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Abstract
Anosov diffeomorphisms are an important class of dynamical systems with many
peculiar properties. Ever since they were introduced in the sixties, it has been an open
question which manifolds can admit such diffeomorphisms, where tori of dimension
greater than or equal to two are the typical examples. It is conjectured that the only
manifolds supporting an Anosov diffeomorphism are finitely covered by a nilmani-
fold, a type of manifold closely related to rational nilpotent Lie algebras. In this paper,
we study the existence of Anosov diffeomorphisms for a large class of these nilpotent
Lie algebras, namely the ones that can be realized as a rational form in a Lie algebra
associated to a graph. From a given simple undirected graph, one can construct a com-
plex c-step nilpotent Lie algebra, which in general contains different non-isomorphic
rational forms, as described by the authors in previous work. We determine precisely
which forms correspond to a nilmanifold admitting an Anosov diffeomorphism, lead-
ing to the first class of complex nilpotent Lie algebras having several non-isomorphic
rational forms and for which all the ones that are Anosov are described. In doing so,
we put a new perspective on certain classifications in low dimensions and correct a
false result in the literature.
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746 J. Deré, T. Witdouck

1 Introduction

AnAnosov diffeomorphism on a closedmanifoldM is a diffeomorphism f : M → M
that preserves a continuous splitting T M = Es ⊕ Eu of the tangent bundle such
that d f exponentially contracts the elements of Es and exponentially expands the
elements in Eu . The easiest example of such a map is the so-called Arnold’s cat

map, i.e. the map induced by the matrix

(
2 1
1 1

)
on the torus R

2/Z
2. In his seminal

paper [19], S. Smale introduced the first non-toral example of a manifold admitting an
Anosov diffeomorphism, raising the question which manifolds can have an Anosov
diffeomorphism. This new example was given on a nilmanifold N/�, i.e. the compact
quotient of a 1-connected nilpotent Lie group N by a lattice � ⊂ N .

It has been conjectured that every closed manifold admitting an Anosov diffeo-
morphism is, up to homeomorphism, finitely covered by a nilmanifold. Hence an
important first step to understand the manifolds with an Anosov diffeomorphism is to
study nilmanifolds. For tori, which are the compact quotients of the abelian Lie group
N = R

n , the problem is completely solved, namely an Anosov diffeomorphism exists
if and only if n > 1.

Corresponding to every nilmanifold N/�, there is a (up to isomorphism) unique
rational nilpotent Lie algebra nQ, which is a rational form of the real Lie algebra nR

corresponding to N . Conversely, by the work of Mal’cev [16], every rational form of
nR corresponds to a lattice� of N that is uniquely determined up to commensurability,
i.e. up to having an isomorphic subgroup of finite index. Moreover, by combining the
results proven in [2] and [17] the existence of an Anosov diffeomorphism depends
only on this rational Lie algebra nQ. More specifically, N/� admits an Anosov diffeo-
morphism if and only if nQ admits an automorphism which is both hyperbolic, i.e. has
no eigenvalues of absolute value 1, and integer-like, i.e. has a characteristic polyno-
mial with integer coefficients and constant term equal to ±1. Such an automorphism
will also be called an Anosov automorphism and a rational Lie algebra admitting one
an Anosov Lie algebra. In the remainder we hence focus on rational forms of real
(or complex) c-step nilpotent Lie algebras to study Anosov diffeomorphisms on the
corresponding nilmanifolds.

There are several instances for which the existence of Anosov automorphisms is
known. Free c-step nilpotent Lie algebras have a unique rational form, and this form
admits an Anosov automorphism if and only if the number of generators is greater
than or equal to c + 1, see [4]. A generalization in the 2-step nilpotent case for one
specific rational form of nilpotent Lie algebras associated to a simple undirected graph
G is given in [1], we refer to Sect. 2.2 for the exact definition of these Lie algebras.
Note that the aforementioned example by S. Smale is a rational form in such a real
Lie algebra associated to a graph, but it does not fall under the main result of [1], see
Example 5.6. There is also a classification of Anosov automorphisms on Lie algebras
up to dimension 8 in [13], containing two families of different rational forms in a
fixed real Lie algebra of nilpotency class 2, which are in both cases a Lie algebra
associated to a graph. Later, this classification was slightly corrected in [5], where the
close relation between Galois theory and Anosov diffeomorphisms was explored for
the first time. Finally, there was an attempt to generalize the results in [1] to the c-step
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nilpotent case in [15], but as we will demonstrate below the main result of the latter
paper is false.

In conclusion, there are only sparse examples in the literature of real or even complex
Lie algebras which contain more than one rational form and in which all forms with
an Anosov automorphism are classified. In this paper we greatly extend the known
results by fully characterizing the existence of Anosov diffeomorphisms on quotients
of c-step nilpotent Lie groups associated to graphs. Our main result gives the first class
of Lie algebras having distinct rational forms and with a general characterization of
all Anosov rational forms.

Let G be a simple undirected graph. One can define an equivalence relation on the
vertices by saying two vertices are equivalent if and only if their transposition (leaving
all other vertices fixed) is a graph automorphism. The equivalence classes are called
coherent components and � denotes the set of coherent components of G. This allows
one to define a quotient graph on �, written as G, which is a vertex weighted graph,
possibly with loops. For any field K ⊂ C and integer c > 1, we write nKG,c for the
c-step nilpotent Lie algebra over K associated to G. These Lie algebras are defined in
detail in section 2.2, together with the classification of their rational forms from [7].
This classification gives for any injective group morphism ρ : Gal(L/Q) → Aut(G),
with L ⊂ C a finite Galois extension of Q, a rational form n

Q
ρ,c of nCG,c and up to

Q-isomorphism, these are all the rational forms of nCG,c.

The main result of this paper uses the above description of all rational forms of nCG,c
and provides an easy to check condition on the ρ-action of the Galois group on the
quotient graph to determine whether the form is Anosov or not. In order to do so we
define for any Galois extension L/Qwith L ⊂ C and anymorphism ρ : Gal(L/Q) →
Aut(G) the following function on the coherent components

zρ : � →
{
1

2
, 1

}
: λ �→

{
1 if ∃σ ∈ Gal(L/Q) : ρτσ (λ) = ρσ (λ)
1
2 else

(1)

where τ ∈ Gal(L/Q) denotes the complex conjugation automorphism (with the con-
vention that it is the identity automorphism if L ⊂ R). Note that zρ is constant on
ρ-orbits and that it takes the value 1 on an orbit if and only if ρτ fixes a coherent
component in that orbit. A set of coherent components will be called connected if the
underlying set of vertices is connected in the graph (see Definition 3.1).

Theorem A Let G be a graph, � its set of coherent components, L/Q a finite Galois
extension and ρ : Gal(L/Q) → Aut(G) an injective group morphism. The associated
rational form n

Q
ρ,c of nCG,c is Anosov if and only if for each non-empty connected set

of coherent components A ⊂ � such that A ∪ ρτ (A) is ρ-invariant, it holds that

c <
∑

λ∈A∪ρτ (A)

zρ(λ) · |λ|.

Note that the condition on the ρ-action only depends on how the orbits look like and
which coherent components are fixed under the action of the complex conjugation
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748 J. Deré, T. Witdouck

automorphism, making it straight-forward to check the condition for concrete actions.
We illustrate this in Example 5.1 for a concrete graph and two different actions on
it. The proof of the above theorem combines properties of hyperbolic algebraic units
with the description of rational forms as given in Theorem 2.3. If L ⊂ R, the condition
for nQρ,c to be Anosov reduces to: all non-empty connected ρ-invariant subsets A ⊂ �

must satisfy c <
∑

λ∈A |λ|. By applying the main result to the standard rational form

n
Q

G we find that the main result of [14] is false, and we present a counterexample in
Sect. 5

In Sect. 5, we further demonstrate the ease to apply the aforementioned Theorem
A to specific classes of graphs, a first of which is trees. We can formulate the result
on the level of nilmanifolds as follows.

Corollary B Let G be a tree and NG,c the associated c-step nilpotent simply connected
Lie group. For any cocompact lattice � ≤ NG,c, we have that the nilmanifold NG,c/�

does not admit an Anosov diffeomorphism.

The following natural class to consider are the cycle graphs, for which we found
the following result on the level of nilmanifolds.

Corollary C Let G be the cycle graph of order n ≥ 5 and NG,c the associated c-step
nilpotent simply connected Lie group. There exists a cocompact lattice � ≤ NG,c such
that the nilmanifold NG,c/� admits an Anosov diffeomorphism if and only if n > c.

Finally, we illustrate how certain classifications in low dimensions are immediate
from our main result.

2 Preliminaries

2.1 Number fields and algebraic units with hyperbolic properties

All fields in the paper are assumed to be subfields of C. A number field is defined as
a subfield K ⊂ C such that K is a finite dimensional vector space over Q, where we
denote this dimension as [K : Q]. It is well-known that a non-zero ring morphism
between fields needs to be injective, and we will call such morphisms embeddings.
Every number field K ⊂ C has exactly [K : Q] different embeddings K → C. If
τ : C → C denotes the complex conjugation automorphism, then an embedding
σ : K → C satisfies τ ◦ σ = σ if and only if σ(K ) ⊂ R. We will call σ a real
embedding if σ(K ) ⊂ R and σ, τ ◦ σ a conjugated pair of complex embeddings if
σ(K ) � R. If s is the number of real embeddings and t the number of conjugated
pairs of complex embeddings, then s+ 2t = [K : Q]. We say a number field is totally
real if all its embeddings in C are real.

An element of C is called algebraic over Q if it is a root of some polynomial with
rational coefficients. The set of all elements algebraic over Q is a subfield of C and is
equal to the algebraic closure of Q, which we thus write as Q ⊂ C. Note that for any
embedding σ : K → C of a number field K , we have that σ(K ) ⊂ Q. By consequence
we also have an embedding σ : K → Q. Conversely, every embedding of K into Q

gives an embedding of K into C by composing it with the inclusion of Q in C.
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For any extension K ⊂ F of fields, we write Aut(F/K ) for the group of field
automorphisms of F that fix every element of K . An extension F/K will be called
Galois if

{a ∈ F | ∀σ ∈ Aut(F/K ) : σ(a) = a} = K .

In the case that the field extension F/K is Galois, we write Gal(F/K ) for Aut(F/K ).
A number field K is a Galois extension of Q if and only if σ(K ) = K for any
embedding σ : K → C. Note that C/Q is not a Galois extension, but Q/Q is.
Therefore, in some cases, it will be more convenient to work with Q instead of C.

Given anumberfield, the following lemma shows the existence of aGalois extension
of that fieldwhich satisfies a condition on the number of real and complex embeddings.

Lemma 2.1 Let K be a number field with s real embeddings and t conjugated pairs
of complex embeddings in C. For any positive integer d ∈ N, there exists a Galois
extension F/K of degree [F : K ] = d such that F has d · s real embeddings and d · t
conjugated pairs of complex embeddings in C.

Proof We can assume that all fields are subfields ofC. From [7, Lemma 5.4.], it is clear
that there exists a totally real Galois extension L/Q of degree d such that K ∩ L = Q.
Now take F := K L . Using Proposition 3.19 and Corollary 3.20 from [18], we find
that F/K is Galois and that

[F : Q] = [F : K ][K : Q] = [L : Q][K : Q] = d · (s + 2t).

Let us write in generalMK for the set of embeddings from the number field K to C.
Consider the map

g :MF →MK ×ML : σ �→ (σ |K , σ |L).

It is clear this map is injective since any embedding of F in C is completely deter-
mined by its values on K and L . Since the number of embeddings equals the degree
of the number field, it follows from the above that MF and MK ×ML have the
same cardinality. We thus have that g is a bijection. If we let τ denote the complex
conjugation automorphism on C, we have for any σ ∈MF the equivalences

τ ◦ σ = σ ⇔ g(τ ◦ σ) = g(σ )

⇔ (τ ◦ σ |K , τ ◦ σ |L) = (σ |K , σ |L)

⇔ (τ ◦ σ |K , σ |L) = (σ |K , σ |L)

⇔ τ ◦ σ |K = σ |K .

