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Abstract

In this paper, we study several classes of H-Toeplitz operators (defined below) on
the Hardy space HZ. In particular, we prove that, for ¢ € L, the adjoint of H-
Toeplitz operators is hyponormal. Next, we investigate several properties of H-Toeplitz
operators on the weighted Bergman spaces. Finally, we give necessary and sufficient
conditions for H-Toeplitz operators to be contractive and expansive on the weighted
Bergman spaces.
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1 Introduction

Let L(H) be the algebra of all bounded linear operators on a separable complex Hilbert
space H.For T € L(H), T* denotes the adjoint of 7. An operator T € L(H) is said to
be self-adjoint if T = T*, isometric if T*T = I, normal if [T*, T] = 0, hyponormal
if [T*, T] > 0, quasinormal if [T*T,T] = 0, and binormal if [T*T,TT*] = 0,
respectively, where [R, ST := RS — SR.
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H -Toeplitz operators have been studied in various spaces. Recently, the authors in
[13] studied the essential conditions for H -Toeplitz operators to become a co-isometry
and a partial isometry, explored their invariant subspaces and kernels, and investigated
their compactness and Fredholmness. In particular, they showed a nonzero H-Toeplitz
operator cannot be a Fredholm operator on the Bergman space. Moreover, they con-
sidered the necessary and sufficient conditions for the commutativity of H-Toeplitz
operators. In [25], the authors provided a characterization of the commutativity of H-
Toeplitz operators with quasihomogeneous symbols on the Bergman space. In [22],
the authors explored the characteristics of H-Toeplitz operators on the Bergman space
and offered essential criteria for identifying both contractive and expansive operators.
Additionally, the authors in [14] studied the slant Toeplitz operators on the Hardy
space.

Basic properties of Toeplitz operators on the Hardy space and (weighted) Begman
space can be found in [2, 7, 8, 18, 20, 28]. Recently, many authors have characterized
the hyponormality of Toeplitz operators on the Bergman spaces and the weighted
Bergman spaces (cf. [16, 17, 19, 21, 26, 27, 29]). The theory of Toeplitz operators is a
vast and significant field that has made fundamental contributions to several problems
in functional analysis and mathematical physics.

Several decades ago, researchers extensively studied contractive and expansive
operators (cf. [3, 5, 6]). In particular, in [9], the authors investigated the problem of
invariant subspaces for contractive operators. In [22], the authors studied the contrac-
tivity and expansivity of H-Toeplitz operators with analytic, co-analytic and harmonic
symbols on the Bergman spaces.

In this paper, we study several classes of H-Toeplitz operators on the function
spaces. In Sect. 2, we focus on the self-adjointness of H-Toeplitz operators on the
Hardy space HZ. Moreover, we consider complex symmetric H-Toeplitz operator
on HZ. Furthermore, we investigate hyponormality, quasinormality, and binormality
of H-Toeplitz operators. In particular, we show that for ¢ € L°° the adjoint of H-
Toeplitz operators is hyponormal. As an application of this, such an operator has a
nontrivial invariant subspace. In Sect. 3, we will investigate the the algebraic properties
of H-Toeplitz operators on the weighted Bergman spaces Ag (D). More concretely, we
introduce the notion of H-Toeplitz operators on the weighted Bergman spaces, which
combine the properties of both Toeplitz and Hankel operators. The importance of this
notion is that it provides a unifying framework for a class of operators on the weighted
Bergman spaces, which includes both Toeplitz and Hankel operators. Furthermore,
we establish a convenient and explicit criterion for determining the contractivity and
expansivity of H-Toeplitz operators.

2 H-Toeplitz operators on the Hardy spaces
Let D be the open unit disk in the complex plane and let T(= 9D) be the unit circle.

Let L°°(T) denote the set of all essentially bounded measurable functions on T. The
Hilbert Hardy space H*(T) consists of all analytic functions f with the power series
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representation

o0 o0
fl@) = Zanz” where Z lay|* < oo.
n=0

n=0

For a convenience, we denote L°°(T) and H2(T) by L*° and H 2, respectively. For
any ¢ € L, the multiplication operator M, is defined by M, (f) = ¢ f for f € H?,
the Toeplitz operator Ty, : H 2 — H?is defined by

Tof =Plof)

for f € H? where P denotes the orthogonal projection of L2 onto H?, and the Hankel
operator Hy, : H* — H? is defined by

Hyf = PM,Jf

where J : H?> — (H 2)L denotes the flip operator given by J(e,) = e_,_1 for all
n > 0 where {e,}° _, is an orthonormal basis for L2. Note that T, is bounded if and
only if ¢ € L* and, in which case, || T, || = ||¢|loo-

Notation 2.1 Throughout this paper, a dilation operator K from H? to L? is denoted
as K (ex,) = ey and K (e2p41) = e—y—1 foralln =0, 1,2, ... where {e,}72_ isan
orthonormal basis for L.

LetN, Ny, Z, R, and C be the set of positive integers, non-negative integers, integers,
real numbers, and complex numbers, respectively. A dilation operator K is bounded
from H? to L? with | K || = 1 and its adjoint K* from L? to H? is defined as

K*(en) = ey and K*(e_p—1) = e2n41

forallnm = 0,1,2,....Thus K*K = I on H?> and K*K = I on L?. Indeed, since
KK*e, = Key, = e, for each n > 0, it follows that K K* = I on H?. Moreover,
since KK*e_,_1 = Kepp41 = e—,—1 foreach n € N, we know that KK* = I on
(H®L. Thus KK* = I on L2. Hence K is unitary from H?to L.

The authors in [1] have introduced “H-Toeplitz operators" motivated by the
Toeplitz, Hankel, and Slant Toeplitz operators.

Definition 2.2 For ¢ € L™, an H-Toeplitz operator S, with the symbol ¢ on H?is
defined by

Sef = PMyKf

for each f € H? where P denotes the orthogonal projection of L? onto H>.

In this case, [|Syll = [PMyK| < Myl = ll¢lle. Note that if {e,}>>, denotes
the orthonormal basis for HZ, then

Spem = PMyKey, = PMye, = Tyey,
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and
Spemt1 = PMyKey11 = PMye 1 = PMyJe, = Hyey,
foreachn =0, 1,2.... Note that for ¢ € L, the adjoint of S, on H? is given by
S; = K*Mg.
2.1 Basic properties of an H-Toeplitz operator

In this section, we consider the basic properties of an H-Toeplitz operator. We first
study the self-adjointness of H-Toeplitz operators on HZ.

