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Abstract
Let A = {z : r < |z| < R} and A

∗ = {z : r∗ < |z| < R∗} be annuli in the
complex plane. Let p ∈ [1, 2] and assume that H1,p(A,A∗) is the class of Sobolev
homeomorphisms between A and A

∗, h : A onto−→ A
∗. Then we consider the following

Dirichlet type energy of h:

Fp[h] =
∫
A

‖Dh‖p

|h|p , 1 � p � 2.

We prove that this energy integral attains its minimum, and the minimum is a certain
radial diffeomorphism h : A

onto−→ A
∗, provided a radial diffeomorphic minimizer

exists. If p > 1 then such diffeomorphism exists always. If p = 1, then the conformal
modulus of A∗ must not be greater or equal to π/2. This curious phenomenon is
opposite to the Nitsche type phenomenon known for the standard Dirichlet energy.

Keywords Variational integrals · Harmonic mappings · Energy-minimal
deformations · Dirichlet-type energy

Mathematics Subject Classification Primary 35J60; Secondary 30C70

1 Introduction

The general law of hyperelasticity tells us that there exists an energy integral
E[h] = ∫

X
E(x, h, Dh)dx where E : X × Y × R

n×n → R is a given stored-
energy function characterizing mechanical properties of the material. Here X and Y

are nonempty bounded domains in Rn, n > 2. The mathematical models of nonlinear
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904 D. Kalaj

elasticity have been first studied by Antman [1], Ball [4, 5], and Ciarlet [8]. One of
the interesting and important problems in nonlinear elasticity is whether the radially
symmetric minimizers are indeed global minimizers of the given physically reason-
able energy. This leads us to study energy minimal homeomorphisms h : A onto−→ A

∗
of Sobolev class W 1,2 between annuli A = A(r , R) = {x ∈ R

n : r < |x | < R} and
A

∗ = A(r∗, R∗) = {x ∈ R
n : r∗ < |x | < R∗}. Here 0 � r < R and 0 � r∗ < R∗ are

the inner and outer radii ofA andA∗. The variational approach to Geometric Function
Theory [2, 3] makes this problem more important. Indeed, several papers are devoted
to understanding the expected radial symmetric properties see [17] and the references
therein. Many times experimentally known answers to practical problems have led us
to the deeper study of such mathematically challenging problems. We seek to mini-
mize the p-harmonic energy of mappings between two annuli in R2. We consider the
modified Dirichlet energy Fp[ f ] = ∫

A

‖Df ‖p

| f |p , 1 � p � 2 and minimize it.

2 p-harmonic equation and statement of themain results

For natural number n, let A = (ai, j )n×n ∈ R
n×n . We use AT to denote the transpose

of A. The Hilbert-Schmit norm, also called the Frobenius norm, of A is denoted by
‖A‖, where

‖A‖2 =
∑

1≤i, j≤n

∣∣ai, j ∣∣2 = tr[AT A].

For p ≥ 1, we say that a mapping h belongs to the classW1,p(A,A∗), if h belongs
to the Sobolev space W1,p(A) and maps A onto A

∗. Let h = (h1, . . . , hn) belong to
W1,p(A,A∗). We denote the Jacobian matrix of h at the point x = (x1, . . . , xn) by

Dh(x), where Dh(x) =
(

∂hi
∂x j

)
n×n

∈ R
n×n . Then

‖Dh‖2 =
∑

1≤i, j≤n

∣∣∣∣ ∂h
i

∂x j

∣∣∣∣
2

.

Here ∂hi
∂x j

denotes theweak partial derivatives of hi with respect to x j . If h is continuous

and belongs to W1,p(A,A∗) (p ≥ 1), then the weak and ordinary partial derivatives
coincide a.e. in A (cf. [19, Proposition 1.2]). Let h = ρS, where S = h

|h| and ρ = |h|.
By [14, Equality (3.2)], we obtain that

Dh(x) = ∇ρ(x) ⊗ S(x) + ρ · DS(x)

and
‖Dh(x)‖2 = |∇ρ(x)|2 + ρ2‖DS(x)‖2, (2.1)

where ∇ρ denotes the gradient of ρ.
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Radial symmetry of minimizers... 905

We say that h : A → A
∗ is a radial mapping, if h(x) = ρ(|x |) x

|x | and if ρ is real and
positive function. We useR(A,A∗) to denote the class of radial homeomorphisms in
W1,p(A,A∗) and use P(A,A∗) to denote the class of generalized radial homeomor-
phisms inW1,p(A,A∗).We also useH(A,A∗) to denote the class of homeomorphisms
inW1,p(A,A∗).

