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Abstract
Westudy the existence of exact solutions either for linear systems ofODEs or for scalar
second order linear differential equations with Dirichlet boundary value conditions.
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1 Introduction

Solutions of some differential equations can be exactly found using explicit formulas
what is a remarkable feature. A class of such differential equations is studied in [6]. In
this paper, we present a wider class of ODEs that are solvable exactly, i.e. its solutions
can be found by using formulas. Such formulas are presented in Sects. 2 and 3 of this
paper. We emphasize that our study of such differential equations is motivated also by
series of papers [1–5] which are important for understanding significant atmospheric
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flows like sea breezes and atmospheric undular bores, as discussed in these papers.
We also present related results for systems of linear ODEs in Sect. 4. Related results
are presented in [7, 8] but it appears that our achievements are not contained in those
comprehensive books.

2 Second order scalar ODEs

Motivated by [1–8], we consider a linear second order differential equation with a
Dirichlet boundary condition

(pu′)′(s) + qu(s) = h(s), s ∈ I = [0, 1],
u(0) = u(1) = 0

(1)

where p ∈ C2(I ,R), q, h ∈ C(I ,R) are functions and ′ = d
ds . For solving (1), we

need to solve

(pu′)′(s) + qu(s) = 0. (2)

We set

u(s) = r(s)U ( f (s)) (3)

in (2) for f , r ∈ C2(I ,R) to get

pr f ′2(s)U ′′( f (s)) +U ′( f (s))
(
pr f ′′(s) + f ′(s)

(
rp′(s) + 2pr ′(s)

))

+U ( f (s))
(
p′r ′(s) + pr ′′(s) + qr(s)

) = 0. (4)

Our goal to write (4) as the following equation with constant coefficients

U ′′(z) + μU ′(z) + νU (z) = 0 (5)

for some μ, ν ∈ R and z = f (s). This means we have to solve

pr f ′′2(s) = 1,

pr f ′′(s) + f ′(s)
(
rp′(s) + 2pr ′(s)

) = μ

p′r ′(s) + pr ′′(s) + qr(s) = ν. (6)

From the 1st equation of (6), we get

p(s) = 1

r f ′2(s)
(7)

by assuming

r(s) > 0, f ′(s) > 0, s ∈ I . (8)
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By inserting (7) into the 2nd equation of (6), we obtain

(
f ′r ′(s) − r f ′′(s)

)

r f ′2(s)
= μ. (9)

Solving (9), we have

r ′(s) = r(s)
(
f ′′(s) + μ f ′2(s)

)

f ′(s)
. (10)

Then integrating (10), we derive

∫
r ′

r
(s)ds =

∫
f ′′(s) + μ f ′2(s)

f ′(s)
ds,

ln r(s) = ln f ′(s) + μ f (s),

r(s) = f ′(s)eμ f (s). (11)

Plugging (11) into (7), we get

p(s) = e−μ f (s)

f ′3(s)
(12)

Finally, putting (7) and (11) into the 3rd equation of (6), we have

f (3) f ′(s) − f ′′(s)
(
3 f ′′(s) + μ f ′2(s)

)

f ′4(s)
+ q f ′(s)eμ f (s) = ν. (13)

From (13), we get

q(s) = e−μ f (s)
(
3 f ′′2(s) + ν f ′4(s) − f (3) f ′(s) + μ f ′2 f ′′(s)

)

f ′5(s)
. (14)

For simplifying the above formulas, we take

f (s) = ln g(s)

for g(s) > 0 on s ∈ I to obtain

r(s) = gμ−1g′(s),

p(s) = g3−μ

g′3 (s),

q(s) = (g′)−1g−μ−3(s)
(
(ν + 1)g′4(s) − gg′2(s)

(
3g′′(s) + μg′(s)

)

+g2(s)
(
3g′′2(s) + g′(s)

(
μg′′(s) − g(3)(s)

)) )
. (15)
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Since f ′(s) =
(
g′

g

)
(s), so (8) reads

g(s) > 0, g′(s) > 0, s ∈ I . (16)

Summarizing we arrive at the following result.

Theorem 2.1 Let g ∈ C1(I ,R) satisfy (16). If U (z) is a solution of (5), then u(s)
given by (3) is a solution of (2) with the corresponding functions of (15).

Of course, solutions of (5) are well known formulae. As a simple example, we take

g(s) = s + a, a > 0.