Theorem 2.3 If ¢(z) = > 72

{en)y2 o in L and S, is an H-Toeplitz operator on H?, then the matrices of Sy, and
S(’; are represented as

aje;j with respect to the orthonormal basis B =

ay ay a—-1 ay a-3 az d-3
ay ap a a3y ad—1 d4 a-p
a a3 ay a4 ap as da—q
a3 a4 a as a4y aeg Ap
[Sw]B =\las as as ag ax az aiy . (1)
as ag a4 ay az ag a,

and

@™ @ @ @ @ @ T
o om m @ @ G @
i @w a @ a @ G
@ @® @ a da @ T
Sols=|a a0 @ @ @ @ @
B owm @ G a7 G ®
@G an a @ A m @

Furthermore, [S, |3 is self-adjoint if and only if [Sy15 = 0.
Proof We know that S, is self-adjoint if and only if ao, a1, a2, a3, as, ag, . .. are real

and a; = a_1, a3 = ap, ax = a3, a_p = ag, a3 = as, a_3 = dg, and so on (cf. [I,
Page 151]).
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On the other hand, the (i, j) entry of the matrix [S,]5 is given by

a; lfj =0
aij = ydi—n if j =2n

Aitny1 ifj=2n+1

(see [1]). And the (i, j) entry of the matrix [S;‘f] B 1s given by

a; ifi =0

aj)[ = aj_,, ifi =2n (2)
Ajtn+1 ifi =2n+1.

Thus [Sy]5 = [S;]B if and only if a; ; = aj; forall i, j. Hence [S,]3 is self-adjoint
ifand only if a; = ap € Rforall j € Zif and only if a; = O for all j since [S,]3 is
bounded. O

Proposition 2.4 Let ¢ € L™ and S, be an H-Toeplitz operator on H?. Then Sy is an
isometry on H? if and only if MgPMy = I on L?. In particular, ¢ is not inner.

Proof Since S; = K*Mg, we have S;S(p = K*MzPM,K.Then K*MzPMy,K =1
on H?. Hence MgPM, =1 on L? since K is unitary from H? to L2. Thus S, is an
isometry on H? if and only if MzPM, = I on L.

If ¢ is inner, then MgPM, — I = MzM, — I = le‘z — 1 = 0. Thus S, is an
isometry on HZ. But, if ¢ is inner, then S; is an isometry on H? (cf. [1]), and so S;
is normal. Therefore, ¢ = 0 from [1], which is a contradiction. O

Next, we study complex symmetric H-Toeplitz operator on H>. A conjugation on
‘H is an antilinear operator C : H — H which satisfies C> = I and (Cx, Cy) = (y, x)
for all x, y € H. If C is a conjugation on H, then there exists an orthonormal basis
{en}o2, for H such that Ce, = e, for all n (see [10]). An operator T € L(H) is
complex symmetric if there exists a conjugation C on H such that T = CT*C.
Complex symmetric operators have been widely studied by several mathematicians
(see [10-12, 23, 24] for more details).

Proposition 2.5 For ¢ € L, let S, be an H-Toeplitz operator on H? and C be
a conjugation on L? given by Cf(z) = f(z) for f € H>. Then Sy is complex
symmetric with the conjugation C if and only if Tﬁen =K *Mmegn and H-=e, =

* »(2)
K MMeZanorn € N().

Proof Let C be a conjugation on L2 given by Cf(z) = f(z) for f € H?. Then
Ce, = e, forn > 0and so CP = PC on L? from [24]. Thus forn > 0,

CSyCery = CSyery = CTy(ey) = CP(pey) = PC(pe,) = Tﬁen

and

CSyCenst = CHylen) = CPMy(Jen) = CPo(Jey) = Hyen
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hold. Since S = K*Mg for ¢ € L™, we obtain that S, is complex symmetric with
the conjugation C if and only if Tﬁen =K *MWQ" and Hﬁen =K *Mmezwr 1
forn € Ny. O
Theorem 2.6 For ¢ € L, let S, be an H-Toeplitz operator on H?. Assume that C is
a conjugation on L? given by Cf(z) = f @) for f € H? and C,.,» is a conjugation on
L? given by Curf@=pnfAz) for f € H? with |A| = || = 1. Then the following
statements are equivalent:

(1) Sy is complex symmetric with the conjugation C.

(ii) S, is complex symmetric with the conjugation C .

(iii) ¢ = 0.

Proof (i) < (iii) Let ¢(z) = Z?o:—oo aje; be with respect to the basis B = {e,}°2.
Since the matrix of S, is of the form (1), it follows that the matrix of CS,C is the
followings:

ay ay a-y a4y a4 ay a3
ap ay ay a3 a-1 a; a-y
ay a3 ar as ap as a—p
as a4 ay as ap G dag
CSCls=\a; a5 @& a6 @ a1 a
as as a; aj a4z ag a4z
as aj as ag as ay a3

Then [S,]3 is complex symmetric with the conjugation C if and only if a; = ap € C
forall j € Z.Hence ¢ is of the form ¢ = Z?‘;_oo ¢(0)e;j andso ¢ = Osincep € L.

(ii) & (iii) Let ¢(z) = Z‘;‘;_oo aje; be with respect to the basis B = {e,}52 . It
is known from [24] that C, ; is unitarily equivalent to Cy ;. Since the matrix of Sy, is
the form of (1), it follows that the matrix of C1,3 S, C1,5 is the followings:

ay ar a-1 a4y a2 a a-3
ar a a4y az a-| ai a—
a a3 ar as ap as a—p
as a4 ay as ay  a ag

[C138Cials = A1 i as @ ag @ ar  a = AMCS,ClB.

as as a4 aj a4z ag a2
asg a7 as ag as Ay a3

Then [S, ] is complex symmetric with the conjugation Cy  ifandonly ifa; = ap € C
for all j € Z and A = 1. Hence, in this case, ¢ is of the form ¢ = Z?o:_oo ¢(0)e;
and so ¢ = 0 since ¢ € L*°. O
Remark that if ¢ € L2, then an unbounded H -Toeplitz operator is complex sym-
metric with the conjugation C if and only if ¢(j) = ¢(0) € C for all j € Z. In
previous theorem, if ¢(0) #~ 0, then ¢ = Z?‘;_oo ¢(0)e; does not belong to L*°.
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2.2 Hyponormal, quasinormal, and binormal H-Toeplitz operators

In this section, we study hyponormal, quasinormal, and binormal H -Toeplitz opera-
tors.

Lemma 2.7 Forg € L, let S, be an H-Toeplitz operator on H?. Then the following

statements hold.