As it is said before, an important problems in nonlinear elasticity is whether the
radially symmetric minimizers are indeed global minimizers. For example, Iwaniec,
and Onninen [12] discussed the minimizers of the following two energy integrals:

E[h] =
∫
A

‖Dh(x)‖ndx and F[h] =
∫
A

‖Dh(x)‖n
|h(x)|n dx

among all homeomorphisms in W1,n(A,A∗), respectively. The energy integral F for
n = 2, has been considered previously by Astala, Iwaniec, and Martin in [2]. Further
such energy has been generalized in planar annuli by Kalaj in [15, 16] and spatial
annuli in [13]. On the other hand, Koski and Onninen [17] investigated the minimizers
of the p-harmonic energy

Ep[h] =
∫
A

‖Dh(x)‖pdx

among all homeomorphisms in W1,p(A,A∗), where A and A
∗ are planar annuli and

1 ≤ p < 2, provided the homeomorphisms fix the outer boundary. Recently, Kalaj
[14] studied the Dirichlet-type energy F [h] among mappings in H(A,A∗), where

F [h] =
∫
A

‖Dh(x)‖n−1

|h(x)|n−1 dx . (2.2)

For n = 3, the author proved that the minimizers of F [h] are certain generalized
radial diffeomorphism (cf. [14, Theorem 1.1]). Motivated by the case n = 3, in [14]
it was posed the following question.

Question 2.1 For n 
= 3, does the Dirichlet integral of h ∈ H(A,A∗), i.e. the integral

F [h] =
∫
A

‖Dh(x)‖n−1

|h(x)|n−1 dx,

achieve its minimum for generalized radial diffeomorphisms between annuli?

Then in the subsequent paper by Kalaj and Chen [9] was given the following answer.

Theorem 2.1 For n ≥ 4, we have

inf
h∈H(A,A∗)

F [h] = inf
h∈P(A,A∗)

F [h]

The last infimum is never attained.

123



906 D. Kalaj

In this paper, we consider the case of the p-energy Sobolev W1,p homeomorphisms
between annuli A and A

∗ in the complex plane. Let

Fp[h] =
∫
A(1,r)

‖Dh‖p

|h|p , 1 � p < 2.

Then we seek the homeomorphisms h of the class W1,p which are furthermore
assumed to preserve the order of the boundary components |h(z)| →r when |z| → r∗
and |h(z)| → R∗ when |z| → R. Such a class of Sobolev homeomorphisms with the
above property is denoted byH1,p(A,A∗) and we say that they are admissible home-
omorphisms. Since we minimize theFp energy in the class of homeomorphisms, we
can perform the inner variation of the independent variable zε = z + ετ(z), which
leads to the system (see for example [14])

div

(
1

|h|p ‖Dh‖p−2(Dh)∗Dh − 1

p|h|p ‖Dh‖p I

)
= 0, (2.3)

where

div

(
a(x, y) b(x, y)
c(x, y) d(x, y)

)
:=

(
ax + by
cx + dy

)
.

Here z = (x, y). Our argument does not make direct use of the inner variational
equation (2.3). Some important facts that follow from (2.3) are as follows.

(1) If we assume that h is radial, then (2.3) reduces to the Euler-Lagrange equation
(3.1) below.

(2) Further if f is a solution of (2.3) then so is f̃ = 1
f .

(3) Let f1(z) = 1
r∗ f (r z). Then f1 : A(1, r1)

onto−→ A(1, R1), provided that f :
A(r , R)

onto−→ A(r∗, R∗), where R1 = R∗/r∗ and r1 = R/r . Moreover, f sat-
isfies (2.3) if and only if f1 satisfies the same equation.

This is why we reduce the problem to the annuli A = A(1, r) and A
∗ = A(1, R).

Now we formulate the main results.