From this it follows that the number of real embeddings of F into C is exactly equal
to d · s. As a consequence, the number of conjugated pairs of complex embeddings of
F into C must be equal to d · t . ��
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750 J. Deré, T. Witdouck

The algebraic integers of a number field K are all elements of K with minimal
polynomial having integer coefficients. The set of algebraic integers of K is closed
under addition andmultiplication and thus forms a ring. The units of this ring are called
the algebraic units of K and are exactly those algebraic integers with minimal poly-
nomial having constant term equal to±1. Note that since an Anosov automorphism is
integer-like (see introduction for definition), all of its eigenvalues are algebraic units.
The group of algebraic units of a number field K is written asUK and its structure has
been described by Dirichlet’s Unit Theorem (see [20]). The theorem states that if K
is a number field with s real embeddings σ1, . . . , σs : K → C and t conjugated pairs
of complex embeddings, where we list one of each pair as σs+1, . . . , σs+t : K → C,
then the map

l : UK → R
s+t : ξ �→ (log |σ1(ξ)|, . . . , log |σs(ξ)|,

2 log |σs+1(ξ)|, . . . , 2 log |σs+t (ξ)|) (2)

has finite kernel and its image l(UK ) is a cocompact lattice of the vector subspace

Ws+t := {(x1, . . . , xs+t ) ∈ R
s+t | x1 + . . .+ xs+t = 0}.

Using this description of UK , we can prove the following lemma on the existence
of algebraic units with hyperbolic properties. This lemma is a generalization of [3,
Proposition 3.6] and the proof is very similar.

Lemma 2.2 Let K/Q be a number field with s real embeddings σ1, . . . , σs : K → C

and t conjugated pairs of complex embeddings, where we list one of each pair as
σs+1, . . . , σs+t : K → C. Then for any c ∈ N, there exists an algebraic unit ξ ∈ K
such that for any e1, . . . , es+t ∈ Z

≥0 with e1 + . . .+ es+t ≤ c it holds that

(
|σ1(ξ)e1 · . . . · σs+t (ξ)es+t | = 1

)
⇒
(
2e1 = . . . = 2es = es+1 = . . . = es+t

)
.

(3)

Proof Let l : UK → R
s+t be the map as defined in (2) for the number field K . From

Dirichlet’s Unit Theorem, we know that l(UK ) is a cocompact lattice in the vector
subspace Ws+t ⊂ R

s+t . Now consider the following finite collection of hyperplanes
in R

s+t :

H =
⎧⎨
⎩H ↔

s∑
i=1

2ei xi +
s+t∑

i=s+1
ei xi = 0

∣∣∣∣∣∣
e1, . . . , es+t ∈ Z

≥0, ∑s+t
i=1 ei ≤ c and

¬(2e1 = . . . = 2es = es+1 = . . . = es+t )

⎫⎬
⎭ .

Note that for any H ∈ Hwe have that H �= Ws+t and thus that H ∩Ws+t is a s+ t−2
dimensional vector subspace ofWs+t . Since a cocompact lattice in a real vector space
can never be contained in a finite union of proper vector subspaces, it follows that
there exists a ξ ∈ UK such that

123



A characterization of Anosov rational forms in nilpotent Lie… 751

l(ξ) ∈ Ws+t \
( ⋃
H∈H

H

)
.

As one can check, ξ satisfies the required property. ��

2.2 Lie algebras associated to graphs

A graph is defined as a tuple G = (S, E) where S is a finite set of vertices and E is a
subset of {{α, β} | α, β ∈ S, α �= β}, forming the edges. To this information, one can
associate a Lie algebra in the following way. For any field K ⊂ C, let fK (S) denote the
free Lie algebra generated by the set S. Let IG ⊂ fK (S) denote the Lie ideal of fK (S)

generated by the set of elements {[α, β] | α, β ∈ S, {α, β} /∈ E}. The Lie algebra gKG
is then defined as the quotient

gKG = fK (S)/IG .

The Lie algebras obtained in this way are sometimes referred to as the free partially
commutative Lie algebras. For any Lie algebra g, let γi (g) denote the i-th ideal in the
lower central series of g, defined inductively by γ1(g) = g and γi+1(g) = [g, γi (g)].
One defines the c-step nilpotent Lie algebra associated to G over the field K as

nKG,c = gKG /γc+1(gKG ).

Let V denote the vector subspace of nKG,c spanned by the vertices S and write TG,c ≤
Aut(nKG,c) for the subgroup consisting of all automorphisms f that satisfy f (V ) = V .

Note that we can identity the abelianization of nKG,c with the vector space V via the

map V → nKG,c/[nKG,c, n
K
G,c] : v �→ v + [nKG,c, n

K
G,c]. Every automorphism of nKG,c

induces an automorphism on the abelianization and thus via this identification also on
the vector space V . This gives a group morphism

p : Aut(nKG,c) → GL(V ). (4)

As one can check p|TG,c is injective and thus an isomorphism onto its image. It was
proven in [7, Proposition 2.2.] that p(TG,c) = p(Aut(nKG,c)) and that this image does

not depend on the nilpotency class c. We will write G = p(TG,c) = p(Aut(nKG,c)) ≤
GL(V ).

The group G is a linear algebraic group and has been described in [6] for fields
K ⊂ C. Let us briefly recall this description. For any vertex α ∈ S, we define its open
and closed neighbourhood by

�′(α) = {β ∈ S | {α, β} ∈ E} and �(α) = �(α) ∪ {α},

respectively. A relation ≺ on S is then defined by α ≺ β ⇔ �′(α) ⊂ �(β). Let
us write I for the identity map on V and for any two vertices α, β ∈ S, let us write
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752 J. Deré, T. Witdouck

Eαβ ∈ End(V ) for the linear map which maps β to α and any other vertex to zero. Let
M denote the unipotent subgroup of GL(V ) generated by the elements I + t Eαβ for
which t ∈ K , α ≺ β and α � β.

The relation ≺ also gives an equivalence relation ∼ on S by α ∼ β ⇔ α ≺
β ∧ α � β. Note that this equivalence relation can also be defined by saying α and β

are equivalent if and only if their transposition is a graph automorphism. We refer to
the equivalence classes as the coherent components of G and write the set of coherent
components as � = S/ ∼.

By modding out this equivalence relation, one gets a quotient graph G = (�, E,)

where

E = {{λ,μ} | λ,μ ∈ �, ∃α ∈ λ, β ∈ μ : {α, β} ∈ E}}

is the set of edges of the quotient graph and  : � → N : λ �→ |λ| is the weight
function on the vertices. Note that this quotient graph G is allowed to have loops, in
contrast to the original graph G. In fact, when there is a loop {λ} ∈ E , it implies that
λ ⊂ S spans a complete subgraph of G. On the other hand, if {λ} /∈ E , then λ ⊂ S
spans an edgeless subgraph of G.

The automorphisms of the quotient graph are the bijections ϕ : � → � such that
ϕ(e) ∈ E for any e ∈ E and  ◦ ϕ = . It is clear that there is a natural projection
morphism Aut(G) → Aut(G) : θ �→ θ . If we order the vertices in each coherent
component as λ = {vλ1, vλ2, . . . , vλ|λ|}, we can also define a morphism

r : Aut(G) → Aut(G) (5)

by r(ϕ)(vλ j ) = vϕ(λ) j for any ϕ ∈ Aut(G), λ ∈ � and j ∈ {1, . . . , |λ|}. This
morphism satisfies r(ϕ) = ϕ for any ϕ ∈ Aut(G) and r(ϕ)|λ = Idλ for any λ ∈ �

which is a fixed point of ϕ. We fix this ordering of the vertices and this morphism r
for the remainder of the paper.

For any permutation θ : S → S, we write P(θ) ∈ GL(V ) for the linear map
determined by P(θ)(α) = θ(α) for any vertex α ∈ S. This gives a morphism P :
Aut(G) → GL(V ). Composing this map with the morphism r from above, we get a
morphism P = P ◦ r : Aut(G) → GL(V ). For any λ ∈ �, write Vλ for the vector
subspace of V spanned by the vertices in λ. We let GL(Vλ) denote the subgroup of
GL(V ) of all invertible linear maps which fix the vertices which do not lie in λ.

As proven in [6, 7], the group G = p(TG,c) is equal to

G = M ·
(∏

λ∈�

GL(Vλ)

)
· P(Aut(G)).

Moreover, the group can be written as an internal semi-direct product

G ∼= M �

((∏
λ∈�

GL(Vλ)

)
� P(Aut(G))

)
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where
(∏

λ∈� GL(Vλ)
)

� P(Aut(G)) is reductive and M is the unipotent radical of
G. We thus also have a projection morphism

q : G → Aut(G)

Composing this with the morphism p, we get the morphism

π := q ◦ p : Aut(nKG,c) → Aut(G). (6)

Since p|TG,c : TG,c → G is a group isomorphism, it has a well-defined inverse. If
we compose this inverse with the morphism P = P ◦ r : Aut(G) → G, we get an
injective morphism

i = (p|TG,c )
−1 ◦ P : Aut(G) → TG,c ≤ Aut(nKG,c). (7)

2.3 The rational forms of nCG,c

If L/K is an extension of subfields ofC, then there is a natural inclusion fK (S) ⊂ fL(S)

induced by the identity on S. This induces an inclusion nKG,c ⊂ nLG,c. In fact nKG,c is a

K -form of nLG,c where the inclusion nKG,c ⊂ nLG,c gives a natural isomorphism of Lie
algebras associated to graphs

h : nKG,c ⊗K L
∼=−→ nLG,c : v ⊗ l �→ lv.

If L/K is a Galois extension, we also have a natural action of Gal(L/K ) on nLG,c
by semi-linear maps defined by σ h(v ⊗ l) = h(v ⊗ σ(l)) for any σ ∈ Gal(L/K ),
v ∈ nKG,c and l ∈ L and extending this additively to all of nLG,c. This action also gives

an action of Gal(L/K ) on Aut(nLG,c) by defining for any f ∈ Aut(nLG,c), v ∈ nLG,c and
σ ∈ Gal(L/K ):

(
σ f
)
(v) = σ(

f
(

σ−1v
))

.

Note that the subgroup TG,c ≤ Aut(nLG,c) is invariant under this action and thus that
we also get an induced action of Gal(L/K ) on G by using the isomorphism p|TG,c :
TG,c → G. For these Gal(L/K ) actions, the map p : Aut(nLG,c) → G is Gal(L/K )-

equivariant, i.e. p(σ f ) = σ p( f ) for any f ∈ Aut(nLG,c) and σ ∈ Gal(L/K ).

The rational forms of nCG,c can be described by the following theorem from [7].

Theorem 2.3 Let G be a simple undirected graph and nCG,c the associated c-step nilpo-

tent complex Lie algebra. Up to Q-isomorphism, all rational forms of nCG,c are given
by

nQρ,c =
{
v ∈ nLG,c | ∀σ ∈ Gal(L/Q) : i(ρσ )(σ v) = v

}
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where L/Q is a finite Galois extension and ρ : Gal(L/Q) → Aut(G) is an injective
group morphism. If K/Q is another finite Galois extension with an injective group
morphism η : Gal(K/Q) → Aut(G), then n

Q
ρ,c and n

Q
η,c are isomorphic if and only

if L = K and there exists a ϕ ∈ Aut(G) such that ϕρ(σ)ϕ−1 = η(σ ) for all σ ∈
Gal(L/Q). The rational forms of nRG,c are exactly those n

Q
ρ,c for which L ⊂ R.