@) S(pS; = Tiyp S:;Swezn = K*MgTy,ey, and S;S(pez,H_l = K*MgT,e, hold for

each n € Ny.

(ii) S;j is hyponormal if and only if the following equations hold.
T|(p\262n > K*MaTwen 3)
T|(p\262n+1 = K*Mapren

for each n € Ny. In particular, the equalities in (3) hold if and only if S, is normal.

Proof (i) For ¢ € L*, let S, be an H-Toeplitz operator on H 2. Since S, = K*Mg,
it follows that §7S, = K*MzPM,K and

SpSs = (PMyK)(K*Mg) = PMyMg = PM,p = T,p.
On the other hand, since S35, = K*MgP M, K, it follows that
S;S(pezn = K*MaPM(pKezn
= K*MgzPMye,
= K*MgzTye,
and

S;S<p€2n+1 = PM(pKeZn+l

PMye 1
H(pen

K*
K*
K*

FEF

for each n € Ny.
(ii) By (i), we obtain that S is hyponormal if and only if for each n, it holds that

Tiypem = K*MgzTye,
T|<p|262”+1 > K*Manen.

In particular, we get that S, is normal if and only if

Tiypem = K*MgzTye,
T|¢|232n+1 = K*MzH,e,

for each n € Ny. O
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Using Lemma 2.7, we show that every H-Toeplitz operator on H? is cohyponormal.

Theorem 2.8 For ¢ € L, let S, be an H-Toeplitz operator on H?. Then Sy is
hyponormal.

Proof. Set ¢ = Z?O:_OO @(j)ej € L. Let S, be an H-Toeplitz operator on H?.
Then S7 is hyponormal if and only if

I1Se £17 < 1S5 117
for each f € H?. Taking f = e, for each n, Lemma 2.7 implies that

2 2 2 2
ISgeanll™ = ISpeanll™ = IK*Myeonll” — | PTpenll
2 2
= [[Mgexn|l” — P Tpen|l

00 2 0 2

=1 > oWem—j| —| > ¢(ens,

j==00 j=—n

o0 o0
= Y 18P =Y 18P

j=—00 j==n

o0
= Y 19=HPF=0

j=n—1

since K* is unitary. Put f(z) = ep,+1 for each n. Then Lemma 2.7 ensures that

2 2 2 2
I1Speant1ll” = ISpen+1ll” = ISy eant1ll” — | Hpenl
2 2
= [K*Mgeani1ll” — [IPMyJ el
2 2
= [Mgean+1ll” — IPMyJenl

o 2 o0
Z o(fean+1—j| — HP( Z o()ej—n—-1)

Jj=—00 J=—00

DT IeMIF= Y e

Jj=—00 j=n+1

> 19 =o0.

j=—00

2

Hence we conclude that S is hyponormal. O

Theorem 2.9 Letp € L™ and S, be an H-Toeplitz operator on H?. Then the following
statement hold.

(1) If ¢ is a nonzero constant function, then S, is not quasinormal, but its adjoint S:;
is quasinormal.

(i1) If ¢ = \u for an inner function u and ) € C, then S; is quasinormal.
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Proof (i) Let ¢ = @1 + @2 € L where @1, ¢o € H*. Then S,, is quasinormal if and
only if, for each n € Ny,

0

(S8 Sy — SpSiSy)ean

K*MzPM,K PMyK ey, — PMyK K*MzPM,K e,
K*MzPMy,K PMye, — PMy,MyzP Mye,

K*MzPMyK PMye, — PM, 2 PMye, 4)

and

0= (S;S(pS(p — S¢S;S¢)62n+1 .
= K"MzgPMyKPMyKezy1 — PMyKK*MgPMyK e,
= K*MgPM,KPMye_p_1 — PMy;MgPMye_,_1
= K*MzPM,KPMge_,_1 — PM,pPMye_p—1.

If ¢ = c is nonzero constant and » is odd, then (4) becomes

K*MgPMyKPMye, — PM,2PMye, = K*MgPMyKce, — PM)pcey
= K*MaP(cze#) — Ic’ce, = —|c|*cey
# 0.

Hence S, is not quasinormal.

On the other hand, S; is quasinormal if and only if S, 7S5 — S5.S, S, = 0. Since
Sy Sy = Tjyp2, it follows that S7 is quasinormal if and only if

* ok
TippSp = SpTipp- ®)
If ¢ is a constant function, i.e. ¢ = ¢, then
(T“MzS; — S;Tkp‘z)ezﬂ = (TC|2SE‘ — SZ‘sz)ezn
= T|C|2K*Mgezn — K*MET‘dzezn
= P(c|c|*K*ern) —lc|*K*ern =0
and
(TS5 = SyTig)eanss = (TepS; = STeplennsn
= T|c\2 K*Mzer, 11 — K*MET|C‘2€2"+1

_ 2 _ 2
= P(Clc|"K"exnt1) — Clc|" K ery41 =0

for each n € Ny. Therefore, S;‘j is quasinormal.
(ii) Since ¢ = Au for an inner function u# and A € C, it follows that

SpSh = (PMyK)(K*Mg) = PM;, My = PMyy2,2 = T = A1
Thus (5) holds. Hence S; is quasinormal. O
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We next consider the hyponormality and the binormality of S,.

Proposition 2.10 For ¢ € L™, let S, be an H-Toeplitz operator on H?. Then the
following statements are equivalent.

(1) Sy is normal.

(ii) Sy is hyponormal.

(iii) ¢ = 0.

Proof If ¢ = 0, then S, is normal, and hence hyponormal. If S, is hyponormal, the
proof follows from [1]. O

Theorem 2.11 Let ¢ € L*and S, be an H-Toeplitz operator on H?. Assume that one
of the following statements hold.

(i) @ is a constant function.

(i1) ¢ = Au for an inner function u and A € C.

(iii) ¢ = Au for an inner function u and » € C. Then S, is binormal.

Proof Letp € L. Then S, is binormal if and only if 7S, and S, S; commute. This
is equivalent to S; Sy and T},> commute. Thus S, is binormal if and only if

[S;Sw, S(pS;] = [S;S(p, Ti,pl = [K*MgPMyK, Ti,21=0. 6)
(1) If ¢ is a constant function, then (6) clearly holds.
(ii) If ¢ = Au for an inner function u and A € C, then S; is quasinormal and so S; is

binormal. Hence S, is binormal.
(iii) If ¢ = Au for an inner function u and A € C, then

SgaS:; = (PM¢K)(K*M¢) = PM)LEMXM = PMlMZW‘Z = T‘l)\‘z —t |)\‘|2I
Thus (6) clearly holds. Hence S, is binormal. m|

Example 2.12 1f ¢(z) = 7™ for some m, then by Theorem 2.11, S,» is binormal and
by Theorem 2.9, S;» is not quasinormal and S, is quasinormal.