Theorem 2.2 Let A and A
∗ be planar annuli and 1 < p � 2. Then there exists a

radially symmetric mapping h◦ : A → A
∗ such that

min
H1,p(A,A∗)

Fp[h] = Fp[h◦]. (2.4)

The map h◦ is the unique minimizer, up to a rotation, in the class H1,p(A,A∗). Fur-
thermore, the minimizer h◦ is a homeomorphism.

Theorem 2.3 Let A and A
∗ be planar annuli. Then there exists a radially symmetric

mapping h◦ : A → A
∗ which is a homeomorphism such that

min
H1,1(A,A∗)

F1[h] = Fp[h◦], (2.5)
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Radial symmetry of minimizers... 907

if and only if
π

2
− tan−1

[
1√

r2 − 1

]
� log R. (2.6)

The map h◦ is the unique minimizer, up to a rotation, in the class H1,1(A,A∗).

Remark 2.4 Note that the case p = 2 of Theorem 2.2 has been already considered by
Astala, Iwaniec, and Martin in [2].

On the other hand side our result can be seen as a variation ofminimization property
of radial mappings of p-Dirichlet energy throughout Sobolev mappings from the unit
ball B ⊂ R

n onto the unit sphere Sn−1, fixing the boundary. This is an old problem
solved by several authors (see for example [7], [6], [18]).

Furthermore, as was remarked before, Koski and Onninen [17] have considered Ep

energy and proved the minimization property, under a certain constrain. Indeed, if we
denote the outer boundary ofA by ∂◦A and consider the subfamily of homomorphisms
H◦ = { f ∈ H1,p(A,A∗) : f (x) = R∗

R x, for x ∈ ∂◦A}, then the minimizer of Ep

energy is a radial mapping h(x) = ρ(x) x
|x | provided that R and r satisfies some

inequality that depends on p ([17, Theorem 1.5]). In the same paper they proved that
this constraint is crucial and there exists annuli, where the minimizer of Ep is not a
radial mapping.

Remark 2.5 By virtue of the density of diffeomorphisms inH1,p(A,A∗), see [10, 11],
we can equivalently replace the admissible homeomorphisms by sense preserving
diffeomorphims. Indeed, for p � 1, we have

inf
f ∈H1,p(A,A∗)

Ep[h] = inf
f ∈Diff(A,A∗)

Ep[h]. (2.7)

Here by Diff(A,A∗) we denote the class of orientation preserving diffeomorphisms
from A onto A∗ which also preserve the order of the boundary components. A similar
result hold for theFp energy. Indeed

inf
f ∈H1,p(A,A∗)

Fp[h] = inf
f ∈Diff(A,A∗)

Fp[h]. (2.8)

3 Radial minimizer of the energyFp[h], 1 < p < 2

This section aims is to find the radial minimizer h◦ of Fp energy that maps annuli
A(1, r) ontoA(1, R) keeping the boundary order. Moreover, we will use that solution
to prove the minimization property of h◦ in the class of all Sobolev homeomorphisms.
Contrary to the case p = 1, which will be considered later, we will not have any
restriction on r and R. Assume that h(z) = H(t)eiθ , where z = teiθ , where H is a
differentiable function and that t ∈ [1, r ], θ ∈ [0, 2π ]. Then

‖Dh‖2 = |ht |2 + |hθ |2
t2

= Ḣ(t)2 + H(t)2

t2
.
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908 D. Kalaj

Furthermore

t
‖Dh‖p

|h|p = t

(
1

t2
+ Ḣ(t)2

H(t)2

)p/2

.

Let

L(t, H , Ḣ) = t

(
1

t2
+ Ḣ(t)2

H(t)2

)p/2

.

Then Euler-Lagrange equation

LH = ∂t L Ḣ ,

can be written in the following form

Ḧ = Ḣ
(
(p − 3)H3 + t H2 Ḣ − t2H Ḣ2 + (p − 1)t3 Ḣ3

)
t H3 + (p − 1)t3H Ḣ2

, (3.1)

where H = H(t), Ḣ = H ′(t) and Ḧ = H ′′(t). Then by straightforward calculation
(3.1) can be reduced to the following differential equation

t Ḣ(t)

H(t)
=

√
g(t)√

1 − g(t)
, (3.2)

where g is a solution to the following differential equation

ġ(t) = F[t, g(t)] := 2(2 − p)(g(t) − 1)g(t)

t + (p − 2)tg(t)
. (3.3)

Show that F < 0 provided that t � 1 and g(t) ∈ (0, 1). Namely

t + (−2 + p)tg(t) � t + (p − 2)t = (p − 1)t > 0.