As the eigenvalues of an Anosov diffeomorphism on the rational form n
Q
ρ,c do not

necessarily lie in the finite Galois extension L , we will also use the algebraic closure
Q of Q in Sect. 3.2. Note that an injective morphism ρ : Gal(L/Q) → Aut(G)

can always be extended to a morphism with domain Gal(Q/Q) by precomposing it
with the morphism Gal(Q/Q) → Gal(L/Q) : σ �→ σ |L . Let ρ : Gal(Q/Q) →
Aut(G) denote this extended morphism. It is continuous with respect to the Krull
topology on Gal(Q/Q) and the discrete topology on Aut(G). These will always be
the topologies considered on these groups. To this morphism ρ (and in fact to any
continuous morphism from Gal(Q/Q) to Aut(G)), one can again associate a rational

form as a subset of nQG,c by

n
Q
ρ,c =

{
v ∈ n

Q

G,c | ∀σ ∈ Gal(Q/Q) : i(ρσ )(σ v) = v
}

.

This rational form is isomorphic to the original one nQρ,c ⊂ nLG,c. The following lemma
will be useful in Sect. 3.2 for finding automorphisms of rational forms.

Lemma 2.4 Let ρ : Gal(Q/Q) → Aut(G) be a continuous group morphism. Let

n
Q
ρ,c ⊂ n

Q

G,c be the associated rational form. An automorphism f ∈ Aut(nQG,c) satisfies

f (nQρ,c) = n
Q
ρ,c if and only if

i(ρ−1σ ) f i(ρσ ) = σ f

for all σ ∈ Gal(Q/Q).

Proof Let f ∈ Aut(nQG,c). Note that the condition f (nQρ,c) = n
Q
ρ,c is equivalent to

f (nQρ,c) ⊂ n
Q
ρ,c. This follows from the fact that f is also a Q-linear bijection and

the fact that nQρ,c is finite dimensional. We thus have that f (nQρ,c) = n
Q
ρ,c if and only

if ∀v ∈ n
Q
ρ,c, σ ∈ Gal(Q/Q) : i(ρσ )

(
σ ( f (v))

) = f (v). This last equality can be
rewritten as

i(ρσ )
(
σ ( f (v))

) = f (v) ⇔ ( f −1 i(ρσ ) σ f )(σ v) = v

⇔ ( f −1 i(ρσ ) σ f i(ρ−1σ ) i(ρσ ))(σ v) = v

⇔ ( f −1 i(ρσ ) σ f i(ρ−1σ ))(v) = v

Thus, we find that f (nQρ,c) = n
Q
ρ,c if and only if the automorphism f −1 i(ρσ )

σ f i(ρ−1σ ) ∈ Aut(nQG,c) is the identity on the rational form n
Q
ρ,c for anyσ ∈ Gal(Q/Q).
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But since nQρ,c is a form, it has a basis which is also a basis for nQG,c. By consequence

we find that f (nQρ,c) = n
Q
ρ,c if and only if i(ρ−1σ ) f i(ρσ ) = σ f for all σ ∈ Gal(Q/Q).

��

3 Reduction to algebraic integers

Before proving Theorem A, we first need a technical result which relates the existence
of an Anosov automorphism to having certain algebraic units for every vertex of our
graph. A first step is to determine the eigenvalues of certain automorphisms of nKG,c
depending on the structure of the graph. Later, we will apply this to relate Anosov
automorphisms to the existence of certain algebraic units.

3.1 The eigenvalues of vertex diagonal automorphisms of nKG,c

Let G = (S, E) be a graph, K ⊂ C a field and nKG,c the associated c-step nilpotent

Lie algebra over K . We say an automorphism f ∈ Aut(nKG,c) is vertex diagonal if
there exists a map � : S → K such that f (α) = �(α)α for any vertex α ∈ S. In
fact, for the Lie algebras nKG,c it holds that for any map � : S → K\{0} there exists
a unique vertex diagonal automorphism f� ∈ Aut(nKG,c) with f�(α) = �(α)α for
all α ∈ S. We say that f� is the vertex diagonal automorphism determined by �.
The subgroup of all vertex-diagonal automorphisms in Aut(nKG,c) is written as DG,c.

A short calculation shows that the centralizer of DG,c in Aut(nKG,c) is DG,c itself and

thus that DG,c is a maximal torus of the linear algebraic group Aut(nKG,c).
Given amap� : S → K wewill give in this section a description of all eigenvalues

of the vertex-diagonal automorphism f� ∈ Aut(nKG,c). This description will depend
on whether certain subsets of the graph are connected. Recall that {S1, S2, . . . , Sn} is
a partition of S if all Si are non-empty, Si ∩ S j = ∅ for any i �= j and S =⋃n

i=1 Si .

Definition 3.1 A graph G = (S, E) is called connected if for any partition {S1, S2}
of S, there exist vertices α1 ∈ S1 and α2 ∈ S2 such that {α1, α2} ∈ E . If a graph
is not connected we simply say it is disconnected. A subset of vertices A ⊂ S will
be called (dis)connected if the subgraph spanned by A is (dis)connected. A subset of
coherent components B ⊂ � will be called (dis)connected if the union

⋃
λ∈B λ is

(dis)connected.

Inwhat follows, wewill use the notion of Lyndon elementswhich is a generalization
of the so called Lyndon words to the partially commutative setting. We refer to [21]
for a more detailed overview. This paper summarizes results from Droms, Duchamp,
Krob, and Lalonde [8, 9, 11, 12]. The reader should be careful since there are two
different conventions when using graphs to define an algebraic object. We are using
the convention that two non-adjacent vertices commute in the associated algebraic
structure, as is common when considering Lie algebras, see [1]. Note that under this
convention, the vertices and edges of the graph form a basis of the Lie algebra in
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the 2-step nilpotent case. However, the opposite convention is also often used in the
literature when considering groups, as for example in [21].

We denote byW (S) the set of all words with letters in S, including the empty word
which we write with ∅. For two words w1, w2, we write w1 ↔ w2 if there exist words
u1, u2 and vertices α, β with {α, β} /∈ E such that w1 = u1αβu2 and w2 = u1βαu2.
We then define an equivalence relation ∼ on W (S) by

w1 ∼ w2 ⇐⇒ ∃k ∈ N, u1, . . . , uk ∈ W (S) : w1 ↔ u1 ↔ . . . ↔ uk ↔ w2.

The equivalence class of a word w will be denoted by w and the set of all equivalence
classes is denoted by M := W (S)/ ∼. Given an order on S, we give W (S) the
lexicographical order. We then denote for anym ∈ M by std(m) the maximal element
ofm with respect to this lexicographical order onW (S). This maximum exists because
the equivalence class m is a finite set.

We define the length of a word w ∈ W (S) as the number of letters making up w

and denote this number with |w|. The weight of a word w ∈ W (S) is defined as the
map ew : S → Z

≥0 which assigns to α ∈ S the number of times it occurs in w. Note
that these notions descend nicely to the equivalence classes in M where the length of
an element m = w ∈ M is defined as |m| := |w| and the weight of m is defined as
em := ew.

To introduce the Lyndon words and Lyndon elements we also need the notions
of conjugacy classes of words and primitive words. The conjugacy class of a word
w ∈ W (S) is the set of all words v ∈ W (S) such that there exist words u1, u2 ∈ W (S)

withw = u1u2 and v = u2u1.We say awordw is primitive if there exist no non-empty
words u1, u2 ∈ W (S) such that w = u1u2 = u2u1.

Definition 3.2 We say a word w ∈ W (S) is a Lyndon word if it is not the empty word,
it is primitive and it is minimal in its conjugacy class. An element m ∈ M is then
called a Lyndon element if std(m) is a Lyndon word. The set of Lyndon elements of
M is denoted by LE(M).

Note that this is not the original definition of a Lyndon element, but we use the char-
acterization from [21, Theorem 5.12]. In what follows we will determine the possible
weights of Lyndon elements, thus giving useful information about the eigenvalues
of vertex diagonal automorphisms of nLG,c. The following lemma will be crucial for
finding Lyndon elements from connected subgraphs.

Lemma 3.3 Let G = (S, E) be a graph with an order on S and α1, . . . , αk distinct
elements of S with k ≥ 2. If {α1, . . . , αk} is connected, then there exists a permutation
σ ∈ Sk such that

α
e1
σ(1)α

e2
σ(2) . . . α

ek
σ(k)

is a Lyndon element with respect to the ordering on S for any positive integers
e1, . . . , ek > 0.
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Proof First we construct the permutation σ . Define σ(1) by ασ(1) = min{α1, . . . , αk}.
Then define the other images of σ inductively by choosing for σ(i) an element from
{1, . . . , k}\{σ(1), . . . , σ (i −1)} such that {ασ(1), . . . , ασ(i)} is connected. As one can
check, this is always possible by using the assumption that {α1, . . . , αk} is connected.

Next, we prove that m = α
e1
σ(1)α

e2
σ(2) . . . α

ek
σ(k) is a Lyndon element. First note that

by the way we constructed σ , it follows that std(m) = α
e1
σ(1)w for some word w in

the letters ασ(2), . . . , ασ(k). Since ασ(1) < ασ(i) for all 2 ≤ i ≤ k, it follows std(m)

is minimal in its conjugacy class. To see std(m) is primitive, we use the assumption
that k ≥ 2 and thus that w is not the empty word. This proves that std(m) is a Lyndon
word and by consequence that m is a Lyndon element. ��

For a function f : X → Z
≥0 we let supp( f ) denote the support of f which is

defined by

supp( f ) = {x ∈ X | f (x) �= 0}.

Lemma 3.4 Let G = (S, E) be a graph with an order on S andw ∈ W (S). If supp(ew)

is disconnected, then the element w is not a Lyndon element.

Proof Since supp(ew) spans a disconnected subgraph of G, we can find a non-trivial
partition supp(ew) = S1 � S2 such that there is no vertex in S1 which is adjacent to a
vertex in S2. It follows that there exist non-empty words u1 ∈ W (S1), u2 ∈ W (S2)
such that w = u1u2 = u2u1. Since S1 is disjoint from S2, the words u1u2 and u2u1
do not have the same initial letter. It follows from [21, Proposition 5.11] that w is not
a Lyndon element. ��
Proposition 3.5 Let G = (S, E) be a graph with an order on S. The set of weights of
all Lyndon elements is given by

{eα | α ∈ S} ∪
{
e : S → Z

≥0
∣∣∣ 2 ≤ | supp(e)|, supp(e) is connected

}
.

Proof This follows from combining Lemmas 3.3 and 3.4. Note that the word corre-
sponding to the weight keα with k ≥ 2 is never a Lyndon element, as it is not primitive.

��
The bracket words of length k in S are defined inductively as follows:

1. the bracket words of length one are the elements of S,
2. the bracket words of length k > 1 are the expressions [b1, b2] where b1, b2 are

bracket words of lengths k1, k2 respectively with k1 < k, k2 < k and k = k1 + k2.

Analogous as for words, we define the weight eb of a bracket word b by the function
eb : S → Z

≥0 which assigns to each vertex α the number of times it occurs in the
bracket word b.

In [21] a bracketing procedure is described which assigns to every Lyndon ele-
ment a bracket word with the same weight. By extending this assignment linearly
and evaluating the bracket words in gKG , we get a map between vector spaces

φ : K [LE(M)] → gKG . The following was (re)proven in [21, Corollary 5.24.].
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Theorem 3.6 The linear map φ : K [LE(M)] → gKG is bijective.

Note that gKG has a vector space direct sum decomposition

gKG =
∞⊕
i=1

V i where V 1 = V = spanK (S) and V i+1 = [V , V i ].

It is clear that under the map φ : K [LE(M)] → gKG , Lyndon elements of length i are

mapped into V i . Since for any positive integer k, we have that γk(gKG ) =⊕∞
i=k V i , it

follows that if we write LEc(M) for the Lyndon elements of length at most c, we have
an induced bijection φ : K [LEc(M)] → nKG,c. Equivalently, φ(LEc(M)) is a basis

for nKG,c. Moreover, it is easy to verify that it is a basis of eigenvectors for any vertex
diagonal automorphism. In particular, if m ∈ LEc(S) is a Lyndon element and f a
vertex diagonal automorphism determined by � : S → K , the eigenvalue of φ(m)

under f is equal to
∏

α∈S �(α)em (α). Together with Proposition 3.5 this immediately
proves the main result of this section.