Example 2.13 Let ¢(z) = A( IZ_%‘Z) for w € Dand A € C. Then S, is binormal from
Theorem 2.11.

Corollary 2.14 For ¢ € L™, let S, be an H-Toeplitz operator on H?. Assume that
one of the following statements hold.

(1) @ is a constant function.

(i1) ¢ = Au for an inner function u and A € C.

(iii) ¢ = Au for an inner function u and » € C.

Then S; has a nontrivial invariant subspace.

Proof By Theorem 2.11, S, is binormal. Hence S, is binormal. Since S; is hyponormal
by Theorem 2.8, we conclude that S; has a nontrivial invariant subspace from [4]. O
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3 H-Toeplitz operators on the weighted Bergman spaces
3.1 Preliminaries and auxiliary lemmas

For —1 < o < oo, the weighted Bergman spaces Ag(]D)) is the space of analytic
functions in L2(D) = L%(D, dA,), where

dAy(z) = (a + 1)(1 — [z[)*dA(2).
The inner product on L%(DD) is given by

(. g)a = /D FQEDdAR)  (f. g € L*(D,dA)).

If « = 0, then, A(z)(]D) is the Bergman spaces. For n € Ny, let

. F'n+a+2) .
en(2) _\/F(}’l+1)r(0{~|—2) 7" (z € D).

Here, I'(s) stands for the usual Gamma functions. It is easy to check that {e,}3°
be an orthonormal set in Ag (D) ([15]). Because the set of polynomials is dense in
A2 (D), we conclude that e, forms an orthonormal basis for A2(D). If f, g € A2(D)
are functions of the form

f@=) an" and g(@) =) b2,
n=0

n=0

then

T+ Dre+2) —
<f,g>a—’§ Fotasy b

The weighted harmonic Bergman spaces Lg (D) denote the space of all harmonic
functions f on ID such that

12
1fI = (A; |f(z)|2dAa(z)> < 0.

The space Lg (D) is a closed subspace of L?(D) and therefore inherits the structure of
a Hilbert space from L?(ID). Let Py, denote the orthogonal projection from L2 (D)
onto L2 (D).

For ¢ € L*°(DD), the multiplication operators M, on Ag (D) is defined by M, (f) =
@ f, and the Toeplitz operators T, on Ag (D) is defined by

Ty(f) = Pulpf),
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where P, denotes the orthogonal projection of L?(D) onto Ag (D) and f € Ag D). It
is evident that those operators are bounded when ¢ € L°° (D). The Hankel operators
H, on the A2(D) is defined by

H(p(f) = PaszJ(f),

where the operators J : Aé D) — Agl (D) is given by J(e,(2)) = en4+1(z) for all
n € Np.

Now, we introduce the notion of H-Toeplitz operators on the weighted Bergman
spaces and discuss their various familiar properties. First of all, we recall the well-
known facts.

Lemma 3.1 [19] For any s, t € Ny,

Fs+DI(s—t+a+2) _s—t

Py('e') = :F(S+'a—+2>r(sr+1>z fs=t

ifs <t.

In [13], the orthogonal projection from the space L (ID) onto the harmonic Bergman
space is given. Using a similar method, the following results can be induced.

Lemma 3.2 In the weighted harmonic Bergman spaces Li (D), for s, t € Ny,

C—t+a+2)I(s+1D) s—t

P (—t s) _ ) Ts+a+2)I(s—1+1) ifs >t
harm\Z T ) = Tt —s+at 2T (+1) —r—s f _,
T(+a+2)T(t—s+1) ys .
Proof 1If s > 1, then
(Pharm(ztzs), Zk) = <ZIZS, Zk)
'(a+2)(s+1) . _
_ ) Tetaty ifk=s—1t
0 otherwise

T (s+a+2)C(k+1)

I‘(k+ot+2)r(s+1)( k Zk) ifk=s—t
0 otherwise
F's—t+a+2)I'(s+ 1)(

= z

s—t _k
Fs+a+2)I'(s—t+1) 2

On the other hands, if s < t, then
(Pharm(Z'2%),7%) = (22", 7")

C(a+2)T(t+1) A
z{—r(t+0!+2) ifk=t—s

0 otherwise

Clk+a+)T @+ =k ky e _
. {1‘(z+o:+2)l“(k+1)<Z 7) ifk=1—s

0 otherwise
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_TU—s+ad D0EHD oy
TTUta+TG—st+ o 50

m}

Next, we find the matrix representations of Toeplitz operators T, and of Hankel
operators H, with harmonic symbols ¢ on the weighted Bergman spaces. For the
harmonic symbol ¢(z) = Y o a;z’ + 230:1 b;z/ € L°°(D), the (m, n)"" entry of
the matrix of T, with respect to orthonormal basis B = {e,,}7°, of Ag (D) is given by

(Tyen, em) = (Pu(pen), em)

| Th+a+2) Tm+a+2) [(S o0 -
_\/r(n+1)r(a+2)\/r(m+1)r(a+2)<(2(; iz +jzl”f1’> >

— F(Yl+0[+2) F(m+a+2) = I+n m = e m+j)
_\/F(n+1)F(a+2)\/F(m+1)F(a+2)<20: ;b’<z =)

There are two cases to consider. If m > n, then we have
r 2 r ) &
(T(/Jen,em>= (ntat?) o t? Z H_n m
Fn+Dl@+2) | T'im+ DI (« +2) =

_ F'n+a+2) Fm+a+2) T'm+ DHI'(a+2)
VT +Dl(@+2)\ Tm+ D (@+2) Tm+a+2)

m—n

[T+ a+2)T(m+ 1)
“VTh+ D)Mm+at2)™"

If m < n, then we have

_ I'n+o-+2) Tm+a+2) «— on m+j

n—m

B Frn+a+2) F'm+a+2) TI'h+DHI(a+2)
C\NTa+DI(@+2)V\Tm+ DIlN(@+2) Tn+a+2)

_Tm4+a+2)T(n+1)
TVIm+DIn+a+2) "

Thus, we have
L(nto+2)Iom+1)
T D inrat2) @m—n for m =n
L (m+a+2)T (n+1)
Toni DEGitat2)Pn—m for m <n,