Since 2(2 − p)(g(t) − 1)g(t) < 0 we infer that g is a decreasing function.
The general solution of (3.3) is given by g = k−1, where the function k is defined

by

k(s) = b exp

(
(p − 1) log(1 − s) − log s

2(2 − p)

)
, (3.4)

where b is a positive constant and s ∈ (0, 1).
By (3.2) we infer that H is given by

H(t) = C exp

[∫ t

1

√
g(x)√

1 − g(x)x
dx

]
. (3.5)

By using the change t = k(s) in (3.5) we obtain
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H(t) = C exp

⎡
⎣

∫ g(1)

g(t)

(
p−1
1−s + 1

s

) √
s

2(2 − p)
√
1 − s

ds

⎤
⎦ . (3.6)

Since we seek increasing homeomorphic mappings H : [1, r ] onto−→ [1, R], we have the
initial conditions H(1) = 1 and H(r) = R. Then C = 1. Let 0 < τ < 1 and chose
b = b(τ ) so that

b = exp

(
(p − 1) log(1 − τ) − log τ

2(p − 2)

)
.

Denote the corresponding g by gτ . Then we have gτ (1) = τ .
Moreover by (3.4)

gτ

[
exp

(
(p − 1) log( 1−t

1−τ
) − log t

τ

2(2 − p)

)]
= t .

Define the function

R(τ ) = exp

⎡
⎣

∫ τ

gτ (r)

(
p−1
1−s + 1

s

) √
s

2(2 − p)
√
1 − s

dx

⎤
⎦ .

Then we also define

Hτ (t) = exp

⎡
⎣

∫ τ

gτ (t)

(
p−1
1−s + 1

s

)√
s

2(2 − p)
√
1 − s

ds

⎤
⎦ .

Then

Hτ (1) = 1

and
Hτ (r) = R(τ ). (3.7)

Let us show that there is a unique s◦ = s(r , τ ) ∈ (0, τ ) such that B(s◦) = 0, where

B(s) := (p − 1) log( 1−s
1−τ

) − log s
τ

2(2 − p)
− log r .

Note that B is continuous, B(τ ) = log 1
r < 0 and B(0) = +∞. Moreover

B ′(s) = 1 + (−2 + p)s

2(2 − p)(−1 + s)s
< 0.
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910 D. Kalaj

Thus there is a unique s◦ so that B(s◦) = 0. Then gτ (r) = s◦. Since for 0 < s < τ

and p ∈ (1, 2], we have

log( 1−s
1−τ

) − log s
τ

2(2 − p)
�

(p − 1) log( 1−s
1−τ

) − log s
τ

2(2 − p)
,

it follows that

log( 1−s◦
1−τ

) − log s◦
τ

2(2 − p)
− log r � B(s◦) = (p − 1) log( 1−s◦

1−τ
) − log s◦

τ

2(2 − p)
− log r = 0.

Thus

0 < s◦ < τ◦ = 1

1 + r4−2p
(−1 + 1

τ

) . (3.8)

Then

R(τ ) = exp

⎡
⎣

∫ τ

s◦

(
p−1
1−s + 1

s

) √
s

2(2 − p)
√
1 − s

ds

⎤
⎦ .

Let us show now that, if p > 1, then for every R ∈ (1,+∞), there is τ ∈ (0, 1) so
thatR(τ ) = R. It is clear thatR is continuous and also it is clear that limτ→0 R(τ ) =
1. Let us show that limτ→1R(τ ) = +∞. Observe that 0 � s � √

s � 1. Then from
(3.8) we have that

R(τ ) � K (τ ),

where

K (τ ) = exp

⎡
⎣

∫ τ

τ◦

(
p−1
s−1 + 1

s

)
s

2(2 − p)
√
1 − s

ds

⎤
⎦ .

Then K (τ ) = exp(k(τ ) − k(τ0)), where

k(s) = 3 + p(s − 2) − 2s

(2 − p)
√
1 − s

.