Proposition 3.7 Let nKG,c be the c-step nilpotent Lie algebra associated to the graph

G = (S, E) and let f� be a vertex-diagonal automorphism of nKG,c determined by the
map � : S → K. Then the set of eigenvalues of f� is given by

�(S) ∪
{∏

α∈S
�(α)e(α)

∣∣∣∣∣
e : S → Z

≥0, supp(e) is connected
| supp(e)| ≥ 2,

∑
α∈S e(α) ≤ c

}
.

3.2 Reduction to algebraic units

As explained under Theorem 2.3, we work here with the algebraic closure Q of Q.

Let G = (S, E) be a simple undirected graph and write Q
S
for the set of maps from

S to Q. Note that
∏

λ∈� Perm(λ) has a right action on Q
S
by precomposition, namely

� · θ := � ◦ θ for all θ ∈∏λ∈� Perm(λ) and � ∈ Q
S
. Let us writeHQ

G for the orbit
space, so

HQ

G := Q
S
/∏

λ∈�

Perm(λ).

Note that the groups Gal(Q/Q) and Aut(G) have a well-defined left, respectively

right action onHQ

G by

σ · [�] := [σ ◦�], [�] · ϕ := [� ◦ r(ϕ)]

for all σ ∈ Gal(Q/Q), ϕ ∈ Aut(G) and � ∈ Q
S
. Recall that r denotes the morphism

r : Aut(G) → Aut(G) from Sect. 2.2, obtained after ordering the vertices in each
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coherent component. To see that the action by Aut(G) is well defined, one uses the
fact that

∏
λ∈� Perm(λ) is a normal subgroup of Aut(G).

Theorem 3.8 Let G = (S, E) be a simple undirected graph and ρ : Gal(Q/Q) →
Aut(G) a continuous morphism. The rational form n

Q
ρ,c of nCG,c is Anosov if and only

if there exists a map � : S → Q such that

(i) for any vertex α ∈ S, �(α) is an algebraic unit,
(ii) for any 1 ≤ n ≤ c and any (not necessarily distinct) vertices α1, . . . , αn ∈ S

such that {α1, . . . , αn} spans a connected subgraph of G, we have |�(α1) · . . . ·
�(αn)| �= 1,

(iii) and for any σ ∈ Gal(Q/Q) it holds that σ · [�] = [�] · ρσ inHQ

G .

Note that the conditions in this theorem do not depend on the choice of representative

� in its equivalence class [�] ∈ HQ

G .

Proof First assume that nQρ,c ⊂ n
Q

G,c is Anosov with Anosov automorphism f :
n
Q
ρ,c → n

Q
ρ,c. Recall that p, π and i are the morphisms as defined in Sect. 2.2 by

(4), (6) and (7), respectively, and that

G = p
(
Aut
(
n
Q

G,c

))
= M ·

(∏
λ∈�

GL(Vλ)

)
· P(Aut(G)).

Note that since nQρ,c is a rational form of nQG,c, we can naturally extend f to an auto-

morphism of nQG,c. The semisimple part of f is again an Anosov automorphism, as

Aut(nQρ,c) is a linear algebraic group.Moreover, any positive power f k for k > 0 of f is
anAnosov automorphism aswell, sowithout loss of generality we can assume that f is

semi-simple and lies in the Zariski-connected component of Aut
(
n
Q

G,c

)
. Hence, under

these assumptions, f lies in somemaximal torus of Aut
(
n
Q

G,c

)
. We also know that the

subgroup of vertex diagonal automorphisms DG,c is a maximal torus of Aut
(
n
Q

G,c

)
.

Since Aut
(
n
Q

G,c

)
is a linear algebraic group over an algebraically closed field, all its

maximal tori are conjugate and thus there exists an h ∈ Aut
(
n
Q

G,c

)
and an f̃ ∈ DG,c

such that h f̃ h−1 = f . Moreover, since i
(
Aut
(G)) normalizes DG,c, we can assume

that π(h) = 1.
Let us define � : S → Q by assigning to a vertex α ∈ S its corresponding

eigenvalue under f̃ . Since f̃ is an Anosov automorphism, it follows that �(α) is a
hyperbolic algebraic unit for allα ∈ S. As a consequencewe also have |�(α)k | �= 0 for
anyα ∈ S and k ∈ Z

>0.ByProposition 3.7,weknow that for anyverticesα1, . . . , αn ∈
Swith |{α1, . . . , αn}| ≥ 2 and such that {α1, . . . , αn} spans a connected subgraph ofG,
the product�(α1) · . . . ·�(αn) is an eigenvalue of f̃ and thus |�(α1) · . . . ·�(αn)| �= 1.
All together this proves � satisfies conditions (i) and (ii).
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Let us now show � also satisfies condition (iii). Since f
(
n
Q
ρ,c

)
= n

Q
ρ,c, it follows

from Lemma 2.4 that f i(ρσ ) = i(ρσ ) σ f for all σ ∈ Gal(Q/Q). Substituting h f̃ h−1
for f , we find the equality

f̃ aσ = aσ
σ
f̃ where aσ := h−1i(ρσ ) σ h. (8)

Note that π(aσ ) = π(h−1)π(i(ρσ ))π(h) = π(i(ρσ )) = ρσ , and hence p(aσ ) =
mσ Aσ P(ρσ ) for someuniquemσ ∈ M, Aσ ∈∏λ∈� GL(Vλ).Applying themorphism

p : Aut
(
n
Q

G,c

)
→ G to Eq. (8), we get that

p( f̃ )mσ Aσ P(ρσ ) = mσ Aσ P(ρσ )
σ
p( f̃ ).

Note that p( f̃ ) and
σ
p( f̃ ) are elements in

∏
λ∈� GL(Vλ), since f̃ is diagonal on S.

Rearranging the equation above to

(
p( f̃ )mσ p( f̃ )−1

)(
p( f̃ )Aσ

)(
P(ρσ )

)
=
(
mσ

)(
Aσ P(ρσ )

σ
p( f̃ )P(ρσ )−1

)(
P(ρσ )

)

we can find the equality on
∏

λ∈� GL(Vλ) to be

A−1σ p( f̃ ) Aσ = P(ρσ )
σ
p( f̃ ) P(ρσ )−1

Since both sides are elements of
∏

λ∈� GL(Vλ), we can look at their projection onto

GL(Vλ) for any λ ∈ �. We then find that f̃ |Vλ and
σ(

f̃ |V
ρ
−1
σ (λ)

)
are conjugate and

thus their eigenvalues, counted with multiplicities, coincide. This shows exactly that
[�] = [σ ◦ � ◦ r(ρ−1σ )] for any σ ∈ Gal(Q/Q). This proves that � satisfies all the
required properties.

Conversely, assume that a map � : S → Q satisfying conditions (i), (ii) and
(iii) exists. Let m be the number of orbits for the ρ-action of Gal(Q/Q) on � and
choose coherent components λ1, . . . , λm ∈ � such that � = ⊔m

j=1 Orbρ(λi ). For

any j ∈ {1, . . . ,m}, define the polynomial g j (X) ∈ Q[X ] by

g j (X) =
∏
α∈λ j

(X −�(α)).

Let us fix an action of Gal(Q/Q) on Q[X ] by acting on the coefficients of the poly-
nomials. As one can check this is an action by ring automorphisms. Take an arbitrary
σ ∈ Stabρ(λ j ). By the assumption, we have that [σ ◦ �] = [� ◦ r(ρσ )]. By conse-
quence, there exists a θ ∈ ∏λ∈� Perm(λ) such that σ ◦� = � ◦ r(ρσ ) ◦ θ . We now
have that

123



A characterization of Anosov rational forms in nilpotent Lie… 761

σ g j (X) =
∏
α∈λ j

σ (X −�(α))

=
∏
α∈λ j

(X − (σ ◦�)(α))

=
∏
α∈λ j

(X − (� ◦ r(ρσ ) ◦ θ)(α))

=
∏
α∈λ j

(X − (� ◦ r(ρσ ))(α))

=
∏

α∈ρσ (λi )

(X −�(α))

=
∏
α∈λ j

(X −�(α)) = g j (X). (9)

So the coefficients of g j (X) lie in the (finite) field extension Q
Stabρ(λ j )

/Q.
Next, for any j ∈ {1, . . . ,m}, let Bj ∈ GL(Vλ j ) be the linear map given by the

companion matrix of g j (X) in a basis of vertices of Vλ j , where the order of the basis
does not matter. Clearly we have that σ Bj = Bj for any σ ∈ Stabρ(λ j ). Now define
the linear map A : V → V by setting for any μ ∈ Orbρ(λ j ) and v ∈ Vμ:

A(v) = i(ρσ ) σ Bj i(ρσ )−1v

where σ ∈ Gal(Q/Q) is chosen such that σ(λ j ) = μ. Let us first show this is well-
defined and independent of the choice of σ ∈ Gal(Q/Q). Say ν ∈ Gal(Q/Q) is
another element which also satisfies ν(λ j ) = μ, then σ−1ν ∈ stabρ(λ j ) and we get

i(ρν)
νBj i(ρν)

−1v = i(ρσ )i(ρσ−1ν)
σ(

σ−1νBj

)
i(ρσ−1ν)

−1i(ρσ )−1v

= i(ρσ ) σ Bj i(ρσ )−1v.

since i(ρσ−1ν)|Vλ j
= IdVλ j

. We thus have a well-defined linear map A : V → V and

as one can check A ∈ ∏λ∈� GL(Vλ) ⊂ p(TG,c). This gives a unique automorphism

f ∈ TG,c ⊂ Aut(nQG ) with p( f ) = A.

We claim that f induces anAnosov automorphism on nQρ,c. To check that f (n
Q
ρ,c) =

n
Q
ρ,c, we need to check that i(ρσ )−1 f i(ρσ ) = σ f for any σ ∈ Gal(Q/Q). Since

both f and i(ρσ ) lie in TG,c ⊂ Aut(nQG,ρ
), it suffices to check this on V . Take any

j ∈ {1, . . . ,m}, μ ∈ Orbρ(λ j ) and v ∈ Vμ. Let ν ∈ Gal(Q/Q) be an element such
that ρν(λ j ) = ρσ (μ) or equivalently ρσ−1ν(λ j ) = μ. Then we have

i(ρσ )−1 f i(ρσ )v = i(ρσ )−1i(ρν)
τ Bj i(ρν)

−1i(ρσ )v

= i(ρσ−1ν)
σ(

σ−1νBj

)
i(ρν−1σ )v
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= σ(
i(ρσ−1ν)

σ−1νBj i(ρσ−1ν)
−1)v

= σ f v.

The set of eigenvalues of f on V is equal to the image of� which are algebraic units by
assumption. The other eigenvalues of f are products of the eigenvalues on V and are
thus algebraic units as well. This shows that f is integer-like, since its characteristic
polynomial has coefficients in Q from the fact that f (nQρ,c) = n

Q
ρ,c as proven above.

To see that f is hyperbolic, note that by the way we constructed f , it follows that
p( f ) is conjugated to p( f�) by an element of

∏
λ∈� GL(Vλ). By consequence f is

conjugated to the vertex diagonal automorphism f� in Aut(nQG,c). We thus only need
to check that f� is hyperbolic. By the assumption on �, we know that the n-fold
products of the form �(α1) · . . . ·�(αn) with {α1, . . . , αn} connected and 1 ≤ n ≤ c,
have absolute value different from 1. By Proposition 3.7, only these products can occur
as eigenvalues of f� . This proves that f� is hyperbolic. ��

4 Proof of Theorem A

In this section, we give a condition for a rational form n
Q
ρ,c to be Anosov which is

easier to check than the condition in Theorem 3.8 and which solely depends on how
the orbits of the action on G induced by ρ look like and on which coherent components
are fixed under the action of the complex conjugation automorphism. Before we prove
this characterization, we first prove four lemmas. At the end of the section we list
some corollaries, one of which is a correction to a result of [14].