(Tcpena em) =
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where m, n € Ny. Therefore, the matrix representation of T, is given by

1 1.2 1.2.3
ao a2 b @2 @) (a+3)(a+4d) b3

1 1.2:3
Va2 ao Vaiah V @ars 2
12 12 3
Tyls = V @@ 2 a3t do Varah
123 123 [ 3
\/ @I @3 atd 93 \/ @3 @td) 12 atadl a0

and the adjoint of the matrix representation of T, is given by

— 1 — 12— 123 —
a0 \/ajﬂa‘ \/ @)@+ 42 \/ @D 93
1 7 —_— 1.2 — 123 —_—
ab @ ai3di @@ 2
1-2 T 12 7 — 3
[TJ]B = v sz mbl ao paw |

123 T 1235 3 —
Eee s @B erH 2 arab ao

and hence, we check that T (Z‘ =Tg.
Next, for the harmonic symbol ¢(z) = > 72, aiz' + 27021 ijj e L>®(D), the

(m, n)™ entry of the matrix of H,, with respect to orthonormal basis B = {e,};, of

Ag[ (D) is given by

(Hwenv en) = <P01M¢Jenw em)

3 Tn+a+3) Fm+a+2) ey o et
_\/F(n+2)F(a+2)\/F(m+1)F(a+2)<<§alz +J§b’z )Z h >

_ I'n+o+3) 'm+a+2)
TV I@+2)T@+2)\ Tim+ Dl (e +2)

[e o]
(Zai (Zi m+n+1 )+ Zb J m+n+1 >>
i=0

_\/F(n+ot+3)F(m+a+2) C(m—+n+2)

T+ 2Tm+1)  Tntntats mn

for m, n € Ny. Therefore, the matrix representation of H,, is given by

v a+2“1 2V, ((x+2)(a+3)a2 . (a+2)(a+3)(a+4)a3

aa® (a+4)¢a+ a3 (a+5>¢(a+‘3>(af4 da
[Hylg = _ 32 S VR O—ﬁ
¢lB (a+4)«/7a+ a3 @14 (ats) 44 (a+5)(oz+6)«/r+
203 4.5.6

(a+5)d(a+3)(a+4) (a+5)(a+6)«/a+ 45 @ re@n?
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H-Toeplitz operators on the function spaces

Notation 3.3 For our convenience, we introduce the following notations:

2 J—
Ag(s) = w and Ay(s, 1) = s+ DT (s t+a+2)r(a+2).
's+a+2) Fs+a+22T(s—t+1)

Lemma 3.4 [19] For m > 0, we have that
2

o o0
1) HZ’” chzj H = Z Ao(j + m)|cj|2, and
j=0 =0

o0
s Do AdGomle P if m<

o
n(eyer)l =1
j=0

Gi |
D AalGom)le; P if m > .
j=1

Applying Lemmas 3.2 and 3.4, we obtain the following Remarks.

Remark 3.5 For m > 0, we have
o ) m o
||thm(z’" Zc;z])ﬁ =Y Aolm, DlejP+ D Aaom)lej .
j=0 j=0 J=m+l

To define the notion of H-Toeplitz operators on Ag (D), we start by considering the
operators K : Ai D) — Lg (D) defined by

K (e2,(z)) = en(2) and K (e2,41(2)) = €n+1(2) (N

foralln > 0 and z € D. The operator K can be shown to be a bounded linear operator
on Ag (D) with | K| = 1. Furthermore, the adjoint operator K* is given by

K*(e,(2)) = e2n(z) and K*(en41(2)) = e2441(2)

for all n > 0. From the definitions of the operators K and K*, we have that K K* =
IL%(D) and K*K = IA%(]D))

Remark 3.6 1t follows from the definition of operator K, we have

K — JTQ2n+DI'(n + o +2)Z", K2 = JT2n +2)T(n + « +3)Z"+1

JToi+ DI 2n +a +2) JTh+ 2T 2n +a +3)

soony _ T+DCCn+a+2) 25 x=n+1\ _ T +2)T'Cn+a+3) 2n+1
KGN = raararern ¢ M KTET) = R tatary L
We next define H-Toeplitz operators on the weighted Bergman spaces Ai (D).

Definition 3.7 For ¢ € L* (D), the H-Toeplitz operator B, on the weighted Bergman
space is defined by By (f) = PoMy,K(f) forall f € Ag(D) where K is defined as
in (7).
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We find the matrix representation of H-Toeplitz operators B, with harmonic symbol
¢ on the weighted Bergman spaces. If the harmonic symbol of the form ¢(z) =
Y 2oaiz + Z?‘;l b;jz/ € L*(D), then

Bgo(eZn) = P(quzK(eZn) = PotMgo(en) = T(p(en)

and

B¢(62n+1) = PaMwK(62n+l) = PaMtp(en+l) = PaMth(en) = Hw(en)
where {e, }7  is an orthonormal set in Ai (D). Thus

(B(peZm em) = <T¢e”’ em)
I'(n+a+2)I(m+1)
T rDEantatsdm—n form=n
C(m+a+2)I(n+1)
Tt ngat2)Pn—m form <mn,
and

<B¢92n+1y em) = <H¢;€n, em)

_\/F(n+a+3)f’(m+a+2) T(m+n+2)

T+ 2)Tm+1)  Tmtntats) ment

where m, n € Ny. Thus (m, n)'" entry of the matrix representation of B, with respect
to orthonormal basis B = {e, }-, of Aé (D) is given by

1 1 12
a0 V arz® Vamb V @) @3 ©2

/1 12 _ 32
a+2 a a+3 a ao (a+4)v/a+3 as
1.2 32 12 12
[Bols = | @@ athsas B at3 i @@ 94

12:3 46 123 203
V@@ B aevederd @ V@ed 2 aisetodad®

The following proposition presents some basic properties of H-Toeplitz operators
on the weighted Bergman spaces (cf. [13]).

Proposition 3.8 For ¢, Y € L°°(D), the operator B, satisfies the following:
(1) By is a bounded linear operators on Ag (D) with | By |l < ¢lco-
(ii) For any scalars o and B, it holds Byyypgy = 0By + BBy.
(iii) The adjoint of the H-Toeplitz operators By is given by By = K™ Ppaym Mg.

The following remark provides an important information regarding adjoint opera-
tors, showing the difference between the adjoint of Toeplitz operators and the adjoint
of H-Toeplitz operators.
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H-Toeplitz operators on the function spaces

Remark 3.9 If f, g are in L°°(D), then, by the definition of Toeplitz operators, we
have that

T = T7 and T7T, = Ty, if f or g is analytic.

