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Abstract
In this paper, we study several classes of H -Toeplitz operators (defined below) on
the Hardy space H2. In particular, we prove that, for ϕ ∈ L∞, the adjoint of H -
Toeplitz operators is hyponormal.Next,we investigate several properties ofH -Toeplitz
operators on the weighted Bergman spaces. Finally, we give necessary and sufficient
conditions for H -Toeplitz operators to be contractive and expansive on the weighted
Bergman spaces.
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Mathematics Subject Classification Primary 47B35 · 30H10 · 30H20

1 Introduction

LetL(H) be the algebra of all bounded linear operators on a separable complexHilbert
spaceH. For T ∈ L(H), T ∗ denotes the adjoint of T . An operator T ∈ L(H) is said to
be self-adjoint if T = T ∗, isometric if T ∗T = I , normal if [T ∗, T ] = 0, hyponormal
if [T ∗, T ] ≥ 0, quasinormal if [T ∗T , T ] = 0, and binormal if [T ∗T , T T ∗] = 0,
respectively, where [R, S] := RS − SR.
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H -Toeplitz operators have been studied in various spaces. Recently, the authors in
[13] studied the essential conditions for H -Toeplitz operators to become a co-isometry
and a partial isometry, explored their invariant subspaces and kernels, and investigated
their compactness and Fredholmness. In particular, they showed a nonzero H -Toeplitz
operator cannot be a Fredholm operator on the Bergman space. Moreover, they con-
sidered the necessary and sufficient conditions for the commutativity of H -Toeplitz
operators. In [25], the authors provided a characterization of the commutativity of H -
Toeplitz operators with quasihomogeneous symbols on the Bergman space. In [22],
the authors explored the characteristics of H -Toeplitz operators on the Bergman space
and offered essential criteria for identifying both contractive and expansive operators.
Additionally, the authors in [14] studied the slant Toeplitz operators on the Hardy
space.

Basic properties of Toeplitz operators on the Hardy space and (weighted) Begman
space can be found in [2, 7, 8, 18, 20, 28]. Recently, many authors have characterized
the hyponormality of Toeplitz operators on the Bergman spaces and the weighted
Bergman spaces (cf. [16, 17, 19, 21, 26, 27, 29]). The theory of Toeplitz operators is a
vast and significant field that has made fundamental contributions to several problems
in functional analysis and mathematical physics.

Several decades ago, researchers extensively studied contractive and expansive
operators (cf. [3, 5, 6]). In particular, in [9], the authors investigated the problem of
invariant subspaces for contractive operators. In [22], the authors studied the contrac-
tivity and expansivity of H -Toeplitz operators with analytic, co-analytic and harmonic
symbols on the Bergman spaces.

In this paper, we study several classes of H -Toeplitz operators on the function
spaces. In Sect. 2, we focus on the self-adjointness of H -Toeplitz operators on the
Hardy space H2. Moreover, we consider complex symmetric H -Toeplitz operator
on H2. Furthermore, we investigate hyponormality, quasinormality, and binormality
of H -Toeplitz operators. In particular, we show that for ϕ ∈ L∞ the adjoint of H -
Toeplitz operators is hyponormal. As an application of this, such an operator has a
nontrivial invariant subspace. In Sect. 3, wewill investigate the the algebraic properties
of H -Toeplitz operators on the weighted Bergman spaces A2

α(D). More concretely, we
introduce the notion of H -Toeplitz operators on the weighted Bergman spaces, which
combine the properties of both Toeplitz and Hankel operators. The importance of this
notion is that it provides a unifying framework for a class of operators on the weighted
Bergman spaces, which includes both Toeplitz and Hankel operators. Furthermore,
we establish a convenient and explicit criterion for determining the contractivity and
expansivity of H -Toeplitz operators.

2 H-Toeplitz operators on the Hardy spaces

Let D be the open unit disk in the complex plane and let T(≡ ∂D) be the unit circle.
Let L∞(T) denote the set of all essentially bounded measurable functions on T. The
Hilbert Hardy space H2(T) consists of all analytic functions f with the power series
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representation

f (z) =
∞∑

n=0

anz
n where

∞∑

n=0

|an|2 < ∞.

For a convenience, we denote L∞(T) and H2(T) by L∞ and H2, respectively. For
any ϕ ∈ L∞, themultiplication operator Mϕ is defined by Mϕ( f ) = ϕ f for f ∈ H2,
the Toeplitz operator Tϕ : H2 → H2 is defined by

Tϕ f = P(ϕ f )

for f ∈ H2 where P denotes the orthogonal projection of L2 onto H2, and theHankel
operator Hϕ : H2 → H2 is defined by

Hϕ f = PMϕ J f

where J : H2 → (H2)⊥ denotes the flip operator given by J (en) = e−n−1 for all
n ≥ 0 where {en}∞n=−∞ is an orthonormal basis for L2. Note that Tϕ is bounded if and
only if ϕ ∈ L∞ and, in which case, ‖Tϕ‖ = ‖ϕ‖∞.

Notation 2.1 Throughout this paper, a dilation operator K from H2 to L2 is denoted
as K (e2n) = en and K (e2n+1) = e−n−1 for all n = 0, 1, 2, . . . where {en}∞n=−∞ is an
orthonormal basis for L2.

LetN,N0,Z,R, andCbe the set of positive integers, non-negative integers, integers,
real numbers, and complex numbers, respectively. A dilation operator K is bounded
from H2 to L2 with ‖K‖ = 1 and its adjoint K ∗ from L2 to H2 is defined as

K ∗(en) = e2n and K ∗(e−n−1) = e2n+1

for all n = 0, 1, 2, . . .. Thus K ∗K = I on H2 and K ∗K = I on L2. Indeed, since
KK ∗en = Ke2n = en for each n ≥ 0, it follows that KK ∗ = I on H2. Moreover,
since KK ∗e−n−1 = Ke2n+1 = e−n−1 for each n ∈ N, we know that KK ∗ = I on
(H2)⊥. Thus KK ∗ = I on L2. Hence K is unitary from H2 to L2.

The authors in [1] have introduced “H -Toeplitz operators" motivated by the
Toeplitz, Hankel, and Slant Toeplitz operators.

Definition 2.2 For ϕ ∈ L∞, an H -Toeplitz operator Sϕ with the symbol ϕ on H2 is
defined by

Sϕ f = PMϕK f

for each f ∈ H2 where P denotes the orthogonal projection of L2 onto H2.

In this case, ‖Sϕ‖ = ‖PMϕK‖ ≤ ‖Mϕ‖ = ‖ϕ‖∞. Note that if {en}∞n=0 denotes
the orthonormal basis for H2, then

Sϕe2n = PMϕKe2n = PMϕen = Tϕen
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and

Sϕe2n+1 = PMϕKe2n+1 = PMϕe−n−1 = PMϕ Jen = Hϕen

for each n = 0, 1, 2 . . . . Note that for ϕ ∈ L∞, the adjoint of Sϕ on H2 is given by

S∗
ϕ = K ∗Mϕ.

2.1 Basic properties of an H-Toeplitz operator

In this section, we consider the basic properties of an H -Toeplitz operator. We first
study the self-adjointness of H -Toeplitz operators on H2.

Theorem 2.3 If ϕ(z) = ∑∞
j=−∞ a j e j with respect to the orthonormal basis B =

{en}∞n=0 in L∞ and Sϕ is an H-Toeplitz operator on H2, then the matrices of Sϕ and
S∗
ϕ are represented as

[Sϕ]B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 a1 a−1 a2 a−2 a3 a−3 · · ·
a1 a2 a0 a3 a−1 a4 a−2 · · ·
a2 a3 a1 a4 a0 a5 a−1 · · ·
a3 a4 a2 a5 a1 a6 a0 · · ·
a4 a5 a3 a6 a2 a7 a1 · · ·
a5 a6 a4 a7 a3 a8 a2 · · ·
a6 a7 a5 a8 a4 a9 a3 · · ·
...

...
...

...
...

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

and

[S∗
ϕ]B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 a1 a2 a3 a4 a5 a6 · · ·
a1 a2 a3 a4 a5 a6 a7 · · ·
a−1 a0 a1 a2 a3 a4 a5 · · ·
a2 a3 a4 a5 a6 a7 a8 · · ·
a−2 a−1 a0 a1 a2 a3 a4 · · ·
a3 a4 a5 a6 a7 a8 a9 · · ·
a−3 a−2 a−1 a0 a1 a2 a3 · · ·
...

