16a−1
√

πT .
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Hence we see that the contribution is

a−1T 1/2
∑

0≤k≤(a/2π) log(T /π)+θ

∑

(T /2π)e−2πk/a−c<m<(T /2π)e−2πk/a+c
(T /π)e−2πk/a−c<m<(T /π)e−2πk/a+c

d(m)

m1/2

� e1/2aT 1/2+ε � T 5/6.

(iii)
In this case, the sum of k starts from 1. If k = 0, then we have that T /2π + c < m.

However, this is impossible, because we consider the case m ≤ T /2π . Using the
saddle-point method (see for example Corollary 8.15. in [4]), we have

∫ (2T−b)/a

(T−b)/a
e(gk(x))dx =eπ i/4 2π

a
eπk/a+2π ibk/a√m exp

(
−2πmie2πk/a

)

+ O

(
T

2T − 2πme2πk/a
+ T

2πme2πk/a − T
+ 1

)
.

By the same argument as the case (i) and (v), we see that the contribution of the
error term is � a−1T 1/2+ε. Finally, we have to consider

∑

1≤k<(a/2π) log(T /π)+θ

e(π+2π ib)k/a

×
∑

(T /2π)e−2πk/a+c≤m≤(T /π)e−2πk/a−c

d(m)e(−e2πk/am).

However we see that

∑

1≤k<(a/2π) log(T /π)+θ

e(π+2π ib)k/a
∑

(T /2π)e−2πk/a+c≤m≤(T /2π)e−2πk/a

(T /π)e−2πk/a≤m≤(T /π)e−2πk/a−c

� T 1/2+ε,

and when (a/2π) log(T /π) ≤ k < (a/2π) log(T /π) + θ , the inner sum is an empty
sum. Thus we calculate

∑

1≤k<(a/2π) log(T /π)

e(π+2π ib)k/a
∑

(T /2π)e−2πk/a<m<(T /π)e−2πk/a

d(m)e(−e2πk/am).

(10)

In this section we consider the case when e2πk/a is irrational for all positive integer
k. In this case, we consider the sum

∑

m≤M

d(m)e(αm),
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The Riemann zeta function over arithmetic progressions

where α = α(k) = e2πk/a . By the hyperbola method, we have

∑

m≤M

d(m)e(αm) =
∑

uv≤M

e(αuv)

= 2
∑

u≤√
M

∑

u<v<M/u

e(αuv) +
∑

u≤√
M

e(αu2).

We can plainly see that the second term is � √
M .

As for the first sum, making use of the estimate

∑

N1<n≤N2

e(αn) � min(N2 − N1, ||α||−1),

we obtain

∑

u≤√
M

∑

u<v<M/u

e(αuv) �
∑

u≤√
M

min

(
M

u
, ||αu||−1

)
.

Here, by Dirichlet’s approximation theorem, we can take integers p = p(k), q =
q(k) such that (p, q) = 1, 1 ≤ q ≤ √

M and

∣∣∣∣α − p

q

∣∣∣∣ ≤ 1

q
√
M

≤ 1

q2
. (11)

In this situation, we have

∑

u≤√
M

min

(
M

u
, ||αu||−1

)
� M

(
1

q
+ 1√

M
+ q

M

)
log(qM).

Applying this estimate with M = T e−2πk/a , we see that the sum (10) is

�
∑

1≤k<(a/2π) log(T /2π)

(T e−πk/aq(k)−1 + T 1/2 + eπk/aq(k)) log T

� T log T
∑

1≤k<(a/2π) log(T /2π)

e−πk/aq(k)−1 + aT 1/2 log2 T .
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We note that the condition (11) leads to p  qα and pq � α. Therefore we can
find an A such that

∑

1≤k<(a/2π) log(T /2π)

e−πk/aq(k)−1 
∑

1≤k<(a/2π) log(T /2π)

(p(k)q(k))−1/2

�
∑

1≤k<A

(p(k)q(k))−1/2 +
∑

A≤k

e−πk/a

�
∑

1≤k<A

(p(k)q(k))−1/2 + e−C log log T .