A number field is said to be totally imaginary if it has no real embeddings (see
Sect. 2.1). In Eq. (1) of the introduction we defined a function zρ for any morphism
ρ : Gal(L/Q) → Aut(G). The following lemma motivates this definition. Note that
if ρ : Gal(Q/Q) → Aut(G) : σ �→ ρ(σ |L) denotes the extended morphism, then the
associated function zρ is equal to zρ . As mentioned in the introduction, zρ is constant
on ρ-orbits. As usual, we let τ denote the complex conjugation automorphism and for

any subgroup H ≤ Gal(Q/Q) we write Q
H
for the field consisting of all elements of

Q fixed by all automorphisms of H .

Lemma 4.1 Let G = (S, E) be a graph with set of coherent components � and ρ :
Gal(Q/Q) → Aut(G) a continuous morphism. For any λ ∈ �, the field Q

H
with

H = Stabρ(λ) is totally imaginary if and only if zρ(λ) = 1/2.

Proof Note thatQ
H
is totally imaginary if and only if for any σ ∈ Gal(Q/Q)we have

τ /∈ Gal
(
Q

/
σ
(
Q

H
))

.

We have the series of equivalences
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τ ∈ Gal
(
Q

/
σ
(
Q

H
))
⇔ τ ∈ Gal

(
Q

/
Q

σHσ−1
)

⇔ τ ∈ σHσ−1

⇔ τ ∈ Stabρ(ρσ (λ))

⇔ ρτσ (λ) = ρσ (λ).

Thus,Q
H
is totally imaginary if and only if for any σ ∈ Gal(Q/Q)we have ρτσ (λ) �=

ρσ (λ), which is by definition equivalent with zρ(λ) = 1/2. ��
The next lemma is a result on the existence of connected subsets of coherent com-

ponents satisfying a property with respect to a given involution of the quotient graph.

Lemma 4.2 Let G = (S, E) be a graph, � its set of coherent components and ι ∈
Aut(G) an involution, i.e. ι satisfies ι2 = IdG . Take any connected subset A ⊂ �

such that for all λ ∈ � with ι(λ) �= λ it holds that A �= {λ, ι(λ)}. Then there exists
a connected subset B ⊂ � such that A ∪ ι(A) = B ∪ ι(B) and for any λ ∈ B with
λ �= ι(λ) we have ι(λ) /∈ B.

Before proving it, we first illustrate it with 2 different examples.

Example 4.3 The above lemma requires the set A ⊂ � to satisfy A �= {λ, ι(λ)} for any
λ ∈ �with λ �= ι(λ). This condition is indeed necessary by considering the following
example. Take any positive integer n > 1 and let S = {α1, . . . , αn, β1, . . . , βn}.
Define E = {{αk, βl} | 1 ≤ k, l ≤ n}. The resulting graph G = (S, E) is the complete
biparte graph on n + n vertices and is drawn below for n = 3.

α2

α1

α3

β2

β1

β3

The coherent components are given by � = {λ1 = {α1, α2, α3}, λ2 = {β1, β2, β3}}.
Note that A := {λ1, λ2} is connected since λ1 ∪ λ2 = S is a connected set of vertices.
Let ι ∈ Aut(G) denote the involution defined by ι(λ1) = λ2. It is clear that the above
lemma can not be valid for this choice of set A since λ1 and λ2 are each not connected
subsets in G and thus {λ1} and {λ2} are each not a connected subset of coherent
components.

Example 4.4 To illustrate the conclusion of Lemma 4.2, consider the graphG = (S, E)

with S = {α1, . . . , α7} and E = {{α1, α2}, {α2, α3}, {α1, α4}, {α4, α6}, {α3, α5},
{α5, α7}, {α4, α5}}. The coherent components are simply all the singletons � =
{λi = {αi } | 1 ≤ i ≤ 7}. Define the subset of coherent components A =
{λ2, λ3, λ5, λ4, λ6} ⊂ �, which is easily seen to be connected. Let ι ∈ Aut(G) be
the involution defined by ι(λ2) = λ2, ι(λ1) = λ3, ι(λ4) = λ5 and ι(λ6) = λ7. The
graph and its quotient graph are drawn below. The subset A is drawn in red.

123



764 J. Deré, T. Witdouck

α2

α1

α3

α4

α5

α6

α7

G

λ2

λ1

λ3

λ4

λ5

λ6

λ7

ι

G A

Lemma 4.2 gives a set B such that B ∪ ι(B) = A ∪ ι(A) and for any λ ∈ B with
λ �= ι(λ) it holds that ι(λ) /∈ B. In this example, such a set B can be given by either
B = {λ2, λ3, λ5, λ7} or B = {λ2, λ1, λ4, λ6}. These sets are drawn below in blue.

λ2

λ1

λ3

λ4

λ5

λ6

λ7

B

λ2

λ1

λ3

λ4

λ5

λ6

λ7

B

Proof of Lemma 4.2 We will first prove the cases where A counts 1, 2 or 3 elements
and then proceed by induction on |A|. If |A| = 1, we can just take B = A. If |A| = 2,
the assumptions on A imply that ι(λ) �= λ for any λ ∈ A. Thus we can again take
B = A. If |A| = 3, we can assume that there is a coherent component λ ∈ A such
that ι(λ) �= λ and ι(λ) ∈ A, otherwise we can just take B = A. Without loss of
generality we can then write A = {λ1, λ2, λ3} with ι(λ2) = λ3. Since A is connected,
we must have that either {λ1, λ2} ∈ E , in which case we take B = {λ1, λ2} or that
{λ1, λ3} ∈ E , in which case we take B = {λ1, λ3}.

Next, assume that |A| > 3 and that the theorem holds for lower cardinalities of
A. As a basic property of connected subsets of graphs (which also lifts to connected
sets of coherent components containing at least 3 coherent components), there exists a
coherent component λ ∈ A such that A′ = A\{λ} is still connected. In addition, there
must exist an element μ ∈ A′ such that {λ,μ} ∈ E since A was assumed connected.
We can apply the induction hypothesis on A′ and get a connected set B ′ ⊂ � such
that A′ ∪ ι(A′) = B ′ ∪ ι(B ′) and for any λ ∈ B ′ with λ �= ι(λ) we have ι(λ) /∈ B ′.
The following three cases are to be considered:

• ι(λ) ∈ A′. In this case, we have that A ∪ ι(A) = A′ ∪ ι(A′) = B ′ ∪ ι(B ′). By
consequence we find that B := B ′ satisfies the required properties.

• ι(λ) /∈ A′ and μ ∈ B ′. Then it follows from {λ,μ} ∈ E , that B := B ′ ∪ {λ} is
connected. We also have

B ∪ ι(B) = B ′ ∪ {λ} ∪ ι(B ′ ∪ {λ})
= B ′ ∪ ι(B ′) ∪ {λ} ∪ {ι(λ)}
= A′ ∪ ι(A′) ∪ {λ} ∪ {ι(λ)}
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= A′ ∪ {λ} ∪ ι(A′ ∪ {λ})
= A ∪ ι(A)

and ι(λ) /∈ B for any λ ∈ B with λ �= ι(λ). Thus B satisfies all required properties.
• ι(λ) /∈ A′ and μ /∈ B ′. Then because μ ∈ A′ ∪ ι(A′) = B ′ ∪ ι(B ′), we must have

ι(μ) ∈ B ′. Since ι ∈ Aut(G) and {λ,μ} ∈ E , we must have that {ι(λ), ι(μ)} ∈ E .
By consequence we have that B := B ′ ∪ {ι(λ)} is connected. We also have

B ∪ ι(B) = B ′ ∪ {ι(λ)} ∪ ι(B ′ ∪ {ι(λ)})
= B ′ ∪ ι(B ′) ∪ {λ} ∪ {ι(λ)}
= A′ ∪ ι(A′) ∪ {λ} ∪ {ι(λ)}
= A′ ∪ {λ} ∪ ι(A′ ∪ {λ})
= A ∪ ι(A)

and ι(λ) /∈ B for any λ ∈ B with λ �= ι(λ). Thus B satisfies all required properties.

This concludes the proof. ��
Next, we prove a lemma which helps us find eigenvalues equal to ±1 in certain

vertex diagonal automorphism.

Lemma 4.5 Let G = (S, E) be a graph and � : S → Q a function satisfying condi-
tions (i) and (iii) of Theorem 3.8. If A ⊂ � is a ρ-invariant subset and f : � → Z

≥0
a ρ-invariant function, then

∏
λ∈A

∏
α∈λ

�(α) f (λ) = ±1.

Proof Take any σ ∈ Gal(Q/Q). Since � satisfies condition (iii), there exists a θ ∈∏
λ∈� Perm(λ) such that σ ◦� = � ◦ r(ρσ ) ◦ θ . We thus have

σ

(∏
λ∈A

∏
α∈λ

�(α) f (λ)

)
=
∏
λ∈A

∏
α∈λ

(σ ◦�)(α) f (λ)

=
∏
λ∈A

∏
α∈λ

(� ◦ r(ρσ ) ◦ θ)(α) f (λ)

=
∏
λ∈A

∏
α∈λ

(� ◦ r(ρσ ))(α)( f ◦ρσ )(λ)

=
∏
λ∈A

∏
α∈ρσ (λ)

�(α) f (λ)

=
∏
λ∈A

∏
α∈λ

�(α) f (λ).

This proves that
(∏

λ∈A
∏

α∈λ �(α) f (λ)
) ∈ Q. Since � satisfies condition (i), every

factor in this product is an algebraic unit and thus the product itself is an algebraic
unit. The only algebraic units in Q are 1 and −1, which proves the claim. ��
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At last, we prove a lemma that for an action ρ : Gal(Q/Q) → Aut(G) helps
us construct a map � on the vertices underneath a single ρ-orbit such that the map
satisfies conditions (i) and (iii) of Theorem 3.8 on that ρ-orbit and enjoys an additional
‘hyperbolicity’ property. In the proof of the main theoremwewill combine these maps
for each orbit to construct a map on the whole vertex set which then also satisfies (ii)
of Theorem 3.8.

Lemma 4.6 Let G = (S, E) be a graph, ρ : Gal(Q/Q) → Aut(G) a continuous
morphism and c > 1 an integer. Fix a coherent component λ ∈ � and write S′ =⋃

μ∈Orbρ(λ) μ. If |S′| ≥ 2, then there exists a map � : S′ → Q such that

(i) for any α ∈ S′, �(α) is an algebraic unit,
(ii) condition (iii) of Theorem 3.8 is satisfied on S′ and
(iii) for any weight e : S′ → Z

≥0 with
∑

α∈S′ e(α) ≤ c it holds that if

∣∣∣∣∣
∏
α∈S′

�(α)e(α)

∣∣∣∣∣ = 1,

then the assignment

α �→ e(α)+ e(r(ρτ )(α))

takes a constant value on S′. Moreover, if this value is non-zero, it is≥ 2 · zρ(λ).

Proof Write H = Stabρ(λ). Note that

[
Q

H : Q

]
=
[
Gal(Q/Q) : H

]
= ∣∣Orbρ(λ)

∣∣ (10)

where we used the Galois correspondence for the first equality and the orbit-stabilizer

theorem for the second one. The field Q
H
is a number field and let s be the number of

real embeddings and t the number of conjugated pairs of complex embeddings of Q
H

in Q. Lemma 2.1 now gives us a Galois extension F
/

Q
H
of degree m := |λ| such

that F has s · m real embeddings and t · m conjugated pairs of complex embeddings.
Applying Lemma 2.2 on the field F , we get an algebraic unit ξ ∈ F which satisfies
(3) for the given c > 1. We list the cosets of H in Gal(Q/Q) as σ1H , . . . , σnH
where n := ∣∣Orbρ(λ)

∣∣ = s + 2t . We also order the cosets of Gal(Q/F) in H as
γ1 Gal(Q/F), . . . , γm Gal(Q/F) and order the vertices of λ as α1, . . . , αm . Note that
|S′| = n · m. By setting

αi j := r(ρσi )(α j ),

we have thus parametrized the vertices in S′ as S′ = {αi j
∣∣ 1 ≤ i ≤ n, 1 ≤ j ≤ m

}
.