Then (15) gives

f (s) = ln(a + s),

r(s) = (a + s)μ−1,

p(s) = (a + s)3−μ,

q(s) = (a + s)−μ−3(−μ(a + s) + ν + 1). (17)

We consider g(s) in (15) as a parameter, so we have a rich family of ODEs in
Theorem 2.1.

3 The non homogeneous problem

In this application section, we will use the method of Green’s functions.

Theorem 3.1 Let g ∈ C1(I ,R) satisfy (16), h ∈ C(I ,R) and μ, ν ∈ R be given con-
stants. Consider the non homogeneous problem (1) with the corresponding functions
of (15) and let λ1,2 be the roots of the equation λ2 + μλ + ν = 0. Then there holds:

1. Assume either μ2 − 4ν ≥ 0 or

g(1) �= g(0)e
kπ
β for every k ∈ N. (18)

Then the solution of (1) is given by

u(t) = u1(t)

N

∫ t

0
u0h(s) ds + u0(t)

N

∫ 1

t
u1h(s) ds. (19)

The functions u0,1 and N ∈ R are specified in the following:

(a) if μ2 − 4ν > 0 and λ1,2 are the two distinct real roots then

u j (s) = r(gλ2( j)gλ1(s) − gλ1( j)gλ2(s)), j = 0, 1,
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and N = (gλ2(0)gλ1(1) − gλ1(0)gλ2(1))(λ1 − λ2) is nonzero,
(b) if μ2 − 4ν < 0, the assumption (18) is valid, and λ1 = α + βi , λ2 = α − βi

for β �= 0 then

u j (s) = rgα(s) sin

(
β ln

g(s)

g( j)

)
, j = 0, 1,

and N = β sin
(
β ln g(1)

g(0)

)
is nonzero,

(c) if μ2 − 4ν = 0 and λ = λ1 = λ2 is the multiple root then

u j (s) = rgλ(s)(ln g( j) − ln g(s)), j = 0, 1,

and N = ln g(1)
g(0) is nonzero.

2. Letμ2−4ν < 0 and λ1 = α+βi , λ2 = α−βi for β �= 0. Assume that (18) is not

true. Denote u0(s) = rgα(s) sin
(
β ln g(s)

g(0)

)
and u2(s) = rgα(s) cos

(
β ln g(s)

g(0)

)
.

Then for every h ∈ C(I ,R) such that

∫ 1

0
u0h(s) ds = 0, (20)

the function

u(t) = − u0(t)

β

∫ 1

t
u2h(s) ds − u2(t)

β

∫ t

0
u0h(s) ds

+ u0(t)

β||u0||22

(∫ 1

0
u2h(s)

∫ s

0
u20(τ ) dτ ds +

∫ 1

0
u0h(s)

∫ 1

s
u0u2(τ ) dτ ds

)

is the unique solution of the problem (1) such that
∫ 1
0 u0u(t) dt = 0.

Proof Let us prove the case 1. We solve the problem (1) for a given h ∈ C(I ,R)

where the functions r , p, q are given in (15). Our goal is to find a Green’s function
for (1) of the form

G : I × I → R, G(s, t) =
{
A(s)u0(t), 0 ≤ t ≤ s ≤ 1,

B(s)u1(t), 0 ≤ s < t ≤ 1.
(21)

The functions u0 and u1 in (21) are nontrivial solutions of the homogeneous equation
(2) such that it holds u0(0) = 0 and u1(1) = 0. This assures that G satisfies the
boundary conditions in (1). The functions A and B are unknown and can be determined
using the basic properties of Green functions: the continuity of G at the diagonal of
I × I and the jump discontinuity of the derivative G ′

t at the same diagonal.
Let μ, ν ∈ R are given. The form of the general solution of (5) depends on the

choice of these constants. Due to this, we divide the case 1 into three subcases.
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Case 1a. Let μ2 − 4ν > 0. In this case, it holds that U (z) = ceλ1z + deλ2z for
some constants c, d ∈ R. From (3) and our choice of f , we deduce that u(s) =
r(s)(cg(s)λ1 + dg(s)λ2) and the functions u0,1 are particular solutions that satisfy
u j ( j) = 0 for j = 0, 1. u0,1 are necessary for finding the Green’s function of the
form (21). Due to the assumption (16), it holds

g(0) �= g(1)

or equivalently,

gλ2(0)gλ1(1) − gλ1(0)gλ2(1) �= 0. (22)

Thismeans that the functionsu0 andu1 are linearly independent and theGreen function
defined by (21) exists. Based on the properties of theGreen function, it holds Au0(s) =
Bu1(s) and Bu′