...
...

...
...

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Furthermore, [Sϕ]B is self-adjoint if and only if [Sϕ]B = 0.

Proof We know that Sϕ is self-adjoint if and only if a0, a1, a2, a3, a5, a8, . . . are real
and a2 = a−1, a3 = a0, a2 = a3, a−2 = a4, a3 = a5, a−3 = a6, and so on (cf. [1,
Page 151]).
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On the other hand, the (i, j) entry of the matrix [Sϕ]B is given by

ai, j =

⎧
⎪⎨

⎪⎩

ai if j = 0

ai−n if j = 2n

ai+n+1 if j = 2n + 1

(see [1]). And the (i, j) entry of the matrix [S∗
ϕ]B is given by

a j,i =

⎧
⎪⎨

⎪⎩

a j if i = 0

a j−n if i = 2n

a j+n+1 if i = 2n + 1.

(2)

Thus [Sϕ]B = [S∗
ϕ]B if and only if ai, j = a j,i for all i, j . Hence [Sϕ]B is self-adjoint

if and only if a j = a0 ∈ R for all j ∈ Z if and only if a j = 0 for all j since [Sϕ]B is
bounded. ��
Proposition 2.4 Let ϕ ∈ L∞ and Sϕ be an H-Toeplitz operator on H2. Then Sϕ is an
isometry on H2 if and only if MϕPMϕ = I on L2. In particular, ϕ is not inner.

Proof Since S∗
ϕ = K ∗Mϕ , we have S∗

ϕSϕ = K ∗MϕPMϕK . Then K ∗MϕPMϕK = I

on H2. Hence MϕPMϕ = I on L2 since K is unitary from H2 to L2. Thus Sϕ is an
isometry on H2 if and only if MϕPMϕ = I on L2.

If ϕ is inner, then MϕPMϕ − I = MϕMϕ − I = M|ϕ|2 − I = 0. Thus Sϕ is an
isometry on H2. But, if ϕ is inner, then S∗

ϕ is an isometry on H2 (cf. [1]), and so S∗
ϕ

is normal. Therefore, ϕ = 0 from [1], which is a contradiction. ��
Next, we study complex symmetric H -Toeplitz operator on H2. A conjugation on

H is an antilinear operatorC : H → Hwhich satisfiesC2 = I and 〈Cx,Cy〉 = 〈y, x〉
for all x, y ∈ H. If C is a conjugation on H, then there exists an orthonormal basis
{en}∞n=0 for H such that Cen = en for all n (see [10]). An operator T ∈ L(H) is
complex symmetric if there exists a conjugation C on H such that T = CT ∗C .
Complex symmetric operators have been widely studied by several mathematicians
(see [10–12, 23, 24] for more details).

Proposition 2.5 For ϕ ∈ L∞, let Sϕ be an H-Toeplitz operator on H2 and C be
a conjugation on L2 given by C f (z) = f (z) for f ∈ H2. Then Sϕ is complex
symmetric with the conjugation C if and only if Tϕ(z)en = K ∗Mϕ(z)e2n and Hϕ(z)en =
K ∗Mϕ(z)e2n+1 for n ∈ N0.

Proof Let C be a conjugation on L2 given by C f (z) = f (z) for f ∈ H2. Then
Cen = en for n ≥ 0 and so CP = PC on L2 from [24]. Thus for n ≥ 0,

CSϕCe2n = CSϕe2n = CTϕ(en) = CP(ϕen) = PC(ϕen) = Tϕ(z)en

and

CSϕCe2n+1 = CHϕ(en) = CPMϕ(Jen) = CPϕ(Jen) = Hϕ(z)en
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hold. Since S∗
ϕ = K ∗Mϕ for ϕ ∈ L∞, we obtain that Sϕ is complex symmetric with

the conjugationC if and only if Tϕ(z)en = K ∗Mϕ(z)e2n and Hϕ(z)en = K ∗Mϕ(z)e2n+1
for n ∈ N0. ��
Theorem 2.6 For ϕ ∈ L∞, let Sϕ be an H-Toeplitz operator on H2. Assume that C is
a conjugation on L2 given by C f (z) = f (z) for f ∈ H2 and Cμ,λ is a conjugation on
L2 given by Cμ,λ f (z) = μ f (λz) for f ∈ H2 with |λ| = |μ| = 1. Then the following
statements are equivalent:
(i) Sϕ is complex symmetric with the conjugation C.
(ii) Sϕ is complex symmetric with the conjugation Cμ,λ.
(iii) ϕ = 0.

Proof (i) ⇔ (iii) Let ϕ(z) = ∑∞
j=−∞ a j e j be with respect to the basis B = {en}∞n=0.

Since the matrix of Sϕ is of the form (1), it follows that the matrix of CSϕC is the
followings:

[CSϕC]B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 a1 a−1 a2 a−2 a3 a−3 · · ·
a1 a2 a0 a3 a−1 a4 a−2 · · ·
a2 a3 a1 a4 a0 a5 a−1 · · ·
a3 a4 a2 a5 a1 a6 a0 · · ·
a4 a5 a3 a6 a2 a7 a1 · · ·
a5 a6 a4 a7 a3 a8 a2 · · ·
a6 a7 a5 a8 a4 a9 a3 · · ·
...

...
...

...
...

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then [Sϕ]B is complex symmetric with the conjugation C if and only if a j = a0 ∈ C

for all j ∈ Z. Hence ϕ is of the form ϕ = ∑∞
j=−∞ ϕ̂(0)e j and so ϕ = 0 since ϕ ∈ L∞.

(ii) ⇔ (iii) Let ϕ(z) = ∑∞
j=−∞ a j e j be with respect to the basis B = {en}∞n=0. It

is known from [24] that Cμ,λ is unitarily equivalent to C1,λ. Since the matrix of Sϕ is
the form of (1), it follows that the matrix of C1,λSϕC1,λ is the followings:

[C1,λSϕC1,λ]B = λI

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 a1 a−1 a2 a−2 a3 a−3 · · ·
a1 a2 a0 a3 a−1 a4 a−2 · · ·
a2 a3 a1 a4 a0 a5 a−1 · · ·
a3 a4 a2 a5 a1 a6 a0 · · ·
a4 a5 a3 a6 a2 a7 a1 · · ·
a5 a6 a4 a7 a3 a8 a2 · · ·
a6 a7 a5 a8 a4 a9 a3 · · ·
...

...
...

...
...

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= λ[CSϕC]B.

Then [Sϕ]B is complex symmetricwith the conjugationC1,λ if and only if a j = a0 ∈ C

for all j ∈ Z and λ = 1. Hence, in this case, ϕ is of the form ϕ = ∑∞
j=−∞ ϕ̂(0)e j

and so ϕ = 0 since ϕ ∈ L∞. ��
Remark that if ϕ ∈ L2, then an unbounded H -Toeplitz operator is complex sym-

metric with the conjugation C if and only if ϕ̂( j) = ϕ̂(0) ∈ C for all j ∈ Z. In
previous theorem, if ϕ̂(0) �= 0, then ϕ = ∑∞

j=−∞ ϕ̂(0)e j does not belong to L∞.
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2.2 Hyponormal, quasinormal, and binormal H-Toeplitz operators

In this section, we study hyponormal, quasinormal, and binormal H -Toeplitz opera-
tors.

Lemma 2.7 For ϕ ∈ L∞, let Sϕ be an H-Toeplitz operator on H2. Then the following
statements hold.
(i) SϕS∗

ϕ = T|ϕ|2 , S∗
ϕSϕe2n = K ∗MϕTϕen, and S∗

ϕSϕe2n+1 = K ∗MϕTϕen hold for
each n ∈ N0.
(ii) S∗

ϕ is hyponormal if and only if the following equations hold.

{
T|ϕ|2e2n ≥ K ∗MϕTϕen
T|ϕ|2e2n+1 ≥ K ∗MϕHϕen

(3)

for each n ∈ N0. In particular, the equalities in (3) hold if and only if Sϕ is normal.

Proof (i) For ϕ ∈ L∞, let Sϕ be an H -Toeplitz operator on H2. Since S∗
ϕ = K ∗Mϕ ,

it follows that S∗
ϕSϕ = K ∗MϕPMϕK and

SϕS
∗
ϕ = (PMϕK )(K ∗Mϕ) = PMϕMϕ = PM|ϕ|2 = T|ϕ|2 .