Then

lim
τ→1−

√
1 − τ log K (τ ) = (p − 1)

(
r2 + r p

)
(2 − p)r2

.

We notice that here is the moment where p ∈ (1, 2) is an important assumption. In
particular limτ→1 R(τ ) = ∞. So there is τ = τ(r , R) so that R(τ ) = R. In view of
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1.2 1.4 1.6 1.8 2.0

1.2

1.4

1.6

1.8

2.0

Fig. 1 The graphic of H◦ satisfying initial conditions H(1) = 1, H(2) = 2 is far from being identity

(3.7), we have constructed a smooth increasing mapping H = H◦ = Hr ,R : [1, r ] →
[1, R] so that H(1) = 1 and H(r) = R, See Fig. 1 below. Let us show that

h◦(z) = H(t)eiθ , z = teiθ , (3.9)

is the minimizer in the class of radial homeomorphisms between A and A
∗.

Assume now that H : [1, r ] → [1, R] is any smooth homeomorphism and assume
that h(z) = H(t)eiθ . Prove that

Fp[h] � Fp[h◦]. (3.10)

We start from a simple inequality from [17]

(a + b)q/2 � s1−q/2aq/2 + (1 − s)1−q/2bq/2, q ∈ [1, 2], s ∈ [0, 1]. (3.11)

By inserting q = p, s = g(t),

a = t
2
p −2

, b = t2/p
Ḣ2

H2
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912 D. Kalaj

in (3.11) we have

t

(
1

t2
+ Ḣ2

H2

)p/2

=
(
t2/p−2 + t2/p

Ḣ2

H2

)p/2

� (1 − g(t))1−p/2t1−p + g(t)1−p/2t
|Ḣ |p
|H |p .

(3.12)

The equality in (3.11) is attained precisely when

b

a
= s

1 − s

and thus the equality is attained in (3.12) precisely when

t Ḣ

H
=

√
g(t)√

1 − g(t)
. (3.13)

Then by
a p � px p−1a − (p − 1)x p, (3.14)

where a = Ḣ(t)
H(t) and x =

√
g(t)√

1−g(t)t
we get

t

(
1

t2
+ Ḣ(t)2

H(t)2

)p/2

� t1−p 1 − pg(t)

(1 − g(t))p/2
+ s2−p√g(t)

(1 − g(t))(p−1)/2
p
Ḣ

H
. (3.15)

Notice that, the condition (3.13) is precisely satisfied when we have equality in (3.15).
Define

P(t) = t2−p (1 − g(t))
1
2 (1−p)

√
g(t),

and show that it is a constant. This fact is crucial for our approach.
By (3.3) we obtain that

P ′(t)
P(t)

= 2 − p

t
+ (1 + (p − 2)g(t))ġ(t)

2(1 − g(t))g(t)
= 0.

Thus
P(t) ≡ c = P(r) = r2−p (1 − g(r))

1
2 (1−p)

√
g(r). (3.16)

Observe that

g(r) = gτ (r) = c◦(r , τ ) = c◦(r , τ (r , R)).
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Radial symmetry of minimizers... 913

Thus c = c(r , R). Now we have

Fp[h] = 2π
∫ r

1
t

(
1

t2
+ Ḣ(t)2

H2(t)

)p/2

dt

� 2π
∫ r

1

(
t1−p 1 − pg(t)

(1 − g(t))p/2
+ c(r , R)

Ḣ

H

)
dt

= 2π
∫ r

1

(
t1−p 1 − pg(t)

(1 − g(t))p/2

)
dt + 2π

∫ r

1
c(r , R)

Ḣ(t)

H(t)
dt

= 2π
∫ r

1

(
t1−p 1 − pg(t)

(1 − g(t))p/2

)
dt + 2πc(r , R) log R

= Fp[h◦].

4 Radial minimizers for the case p = 1

The corresponding subintegral expression for the functional F1[h] = ∫
A(1,r)

|Df (z)|
| f (z)| ,

for radial function h(z) = H(t)eiθ , z = teiθ is given by

L(t, H , Ḣ) =
(
1 + t2 Ḣ(t)2

H(t)2

)1/2

.