1(s) − Au′
0(s) = 1

p(s) for s ∈ I . Thus A and B are the solutions of the
system

(
u0 −u1

−u′
0 u′

1

∣
∣∣∣
0
1
p

)
. (23)

Observe that pr2g′gλ1+λ2−1(s) = 1. By a straightforward calculation, one can prove
that

det

(
u0 −u1

−u′
0 u′

1

)
= (gλ2(0)gλ1(1)−gλ1(0)gλ2(1))(λ1−λ2)r

2g′gλ1+λ2−1(s) = N

p(s)

is nonzero due to (22).We apply the Cramer’s rulewe deduce that A = u1
N and B = u0

N .
The function

u(t) =
∫ 1

0
G(s, t)h(s) ds = u1(t)

∫ t

0
Bh(s) ds + u0(t)

∫ 1

t
Ah(s) ds

is the desired solution of the problem (1).
Case 1b. Let μ2 − 4ν < 0 and (18) be true. The corresponding real-valued

solution is U (z) = eαz(c sin βz + d cosβz) where c, d ∈ R. Hence u(s) =
r(s)gα(s)(c sin(β ln g(s)) + d cos(β ln g(s))) and the functions u0,1 are particular
solutions such that u j ( j) = 0 for j = 0, 1.

The assumption (18) implies that the functions u0 and u1 are linearly independent.
Note that since g is increasing it suffices to take k ∈ N instead of k ∈ Z. Similarly as
in the case 1, we come to the system (23) and the determinant

det

(
u0 −u1

−u′
0 u′

1

)
= βr2g′g2α−1(s) sin

(
β ln

g(1)

g(0)

)
= N

p

is nonzero due to (18). Hence A = u1
N , B = u0

N and the solution of the problem (1)
can be expressed by (19).

123



Exact solvability of certain linear ODEs

Case 1c. - μ2 − 4ν = 0. In this case, the equation λ2 + μλ + ν = 0 has one
multiple root λ ∈ R. The corresponding solution is U (z) = ceλz + dzeλz where
c, d ∈ R. Hence u(s) = rgλ(s)(c + d ln g(s)) and again, u j ( j) = 0 for j = 0, 1.

Again, we come to the system (23) and the determinant

det

(
u0 −u1

−u′
0 u′

1

)
= r2g′g2λ−1(s)ln

g(1)

g(0)
= N

p(s)

is nonzero. Hence A = u1
N , B = u0

N and the solution of the problem (1) can be
expressed by (19).

Now, we prove the case 2. In this case, zero is an eigenvalue of the operator

L : L2(0, 1) → L2(0, 1), Lu(s) = (pu(s)′)′ + qu(s)

defined on domain D(L) = {u ∈ C2; u(0) = u(1) = 0}. The space L2(0, 1) is

equipped with the standard integral norm ||u||2 :=
√∫ 1

0 u2(s) ds. The function u0
is an eigenfunction of L corresponding to the zero eigenvalue. It is known that there
exists a solution of the non homogeneous problem (2) if and only if (20) is valid; see
e.g. [9]. Such solution is not even unique.

If (18) is not true then theGreen’s function of the form (21) does not exist. However,
it is still possible to find aGreen’s function in a different form and to obtain the solution
u of the problem (2). Let h ∈ C(I ,R) be such that (20) holds.

Note that u2 is a solution of (2) and u0, u2 are linearly independent. We take the
following Green’s function

G : I × I → R, G(s, t) =
{
C(s)u0(t), 0 ≤ t ≤ s ≤ 1,

A(s)u0(t) + B(s)u2(t), 0 ≤ s < t ≤ 1.
(24)

Clearly, G(s, 0) = 0 for s ∈ I . Since we require that
∫ 1
0 u0u(s) ds = 0 we find the

functions A, B,C so that

∫ 1

0
G(s, t)u0(t) dt = 0 for s ∈ I . (25)

This implies that u(t) = ∫ 1
0 G(s, t)h(s) ds is the desired solution. Indeed, it holds

∫ 1

0
u0u(t) dt =

∫ 1

0
u0(t)

∫ 1

0
G(s, t)h(s) ds dt

=
∫ 1

0
h(s)

∫ 1

0
G(s, t)u0(t) dt ds = 0.

Using (25) and (24), we come to the equation

A(s)
∫ 1

s
u20 dt + B(s)

∫ 1

s
u0u2 dt + C(s)

∫ s

0
u20 dt = 0.
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M. Fečkan et al.