However, for the case of the H-Toeplitz operators,

_ I'Qr(e+2 a
B;(az) = K* PramMz(az) = K* Pharm(azz) = K* < @1 ) ) =

a4+ 3) T a+2

and
B=(az) = PyMzK (az) = PyMzaZ = Py(az’) = 0.

Therefore, B} (az) # Bz(az). It can be easily verified by computation that B, B, #
B,.

Recall that a bounded linear operator 7' on a Hilbert space is called expansive if
T*T > I, contractive if T*T < I, and isometric if T*T = I, respectively. For
k e Ai(D), let k(z) = ke(z) + ko(2), where

o0 o0

2 2n+1

ke(z) := Y cnz® and ko(z) =Y copp1z”*t
n=0 n=0

3.2 H-Toeplitz operators with analytic symbols

In this subsection, we examine the characteristics of H-Toeplitz operators B, with
analytic symbol functions ¢. First, we study the necessary condition for contractivity
and expansivity of B, where ¢(z) = 2?0:0 ajz’ witha; € Cunderacertain additional
assumptions concerning the symbol ¢.

Theorem 3.10 Let ¢(z) = Y52 a;z/ and aj € C.
() If By is contractive, then

Ag(s + 1) lajI” =

o0 o0
Ay (J, 1
Sla<t aa Y 2D g
i=0 j=s+1

forany s € Ny.
(ii) If By is expansive, then

[o)0] o0 .
) Ao(j,s+1)
> Aa(Dlaj? =1 and Y ——T——a;* > 1
- . Aa(s+l)
j=0 Jj=s+1

forany s € Ny.
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Proof For any k € AZ(ID), we have

B(pk(Z) = PocM K (ke (Z) + k()(Z))

_nu Z(JF(2n+1)F(n+a+2)C VOt Fa¥3) n+,)
=PMo 2\ Foaprantain ™ T faoran ety o ”

ZZ VJTC2n+DI'(n+« +2)a o
= STatDrntaty ' "

Jj=0n=0

oo j—1

+ZZ VICn+2Tnfa+3) TG+ DI -—nta+1)
VT +2T2n+a+3) T(+a+2T( —n)

j—n—1
ajcyp1z/ ™"
j=1n=0

®)

forany ¢y € C (k =0, 1, 2,...). Then, from (8), the coefficient of 7

i VITQ2n+ DI(n+ o +2)

am—nC
< TatDr@nraty " "

JTR2n+2)T(n +a +3) F(m +n+2)I'm+a+2)
+ Z Apn+m+1C2n+1-
«/F(n+2)f‘(2n+ot+3) Fm+n+a+3)Lm+1)
For a fixed £ € Ny, set ¢, # 0 and ¢, = 0 for any k # £. We consider the following
two cases:
Case 1: If £ = 2s for any s € Ny, then

Bk(z) = Z VT2s + DI(s +a +2)

= aicr 7t/
—~ TGI D@ tat2 '

If B, on A2(D) is contractive, then

o0
r2s+ HI'(s +ao +2) .
> Ao(s + PlajPleas] < Aa(@9)]eas .

= s+ DIr'Q2s +a+2)

Thus

C(s+1DICQ2s +a+2) _
gA o(s + Plajl* < F(2s+l)l"(s—l—a+2)Aa(2s)_Aa(s) )

Ao (st))
Aa(s)

for any s € Ny. By a direct calculation, is increasing for s € Np and

Ao(s + )
m — =
s—oo  Agy(s)
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H-Toeplitz operators on the function spaces

and so (9) implies that
o
D a1,
j=0

Similarly, if By, on Aé (D) is expansive, then
o0
D Aals + Dlaj? = Ag(s)
j=0

for any s € Np. By setting s = 0 in (10), we have the results.
Case 2: If £ = 25 + 1 for any s € Np, then

o0

Bk = Y VT +DT G +a+3) TG+ DIG—s+a+1)
Y B VT +2)T2s +a +3) TG +a+2)T( —s)

j=s+1

If B, on A2(D) is contractive, then

o0

Jj=s+1

Thus

o0 .
Z AOZ(J’S_|_1)61'2<1

e gl =
L Al D)

for any s € Ny. Similarly, if B, on Ag (D) is expansive, then

o0
Ay(J, 1

Z a(j,s + )|aj|2>1
Ag(s +1)

Jj=s+1
for any s € Np. This completes the proof.

Example3.11 Let (z) = 372, j#z/ for any n € N. Then,

1
Zj—,,=c<n>>1,
j=1

Z F@2s+2T(s+a+3) TG+ DT —s+a+1)? Ag(f—s—1)
IF's+2FQ2s4+a+3) T(+a+2)2T(—s)? Ag(2s + 1)

(10)

j—s—1
ajcosq1z’ .

laj|*> < 1.

where ¢ (n) is the Riemann-zeta function for n € N. Thus B, is not contractive from

Theorem 3.10.
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Example3.12 Let p(z) = )32, ¢/ zJ with any |c| < 1. Then

: 1
2j —
Z|c| == !

Hence B, is not contractive from Theorem 3.10.

We give a description on the contractivity and the expansivity of H-Toeplitz oper-
ators in terms of the coefficients for the polynomial symbol ¢ of degree n on the
Bergman spaces A%(]D)).

Corollary 3.13 Let¢(z) = Z?:l ajzj withanyaj € Candn > 1.If B, is contractive
on AG(D), then 3 'i_, |a;* < 1.

Proof From the case 1 in the proof of Theorem 3.10, if B, is contractive, then

n
Dol <. (11)
j=1
Since % is increasing for j < 2s and decreasing for j > 2s + 1, we have
Ao(j,s+ 1) AoR2s,s+1) AgRs+1,5s+1) s+ 2
max ————— = max , =
izs+1 Ao(s+ 1) Ao(s + 1) Ao(s + 1) 4+ 1)
for any s € Ny, and
{ s+2 } 1
maxy ———— = —.
s>0 L4(s + 1) 2

Thus, for any s € Ny, the inequality given by

n .
Z AO(,]7S+1) |2<1

A
j=s+1 0
implies that
n
1 2
> Sl =1 (12)
j=1
From (11) and (12), we have complete the proof. O

Next, we consider the necessary and sufficient condition for the contractivity and
the expansivity of B, with ¢(z) = az" for N e Nand a € C.
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Theorem 3.14 For ¢(z) = az™ with N e Nand a € C, By, is contractive if and only
iflal < 1.