On the other hand, since S∗
ϕSϕ = K ∗MϕPMϕK , it follows that

S∗
ϕSϕe2n = K ∗MϕPMϕKe2n

= K ∗MϕPMϕen
= K ∗MϕTϕen

and

S∗
ϕSϕe2n+1 = K ∗MϕPMϕKe2n+1

= K ∗MϕPMϕe−n−1
= K ∗MϕHϕen

for each n ∈ N0.
(ii) By (i), we obtain that S∗

ϕ is hyponormal if and only if for each n, it holds that

{
T|ϕ|2e2n ≥ K ∗MϕTϕen
T|ϕ|2e2n+1 ≥ K ∗MϕHϕen .

In particular, we get that Sϕ is normal if and only if

{
T|ϕ|2e2n = K ∗MϕTϕen
T|ϕ|2e2n+1 = K ∗MϕHϕen

for each n ∈ N0. ��
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Using Lemma 2.7, we show that every H -Toeplitz operator on H2 is cohyponormal.

Theorem 2.8 For ϕ ∈ L∞, let Sϕ be an H-Toeplitz operator on H2. Then S∗
ϕ is

hyponormal.

Proof. Set ϕ = ∑∞
j=−∞ ϕ̂( j)e j ∈ L∞. Let Sϕ be an H -Toeplitz operator on H2.

Then S∗
ϕ is hyponormal if and only if

‖Sϕ f ‖2 ≤ ‖S∗
ϕ f ‖2

for each f ∈ H2. Taking f = e2n for each n, Lemma 2.7 implies that

‖S∗
ϕe2n‖2 − ‖Sϕe2n‖2 = ‖K ∗M∗

ϕe2n‖2 − ‖PTϕen‖2
= ‖M∗

ϕe2n‖2 − ‖PTϕen‖2

=
∥∥∥∥

∞∑

j=−∞
ϕ̂( j)e2n− j

∥∥∥∥
2

−
∥∥∥∥

∞∑

j=−n

ϕ̂( j)en+ j

∥∥∥∥
2

=
∞∑

j=−∞
|ϕ̂( j)|2 −

∞∑

j=−n

|ϕ̂( j)|2

=
∞∑

j=n−1

|ϕ̂(− j)|2 ≥ 0

since K ∗ is unitary. Put f (z) = e2n+1 for each n. Then Lemma 2.7 ensures that

‖S∗
ϕe2n+1‖2 − ‖Sϕe2n+1‖2 = ‖S∗

ϕe2n+1‖2 − ‖Hϕen‖2
= ‖K ∗M∗

ϕe2n+1‖2 − ‖PMϕ Jen‖2
= ‖M∗

ϕe2n+1‖2 − ‖PMϕ Jen‖2

=
∥∥∥∥

∞∑

j=−∞
ϕ̂( j)e2n+1− j

∥∥∥∥
2

−
∥∥∥∥P(

∞∑

j=−∞
ϕ̂( j)e j−n−1)

∥∥∥∥
2

=
∞∑

j=−∞
|ϕ̂( j)|2 −

∞∑

j=n+1

|ϕ̂( j)|2

=
n∑

j=−∞
|ϕ̂( j)|2 ≥ 0.

Hence we conclude that S∗
ϕ is hyponormal. ��

Theorem 2.9 Letϕ ∈ L∞ and Sϕ be an H-Toeplitz operator on H2. Then the following
statement hold.
(i) If ϕ is a nonzero constant function, then Sϕ is not quasinormal, but its adjoint S∗

ϕ

is quasinormal.
(ii) If ϕ = λu for an inner function u and λ ∈ C, then S∗

ϕ is quasinormal.
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Proof (i) Let ϕ = ϕ1 + ϕ2 ∈ L∞ where ϕ1, ϕ2 ∈ H∞. Then Sϕ is quasinormal if and
only if, for each n ∈ N0,

0 = (S∗
ϕSϕSϕ − SϕS

∗
ϕSϕ)e2n

= K ∗MϕPMϕK PMϕKe2n − PMϕKK ∗MϕPMϕKe2n
= K ∗MϕPMϕK PMϕen − PMϕMϕPMϕen
= K ∗MϕPMϕK PMϕen − PM|ϕ|2 PMϕen (4)

and

0 = (S∗
ϕSϕSϕ − SϕS

∗
ϕSϕ)e2n+1

= K ∗MϕPMϕK PMϕKe2n+1 − PMϕKK ∗MϕPMϕKe2n+1
= K ∗MϕPMϕK PMϕe−n−1 − PMϕMϕPMϕe−n−1
= K ∗MϕPMϕK PMϕe−n−1 − PM|ϕ|2 PMϕe−n−1.

If ϕ = c is nonzero constant and n is odd, then (4) becomes

K ∗MϕPMϕK PMϕen − PM|ϕ|2 PMϕen = K ∗MϕPMϕKcen − PM|c|2cen
= K ∗MϕP(c2e−n−1

2
) − |c|2cen = −|c|2cen

�= 0.

Hence Sϕ is not quasinormal.
On the other hand, S∗

ϕ is quasinormal if and only if SϕS∗
ϕS

∗
ϕ − S∗

ϕSϕS∗
ϕ = 0. Since

SϕS∗
ϕ = T|ϕ|2 , it follows that S∗

ϕ is quasinormal if and only if

T|ϕ|2 S∗
ϕ = S∗

ϕT|ϕ|2 . (5)

If ϕ is a constant function, i.e. ϕ = c, then

(T|ϕ|2 S∗
ϕ − S∗

ϕT|ϕ|2)e2n = (T|c|2 S∗
c − S∗

c T|c|2)e2n
= T|c|2K ∗Mce2n − K ∗McT|c|2e2n
= P(c|c|2K ∗e2n) − c|c|2K ∗e2n = 0

and

(T|ϕ|2 S∗
ϕ − S∗

ϕT|ϕ|2)e2n+1 = (T|c|2 S∗
c − S∗

c T|c|2)e2n+1
= T|c|2K ∗Mce2n+1 − K ∗McT|c|2e2n+1

= P(c|c|2K ∗e2n+1) − c|c|2K ∗e2n+1 = 0

for each n ∈ N0. Therefore, S∗
ϕ is quasinormal.

(ii) Since ϕ = λu for an inner function u and λ ∈ C, it follows that

SϕS
∗
ϕ = (PMϕK )(K ∗Mϕ) = PMλuMλu = PM|λ|2|u|2 = T|λ|2 = |λ|2 I .

Thus (5) holds. Hence S∗
ϕ is quasinormal. ��
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We next consider the hyponormality and the binormality of Sϕ .

Proposition 2.10 For ϕ ∈ L∞, let Sϕ be an H-Toeplitz operator on H2. Then the
following statements are equivalent.
(i) Sϕ is normal.
(ii) Sϕ is hyponormal.
(iii) ϕ = 0.

Proof If ϕ = 0, then Sϕ is normal, and hence hyponormal. If Sϕ is hyponormal, the
proof follows from [1]. ��
Theorem 2.11 Let ϕ ∈ L∞and Sϕ be an H-Toeplitz operator on H2. Assume that one
of the following statements hold.
(i) ϕ is a constant function.
(ii) ϕ = λu for an inner function u and λ ∈ C.
(iii) ϕ = λu for an inner function u and λ ∈ C. Then Sϕ is binormal.

Proof Let ϕ ∈ L∞. Then Sϕ is binormal if and only if S∗
ϕSϕ and SϕS∗

ϕ commute. This
is equivalent to S∗

ϕSϕ and T|ϕ|2 commute. Thus Sϕ is binormal if and only if

[S∗
ϕSϕ, SϕS

∗
ϕ] = [S∗

ϕSϕ, T|ϕ|2 ] = [K ∗MϕPMϕK , T|ϕ|2 ] = 0. (6)

(i) If ϕ is a constant function, then (6) clearly holds.
(ii) If ϕ = λu for an inner function u and λ ∈ C, then S∗

ϕ is quasinormal and so S∗
ϕ is

binormal. Hence Sϕ is binormal.
(iii) If ϕ = λu for an inner function u and λ ∈ C, then

SϕS
∗
ϕ = (PMϕK )(K ∗Mϕ) = PMλuMλu = PM|λ|2|u|2 = T|λ|2 = |λ|2 I .