This along with the equations derived from properties of Green functions, namely the
continuity of G and the jump discontinuity of the derivative G ′

t , lead to the system

⎛

⎝

∫ 1
s u20 dt

∫ 1
s u0u2 dt

∫ s
0 u20 dt

u0 u2 −u0
u′
0 u′

2 −u′
0

∣∣∣
∣∣∣

0
0
1
p

⎞

⎠ .

A simple computation shows that u0u′
2 − u2u′

0 = −βr2g′g2α−1 and

det

⎛

⎝

∫ 1
s u20 dt

∫ 1
s u0u2 dt

∫ s
0 u20 dt

u0 u2 −u0
u′
0 u′

2 −u′
0

⎞

⎠ = −β||u0||22r2g′g2α−1(s) = −β

p
||u0||22

is obviously nonzero. Thus

A(s) = u2(s)
∫ s
0 u20 dt + u0(s)

∫ 1
s u0u2 dt

β||u0||22
,

B(s) = −u0(s)

β
,

C(s) = −u2(s)
∫ 1
s u20 dt + u0(s)

∫ 1
s u0u2 dt

β||u0||22
,

and the corresponding solution

u(t) = u0(t)
∫ t

0
Ah(s) ds + u2(t)

∫ t

0
Bh(s) ds + u0(t)

∫ 1

t
Ch(s) ds

satisfies the condition u(0) = 0 and
∫ 1
0 u0u(s) ds = 0. Moreover, due to (20), there

holds u(1) = 0. Rearranging the terms in the last expression, we obtain

u(t) = −u2(t)

β

∫ t

0
u0h(s) ds

+ u0(t)

β||u0||22

(∫ t

0
u2h(s)

∫ s

0
u20(τ ) dτ ds −

∫ 1

t
u2h(s)

(
||u0||22 −

∫ s

0
u20(τ ) dτ

)
ds

)

+ u0(t)

β||u0||22

(∫ t

0
u0h(s)

∫ 1

s
u0u2(τ ) dτ ds +

∫ 1

t
u0h(s)

∫ 1

s
u0u2(τ ) dτ ds

)

and the assertion follows. �	

4 First order systems of ODEs

In this section, we find exact fundamental matrices of certain linear ODEs. Let M(n)

be a linear space of n × n matrices, and I ⊂ R be an open interval.
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Lemma 4.1 If G : I → M(n) has a derivative G ′(z0) at z0 ∈ I then also H : I →
M(n) given as H(z) = eG(z) has a derivative at z0. If in addition

G ′(z0)G(z0) = G(z0)G
′(z0), (26)

then

H ′(z0) = G ′(z0)eG(z0) = eG(z0)G ′(z0). (27)

Proof The mapping e : M(n) → M(n) given by eK = ∑∞
i=0

Ki

i ! is C∞-smooth and
a straightforward computation of the derivative DeK S of eK at S ∈ M(n) leads to

DeK S = eK S = SeK

whenever K S = SK . Since H(z) = eG(z), the chain rule gives

H ′(z0) = DeG(z0)G ′(z0) = eG(z0)G ′(z0) = G ′(z0)eG(z0).

The proof is completed. �	
Assume 0 ∈ I . If A ∈ L1

loc(I , M(n)) then it is well-known that G(z) = ∫ z
0 A(s)ds

has a derivative for almost each (f.a.e.) z ∈ I with G ′(z) = A(z). Then applying
Lemma 4.2, we obtain

Lemma 4.2 If A ∈ L1
loc(I , M(n)) then

X(z) = e
∫ z
0 A(s)ds (28)

has a derivative X ′(z) f.a.e. z ∈ I . If in addition

A(z1)A(z2) = A(z2)A(z1)∀z1,∀z2 ∈ I , (29)

then

X ′(z) = A(z)X(z) = X(z)A(z). (30)

Proof (29) implies

A(z)
∫ z

0
A(s)ds =

∫ z

0
A(z)A(s)ds =

∫ z

0
A(s)ds A(z). (31)

This verifies (26) and proof is finished. �	
Lemma 4.2 shows that (28) is the fundamental solution of (30). If in addition, A(z) is
T -periodic in Lemma 4.2, i.e., A(z + T ) = A(z) for any z ∈ I = R, then (28) has a
form

X(z) = e
∫ z
0 A(s)ds = e

∫ z
0 A(s)ds− 1

T

∫ T
0 A(s)dse

1
T

∫ T
0 A(s)ds = P(z)e

1
T

∫ T
0 A(s)ds,
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with P(z + T ) = P(z) for any z ∈ R, which is the Floquet’s theorem.
Assumption (29) seems to be very special, but there is the following family of such