The corresponding differential equation (3.1) for p = 1 reduces to

(
−t H(t)Ḣ(t)2 + t2 Ḣ(t)3 + H(t)2

(
2Ḣ(t) + t Ḧ(t)

)) = 0 (4.1)

which can be written in the following form

t Ḣ(t)

H(t)
=

√
g(t)√

1 − g(t)

where g is a solution of the differential equation (see (3.3) for p = 1):

2g(t) + t ġ(t) = 0. (4.2)

Then the general solution of (4.2) is given by g(t) = bt−2. Then the solution of (4.1)
is the solution of the equation

t Ḣ(t)

H(t)
= 1√

b2t2 − 1

and it is given by

H(t) = c exp
(
− cot−1

[√
b2t2 − 1

])
.
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914 D. Kalaj

If we let that H(1) = 1 then

H(t) = exp
(
cot−1

[√
b2 − 1

]
− cot−1

[√
b2t2 − 1

])
. (4.3)

Here b � 1. Moreover, if we assume that H(r) = R, then after straightforward
computations we get

b =
√(

1 + r2 − 2r cos log R
)
csc[log R]

r
.

The corresponding minimizer is denoted by h◦(z) = H(r)eiθ , z = reiθ . Hence

F [h] = 2π
∫ r

1

(
1 + t2(Ḣ(t))2

H2(t)

)1/2

dt � 2π
∫ r

1

√
1 − 1

b2t2
+ Ḣ(t)

bH(t)
dt

Thus

F [h] � F [h◦]

where

F [h◦] = 2π
−√

b2 − 1 + √
b2r2 − 1 − csc−1 [b] + csc−1 [br ]

b
+ 2π log R

b
.

Lemma 4.1 It exists a radial homeomorphism h : A(1, r) → A(1, R) if and only if

π

2
− tan−1

[
1√

r2 − 1

]
> log R.

Proof By differentiating (4.3) w.r.t. b we get

∂bH(t) =
exp

(
cot−1

[√
−1 + b2

]
− cot−1

[√
−1 + b2t2

]) (
− 1√−1+b2

+ 1√−1+b2t2

)

b
.

Hence H is decreasing in b. The largest value is for b = 1 and it is equal to

R◦(r) := exp

(
π

2
− tan−1

[
1√

r2 − 1

])

for t = r . In other words, there is a increasing diffeomorphism of [1, r ] onto [1, R] if
and only if R � R◦(r). ��
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Remark 4.2 Observe that limr→∞ R(r) = eπ/2, so there is not any homeomorphic
minimizer of theF energy between annuli A(1, r) and A(1, eπ/2). Note that the con-
formalmodulus of mod A(1, eπ/2) is log eπ/2 = π/2. So the case p = 1 differs from
the case p > 1. Moreover, this case is also opposite to the Nitsche type phenomenon
for Dirichlet energy E . Namely Nitsche type phenomenon asserts that the modulus of
image domain could be arbitrarily large, but not small enough.

5 Proof of Theorem 2.2 and Theorem 2.3

We begin with the following proposition

Proposition 5.1 Assume that h = ρ(z)ei�(z) is a diffeomorphism between annuli
A(1, r) and A(1, R). Then for every t ∈ [1, r ] and θ ∈ [0, 2π ] we have

∫
tT

|∇�(z)||dz| � 2π. (5.1)

If the equality hold in (5.1) for every θ ∈ [0, 2π ], then �(z) = eiϕ(θ), z = teiθ , for a
diffeomorphism ϕ : [0, 2π ] onto−→ [α, 2π + α]. Further, we have

∫ R

1

|∇ρ(teiθ )|
ρ(teiθ )

dt � log R. (5.2)

If the equality hold in (5.2) for every t ∈ [1, R], then ρ(teiθ ) = ρ(t).

Proof of Proposition 5.1 First of all, for fixed t , γ (θ) = ei�(teiθ ) is a surjection of
[0, 2π ] onto T = {z : |z| = 1}. Further

|∇�(teiθ )|2 = |�t |2 + |�θ |2
t2

.

So
|γ ′(θ)| = |�θ | � t |∇�(teiθ )|. (5.3)

The equality is attained in (5.3) if and only if �t ≡ 0. In this case γ (θ) = eiϕ(θ), for
a smooth function of ϕ : [0, 2π ] onto−→ [α, 2π + α].