Proof From the proof of Theorem 3.10, for any k € Ai (D), we get that

Byk(z) = PuMyK (k(2))

Z\/F(2n+l)l"(n+a+2) "
Tt blCntatd

ZJF(2n+2)r(n+a+3) PN+DIWN —ntatD) oy
ST +tDT@nta+d TWNFa+I(N—n)

and

Ag(n+ N)|co|?

) F@n+ DI (n+a+2)
IBpk(2)]” = lal Z]"( + DI 2n+a+2)

iy |2i FrCn+2)T(n+a +3)

Aa(N.n+1 2
“ T(n+2)TQ2n +a +3) o«(N,n+ Dleznil

Thus the contractivity of B, on Ag (D) is equivalent to

ren+ Hrn+a +2) ,
“ Z “T(n+ DI Q2n+a+2) Ag(n =+ N)lcan|

+ |a Ag(N, 1+ 1Dcant1]?

2 i FQ2n+2)T(n+a+3)
Fn+2)I'2n+a+3)

e¢]

Z o(Dlej?

(13)

There are two possibilities to consider. The first case is when ¢, # 0 for £ is even, and
c¢ = 0 for ¢ is odd, then by (13), we have

ZFCn+DI'(n+a +2)

A N 2 2 AL(2 2
D+ DM2n+at ) o T Wlenl” = AxGmlex|

lal

or equivalently,
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for any n € Ny. By a direct calculation, % is decreasing for n, and
A A
|a|2<min¢= lim — 2@ (14)

T 020 Aq(n+ N) n—oo Ay(n+ N)

The second case is when ¢; # 0 for £ is odd, and ¢, = O for £ is even, then from (13),

we have

2F2n+2)F'(n+a +3)
'n+2)I'2n+ o+ 3)

la| Aa(N, 1+ Deant1]? < Mg+ Dlcant1 |,

or equivalently,

2 Ay(n+1)

lal* < ———
Ag(N,n+1)
for any 0 <n < N — 1. By a simple calculation,

Ag(n+1)  T(N+a+2)>? I'(N —n) T'(n+2)
Ae(N,n+1) T(N+12 T(N—n+a+1) T(n+a+3)

> 1,
(15)

since (N+j+1)> > (N—n+j)(n+j+2)forany j € Randforall0 <n < N—1.
From (14) and (15), By, is contractive if and only if |a| < 1. This completes the proof.
O

Corollary 3.15 If ¢(z) = az™ with N € Nand a € C, then By, is a neither expansive
nor isometric operator.

Proof 1t follows from the proof of Theorem 3.14 that if B, is expansive, then

al ZF(2n+1)F(n+ot+2)

A N 2
T+ DI 20+ +2) a(n + N)lea]

ﬂi TQn+2)C(n+a+3)

Ag(N,n+1 2 1
Fnt )T+ a1 3) et Dica] (16)

+ la|
o0

Z o(Dlej P

If we substitute ¢; = 0 for j # 2N + 1 in (16), then we obtain that
Ag@N + Dlean+1* <0,

which is a contradiction. |

Corollary 3.16 Let ¢(z) = az™ with N € Nand a € C. Then By, is not self-adjoint.
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Proof By the definition of the adjoint of B,,, we deduce that

B:;k(z) = K*PharmMak(Z)
N-1

:51{*(2

n=0
00
I'h—N+a+2)'(n+1 _
+Z ( )( ) nN)
n=N

PV —n+a+ DTN +D _y,
T(N—n+DI'(N+a+2) "

Cpl
Tn—N+ Dl +a+2)

_EN_I N+ DJT(N—n+a+2)TCN —2n+a+ 1)C 2N-2n-1
N ~ I'(N+a+2)JT(N—n+ DI 2N —2n) "

i P+ DVT —N+a+2TQn 2N +a+2) o9y
Tn+a+2)JTi—NF+DI@n—2N+1) ’

]|

+

n=N

Comparing constant terms in B,k (z) and B;k(z), they are

VICN)T(N + DIN(a 4 2) 'N+DI'le+2) _
acyy—1 and acy,
VTN +a+ DN +a +2) (N +a+2)

respectively. As coy—1 and cy can be chosen arbitrarily, it follows that the constant
terms in Byk(z) and B;k(z) are different, and hence B, is not self-adjoint. m]

Corollary 3.17 For ¢(z) = az" with N e Nand a € C, By is not normal.

Proof Foranyk € Ag (), the normality of B, is equivalent to B; Byk(z) = B, B;k(z)
or | B(pk(z)ll2 =| B;k(z) 2. Using the proof of Theorem 3.14 and Corollary 3.16, we
get

o0
FCn+DHI'(n +a +2)
Bok(2)|? = 2§ A N 2
| Bok ()l lal T+ DMQn +ot2) a(m 4+ N)|canl
n=0
& ren+2r( 3) (17)
reZzn+2)I'o\ + o +
2 2
Ay (N, 1
+ lal LT+ Cnta+td) o(N,n+ Dcopq1]
and
N-1 2 00 2
AL (N) A, (n)
B*k 2= 2 o 2 o 2_ 18
IByk(2) |al nE:O —Aa(N—n)|C"| +n=EN—Aa(n—N)|C"| (18)

If we substitute ¢; = Ofori # 2N+1in(17) and (18), then we obtain that | Byk(z) 12 =

2
0 and | BZk(2)[? = 527D

ASNTD) |can+1 |2 # 0, which gives the results. O
o
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3.3 H-Toeplitz operators with coanalytic symbols

In this subsection, we examine the characteristics of H-Toeplitz operators B, with
coanalytic symbol ¢. First, we examine the contractivity and the expansivity of B,
where g is of the form ¢(z) = "2, b7/ with b; € C.

Theorem 3.18 Let ¢(z) = Z?’;l ijj with b; € C. If B, is contractive, then

s

1 1
S P
— Ao(s — J) Ay (s)

j=1
foranys € N.

Proof For any k € A2(DD),

- X SFenT DT tatd , STOnidTatat?d) 7n+1)
Bok(2) = PuMy {Z<\/r(n+1)1“(2n+o:+2)62”Z BN T ET TS i

ZZJF(Z"+1>F("+&+2)”C g
JSTo+Dfntat2) 'z

j=1n=0

:ii JTCn+ DL+ 1) T—j+a+2) e
VT ’

- bico,z
S o VTatatdTntat2) To—j+D jem

19)

It follows from (19) that, the coefficient of z”” is

o0

Z VT@2n+ DI (n+1) Tm+a+2)
NT(n+a+2)T2n+o+2) C(m+1)

bu—mcan.

n=m+1

For some s € N, we set ¢g # 0if £ = 25 and ¢, = 0if € # 2s. If B, on AZ(D) is
contractive, then

Aq(25) Ay
Z (s) (s)ua Pleal” < Aa@9)lexl”.