Thus (6) clearly holds. Hence Sϕ is binormal. ��
Example 2.12 If ϕ(z) = zm for some m, then by Theorem 2.11, Szm is binormal and
by Theorem 2.9, Szm is not quasinormal and S∗

zm is quasinormal.

Example 2.13 Let ϕ(z) = λ
(

z−μ
1−μz

)
for μ ∈ D and λ ∈ C. Then Sϕ is binormal from

Theorem 2.11.

Corollary 2.14 For ϕ ∈ L∞, let Sϕ be an H-Toeplitz operator on H2. Assume that
one of the following statements hold.
(i) ϕ is a constant function.
(ii) ϕ = λu for an inner function u and λ ∈ C.
(iii) ϕ = λu for an inner function u and λ ∈ C.
Then S∗

ϕ has a nontrivial invariant subspace.

Proof ByTheorem2.11, Sϕ is binormal.Hence S∗
ϕ is binormal. Since S∗

ϕ is hyponormal
by Theorem 2.8, we conclude that S∗

ϕ has a nontrivial invariant subspace from [4]. ��
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3 H-Toeplitz operators on the weighted Bergman spaces

3.1 Preliminaries and auxiliary lemmas

For −1 < α < ∞, the weighted Bergman spaces A2
α(D) is the space of analytic

functions in L2(D) ≡ L2(D, d Aα), where

d Aα(z) = (α + 1)(1 − |z|2)αd A(z).

The inner product on L2(D) is given by

〈 f , g〉α =
∫

D

f (z)g(z)d Aα(z) ( f , g ∈ L2(D, d Aα)).

If α = 0, then, A2
0(D) is the Bergman spaces. For n ∈ N0, let

en(z) =
√

�(n + α + 2)

�(n + 1)�(α + 2)
zn (z ∈ D).

Here, �(s) stands for the usual Gamma functions. It is easy to check that {en}∞n=0
be an orthonormal set in A2

α(D) ([15]). Because the set of polynomials is dense in
A2

α(D), we conclude that en forms an orthonormal basis for A2
α(D). If f , g ∈ A2

α(D)

are functions of the form

f (z) =
∞∑

n=0

anz
n and g(z) =

∞∑

n=0

bnz
n,

then

〈 f , g〉α =
∞∑

n=0

�(n + 1)�(α + 2)

�(n + α + 2)
anbn .

The weighted harmonic Bergman spaces L2
α(D) denote the space of all harmonic

functions f on D such that

|| f || :=
(∫

D

| f (z)|2d Aα(z)

)1/2

< ∞.

The space L2
α(D) is a closed subspace of L2(D) and therefore inherits the structure of

a Hilbert space from L2(D). Let Pharm denote the orthogonal projection from L2(D)

onto L2
α(D).

For ϕ ∈ L∞(D), the multiplication operatorsMϕ on A2
α(D) is defined byMϕ( f ) =

ϕ f , and the Toeplitz operators Tϕ on A2
α(D) is defined by

Tϕ( f ) = Pα(ϕ f ),
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where Pα denotes the orthogonal projection of L2(D) onto A2
α(D) and f ∈ A2

α(D). It
is evident that those operators are bounded when ϕ ∈ L∞(D). The Hankel operators
Hϕ on the A2

α(D) is defined by

Hϕ( f ) = PαMϕ J ( f ),

where the operators J : A2
α(D) → A2

α(D) is given by J (en(z)) = en+1(z) for all
n ∈ N0.

Now, we introduce the notion of H -Toeplitz operators on the weighted Bergman
spaces and discuss their various familiar properties. First of all, we recall the well-
known facts.

Lemma 3.1 [19] For any s, t ∈ N0,

Pα(zt zs) =
{

�(s+1)�(s−t+α+2)
�(s+α+2)�(s−t+1) z

s−t if s ≥ t

0 if s < t .

In [13], the orthogonal projection from the space L2(D) onto the harmonicBergman
space is given. Using a similar method, the following results can be induced.

Lemma 3.2 In the weighted harmonic Bergman spaces L2
α(D), for s, t ∈ N0,

Pharm(zt zs) =
{

�(s−t+α+2)�(s+1)
�(s+α+2)�(s−t+1) z

s−t if s ≥ t
�(t−s+α+2)�(t+1)
�(t+α+2)�(t−s+1) z

t−s if s < t .

Proof If s ≥ t , then

〈Pharm(zt zs), zk〉 = 〈zt zs, zk〉

=
{

�(α+2)�(s+1)
�(s+α+2) if k = s − t

0 otherwise

=
{

�(k+α+2)�(s+1)
�(s+α+2)�(k+1) 〈zk, zk〉 if k = s − t

0 otherwise

= �(s − t + α + 2)�(s + 1)

�(s + α + 2)�(s − t + 1)
〈zs−t , zk〉.

On the other hands, if s < t , then

〈Pharm(zt zs), zk〉 = 〈zt zs, zk〉

=
{

�(α+2)�(t+1)
�(t+α+2) if k = t − s

0 otherwise

=
{

�(k+α+2)�(t+1)
�(t+α+2)�(k+1) 〈zk, zk〉 if k = t − s

0 otherwise

123



H-Toeplitz operators on the function spaces

= �(t − s + α + 2)�(t + 1)

�(t + α + 2)�(t − s + 1)
〈zt−s, zk〉.

��

Next, we find the matrix representations of Toeplitz operators Tϕ and of Hankel
operators Hϕ with harmonic symbols ϕ on the weighted Bergman spaces. For the
harmonic symbol ϕ(z) = ∑∞

i=0 ai z
i + ∑∞

j=1 b j z j ∈ L∞(D), the (m, n)th entry of

the matrix of Tϕ with respect to orthonormal basis B = {en}∞n=0 of A
2
α(D) is given by

〈Tϕen, em〉 = 〈Pα(ϕen), em〉

=
√

�(n + α + 2)

�(n + 1)�(α + 2)

√
�(m + α + 2)

�(m + 1)�(α + 2)

〈( ∞∑

i=0

ai z
i +

∞∑

j=1

b j z
j
)
zn, zm

〉

=
√

�(n + α + 2)

�(n + 1)�(α + 2)

√
�(m + α + 2)

�(m + 1)�(α + 2)

( ∞∑

i=0

ai 〈zi+n, zm〉 +
∞∑

j=1

b j 〈zn, zm+ j 〉
)

.

There are two cases to consider. If m ≥ n, then we have

〈Tϕen, em〉 =
√

�(n + α + 2)

�(n + 1)�(α + 2)

√
�(m + α + 2)

�(m + 1)�(α + 2)

∞∑

i=0

ai 〈zi+n, zm〉

=
√

�(n + α + 2)

�(n + 1)�(α + 2)

√
�(m + α + 2)

�(m + 1)�(α + 2)

�(m + 1)�(α + 2)

�(m + α + 2)
am−n

=
√

�(n + α + 2)�(m + 1)

�(n + 1)�(m + α + 2)
am−n .

If m < n, then we have

〈Tϕen, em〉 =
√

�(n + α + 2)

�(n + 1)�(α + 2)

√
�(m + α + 2)

�(m + 1)�(α + 2)

∞∑

j=1

b j 〈zn, zm+ j 〉

=
√

�(n + α + 2)

�(n + 1)�(α + 2)

√
�(m + α + 2)

�(m + 1)�(α + 2)

�(n + 1)�(α + 2)

�(n + α + 2)
bn−m

=
√

�(m + α + 2)�(n + 1)

�(m + 1)�(n + α + 2)
bn−m .

Thus, we have

〈Tϕen, em〉 =
⎧
⎨

⎩

√
�(n+α+2)�(m+1)
�(n+1)�(m+α+2)am−n for m ≥ n

√
�(m+α+2)�(n+1)
�(m+1)�(n+α+2)bn−m for m < n,
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where m, n ∈ N0. Therefore, the matrix representation of Tϕ is given by

[Tϕ]B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0
√

1
α+2b1

√
1·2

(α+2)(α+3)b2
√

1·2·3
(α+2)(α+3)(α+4)b3 · · ·

√
1

α+2a1 a0
√

1·2
α+3b1

√
1·2·3

(α+3)(α+4)b2 · · ·
√

1·2
(α+2)(α+3)a2

√
1·2
α+3a1 a0

√
3

α+4b1 · · ·
√

1·2·3
(α+2)(α+3)(α+4)a3

√
1·2·3

(α+3)(α+4)a2
√

3
α+4a1 a0 · · ·

.