We define the map � as

� : S′ → Q : αi j �→ σiγ j (ξ).
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Since ξ satisfies the property from Lemma 2.2 and since n = |S′| ≥ 2, it is not hard
to see that ξ and all its conjugates are of absolute value different from 1. This shows
the map � satisfies condition (i).

Next, we show that � also satisfies condition (ii). Take any σ ∈ Gal(Q/Q). Let us
prove that there exists a θ ∈ ∏μ∈Orbρ(λ) Perm(μ) such that for all 1 ≤ i ≤ n, 1 ≤
j ≤ m it holds that (σ ◦ �)(αi j ) = (� ◦ r(ρσ ) ◦ θ)(αi j ). By our listing of the
cosets in the Galois group above, it is not hard to see that there exist permutations
a ∈ Perm({1, . . . , n}), bi ∈ Perm({1, . . . ,m}) and elements σ̃ ∈ H , σ ∈ Gal(Q/F)

such that

σσi = σa(i)σ̃ and σ̃ γ j = γbi ( j)σ

for all 1 ≤ i ≤ n, 1 ≤ j ≤ m. The permutations bi allow us to define a permutation
θ ∈∏μ∈Orbρ(μ) Perm(μ) by setting θ(αi j ) = αibi ( j). Note that

r(ρσ )(αi j ) = r(ρσσi )(α j ) = r(ρσa(i)σ̃ )(α j ) = αa(i) j

since σ̃ ∈ Stabρ(λ). Thus, we get that

(σ ◦�)(αi j ) = σσiγ j (ξ)

= σa(i)γbi ( j)σ (ξ)

= σa(i)γbi ( j)(ξ)

= �(αa(i)bi ( j))

= (� ◦ r(ρσ ))(αibi ( j))

= (� ◦ r(ρσ ) ◦ θ)(αi j )

where we used that σ(ξ) = ξ since σ ∈ Gal(Q/F). This proves that � satisfies
condition (ii).

At last, we show � satisfies condition (iii). Take a map e : S′ → Z
≥0 with∑

α∈S e(α) ≤ c and assume that

∣∣∣∣∣
∏
α∈S′

�(α)e(α)

∣∣∣∣∣ = 1.

By the construction of � this gives

∣∣∣∣∣∣
n∏

i=1

m∏
j=1

σiγ j (ξ)e(αi j )

∣∣∣∣∣∣ = 1.

Up to reordering in the index i , all real embeddings of F in Q are given by the
restrictions

σiγ j : F → Q 1 ≤ i ≤ s, 1 ≤ j ≤ m,
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and all conjugated pairs of complex embeddings of F inQ are given by the restrictions

σiγ j : F → Q, σi+tγ j = τσiγ j : F → Q, s + 1 ≤ i ≤ s + t, 1 ≤ j ≤ m

where τ ∈ Gal(Q/Q) is the complex conjugation automorphism. Given this new
ordering of the σi ’s, it is not hard to check that

ρτ (αi j ) = αi j ⇔ 1 ≤ i ≤ s

and that for any s + 1 ≤ i ≤ s + t we have:

αi+t j = r(ρτ )(αi j ).

Eq. (4) can thus be rewritten as

1 =
∣∣∣∣∣∣
m∏
j=1

(
s∏

i=1
σiγ j (ξ)e(αi j ) ·

s+t∏
i=s+1

σiγ j (ξ)e(αi j ) · τσiγ j (ξ)e(r(ρτ )(αi j ))

)∣∣∣∣∣∣

=
∣∣∣∣∣∣
m∏
j=1

(
s∏

i=1
σiγ j (ξ)e(αi j ) ·

s+t∏
i=s+1

σiγ j (ξ)e(αi j )+e(r(ρτ )(αi j ))

)∣∣∣∣∣∣
where we use in the second equality that complex conjugation does not affect the abso-
lute value of a complex number. After observing that 2e(αi j ) = e(αi j )+e(r(ρτ )(αi j ))

for all 1 ≤ i ≤ s, we now find immediately from the way ξ was constructed using
Lemma 2.2, that the assignment

α �→ e(α)+ e(r(ρτ )(α))

is constant on S′. Let us write k for this constant value and assume that k > 0. Using
Lemma 4.1, we find that

zρ(λ) = 1

2
⇔ Q

H
is totally imaginary ⇔ s = 0.

In case zρ(λ) = 1
2 , there is really nothing to prove since evidently k ≥ 1 = 2zρ(λ). If

zρ = 1, then s > 0 and thus there exists an α ∈ S′ with r(ρτ )(α) = α, implying that
k = e(α)+ e(r(ρτ )(α)) = 2e(α) ≥ 2zρ(λ). This concludes the proof. ��

We are now ready to prove the main theorem of the section, which is equivalent to
Theorem A.

Theorem 4.7 Let G = (S, E) be a simple undirected graph and ρ : Gal(Q/Q) →
Aut(G) a continuous morphism. Then the associated rational form n

Q
ρ,c of nCG,c is
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Anosov if and only if for each non-empty connected set of coherent components A ⊂ �

such that A ∪ ρτ (A) is ρ-invariant, it holds that

c <
∑

λ∈A∪ρτ (A)

zρ(λ) · |λ|. (11)

Proof ⇒ Assume that nQρ,c is Anosov. By Theorem 3.8, there exists a map � : S →
Q which satisfies conditions (i), (ii) and (iii) from that theorem. Take any non-empty
connected subset A ⊂ S such that A ∪ ρτ (A) is ρ-invariant. We will prove that the
inequality (11) holds.

First assume that A is not of the form {λ, ρτ (λ)} for some λ ∈ � with ρτ (λ) �= λ.
By Lemma 4.2, there exists a connected set B ⊂ � such that A∪ρτ (A) = B ∪ρτ (B)

and for any λ ∈ B with λ �= ρτ (λ) we have ρτ (λ) /∈ B. Define the function

g : B → {1, 2} : λ �→

⎧⎪⎨
⎪⎩
1 if zρ(λ) = 1/2

2 if zρ(λ) = 1 and ρτ (λ) �= λ

1 if zρ(λ) = 1 and ρτ (λ) = λ.

and note that it satisfies the equality

∑
λ∈B

g(λ) =
∑

λ∈A∪ρτ (A)

zρ(λ).

Consider the algebraic unit

ζ =
∏
λ∈B

∏
α∈λ

�(α)g(λ). (12)

We now prove that |ζ | = 1. Write X = z−1ρ (1) and Y = z−1ρ (1/2), then X � Y = �

and X is exactly equal to the set of coherent components for which their ρ-orbit
contains a fixed point of ρτ . Since � satisfies (iii) of Theorem 3.8, there exists a
θ ∈∏λ∈� Perm(λ) such that τ ◦� = � ◦ r(ρτ ) ◦ θ . We then have

|ζ |2 = ζ ζ =
∏
λ∈B

∏
α∈λ

�(α)g(λ)�(α)
g(λ)

=
∏
λ∈B

∏
α∈λ

�(α)g(λ)(� ◦ r(ρτ ) ◦ θ)(α)g(λ)

=
∏
λ∈B

∏
α∈λ

�(α)g(λ)(� ◦ r(ρτ ))(α)g(λ)

=
( ∏

λ∈B∩X

∏
α∈λ

�(α)g(λ)(� ◦ r(ρτ ))(α)g(λ)

)

·
( ∏

λ∈B∩Y

∏
α∈λ

�(α)g(λ)(� ◦ r(ρτ ))(α)g(λ)

)
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=

⎛
⎜⎜⎝

∏
λ∈B∪ρτ (B)

λ∈X

∏
α∈λ

�(α)2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

∏
λ∈B∪ρτ (B)

λ∈Y

∏
α∈λ

�(α)

⎞
⎟⎟⎠

=
∏

λ∈B∪ρτ (B)

∏
α∈λ

�(α)2zρ(λ)

=
∏

λ∈A∪ρτ (A)

∏
α∈λ

�(α)2zρ(λ).

This last product satisfies all requirements to apply Lemma 4.5 and thus we find that
|ζ |2 = ±1 which implies |ζ | = 1. Using that B is connected and that � satisfies
condition (ii) of Theorem 3.8, we must thus have that the number of factors in the
product in (12) is strictly greater than c. The number of factors can be calculated as:

∑
λ∈B

∑
α∈λ

g(λ) =
∑

λ∈B∪ρτ (B)

zρ(λ) · |λ| =
∑

λ∈A∪ρτ (A)

zρ(λ) · |λ|

which proves that c <
∑

λ∈A∪ρτ (A) zρ(λ) · |λ|.
Now assume that there exists a μ ∈ � such that A = {μ, ρτ (μ)} and μ �= ρτ (μ).

Note that this implies that A is ρ-invariant. Let θ ∈∏λ∈� Perm(λ) be the permutation
such that τ ◦� = � ◦ r(ρτ ) ◦ θ . Choose a γ ∈ μ and define γ ′ = r(ρτ )(θ(γ )). Since
A is connected, we have that {μ, ρτ (μ)} ∈ E and thus that {γ ′, α} ∈ E for any α ∈ μ.
This implies that the set {γ ′} ∪ (μ \ {γ }) is connected in G. Note that

∣∣∣∣∣∣�(γ ′) ·
∏

α∈μ\{γ }
�(α)

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣(� ◦ r(ρτ ) ◦ θ)(γ ) ·

∏
α∈μ\{γ }

�(α)

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣�(γ ) ·

∏
α∈μ\{γ }

�(α)

∣∣∣∣∣∣
2

=
∏
α∈μ

�(α)�(α)

=
∏
α∈μ

�(α)
∏

β∈ρτ (μ)

�(β)

= 1

where the last equation follows from applying Lemma 4.5. Since zρ(μ) =
zρ(ρτ (μ)) = 1/2, it follows from condition (ii) of Theorem 3.8 that

c <
∣∣{γ ′} ∪ (μ \ {γ })∣∣ = |μ| =

∑
λ∈A

zρ(λ) · |λ|,

which completes the proof of the ‘only if’ direction.
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⇐ Conversely, assume that for any non-empty connected subset A ⊂ � such that
A ∪ ρτ (A) is ρ-invariant inequality (11) holds. In what follows, we will construct a
map� : S → Qwhich satisfies conditions (i), (ii) and (iii)from Theorem 3.8, proving
that nQρ,c is Anosov.

Let us list all theρ-orbits asOrbρ(λ1), . . . ,Orbρ(λl) such that� =⊔l
i=1 Orbρ(λi )

and define the underlying sets of vertices

Si :=
⋃

μ∈Orbρ(λi )

μ

such that also S = �li=1Si . Note that for any 1 ≤ i ≤ l we have that |Si | ≥ 2. Indeed,
if this is not the case, then Orbρ(λi ) consists of a single coherent component which
counts a single vertex and thus is a connected subset of coherent components. The
assumption then tells us that 1 =∑λ∈Orbρ(λi )

|λ| > c > 1, a contradiction. Thus, we

can use Lemma 4.6 to obtain for each 1 ≤ i ≤ l a map �i : Si → Q which satisfies
the properties as described in the statement of that lemma. Next, we combine these
maps to define for any tuple of integers �N = (N1, . . . , Nl) ∈ Z

l the map

� �N : S → Q : α �→ �i (α)Ni for α ∈ Si .

From theway every�i was constructed usingLemma4.6, it is straightforward to check
that the map � �N satisfies conditions (i) and (iii) of Theorem 3.8 for any �N ∈ Z

l . To
finish the proof we will choose an �N ∈ Z

l such that condition (ii) of Theorem 4.7
holds as well.

For any weight e : S → Z
≥0 define the additive group morphism

ϕe : Z
l → R : �N �→ log

∣∣∣∣∣
∏
α∈S

� �N (α)e(α)

∣∣∣∣∣
and define the set of weights

E(G, c) =
{
e : S → Z

≥0 | supp(e) is connected in G and 0 <
∑
α∈S

e(α) ≤ c

}
.