By the condition (11), when T tends to infinity, for each k, p(k)q(k) does so. Thus

∑

1≤k<A

(p(k)q(k))−1/2 = oa(1)

as T → ∞. We conclude that the sum (10) is oa(T log T ) and so as S1.
Now we consider the special case when a is a positive integer. Then we can obtain

better estimate, applying an inequality

∣∣∣∣e
πk/a − p

q

∣∣∣∣ > exp{−272(log 2k)(log 2a)(log p)(log log p)}

due to Waldschmidt. By this bound, when the condition (11) is valid, we have

eπk/aT−1/2 ≥ exp{−c(log 2k)(log 2a)(log p)(log log p)}.

When k < (log log T )1+ε, we obtain (log p)(log log p) � log T /(log 2a)(log
log T )ε, by the above inequality, and hence log p � log T /(log 2a)(log log T )1+ε.
Therefore we find that

∑

1≤k<(log log T )1+ε

(p(k)q(k))−1/2 
∑

1≤k<(log log T )1+ε

(p(k)q(k))−1/4eπk/2ae−(log a)/2

� e−c log T /(log 2a)(log log T )1+ε ∑

1≤k<(log log T )1+ε

1

� e−c log T /(log 2a)(log log T )1+ε

� e−c log T /(log log T )1+ε

.

Thus, in this case, S1 is O(a−1T (log T )−A) for any fixed A > 0.
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2.2 A contribution of S2

As in the case of S1, we have

∑

2πm<an+b≤2T

e2π i f (n)

=
∑

0≤k<(a/2π) log(T /πm)+θ

∫ (2T−b)/a

(2πm−b)/a
e(gk(x))dx + O(θ−1 + log(a log T )),

where θ = a/2π(a + 1).
Since

∑

m≤T

d(m)

m1/2 � T 1/2 log T ,

the contribution of the error term is � T 1/2 log T log(a log T ).
Finally, we calculate

∑

T /2π<m≤T /π

d(m)

m1/2

∑

0≤k<(a/2π) log(T /πm)+θ

∫ (2T−b)/a

(2πm−b)/a
e(gk(x))dx .

When k = 0, the above is

∑

T /2π<m≤T /π

d(m)

m1/2

∫ (2T−b)/a

(2πm−b)/a
e( f (x))dx .

The saddle-point of f (x) is (2πm − b)/a, thus, the saddle-point method leads to

∫ (2T−b)/a

(2πm−b)/a
e( f (x))dx = eπ i/4π

a

√
m + O

(
T

2T − 2πm
+ 1

)
.

Therefore

∑

T /2π<m≤T /π

d(m)

m1/2

∫ (2T−b)/a

(2πm−b)/a
e( f (x))dx

= eπ i/4π

a

∑

T /2π<m≤T /π

d(m) + O(T 1/2+ε).

(12)
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When k �= 0, we have to calculate

∑

T /2π<m≤T /π

d(m)

m1/2

∑

1≤k<(a/2π) log(T /πm)+θ

∫ (2T−b)/a

(2πm−b)/a
e(gk(x))dx

=
∑

1≤k<(a/2π) log 2

∑

T /2π<m≤(T /π)e−2π(k−θ)/a

d(m)

m1/2

∫ (2T−b)/a

(2πm−b)/a
e(gk(x))dx,

but in a similar manner to the case of S1, we can see that the contribution of this case
is

{
oa(T log T ) (a is not integer),
OA(a−1T (log T )−A) (a is integer).

2.3 Conclusion

From the above, we can see that

∑

T<an+b≤2T

χ

(
1

2
− i(an + b)

) ∑

m≤(an+b)/2π

d(m)

m1/2+i(an+b)

= π

a

∑

T /2π<m≤T /π

d(m) + R(T ),

and so,

∑

T<an+b≤2T

∣∣∣∣ζ
(
1

2
+ i(an + b)

)∣∣∣∣
2

= 2π

a

∑

T /2π<m≤T /π

d(m) + R(T ),

where

R(T ) =
{
oa(T log T ) (a is not integer)
OA(a−1T (log T )−A) (a is integer).

Finally, replacing T by T /2, T /4, and so on, and adding we have

∑

an+b≤T

∣∣∣∣ζ
(
1

2
+ i(an + b)

)∣∣∣∣
2

= 2π

a

∑

m≤T /2π

d(m) + R(T )

= T

a
(log T + 2γ − 1 − log 2π) + R(T ).