.

.
.
.
.

.

.

.
.
.
.

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and the adjoint of the matrix representation of Tϕ is given by

[T ∗
ϕ ]B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0
√

1
α+2a1

√
1·2

(α+2)(α+3)a2
√

1·2·3
(α+2)(α+3)(α+4)a3 · · ·

√
1

α+2b1 a0
√

1·2
α+3a1

√
1·2·3

(α+3)(α+4)a2 · · ·
√

1·2
(α+2)(α+3)b2

√
1·2
α+3b1 a0

√
3

α+4a1 · · ·
√

1·2·3
(α+2)(α+3)(α+4)b3

√
1·2·3

(α+3)(α+4)b2
√

3
α+4b1 a0 · · ·

.

.

.
.
.
.

.

.

.
.
.
.

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and hence, we check that T ∗
ϕ = Tϕ .

Next, for the harmonic symbol ϕ(z) = ∑∞
i=0 ai z

i + ∑∞
j=1 b j z j ∈ L∞(D), the

(m, n)th entry of the matrix of Hϕ with respect to orthonormal basis B = {en}∞n=0 of
A2

α(D) is given by

〈Hϕen, em〉 = 〈PαMϕ Jen, em〉

=
√

�(n + α + 3)

�(n + 2)�(α + 2)

√
�(m + α + 2)

�(m + 1)�(α + 2)

〈( ∞∑

i=0

ai z
i +

∞∑

j=1

b j z
j
)
zn+1, zm

〉

=
√

�(n + α + 3)

�(n + 2)�(α + 2)

√
�(m + α + 2)

�(m + 1)�(α + 2)
( ∞∑

i=0

ai 〈zi , zm+n+1〉 +
∞∑

j=1

b j 〈z j , zm+n+1〉
)

=
√

�(n + α + 3)�(m + α + 2)

�(n + 2)�(m + 1)

�(m + n + 2)

�(m + n + α + 3)
am+n+1

for m, n ∈ N0. Therefore, the matrix representation of Hϕ is given by

[Hϕ]B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
1

α+2a1
√

1·2
(α+2)(α+3)a2

√
1·2·3

(α+2)(α+3)(α+4)a3 · · ·
1·2
α+3a2

3
√
2

(α+4)
√

α+3
a3

4
√
6

(α+5)
√

(α+3)(α+4)
a4 · · ·

3
√
2

(α+4)
√

α+3
a3

12
(α+4)(α+5)a4

20
√
3

(α+5)(α+6)
√

α+4
a5 · · ·

4
√
6

(α+5)
√

(α+3)(α+4)
a4

20
√
3

(α+5)(α+6)
√

α+4
a5

4·5·6
(α+5)(α+6)(α+7)a6 · · ·

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Notation 3.3 For our convenience, we introduce the following notations:

�α(s) = �(s + 1)�(α + 2)

�(s + α + 2)
and �α(s, t) = �(s + 1)2�(s − t + α + 2)�(α + 2)

�(s + α + 2)2�(s − t + 1)
.

Lemma 3.4 [19] For m ≥ 0, we have that

(i)
∣∣∣
∣∣∣zm

∞∑

j=0

c j z
j
∣∣∣
∣∣∣
2

=
∞∑

j=0

�α( j + m)|c j |2, and

(ii)
∣∣∣
∣∣∣Pα

(
zm

∞∑

j=0

c j z
j
)∣∣∣

∣∣∣
2

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∞∑

j=0

�α( j,m)|c j |2 if m ≤ j

∞∑

j=1

�α( j,m)|c j |2 if m > j .

Applying Lemmas 3.2 and 3.4, we obtain the following Remarks.

Remark 3.5 For m ≥ 0, we have

||Pharm
(
zm

∞∑

j=0

c j z
j
)

||2 =
m∑

j=0

�α(m, j)|c j |2 +
∞∑

j=m+1

�α( j,m)|c j |2.

To define the notion of H -Toeplitz operators on A2
α(D), we start by considering the

operators K : A2
α(D) → L2

α(D) defined by

K (e2n(z)) = en(z) and K (e2n+1(z)) = en+1(z) (7)

for all n ≥ 0 and z ∈ D. The operator K can be shown to be a bounded linear operator
on A2

α(D) with ||K || = 1. Furthermore, the adjoint operator K ∗ is given by

K ∗(en(z)) = e2n(z) and K ∗(en+1(z)) = e2n+1(z)

for all n ≥ 0. From the definitions of the operators K and K ∗, we have that KK ∗ =
IL2

α(D) and K ∗K = IA2
α(D).

Remark 3.6 It follows from the definition of operator K , we have

K (z2n) =
√

�(2n + 1)�(n + α + 2)√
�(n + 1)�(2n + α + 2)

zn, K (z2n+1) =
√

�(2n + 2)�(n + α + 3)√
�(n + 2)�(2n + α + 3)

zn+1,

K ∗(zn) =
√

�(n+1)�(2n+α+2)√
�(2n+1)�(n+α+2)

z2n, and K ∗(zn+1) =
√

�(n+2)�(2n+α+3)√
�(2n+2)�(n+α+3)

z2n+1.

We next define H -Toeplitz operators on the weighted Bergman spaces A2
α(D).

Definition 3.7 For ϕ ∈ L∞(D), the H -Toeplitz operator Bϕ on the weighted Bergman
space is defined by Bϕ( f ) = PαMϕK ( f ) for all f ∈ A2

α(D) where K is defined as
in (7).
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Wefind thematrix representation of H -Toeplitz operators Bϕ with harmonic symbol
ϕ on the weighted Bergman spaces. If the harmonic symbol of the form ϕ(z) =∑∞

i=0 ai z
i + ∑∞

j=1 b j z j ∈ L∞(D), then

Bϕ(e2n) = PαMϕK (e2n) = PαMϕ(en) = Tϕ(en)

and

Bϕ(e2n+1) = PαMϕK (e2n+1) = PαMϕ(en+1) = PαMϕ J (en) = Hϕ(en)

where {en}∞n=0 is an orthonormal set in A2
α(D). Thus

〈Bϕe2n, em〉 = 〈Tϕen, em〉

=
⎧
⎨

⎩

√
�(n+α+2)�(m+1)
�(n+1)�(m+α+2)am−n for m ≥ n√
�(m+α+2)�(n+1)
�(m+1)�(n+α+2)bn−m for m < n,

and

〈Bϕe2n+1, em〉 = 〈Hϕen, em〉

=
√

�(n + α + 3)�(m + α + 2)

�(n + 2)�(m + 1)

�(m + n + 2)

�(m + n + α + 3)
am+n+1

where m, n ∈ N0. Thus (m, n)th entry of the matrix representation of Bϕ with respect
to orthonormal basis B = {en}∞n=0 of A

2
α(D) is given by

[Bϕ ]B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0
√

1
α+2a1

√
1

α+2 b1
√

1·2
(α+2)(α+3)a2 · · ·

√
1

α+2a1
1·2
α+3a2 a0

3
√
2

(α+4)
√

α+3
a3 · · ·

√
1·2

(α+2)(α+3)a2
3
√
2

(α+4)
√

α+3
a3

√
1·2
α+3a1

12
(α+4)(α+5)a4 · · ·

√
1·2·3

(α+2)(α+3)(α+4)a3
4
√
6

(α+5)
√

(α+3)(α+4)
a4

√
1·2·3

(α+3)(α+4)a2
20

√
3

(α+5)(α+6)
√

α+4
a5 · · ·

.

.

.
.
.
.

.

.

.
.
.
.

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The following proposition presents some basic properties of H -Toeplitz operators
on the weighted Bergman spaces (cf. [13]).

Proposition 3.8 For ϕ,ψ ∈ L∞(D), the operator Bϕ satisfies the following:
(i) Bϕ is a bounded linear operators on A2

α(D) with ||Bϕ || ≤ ||ϕ||∞.
(ii) For any scalars α and β, it holds Bαϕ+βψ = αBϕ + βBψ .
(iii) The adjoint of the H-Toeplitz operators Bϕ is given by B∗

ϕ = K ∗PharmMϕ .