We obtain that

|T| = 2π �
∫ 2π

0
|γ ′(θ)|dθ �

∫
tT

|∇�(z)||dz|,

with an equality if and only if �(seiθ ) does not depend on t . Thus the first statement
of the proposition is proved.

Similarly the function α(t) = log ρ(teiθ ) is a surjection of [1, r ] onto [0, log R]
and hence

log R =
∫ r

1
α′(t)dt �

∫ r

1

|∇ρ(teiθ )|
ρ(teiθ )

dt .
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The equality statement can be proved in the same way as the former part. We only
need to use the formula

|∇ρ(teiθ )|2 = |ρt |2 + |ρθ |2
t2

� |ρt |2.

��
Proof of Theorem 2.2 Assume as before that h(z) = ρ(z)ei�(z) is a mapping from the
annulus A onto the annulus A∗. We start from the following inequality which follows
from Hölder inequality

Fp[h] =
∫
A(1,r)

‖Dh‖p

|h|p �

(∫
A(1,r)

‖Dh‖
|h| · ‖Dh◦‖p−1

|h◦|p−1

)p

(∫
A(1,r)

‖Dh◦‖p

|h◦|p
)p−1 .

In view of (2.1)

‖Dh‖2 = |∇ρ|2 + ρ2|∇�|2,

where ρ(z) = |h(z)|. And thus

‖Dh‖
|h| =

(
|∇�|2 + |∇ρ|2

ρ2

)1/2

.

Then by (3.10), for q = 1 we have

‖Dh‖
|h| �

(√
1 − g(t)|∇�| + √

g(t)
|∇ρ|

ρ

)
. (5.4)

From (5.4) we get

∫
A(1,r)

‖Dh‖
|h| · ‖Dh◦‖p−1

|h◦|p−1

=
∫
A(1,r)

(
|∇�|2 + |∇ρ|2

ρ2

)1/2

· ‖Dh◦‖p−1

|h◦|p−1

�
∫ 2π

0

∫ r

1
t
‖Dh◦‖p−1

|h◦|p−1

(√
1 − g(t)|∇�| + √

g(t)
|∇ρ|

ρ

)
dtdθ.

Let

K (t) = t
√
g(t)

‖Dh◦‖p−1

|h◦|p−1 .
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Then

K (t) = t
√
g(t)

(
1

t2
+ g(t)

t2(1 − g(t))

) 1
2 (p−1)

= P(t).

Thus we again use (3.16) to conclude that K (t) = c(r , R). Furthermore

t
‖Dh‖
|h| · ‖Dh◦‖p−1

|h◦|p−1 � t
(
t2(1 − g(t))

) 1
2 (1−p)

[√
1 − g(t)|∇θ | + √

g(t)
|∇ρ|

ρ

]

= t2−p (1 − g(t)))1−p/2 |∇�| + c(r , R)
|∇ρ|

ρ
.

Now by Proposition 5.1 we have

∫
A

|∇ρ|
|ρ| � 2π log R

and

t
∫ 2π

0
|∇�(teiθ )|dθ � 2π.

So we have

∫
A(1,r)

‖Dh‖
|h| · ‖Dh◦‖p−1

|h◦|p−1 � 2π

(
c log R +

∫ r

1
t2−p(1 − g(t))1−p/2dt

)
= Fp[h◦].

Thus

Fp[h] � F
p
p [h◦]

F
p−1
p [h◦]

= Fp[h◦].

The uniqueness part of this theorem follows from Proposition 5.1. The equation in
(5.4) is satisfied if and only if

ρ(teiθ )|∇�(teiθ )|
|∇ρ(teiθ )|

is a function that depends only on t . Since �(θ) = eiϕ(θ), we get |∇�(θ)| = ϕ′(θ) =
const. Because ϕ : [0, 2π ] onto−→ [α, 2π + α], it follows that ϕ(θ) = θ + α. In other
words h(z) is aminimizer if and only if h(z) = H◦(t)ei(θ+α) = eiαh◦(z). This finishes
the proof. ��
Proof of Theorem 2.3 The proof of Theorem2.3 is the same as the proof of Theorem2.2
up to the part concerning the existence of the radial solutions given in Sect. 4 (See
Lemma 4.1). ��
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