This completes the proof.

123



The Riemann zeta function over arithmetic progressions

3 The proof of Theorem 2

Now we consider the case that e2πk0/a is rational for some k0. In this case, we can
write

a = 2πk0
log(r/s)

with relatively prime integers r and s and |r | minimal. Let l be the maximal positive
integer such that r/s = (x/y)l with r , s relatively prime. Then,

a = k0
l

2π

log(x/y)
.

For each k divisible by k0, e2πk/a = (r/s)k/k0 is rational. On the other hand, k is
not divisible by k0, e2πk/a = (x/y)kl/k0 is irrational since k0 � l. Therefore, the sum
(10) can be divided as

∑

1≤k<(a/2π) log(T /π)
k0|k

e(π+2π ib)k/a
∑

(T /2π)e−2πk/a<m<(T /π)e−2πk/a

d(m)e(−e2πk/am)

+
∑

1≤k<(a/2π) log(T /π)
k0�k

e(π+2π ib)k/a
∑

(T /2π)e−2πk/a<m<(T /π)e−2πk/a

d(m)e(−e2πk/am).

When k0 = 1, the second sum is an empty sum, otherwise it is oa(T log T ) as can be
seen by repeating the same argument as in Case 1 of the proof of Theorem 1.

As for the first sum, we separate the outer sum into two parts as follows :

∑

1≤k<(a/2πk0) log(T /π)

(r
s

)(1/2+ib)k ∑

(T /2π)(s/r)k<m<(T /π)(s/r)k

d(m)e

(
−m

(r
s

)k)

=
∑

1≤k<log(T /π)/ log(rs)

(r
s

)(1/2+ib)k ∑

(T /2π)(s/r)k<m<(T /π)(s/r)k

d(m)e

(
−m

(r
s

)k)

+
∑

log(T /π)/ log(rs)≤k<log(T /π)/ log(r/s)

(r
s

)(1/2+ib)k

×
∑

(T /2π)(s/r)k<m<(T /π)(s/r)k

d(m)e

(
−m

(r
s

)k)
.

Using

∑

m≤x

d(m)e
(mr

s

)
= x

s
(log x + 2γ − 1 − 2 log s) + O((

√
x + s) log 2s),
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we have

∑

1≤k<log(T /π)/ log(rs)

(
(r/s)ib√

rs

)k
T

2π

(
log

T

2π
+ 2γ − 1 − k log(rs)

)

+ Ob(T
1/2 log2 T )

= (r/s)ib√
rs − (r/s)ib

T

2π

(
log

T

2π
+ 2γ − 1 −

√
rs log(rs)√
rs − 1

)
+ Ob(T

1/2 log2 T ).

As for the other sum, since

∑

m≤x

d(m) � x log x,

we see that

∑

log(T /π)/ log(rs)≤k<log(T /π)/ log(r/s)

(r
s

)(1/2+ib)k

×
∑

(T /2π)(s/r)k<m<(T /π)(s/r)k

d(m)e

(
−m

(r
s

)k)

� T log T
∑

log(T /π)/ log(rs)≤k<log(T /π)/ log(r/s)

(r
s

)−k/2 � T 1−log(r/s)/2 log(rs) log T .

Therefore, we obtain

S1 = eπ i/4 (r/s)ib√
rs − (r/s)ib

{
T
a log T (1 + oa,b(1)) (k0 > 1)
T
a

(
log T

2π + 2γ − 1 −
√
rs log(rs)√
rs−1

)
+ ob(T ) (k0 = 1).

As for S2, we have

S2 = eπ i/4π

a

∑

T /2π<m≤T /π

d(m) + O(T 1/2+ε)

+
∑

1≤k<(a/2π) log 2

∑

T /2π<m≤(T /π)e−2π(k−θ)/a

d(m)

m1/2

∫ (2T−b)/a

(2πm−b)/a
e(gk(x))dx .

When k0 = 1, by the condition of r and s, the double sum is empty, otherwise it is
oa(T log T ) as can be seen by repeating the same argument as in Case 1 of the proof
of Theorem 1.
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