The following remark provides an important information regarding adjoint opera-
tors, showing the difference between the adjoint of Toeplitz operators and the adjoint
of H -Toeplitz operators.
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Remark 3.9 If f , g are in L∞(D), then, by the definition of Toeplitz operators, we
have that

T ∗
f = T f and T f Tg = T f g if f or g is analytic.

However, for the case of the H -Toeplitz operators,

B∗
z (az) = K ∗PharmMz(az) = K ∗Pharm(azz) = K ∗

(
�(2)�(α + 2)

�(α + 3)
a

)
= a

α + 2

and

Bz(az) = PαMzK (az) = PαMzaz = Pα(az2) = 0.

Therefore, B∗
z (az) �= Bz(az). It can be easily verified by computation that Bz Bz �=

Bz2 .

Recall that a bounded linear operator T on a Hilbert space is called expansive if
T ∗T ≥ I , contractive if T ∗T ≤ I , and isometric if T ∗T = I , respectively. For
k ∈ A2

α(D), let k(z) = ke(z) + ko(z), where

ke(z) :=
∞∑

n=0

c2nz
2n and ko(z) :=

∞∑

n=0

c2n+1z
2n+1.

3.2 H-Toeplitz operators with analytic symbols

In this subsection, we examine the characteristics of H -Toeplitz operators Bϕ with
analytic symbol functions ϕ. First, we study the necessary condition for contractivity
and expansivity of Bϕ whereϕ(z) = ∑∞

j=0 a j z j witha j ∈ Cunder a certain additional
assumptions concerning the symbol ϕ.

Theorem 3.10 Let ϕ(z) = ∑∞
j=0 a j z j and a j ∈ C.

(i) If Bϕ is contractive, then

∞∑

j=0

|a j |2 ≤ 1 and
∞∑

j=s+1

�α( j, s + 1)

�α(s + 1)
|a j |2 ≤ 1

for any s ∈ N0.
(ii) If Bϕ is expansive, then

∞∑

j=0

�α( j)|a j |2 ≥ 1 and
∞∑

j=s+1

�α( j, s + 1)

�α(s + 1)
|a j |2 ≥ 1

for any s ∈ N0.
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Proof For any k ∈ A2
α(D), we have

Bϕk(z) = PαMϕK (ke(z) + ko(z))

= PαMϕ

∞∑

n=0

(√
�(2n + 1)�(n + α + 2)√
�(n + 1)�(2n + α + 2)

c2nz
n +

√
�(2n + 2)�(n + α + 3)√
�(n + 2)�(2n + α + 3)

c2n+1z
n+1

)

=
∞∑

j=0

∞∑

n=0

√
�(2n + 1)�(n + α + 2)√
�(n + 1)�(2n + α + 2)

a j c2nz
n+ j

+
∞∑

j=1

j−1∑

n=0

√
�(2n + 2)�(n + α + 3)√
�(n + 2)�(2n + α + 3)

· �( j + 1)�( j − n + α + 1)

�( j + α + 2)�( j − n)
a j c2n+1z

j−n−1

(8)

for any ck ∈ C (k = 0, 1, 2, . . .). Then, from (8), the coefficient of zm is

m∑

n=0

√
�(2n + 1)�(n + α + 2)√
�(n + 1)�(2n + α + 2)

am−nc2n

+
∞∑

n=0

√
�(2n + 2)�(n + α + 3)√
�(n + 2)�(2n + α + 3)

· �(m + n + 2)�(m + α + 2)

�(m + n + α + 3)�(m + 1)
an+m+1c2n+1.

For a fixed 
 ∈ N0, set c
 �= 0 and ck = 0 for any k �= 
. We consider the following
two cases:

Case 1: If 
 = 2s for any s ∈ N0, then

Bϕk(z) =
∞∑

j=0

√
�(2s + 1)�(s + α + 2)√
�(s + 1)�(2s + α + 2)

a j c2s z
s+ j .

If Bϕ on A2
α(D) is contractive, then

∞∑

j=0

�(2s + 1)�(s + α + 2)

�(s + 1)�(2s + α + 2)
�α(s + j)|a j |2|c2s |2 ≤ �α(2s)|c2s |2.

Thus

∞∑

j=0

�α(s + j)|a j |2 ≤ �(s + 1)�(2s + α + 2)

�(2s + 1)�(s + α + 2)
�α(2s) = �α(s) (9)

for any s ∈ N0. By a direct calculation, �α(s+ j)
�α(s) is increasing for s ∈ N0 and

lim
s→∞

�α(s + j)

�α(s)
= 1,
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and so (9) implies that

∞∑

j=0

|a j |2 ≤ 1.

Similarly, if Bϕ on A2
α(D) is expansive, then

∞∑

j=0

�α(s + j)|a j |2 ≥ �α(s) (10)

for any s ∈ N0. By setting s = 0 in (10), we have the results.
Case 2: If 
 = 2s + 1 for any s ∈ N0, then

Bϕk(z) =
∞∑

j=s+1

√
�(2s + 2)�(s + α + 3)√
�(s + 2)�(2s + α + 3)

· �( j + 1)�( j − s + α + 1)

�( j + α + 2)�( j − s)
a j c2s+1z

j−s−1.

If Bϕ on A2
α(D) is contractive, then

∞∑

j=s+1

�(2s + 2)�(s + α + 3)

�(s + 2)�(2s + α + 3)
· �( j + 1)2�( j − s + α + 1)2

�( j + α + 2)2�( j − s)2
· �α( j − s − 1)

�α(2s + 1)
|a j |2 ≤ 1.

Thus

∞∑

j=s+1

�α( j, s + 1)

�α(s + 1)
|a j |2 ≤ 1

for any s ∈ N0. Similarly, if Bϕ on A2
α(D) is expansive, then

∞∑

j=s+1

�α( j, s + 1)

�α(s + 1)
|a j |2 ≥ 1

for any s ∈ N0. This completes the proof. ��
Example 3.11 Let ϕ(z) = ∑∞

j=1
1
jn/2 z

j for any n ∈ N. Then,

∞∑

j=1

1

jn
= ζ(n) > 1,

where ζ(n) is the Riemann-zeta function for n ∈ N. Thus Bϕ is not contractive from
Theorem 3.10.
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Example 3.12 Let ϕ(z) = ∑∞
j=0 c

j z j with any |c| < 1. Then

∞∑

j=0

|c|2 j = 1

1 − |c|2 > 1.

Hence Bϕ is not contractive from Theorem 3.10.

We give a description on the contractivity and the expansivity of H -Toeplitz oper-
ators in terms of the coefficients for the polynomial symbol ϕ of degree n on the
Bergman spaces A2

0(D).

Corollary 3.13 Let ϕ(z) = ∑n
j=1 a j z j with any a j ∈ C and n ≥ 1. If Bϕ is contractive

on A2
0(D), then

∑n
j=1 |a j |2 ≤ 1.

Proof From the case 1 in the proof of Theorem 3.10, if Bϕ is contractive, then

n∑

j=1

|a j |2 ≤ 1. (11)

Since �0( j,s+1)
�0(s+1) is increasing for j ≤ 2s and decreasing for j ≥ 2s + 1, we have

max
j≥s+1

�0( j, s + 1)

�0(s + 1)
= max

{�0(2s, s + 1)

�0(s + 1)
,
�0(2s + 1, s + 1)

�0(s + 1)

}
= s + 2

4(s + 1)

for any s ∈ N0, and

max
s≥0

{ s + 2

4(s + 1)

}
= 1

2
.

Thus, for any s ∈ N0, the inequality given by

n∑

j=s+1

�0( j, s + 1)

�0(s + 1)
|a j |2 ≤ 1

implies that

n∑

j=1

1

2
|a j |2 ≤ 1. (12)

From (11) and (12), we have complete the proof. ��
Next, we consider the necessary and sufficient condition for the contractivity and

the expansivity of Bϕ with ϕ(z) = azN for N ∈ N and a ∈ C.
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Theorem 3.14 For ϕ(z) = azN with N ∈ N and a ∈ C, Bϕ is contractive if and only
if |a| ≤ 1.