Therefore,

2
— = bjI" =

Z

S—J) T Aals)

This completes the proof. O

Corollary 3.19 For ¢(z) = Z;X):l iji with b; € C, By is not an expansive operator.
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Proof From the Eq. (19), if we substitute ¢; = 0 for j is even, then we obtain that
Byk(z) = 0. Thus B, on Ai(ID)) is not an expansive operator. O

Example 3.20 For ¢(z) = /a + 3z + /a + 222, we have

1 e (@+2)(@+3) 1
mVM = (¢ +2)(x+4) > > =D

2

j=1
Hence by Theorem 3.18, By, is not contractive.

Next, we study the necessary and sufficient condition for the contractivity and the
expansivity of B, with ¢ = bzN for N e Nand b € C.

Theorem 3.21 Ler ¢(z) = bz" with N € Nand b € C. Then By, is contractive if and
only if |b] < 1.

Proof From the proof of Theorem 3.18, for any k € Ai (D),

e¢]

B JTCn+ DI (n+ 1) Th—N+a+2) DN
B(pk(Z)_n;\,\/F(n+ot+2)F(2n+ot+2) Th-N+1)
Thus
2 e S Ae@a) o
| Bok(2)]* = 1] ;N WO

Hence the contractivity of B, is equivalent to

o (0.¢]
Aa@m)Ao(m) 2
b|? ————cw|” < Ay 0l
1b| ZN TSl _,;) (m)lcal

If we compare the terms involving |c2, |2, then we have

Ay (2n)Ay(n)

ﬁwmczﬂz < Ag2n)|canl?,
and so

b]* < Aaln — N)
Aq(n)
f;)r any n > N. Since A‘;\(:(; ;V ) is decreasing forn > N, By, is contractive if and only
i
|b|2§minAa(n_N): . Aa(n_N):
n>0  Ay(n) n—oo  Ay(n)
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This completes the proof. O

Corollary 3.22 For ¢(z) = bz with N € Nand b € C, By, is neither expansive nor
isometric.

Proof Using the result as in the proof of Theorem 3.21, the expansivity of B, is
equivalent to

o (0.¢]
Aa@m)Ao(m) 2
b|? T [ ] i Ay 0l
1b| ;V o) ! _; (m)lcal

If we substitute ¢, = 0 for n > 2N, then we deduce that Zii’al Ag(n)]cy? <0,
which is a contradiction. O

3.4 H-Toeplitz operators with harmonic symbols

Finally, we analyze the properties of H-Toeplitz operators B, that have harmonic
symbols of the form ¢(z) = Zi’io ajz/ + 2711 b;7/ with a;,b; € C. Our focus
is on determining the necessary and sufficient conditions for the contractivity and the
expansivity of By.

Theorem3.23 Let ¢(z) = Y52y a2/ + Y 32, b7/ and aj, b; € C.
(i) If By is contractive, then

> , Aals +J) — Ag(s)
> Aa(Plaj® <1, E +§ 2<1
= Dlajl” = = Au(®) wonlll ‘g A it =

and

D Aol 9lajl® < Agls)

Jj=s

foranys € N.
(ii) If By is expansive, then

ZA(J)Ia, > 1, Z |,|+ZA( |b,| >
J=0 J=0

and

D Aalis9)lajl® = Agls)

j=s

foranys € N.
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Proof By the similar arguments as in the proof of Theorems 3.10 and 3.18, for any
k € A2(D),

VICn+DIMn+a+2) .
Byk(z) = ;);)\/r(n+1)r(2n+a+2) ajeanz
oo j—1 . .
VT@n+2T(n+a+3) TG+DIG—nta+l) j-n—1
+;n2—(:>«/r(n+2)r(2n+a+3) TG +atr(—n O
T2n+ DL+ 1) Frn—j+e+2)
+ZZ\/1‘(n+a+2)F(2n+a+2) Fn—j+1 bicm?

n=l1 j=1

forany c; € C(j =0,1,2,...). For some ¢ € Ny, set c;g # 0 and ¢; = 0 for any
Jj # £. Next, we examine the two cases below: '

Casel: If ¢ = 0,then Byk(z) = Z?io ajcoz’. Thusif B, on A2 (D) is contractive,
then

o
> Aa(ilajPleol* < Ag(0)col,

J=0

or equivalently Z;O:o Ao (j)laj | < 1. Similarly, if By on Ag (D) is expansive, then

>0 Aa(lajl* = 1.
Case 2: If £ = 25 for any s € N and ¢z # 0, then

VT + DTG +a+2)
e _2:: TG+ DI tat2) /2

+Z VIGFOIGHD  Te—jta+d,
ToratdI®mtatd Te-jr1 2

If B, on Ag (D) is contractive, then

o0

3 F2s+ DI(s +a +2)

A R PR
0F(S+1)F(2S+Ol+2) a(s+l)|aj| lcos]

j=
+Z Ao (2s)Ay(s)

j=1ﬁ|b ilPleas? < Aa(29)leasl?

or equivalently

> Ao(s + j) S Ag(s) 2
1
) wER U 3wy LU
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Similarly, if B, on Ag (D) is expansive, then
o0 . s
Ay (s) 2
24 il >1
2:: Z Aals = J)

Case3: If £ =25 — 1 forany s € Nand cp;—1 # 0, then by the case 2 of Theorem
3.10, we have the results. This completes the proof. O

The following results can be easily derived from Theorem 3.23.

Corollary 3.24 Let ¢(z) = a1z + biz and ay, by € C. If B, is contractive, then

|
2 ) 2, L e
1> < o +2, Jlail + — bl <
and
s+ 1 5 K 5
b
prpane o e LU L

forany s > 2.

Example 3.25 For ¢(z) = Vf‘/f 7+ V(“+3)(3“+7 Z2 33@;%” Z, we have
1, 3a+7
Aq T 1= Al(0),
Z (lajl* = + 3D «(0)
E:A( DiajP= — 4 3*+7 LA
a > = b
L T T 5w ) T da @) w2
and
iiAM1+jnwl+_a(N b _a+2 3@e+7) 9@+l
S Aa() T T A0 T @43 B@td) B t3)

Hence, by the Theorem 3.23, By, is neither contractive nor expansive.
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