Wewill want to choose �N outside of the set
⋃

e∈E(G,c) ker(ϕe). For this to be possible,
we need that the morphisms ϕe are non-trivial for any e ∈ E(G, c). Let us prove this
by contradiction.

Take any e ∈ E(G, c) and assume that ϕe is the trivial morphism. First, note that
supp(e) then has to count at least 2 elements. Indeed, if supp(e) were a singleton, say
supp(e) = {α}with α ∈ Si , then the image of ϕe would be equal to {log |�i (α)n·e(α)| |
n ∈ Z}. This set can clearly not be equal to {0} since �i (α) is a hyperbolic algebraic
integer (and thus so are all of its positive powers). Next, choose any integer i ∈
{1, . . . , l}. Let �Ni = (0, . . . , 0, 1, 0, . . . , 0) be the l-tuple with a one on the i-th entry
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and 0’s elsewhere. Since ϕe is assumed to be the trivial morphism, we get ϕe( �Ni ) = 0.
This exactly means that

∣∣∣∣∣∣
∏
α∈Si

�i (α)e(α)

∣∣∣∣∣∣ = 1,

and thus, since �i satisfies property (iii)of Lemma 4.6, the assignment α �→ e(α) +
e(r(ρτ )(α)) is constant on Si . Moreover, if we write this constant value as ki , we have
ki/2 ≥ zρ(λi ) whenever ki > 0. Doing this for any i ∈ {1, . . . , l}, we get that for the
set

A := {λ ∈ � | λ ∩ supp(e) �= ∅}

it holds that A ∪ ρτ (A) is ρ-invariant. Since supp(e) counts at least 2 elements and is
connected in G, it is clear that A ⊂ � is non-empty and connected. By the hypothesis
of the theorem we must thus have that

c <
∑

λ∈A∪ρτ (A)

zρ(λ) · |λ|.

Since A ∪ ρτ (A) is ρ-invariant, there exists a subset I ⊂ {1, . . . , l} such that A ∪
ρτ (A) = ⋃i∈I Orbρ(λi ). Note that the set I consists exactly of those indices i for
which ki > 0. We then have that

c <
∑

λ∈A∪ρτ (A)

zρ(λ) · |λ| ≤
∑
i∈I

∑
μ∈Orbρ(λi )

ki
2
· |μ| =

∑
α∈S

e(α)

which is in contradiction with
∑

α∈S e(α) ≤ c. This proves that ϕe is not the trivial
morphism for any e ∈ E(G, c) and thus that ker(ϕe) �= Z

l for any e ∈ E(G, c).
Note that since ϕe maps into the torsion-free group (R,+), the quotientZl/ ker(ϕe)

is torsion-free as well. Thus for any e ∈ E(G, c) we have that the free abelian group
ker(ϕe) has rank at most l − 1. From this observation, it follows that

B :=
⋃

e∈E(G,c)

ker(ϕe)

is not equal toZ
l since E(G, c) is a finite set. Thus, there exists an element �M ∈ Z

l \B.
As one can check � := � �M now satisfies all conditions of Theorem 3.8 which proves
what needed to be proven. ��

If we only consider rational forms of the real Lie algebra nRG , then ρτ is trivial and
thus the above theorem simplifies to the following statement.

Corollary 4.8 (Real version) Let ρ : Gal(L/Q) → Aut(G) be an injective morphism,
where L/Q is a real Galois extension. The associated rational form n

Q

G,ρ
of nRG is
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Anosov if and only if for any non-empty connected ρ-invariant subset A ⊂ �, it holds
that c <

∑
λ∈A |λ|.

We can also solely look at the standard rational form n
Q

G,c which corresponds to

the trivial morphism ρ : Gal(Q/Q) → Aut(G) : σ �→ Id. A condition for nQG,c to be
Anosov can then be formulated as follows.

Corollary 4.9 (Standard rational form) Let G = (S, E) be a graph and n
Q

G,c the

associated rational c-step nilpotent Lie algebra. Then n
Q

G,c is Anosov if and only if

|λ| > 1 for any λ ∈ � and for any edge in the quotient graph e ∈ E we have∑
λ∈e |λ| > c.

Remark 4.10 (Correction to a result of [14]) We like to note that the above corollary
is a correction to the characterization stated in [14, Theorem 4.3.], which uses the
weaker condition of Corollary 4.9 only for edges e inside a coherent component λ (or
thus the resulting loops in the quotient graph). We present an example to show that
[14, Theorem 4.3.] is false.

Let G be the graph from Example 4.3 for n = 2. The graph and its reduced graph
are drawn below.

α2 β2

α1 β1

G

2
λ1

2
λ2

G

The false result in [14] claims that nQG,c is Anosov for any integer c > 1, while in
fact this Lie algebra is only Anosov for c < 4. The problem in the proof of [14,
Theorem 4.3.] lies with the eigenvectors arising from Lie brackets of vertices lying in
different coherent components. In this example, the Lie bracket [α1, [β1, [α2, β2]]] is
non-zero in n

Q

G,c with c ≥ 4 and will be an eigenvector with eigenvalue ±1 for any

vertex-diagonal integer-like automorphism of nQG,c. This essentially proves n
Q

G,c is not
Anosov for c ≥ 4, but a detailed proof is provided by our main results, in particular
Corollary 4.9.

The above two corollaries show that from all rational forms in nRG,c that can be

Anosov, the standard one nQG,c leads to the strongest condition.

Corollary 4.11 Let G be a simple undirected graph and n
Q

G,c the associated c-step

nilpotent rational Lie algebra. If nQG,c admits an Anosov automorphism, then so does

any other rational form of the real Lie algebra nRG,c.

Remark 4.12 Note that Corollary 4.11 does not generalize to the rational forms of the
complex Lie algebra nCG,c. Example 5.8 will illustrate this.
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5 Examples and applications

In this section we illustrate how easy it is to apply our main result for some families of
graphs. In particular, certain classifications in low dimension, as given in [13] are an
immediate consequence of Theorem A. First, let us give a concrete example to make
the reader more familiar with checking the condition of Theorem A.

Example 5.1 Consider the graph G as drawn together with its quotient graph in Fig. 1.
It has 4 coherent components which are singletons and 2 coherent components which
count 2 elements. The sizes of the coherent components are also depicted in the figure.

Let us consider the Galois group of the extension Q(
√
2, i)/Q. It is isomorphic to

(Z/2Z)2 and is generated by σ and τ which are defined by
√
2 �→ −√2, i �→

i and
√
2 �→ √

2, i �→ −i , respectively. Note that τ is the complex conjugation
automorphism. Let us consider 2 injective group morphisms from this Galois group
to Aut(G), resulting in the two different actions as drawn in Fig. 2. Both actions give
rise to different functions zρ of which the values are also depicted in the figure.
For both actions, there is a choice of set A of coherent components which will result
in the strongest condition on the nilpotency class c, following Theorem A. For both
actions such a set A is drawn in Fig. 3 below. For the first action, it results in the
condition c < 2 · 12 + 2 · 12 + 1

2 + 1
2 + 1

2 + 1
2 = 4. For the second action, we get the

condition c < 1
2 + 1

2 + 1
2 + 1

2 = 2. Thus, for the first action, the associated rational
form will be Anosov for c = 2, 3, while for the second action the associated rational
form will not be Anosov for any c > 1.

Second, let us mention a classical result by Erdös and Renyi stating that almost
every graph has a trivial automorphism group, see [10]. In particular, these graphs

Fig. 1 The graph G and its
quotient graph G with the size of
each coherent coherent
component depicted

Fig. 2 Two actions of Gal(Q(
√
2, i)/Q) on G with the associated values of zρ at each coherent component.

Both σ and τ act as reflections on the graph
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have coherent components of size 1. Using Theorem 2.3 and Theorem A we thus
immediately get the following result.

Theorem 5.2 Fixing an integer c > 1, the Lie algebra nCG,c has an (up to Q-
isomorphism) unique rational form which is not Anosov for almost all graphs G.
This shows that having an Anosov rational form is a rare condition for Lie algebras
associated to graphs and raises the question whether a similar statement holds for
nilpotent Lie algebras in general.

Next, let us apply Theorem 4.7 to certain classes of simple undirected graphs, a
first of which is trees. A tree is a graph in which any two vertices are connected by
exactly one path. Equivalently, a graph is a tree if and only if it is connected and
has no cycles. For two vertices α, β in a connected graph G = (S, E), let d(α, β)

denote the distance between α and β, given by the minimal number of edges needed
to go from α to β in the graph. The eccentricity e(α) of a vertex α is defined as
e(α) = max{d(α, β) | β ∈ S}. The center of G is then defined as the set of vertices
of G which have minimal eccentricity. It is a standard result that a tree has a center
consisting of either one vertex or two adjacent vertices. To illustrate this, two trees
with their center are draw in Figs. 4 and 5.

Proposition 5.3 If G is a tree, then nCG,c has no Anosov rational forms for any c > 1.

Proof Take an arbitrary continuous morphism ρ : Gal(L/Q) → Aut(G). Let C ⊂ S
be the center of G = (S, E). Note that vertices in the same coherent component can
be mapped onto each other by an automorphism of G and must thus have the same
eccentricity. By consequence, the center is a union of coherent components invariant
under Aut(G). Since G is a tree, we are left with three cases:

• |C | = 1. Note that C is itself a coherent component and must be preserved under
any automorphismofG, implying that {C} isρ-invariant non-empty and connected.
Since |C | = 1 < c, we get by Theorem 4.7 that nQρ,c is not Anosov.

• |C | = 2 and C is a coherent component. Since the coherent component C is
preserved under any automorphism of G, we get that {C} is ρ-invariant and non-
empty. If the center of a tree contains two vertices, then they are adjacent. By
consequence {C} is connected as well. Since |C | = 2 ≤ c, Theorem A tells us
that nQρ,c is not Anosov.

Fig. 3 Choice of set A ⊂ � for
the two actions from Fig. 2

Fig. 4 A tree with a center consisting of one vertex, drawn in red
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• |C | = 2 and C is a union of two disjoint coherent components. Let us write
C = λ ∪μ with λ and μ disjoint coherent components. Note that {λ,μ} ∈ E and
thus that {λ,μ} is a non-empty connected set of coherent components. Since the
center is preserved under any automorphism of G, we get that {λ,μ} is ρ-invariant
as well. Depending on whether ρτ fixes λ or not, we get that zρ(λ)|λ| + zρ(μ)|μ|
is equal to 1 or 2, respectively. In either case, Theorem 4.7 tells us that nQρ,c is not
Anosov.

This concludes the proof. ��
As a second class, let us consider the cycle graphs. These graphs can be considered

as the simplest graphs which are not trees and therefore the natural class to consider
next. The cycle graph of size n is given by vertices S = {1, . . . , n} and edges E =
{{1, 2}, {2, 3}, . . . , {n − 1, n}, {n, 1}}. If n ≥ 5, then the coherent components are
all singletons as illustrated below in Fig. 6 for n = 6. It follows that for n ≥ 5, the
automorphism group of the quotient graph is isomorphic to the dihedral group of
order 2n. Let a be a generator of the rotation subgroup of Aut(G) and b a reflection
of Aut(G). Then Aut(G) = {Id, a, . . . , an−1, b, ab, . . . an−1b}. Let us call a rational
form of nRG of reflection type if the corresponding representation Gal(L/Q) → Aut(G)

has image {Id, aib} for some 1 ≤ i ≤ n. Then using Corollary 4.8, it is not hard to
prove following statement.

Proposition 5.4 Let G be a cycle graph of size n ≥ 5 and take any c > 1. The standard
rational form n

Q

G,c and all reflection-type rational forms of nRG,c are not Anosov. The

other rational forms of nRG,c are Anosov if and only if n > c.