Proof From the proof of Theorem 3.10, for any k ∈ A2
α(D), we get that

Bϕk(z) = PαMϕK (k(z))

=
∞∑

n=0

√
�(2n + 1)�(n + α + 2)√
�(n + 1)�(2n + α + 2)

ac2nz
n+N

+
N−1∑

n=0

√
�(2n + 2)�(n + α + 3)√
�(n + 2)�(2n + α + 3)

· �(N + 1)�(N − n + α + 1)

�(N + α + 2)�(N − n)
ac2n+1z

N−n−1

and

||Bϕk(z)||2 = |a|2
∞∑

n=0

�(2n + 1)�(n + α + 2)

�(n + 1)�(2n + α + 2)
�α(n + N )|c2n|2

+ |a|2
N−1∑

n=0

�(2n + 2)�(n + α + 3)

�(n + 2)�(2n + α + 3)
�α(N , n + 1)|c2n+1|2.

Thus the contractivity of Bϕ on A2
α(D) is equivalent to

|a|2
∞∑

n=0

�(2n + 1)�(n + α + 2)

�(n + 1)�(2n + α + 2)
�α(n + N )|c2n|2

+ |a|2
N−1∑

n=0

�(2n + 2)�(n + α + 3)

�(n + 2)�(2n + α + 3)
�α(N , n + 1)|c2n+1|2

≤
∞∑

j=0

�α( j)|c j |2.

(13)

There are two possibilities to consider. The first case is when c
 �= 0 for 
 is even, and
c
 = 0 for 
 is odd, then by (13), we have

|a|2�(2n + 1)�(n + α + 2)

�(n + 1)�(2n + α + 2)
�α(n + N )|c2n|2 ≤ �α(2n)|c2n|2,

or equivalently,

|a|2 ≤ �α(n)

�α(n + N )
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for any n ∈ N0. By a direct calculation, �α(n)
�α(n+N )

is decreasing for n, and

|a|2 ≤ min
n≥0

�α(n)

�α(n + N )
= lim

n→∞
�α(n)

�α(n + N )
= 1. (14)

The second case is when c
 �= 0 for 
 is odd, and c
 = 0 for 
 is even, then from (13),
we have

|a|2�(2n + 2)�(n + α + 3)

�(n + 2)�(2n + α + 3)
�α(N , n + 1)|c2n+1|2 ≤ �α(2n + 1)|c2n+1|2,

or equivalently,

|a|2 ≤ �α(n + 1)

�α(N , n + 1)

for any 0 ≤ n ≤ N − 1. By a simple calculation,

�α(n + 1)

�α(N , n + 1)
= �(N + α + 2)2

�(N + 1)2
· �(N − n)

�(N − n + α + 1)
· �(n + 2)

�(n + α + 3)
> 1,

(15)

since (N + j+1)2 > (N −n+ j)(n+ j+2) for any j ∈ R and for all 0 ≤ n ≤ N −1.
From (14) and (15), Bϕ is contractive if and only if |a| ≤ 1. This completes the proof.

��
Corollary 3.15 If ϕ(z) = azN with N ∈ N and a ∈ C, then Bϕ is a neither expansive
nor isometric operator.

Proof It follows from the proof of Theorem 3.14 that if Bϕ is expansive, then

|a|2
∞∑

n=0

�(2n + 1)�(n + α + 2)

�(n + 1)�(2n + α + 2)
�α(n + N )|c2n|2

+ |a|2
N−1∑

n=0

�(2n + 2)�(n + α + 3)

�(n + 2)�(2n + α + 3)
�α(N , n + 1)|c2n+1|2

≥
∞∑

j=0

�α( j)|c j |2.

(16)

If we substitute c j = 0 for j �= 2N + 1 in (16), then we obtain that

�α(2N + 1)|c2N+1|2 ≤ 0,

which is a contradiction. ��
Corollary 3.16 Let ϕ(z) = azN with N ∈ N and a ∈ C. Then Bϕ is not self-adjoint.
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Proof By the definition of the adjoint of Bϕ , we deduce that

B∗
ϕk(z) = K ∗PharmMϕk(z)

= aK ∗
(N−1∑

n=0

�(N − n + α + 2)�(N + 1)

�(N − n + 1)�(N + α + 2)
cnz

N−n

+
∞∑

n=N

�(n − N + α + 2)�(n + 1)

�(n − N + 1)�(n + α + 2)
cnz

n−N
)

= a
N−1∑

n=0

�(N + 1)
√

�(N − n + α + 2)�(2N − 2n + α + 1)

�(N + α + 2)
√

�(N − n + 1)�(2N − 2n)
cnz

2N−2n−1

+ a
∞∑

n=N

�(n + 1)
√

�(n − N + α + 2)�(2n − 2N + α + 2)

�(n + α + 2)
√

�(n − N + 1)�(2n − 2N + 1)
cnz

2n−2N .

Comparing constant terms in Bϕk(z) and B∗
ϕk(z), they are

√
�(2N )�(N + 1)�(α + 2)√

�(2N + α + 1)�(N + α + 2)
ac2N−1 and

�(N + 1)�(α + 2)

�(N + α + 2)
acN ,

respectively. As c2N−1 and cN can be chosen arbitrarily, it follows that the constant
terms in Bϕk(z) and B∗

ϕk(z) are different, and hence Bϕ is not self-adjoint. ��

Corollary 3.17 For ϕ(z) = azN with N ∈ N and a ∈ C, Bϕ is not normal.

Proof For any k ∈ A2
α(D), the normality of Bϕ is equivalent to B∗

ϕBϕk(z) = BϕB∗
ϕk(z)

or ||Bϕk(z)||2 = ||B∗
ϕk(z)||2. Using the proof of Theorem 3.14 and Corollary 3.16, we

get

||Bϕk(z)||2 = |a|2
∞∑

n=0

�(2n + 1)�(n + α + 2)

�(n + 1)�(2n + α + 2)
�α(n + N )|c2n|2

+ |a|2
N−1∑

n=0

�(2n + 2)�(n + α + 3)

�(n + 2)�(2n + α + 3)
�α(N , n + 1)|c2n+1|2

(17)

and

||B∗
ϕk(z)||2 = |a|2

N−1∑

n=0

�2
α(N )

�α(N − n)
|cn|2 +

∞∑

n=N

�2
α(n)

�α(n − N )
|cn|2. (18)

Ifwe substitute ci = 0 for i �= 2N+1 in (17) and (18), thenweobtain that ||Bϕk(z)||2 =
0 and ||B∗

ϕk(z)||2 = �2
α(2N+1)

�α(N+1) |c2N+1|2 �= 0, which gives the results. ��
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3.3 H-Toeplitz operators with coanalytic symbols

In this subsection, we examine the characteristics of H -Toeplitz operators Bϕ with
coanalytic symbol ϕ. First, we examine the contractivity and the expansivity of Bϕ

where ϕ is of the form ϕ(z) = ∑∞
j=1 b j z j with b j ∈ C.

Theorem 3.18 Let ϕ(z) = ∑∞
j=1 b j z j with b j ∈ C. If Bϕ is contractive, then

s∑

j=1

1

�α(s − j)
|b j |2 ≤ 1

�α(s)

for any s ∈ N.

Proof For any k ∈ A2
α(D),

Bϕk(z) = PαMϕ

[ ∞∑

n=0

(√
�(2n + 1)�(n + α + 2)√
�(n + 1)�(2n + α + 2)

c2nz
n +

√
�(2n + 2)�(n + α + 3)√
�(n + 2)�(2n + α + 3)

c2n+1z
n+1

)]

= Pα

⎛

⎝
∞∑

j=1

∞∑

n=0

√
�(2n + 1)�(n + α + 2)√
�(n + 1)�(2n + α + 2)

b j c2nz
nz j

⎞

⎠

=
∞∑

n=1

n∑

j=1

√
�(2n + 1)�(n + 1)√

�(n + α + 2)�(2n + α + 2)
· �(n − j + α + 2)

�(n − j + 1)
b j c2nz

n− j .

(19)

It follows from (19) that, the coefficient of zm is

∞∑

n=m+1

√
�(2n + 1)�(n + 1)√

�(n + α + 2)�(2n + α + 2)
· �(m + α + 2)

�(m + 1)
bn−mc2n .

For some s ∈ N, we set c
 �= 0 if 
 = 2s and c
 = 0 if 
 �= 2s. If Bϕ on A2
α(D) is

contractive, then

s∑

j=1

�α(2s)�α(s)

�α(s − j)
|b j |2|c2s |2 ≤ �α(2s)|c2s |2.