A(z):

A(z) =
k∑

i=1

ai (z)Ai (32)

for 1 ≤ k ≤ n2, ai ∈ L1
loc(I ,R), Ai ∈ M(n) which are commutative

Ai A j = A j Ai . (33)

Indeed, we have

A(z1)A(z2) =
k∑

i=1

ai (z1)Ai

k∑

j=1

a j (z2)A j =
k∑

i,k=1

ai (z1)a j (z2)Ai A j =

k∑

i,k=1

a j (z1)ai (z2)A j Ai =
k∑

j=1

a j (z2)A j

k∑

i=1

ai (z1)Ai = A(z2)A(z1),

so (29) is verified. Then (28) has a form

X(z) = e
∑k

i=1
∫ z
0 ai (s)dsAi . (34)

If in addition, it holds

Ai A j = A j Ai = 0, i �= j, (35)

then we derive

X(z) = e
∑k

i=1
∫ z
0 ai (s)dsAi =

∞∑

j=0

1

j !

(
k∑

i=1

∫ z

0
ai (s)ds Ai

) j

= I +
k∑

i=1

∞∑

j=1

1

j !
(∫ z

0
ai (s)ds

) j

A j
i =

k∑

i=1

e
∫ z
0 ai (s)dsAi − (k − 1)I . (36)

We note that any B ∈ M(n), which is not a multiple of I , generates such a 3-
parametric family by

A(z) = a1(z)I + a2(z)B + a3(z)C

for any C ∈ Com(B) \ [I , B], where

Com(B) = {C ∈ M(n) : CB = BC}.
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Formula (32) can be extended to

A(z) =
∞∑

i=1

ai (z)Ai (37)

under assumption (33) along with

∞∑

i=1

‖ai‖∞‖Ai‖ < ∞.

As a special case is

A(z) =
∞∑

i=1

ai (z)A
i

under assumption

∞∑

i=1

‖ai‖∞‖A‖i < ∞,

that is

‖A‖ <
1

lim supi→∞ i
√‖ai‖∞

.

Another family is presented in the quaternion field H given by

A(z)q =
∞∑

i=1

pi (z)qqi (z), z ∈ H

for pi , qi ∈ L∞(I ,C) satisfying

∞∑

i=1

‖pi‖∞‖qi‖∞ < ∞.

Remark 4.3 The above results can be directly extended either to Banach spaces or to
Banach algebras.
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M. Fečkan et al.

Acknowledgements We are grateful to the reviewer for valuable comments which improved our paper.

Funding Open access funding provided by The Ministry of Education, Science, Research and Sport of
the Slovak Republic in cooperation with Centre for Scientific and Technical Information of the Slovak
Republic.

Data availability statement No data.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Constantin, A., Johnson, R.S.: Atmospheric undular bores. Math. Ann. 388, 4011–4036 (2024)
2. Constantin, A., Johnson, R.S.: On the propagation of nonlinear waves in the atmosphere. Proc. A.

478(2260), 20210895 (2022)
3. Constantin, A., Johnson, R.S.: On the propagation of waves in the atmosphere. Proc. A. 477(2250),

20200424 (2021)
4. Johnson, R.S.: On the mathematical fluid dynamics of atmospheric gravity (buoyancy) waves. Monatsh.

Math. 201, 1125–1147 (2023)
5. Johnson, R.S.: An Introduction to theMathematical FluidDynamics ofOceanic andAtmospheric Flows,

ESI Lectures in Mathematics and Physics. EMS Press, Berlin (2023)
6. Marynets, K.: Sturm-Liouville boundary value problem for a sea-breeze flow. J. Math. Fluid Mech. 25,

6 (2023)
7. Neuman, F.: Global Properties of Linear Ordinary Differential Equations, Mathematics and its Appli-

cations 52. Springer, Dordrecht (2013)
8. Polyanin, Andrei D., Zaitsev, Valentin F.: Handbook of Exact Solutions for Ordinary Differential Equa-

tions, 2nd edn. Chapman & Hall/CRC, Boca Raton, FL (2003)
9. Roach, G.F.: Green’s Functions. Cambridge University Press, London (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/

	Exact solvability of certain linear ODEs
	Abstract
	1 Introduction
	2 Second order scalar ODEs
	3 The non homogeneous problem
	4 First order systems of ODEs
	Acknowledgements
	References