Proof Since the coherent components of G are all singletons, it follows by Corollary
4.9 that nQG,c is not Anosov. If nQρ,c is a reflection-type rational form of nRG,c, then
after possibly conjugating the ρ-action by an automorphism of the quotient graph,
either {{1}} or {{1}, {2}} is ρ-invariant. In any case Corollary 4.8 tells us that nQρ,c

is not Anosov. If nQρ,c is any other rational form of nRG,c, then the image of ρ must
contain a non-trivial rotation. Now suppose A ⊂ � is a non-empty connected ρ-
invariant subset of coherent components. Since A must be connected, we get that up
to possibly conjugating the action of ρ by an automorphism of the quotient graph,
that A = {{1}, . . . , {k}} for some 1 ≤ k ≤ n. Using that A is also ρ-invariant, we

Fig. 5 A tree with a center
consisting of two adjacent
vertices, drawn in red

Fig. 6 The cycle graph on 6
vertices and its quotient graph
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know it must be preserved under the non-trivial rotation. This is only possible if k = n
implying that A = � = {{1}, . . . , {n}} and∑λ∈A |λ| = n. By Corollary 4.8 we get
that nRρ,c is Anosov if and only if n > c. ��
Proposition 5.5 If G is a graph for which there is a non-negative integer k ≥ 0 such
that G has a unique vertex of degree k, then nCG,c has no Anosov rational forms for any
c > 1.

Proof Note that all vertices in a coherent component have the same degree. By con-
sequence, if G has a vertex α for which there are no other vertices of the same degree,
then {α} is a coherent component of G. Since graph automorphisms must preserve
the degree of a vertex, it follows that α is fixed under any graph automorphism and
by consequence the coherent component {α} is fixed under any automorphism of the
quotient graph. It follows that for an arbitrary morphism ρ : Gal(L/Q) → Aut(G),
the set {{α}} is a non-empty connected ρ-invariant set. Since |{α}| = 1 < c, Theorem
4.7 tell us that nQρ,c is not Anosov. ��

The following examples show that our methods can be used to simplify certain
classifications of Anosov Lie algebras and to extend them.

Example 5.6 (Direct sumof two free nilpotentLie algebras of same rank andnilpotency
class) Consider the graph Gn = (Sn, En) defined by Sn = {α1, . . . , αn, β1, . . . , βn}
and En = {{αi , α j } | 1 ≤ i < j ≤ n} ∪ {{βi , β j } | 1 ≤ i < j ≤ n}. The set
of coherent components is then given by � = {λ1, λ2} with λ1 = {α1, . . . , αn} and
λ2 = {β1, . . . , βn}. A figure of the quotient graph is given below.

n
λ1

n
λ2

Gn

The Lie algebra nCGn ,c
is isomorphic to the Lie algebra direct sum of two free c-

step nilpotent Lie algebras of rank n. Let ϕ ∈ Aut(Gn) denote the only non-trivial
automorphism of Gn . For any non-zero square-free integer d �= 1, let σd denote the
only non-trivial automorphism in Gal(Q(

√
d)/Q). If d = 1, then Gal(Q(

√
d)/Q) is

trivial and we let σ1 denote the trivial automorphism. Note that up to isomorphism, the
extensions Q(

√
d)/Q, with d non-zero square-free, are all possible Galois extensions

of Q of degree 1 or 2. Consequently, all injective group morphisms from a Galois
group over Q to Aut(Gn) are given by

ρd : Gal(Q(
√
d)/Q) → Aut(Gn) : σd �→ ϕ

for some non-zero square-free integer d. All rational forms of nCGn ,c
can thus be written

as

n
Q
d,n,c := nQρd ,c ⊂ n

Q(
√
d)

Gn ,c
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778 J. Deré, T. Witdouck

for a non-zero square-free integer d.Moreover, for non-zero square-free integers d1, d2
it holds that nQd1,n,c

∼= n
Q
d2,n,c if and only if d1 = d2. For d = 1, ρd is the trivial

morphism and we retrieve the standard rational form n
Q
1,n,c

∼= n
Q

Gn ,c
. From Theorem

4.7, we can now easily see that for a square-free non-zero integer d:

n
Q
d,n,c is Anosov ⇔ d > 1 ∨ (d ≤ 1 ∧ c < n).

This result was already known for c = 2 and n = 2 from the classification of Anosov
Lie algebras of dimension 6, where the Lie algebra nQk,2,2 was denoted by n

Q
k (see [13,

Example 2.7. and Theorem 4.2.]).

Definition 5.7 LetG = (S, E) be a simple undirected graph. The graphG∗ := (S, E∗)
with

E∗ = {{α, β} | α, β ∈ S, α �= β, {α, β} /∈ E}

is called the complement graph of G.

Note that the coherent components of a simple undirected graph and its complement
graph coincide. Moreover, we have that Aut(G) = Aut(G∗). This being said, let us
look at the Lie algebra associated with the complement graph of the one fromExample
5.6.

Example 5.8 (Free nilpotent sum of two abelian Lie algebras of same dimension) Let
Gn = (Sn, En) be the graph from Example 5.6 and G∗n its complement graph. Note
that G∗n is also the cycle graph of size 4. The quotient graph G∗n is drawn below.

n
λ1

n
λ2

G∗n

The Lie algebra nLGn ,c
is isomorphic to the free c-step nilpotent sum of two abelian Lie

algebras of dimension n. Let ϕ ∈ Aut(Gn) denote the only non-trivial automorphism
of Gn . Since Aut(Gn) = Aut(G∗n ), it follows that all injective group morphisms from
finite Galois groups over Q into Aut(G∗n ) are given by the same morphisms ρd for d a
non-zero square-free integer as defined in Example 5.6. As a consequence all rational
forms of nCG∗n ,c are given by

n
Q,∗
d,n,c := nQρd ,c ⊂ n

Q(
√
d)

G∗n ,c

for a non-zero square-free integer d.Moreover, for non-zero square-free integers d1, d2
it holds that nQ,∗

d1,n,c
∼= n

Q,∗
d2,n,c if and only if d1 = d2. For d = 1 we retrieve the standard

rational form n
Q,∗
1,n,c

∼= n
Q

G∗n ,c. From Theorem 4.7, we can now easily see that for a
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square-free non-zero integer d:

n
Q,∗
d,n,c is Anosov ⇔ (d ≥ 1 ∧ c < 2n) ∨ (d < 1 ∧ c < n).

This result was already known for c = 2, n = 2 and d ≥ 1 from the classification of
real Anosov Lie algebras of dimension 8, where the Lie algebra nQ,∗

k,2,2 was denoted by

h
Q
k (see [13, Theorem 4.2.]).
When studying Anosov automorphisms on rational Lie algebras in low dimensions,

one observes that in all known cases an Anosov Lie algebra always has an Anosov
automorphism with only real eigenvalues. The results in this paper allow us to present
an example where this is no longer the case, so where every Anosov automorphism
has non-real eigenvalues.

Example 5.9 (Anosov rational form which does not admit Anosov automorphism
with all eigenvalues real) Let G = (S, E) be the cycle graph on 6 vertices as
drawn in Fig. 6. Let us write the vertices and edges as S = {α1, . . . , α6} and
E = {{α1, α2}, . . . {α5, α6}, {α6, α1}}. The coherent components of G are then simply
all the singletons � = {λi := {αi } | 1 ≤ i ≤ 6}. By consequence there is a natural
bijection h : S → � : α �→ {α} which gives us a splitting morphism r : Aut(G) →
Aut(G) : ϕ �→ h−1◦ϕ◦h. Let us write Aut(G) = {1, a, . . . a5, b, ab, . . . , a5b}where
a and b are defined by a(λ1) = λ2, a(λ2) = λ3, b(λ1) = λ1 and b(λ2) = λ6. Thus a
is a generator for the rotations and b is a reflection, like in our general discussion of
cycle graphs.

Now let L be the splitting field of the polynomial X3 − 2 over Q. The roots of

this polynomial are given by 3
√
2, ω 3

√
2 and ω

3
√
2 where ω = ei

2π
3 . The Galois group

Gal(L/Q) is generated by the elements σ and τ , defined by

σ(
3
√
2) = ω

3
√
2, σ (ω

3
√
2) = ω

3
√
2, σ (ω

3
√
2) = 3

√
2,

τ (
3
√
2) = 3

√
2, τ (ω

3
√
2) = ω

3
√
2, τ (ω

3
√
2) = ω

3
√
2.

Note that τ is just the complex conjugation automorphism on L and that Gal(L/Q) is
isomorphic to the dihedral group of order 6. It follows that we have an injective group
morphism

ρ : Gal(L/Q) → Aut(G) : σ �→ a2, τ �→ b

with corresponding rational form n
Q
ρ,2 of n

C
G,2. Using Theorem A, it is straightforward

to verify that nQρ,2 is Anosov. Indeed, zρ takes only the value 1 on � and for any
non-empty connected A ⊂ � for which A ∪ ρτ (A) is ρ-invariant, we have that
A ∪ ρτ (A) = �.

For the convenience of the reader, we construct an explicit basis for the rational Lie
algebranQρ,2 and compute the structure constants.Wedefine the vectorsβi = [αi , αi+1]
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for 1 ≤ i ≤ 5 and β6 = [α6, α1]. The following elements form a basis for nQρ,2:

Xi =
(

3
√
2
)i

α1 +
(
ω

3
√
2
)i

α3 +
(
ω

3
√
2
)i

α5

Yi =
(
ω

3
√
2
)i

α2 +
(

3
√
2
)i

α4 +
(
ω

3
√
2
)i

α6

Zi =
((

3
√
2
)i

β1 +
(
ω

3
√
2
)i

β3 +
(
ω

3
√
2
)i

β5

)

−
((

ω
3
√
2
)i

β2 +
(
ω

3
√
2
)i

β4 +
(

3
√
2
)i

β6

)

Wi = ω

((
3
√
2
)i

β1 +
(
ω

3
√
2
)i

β3 +
(
ω

3
√
2
)i

β5

)

− ω

((
ω

3
√
2
)i

β2 +
(
ω

3
√
2
)i

β4 +
(

3
√
2
)i

β6

)

where 0 ≤ i ≤ 2. In this basis, the Lie bracket of nQρ,2 is given by the following
relations

[X0,Y0] = Z0 [X1,Y0] = Z1 [X2,Y0] = Z2

[X0,Y1] = −Z1 −W1 [X1,Y1] = −Z2 −W2 [X2,Y1] = −2Z0 − 2W0

[X0,Y2] = W2 [X1,Y2] = 2W0 [X2,Y2] = 2W1.

Let us prove by contradiction that nQρ,2 does not admit an Anosov automorphism with

real eigenvalues. So, assume f : nQρ,2 → n
Q
ρ,2 is an Anosov automorphism with real

eigenvalues. FromTheorem3.8 and its proof,we know that there exists amap� : S →
Q, which satisfies the properties formulated in that theorem and such that the algebraic
units in the image of � are eigenvalues of f . By the assumption, these eigenvalues
are all real. Let ρ : Gal(Q/Q) → Aut(G) : γ �→ ρ(γ |L) be the extended morphism.
Note that since all coherent components are singletons, the group

∏
λ∈� Perm(λ) is

trivial and thus condition (iii) on � becomes ∀γ ∈ Gal(Q/Q) : γ ◦� = � ◦ r(ργ ).
Write ξ := �(α1). Now let γ be any element in Stabρ(λ1). It follows that γ (ξ) =
(γ ◦ �)(α1) = (� ◦ r(ργ ))(α1) = �(α1) = ξ . By consequence ξ is fixed under

Stabρ(λ1) and in particular under ker(ρ). Note that Q
ker(ρ)

is exactly equal to L and
thus that ξ ∈ L . Now let σ be an extension of the field automorphism σ to Q and note
that σ(ξ) = σ(ξ) = (σ ◦�)(α1) = (� ◦r(ρσ ))(α1) = �(α3) is also an eigenvalue of
f . Since ξ and σ(ξ) are both real, we have τ(ξ) = ξ and τσ (ξ) = σ(ξ). This implies
σ(ξ) = τσ (ξ) = σ 2τ(ξ) = σ 2(ξ) and thus that σ(ξ) = ξ . By consequence ξ is an
element of L , fixed by Gal(L/Q), which in turn tells us that ξ ∈ Q. The only algebraic
units in Q are 1 and −1 which are not hyperbolic. This gives us the contradiction.
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