Therefore,

s∑

j=1

1

�α(s − j)
|b j |2 ≤ 1

�α(s)
.

This completes the proof. ��
Corollary 3.19 For ϕ(z) = ∑∞

j=1 b j zi with b j ∈ C, Bϕ is not an expansive operator.
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Proof From the Eq. (19), if we substitute c j = 0 for j is even, then we obtain that
Bϕk(z) = 0. Thus Bϕ on A2

α(D) is not an expansive operator. ��
Example 3.20 For ϕ(z) = √

α + 3z + √
α + 2z2, we have

2∑

j=1

1

�α(2 − j)
|b j |2 = (α + 2)(α + 4) >

(α + 2)(α + 3)

2
= 1

�α(2)
.

Hence by Theorem 3.18, Bϕ is not contractive.

Next, we study the necessary and sufficient condition for the contractivity and the
expansivity of Bϕ with ϕ = bzN for N ∈ N and b ∈ C.

Theorem 3.21 Let ϕ(z) = bzN with N ∈ N and b ∈ C. Then Bϕ is contractive if and
only if |b| ≤ 1.

Proof From the proof of Theorem 3.18, for any k ∈ A2
α(D),

Bϕk(z) =
∞∑

n=N

√
�(2n + 1)�(n + 1)√

�(n + α + 2)�(2n + α + 2)
· �(n − N + α + 2)

�(n − N + 1)
bc2nz

n−N .

Thus

||Bϕk(z)||2 = |b|2
∞∑

n=N

�α(2n)�α(n)

�α(n − N )
|c2n|2.

Hence the contractivity of Bϕ is equivalent to

|b|2
∞∑

n=N

�α(2n)�α(n)

�α(n − N )
|c2n|2 ≤

∞∑

n=0

�α(n)|cn|2.

If we compare the terms involving |c2n|2, then we have
�α(2n)�α(n)

�α(n − N )
|b|2|c2n|2 ≤ �α(2n)|c2n|2,

and so

|b|2 ≤ �α(n − N )

�α(n)

for any n ≥ N . Since �α(n−N )
�α(n)

is decreasing for n ≥ N , Bϕ is contractive if and only
if

|b|2 ≤ min
n≥0

�α(n − N )

�α(n)
= lim

n→∞
�α(n − N )

�α(n)
= 1.
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This completes the proof. ��
Corollary 3.22 For ϕ(z) = bzN with N ∈ N and b ∈ C, Bϕ is neither expansive nor
isometric.

Proof Using the result as in the proof of Theorem 3.21, the expansivity of Bϕ is
equivalent to

|b|2
∞∑

n=N

�α(2n)�α(n)

�α(n − N )
|c2n|2 ≥

∞∑

n=0

�α(n)|cn|2.

If we substitute cn = 0 for n ≥ 2N , then we deduce that
∑2N−1

n=0 �α(n)|cn|2 ≤ 0,
which is a contradiction. ��

3.4 H-Toeplitz operators with harmonic symbols

Finally, we analyze the properties of H -Toeplitz operators Bϕ that have harmonic
symbols of the form ϕ(z) = ∑∞

j=0 a j z j + ∑∞
j=1 b j z j with a j , b j ∈ C. Our focus

is on determining the necessary and sufficient conditions for the contractivity and the
expansivity of Bϕ .

Theorem 3.23 Let ϕ(z) = ∑∞
j=0 a j z j + ∑∞

j=1 b j z j and a j , b j ∈ C.
(i) If Bϕ is contractive, then

∞∑

j=0

�α( j)|a j |2 ≤ 1,
∞∑

j=0

�α(s + j)

�α(s)
|a j |2 +

s∑

j=1

�α(s)

�α(s − j)
|b j |2 ≤ 1

and

∞∑

j=s

�α( j, s)|a j |2 ≤ �α(s)

for any s ∈ N.
(ii) If Bϕ is expansive, then

∞∑

j=0

�α( j)|a j |2 ≥ 1,
∞∑

j=0

�α(s + j)

�α(s)
|a j |2 +

s∑

j=1

�α(s)

�α(s − j)
|b j |2 ≥ 1

and

∞∑

j=s

�α( j, s)|a j |2 ≥ �α(s)

for any s ∈ N.
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Proof By the similar arguments as in the proof of Theorems 3.10 and 3.18, for any
k ∈ A2

α(D),

Bϕk(z) =
∞∑

j=0

∞∑

n=0

√
�(2n + 1)�(n + α + 2)√
�(n + 1)�(2n + α + 2)

a j c2nz
n+ j

+
∞∑

j=1

j−1∑

n=0

√
�(2n + 2)�(n + α + 3)√
�(n + 2)�(2n + α + 3)

· �( j + 1)�( j − n + α + 1)

�( j + α + 2)�( j − n)
a j c2n+1z

j−n−1

+
∞∑

n=1

n∑

j=1

√
�(2n + 1)�(n + 1)√

�(n + α + 2)�(2n + α + 2)
· �(n − j + α + 2)

�(n − j + 1)
b j c2nz

n− j

for any c j ∈ C ( j = 0, 1, 2, . . .). For some 
 ∈ N0, set c
 �= 0 and c j = 0 for any
j �= 
. Next, we examine the two cases below:
Case 1: If 
 = 0, then Bϕk(z) = ∑∞

j=0 a j c0z j .Thus if Bϕ on A2
α(D) is contractive,

then

∞∑

j=0

�α( j)|a j |2|c0|2 ≤ �α(0)|c0|2,

or equivalently
∑∞

j=0 �α( j)|a j |2 ≤ 1. Similarly, if Bϕ on A2
α(D) is expansive, then∑∞

j=0 �α( j)|a j |2 ≥ 1.
Case 2: If 
 = 2s for any s ∈ N and c2 s �= 0, then

Bϕk(z) =
∞∑

j=0

√
�(2s + 1)�(s + α + 2)√
�(s + 1)�(2s + α + 2)

a j c2s z
s+ j

+
s∑

j=1

√
�(2s + 1)�(s + 1)√

�(s + α + 2)�(2s + α + 2)
· �(s − j + α + 2)

�(s − j + 1)
b j c2s z

s− j .

If Bϕ on A2
α(D) is contractive, then

∞∑

j=0

�(2s + 1)�(s + α + 2)

�(s + 1)�(2s + α + 2)
�α(s + j)|a j |2|c2s |2

+
s∑

j=1

�α(2s)�α(s)

�α(s − j)
|b j |2|c2s |2 ≤ �α(2s)|c2s |2

or equivalently

∞∑

j=0

�α(s + j)

�α(s)
|a j |2 +

s∑

j=1

�α(s)

�α(s − j)
|b j |2 ≤ 1.
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Similarly, if Bϕ on A2
α(D) is expansive, then

∞∑

j=0

�α(s + j)

�α(s)
|a j |2 +

s∑

j=1

�α(s)

�α(s − j)
|b j |2 ≥ 1.

Case 3: If 
 = 2s − 1 for any s ∈ N and c2s−1 �= 0, then by the case 2 of Theorem
3.10, we have the results. This completes the proof. ��

The following results can be easily derived from Theorem 3.23.

Corollary 3.24 Let ϕ(z) = a1z + b1z and a1, b1 ∈ C. If Bϕ is contractive, then

|a1|2 ≤ α + 2,
2

α + 3
|a1|2 + 1

α + 2
|b1|2 ≤ 1

and

s + 1

s + α + 2
|a1|2 + s

s + α + 1
|b1|2 ≤ 1

for any s ≥ 2.

Example 3.25 For ϕ(z) =
√

α+2√
2

z +
√

(α+3)(3α+7)
4 z2 − 3

√
(α+1)(α+2)
2
√
2(α+3)

z, we have

∞∑

j=0

�α( j)|a j |2 = 1

2
+ 3α + 7

8(α + 2)
< 1 = �α(0),

∞∑

j=1

�α( j, 1)|a j |2 = 1

2(α + 2)
+ 3α + 7

4(α + 2)(α + 3)
>

1

α + 2
= �α(1),

and

∞∑

j=0

�α(1 + j)

�α(1)
|a j |2 + �α(1)

�α(0)
|b1|2 = α + 2

α + 3
+ 3(3α + 7)

8(α + 4)
− 9(α + 1)

8(α + 3)
< 1.

Hence, by the Theorem 3.23, Bϕ is neither contractive nor expansive.
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