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Abstract
In this paper, we first establish the local well-posedness for the Fornberg—Whitham-

type equation in the Besov spaces B}YN(R) withl < p,r < occands > max{l—i—%, %},
which improve the previous work in Sobolev spaces H*(R) = Biz(R) with 5 > %
(Lai and Luo in J Differ Equ 344:509-521, 2023). Furthermore, we prove the solution

is not uniformly continuous dependence on the initial data in the Besov spaces By, . (R)
withl < p <oo0,l <r <oocands >max{l+%, 3).

Keywords Non-uniform dependence - Fornberg—Whitham-type equation - Local
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1 Introduction

The following Fornberg—Whitham (FW) equation

Wi = Werx — Wy + 3WWe = IWaWir + 3WWere, x €R,1 >0, (L1)
W(x,0) = Wo(x), x€R, '

which was proposed by Fornberg and Whitham [1] as a model for breaking waves. Eq

(1.1) has a peakon solution W (z, x) = %e’%‘x’%”. We can rewrite (1.1) in non-local
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form
Wi+ 3WW, =0,(1—-92)7'W, xeRt>0, 12)
W(x,0) = Wo(x), xeR. '

In this form, the FW equation was compared with the CH equation [2, 3]

2\ 7! 2, Lo
W,+wa=ax<1—ax) W2 w2 ).

The CH equation has a bi-Hamiltonian structure and is completely integrable in
the sense of Lax pair [2]. The local well-posedness and ill-posedness of the Cauchy
problem for the CH equation in Sobolev spaces and Besov spaces have been studied
in [4-8]. Moreover, the CH equation has more proposition, such as, global strong
solution, wave breaking phenomena, global weak solutions and so on, we can find in
[9-16]. Further, the non-uniform dependence of solution map for the CH equation in
Sobolev spaces and Besov spaces have been investigated in many papers, see [17—-19].

Unlike the CH equation, the FW equation (1.1) is non-integrable and lakes enough
useful conserved quantities, which make it is difficult to study the properties of solu-
tions to the equation. Recently, The local well-posedness of the Cauchy problem for
the FW equation (1.1)in Sobolev spaces and Besov spaces are obtained in [20, 21].
And they demonstrated that the date-to-solution map is not uniformly continuous
but Holder continuity in some given topology and existence of weak solution to FW
equation are investigated in [22-24].

Recently, Lai and Luo studied a shallow water wave equation called Fornberg—
Whitham-type equation in [25],

9 3
Wi — Wiex — kW, +mWW, = EWxWxx—l—EWWX”. (1.3)

and the non-local form
Wi+ 3WW, = (1 — )" (kW + 2322W?), xeR,1>0, (14)
Wi(x,0) = Wp(x), xeR. ‘

where m > 0 and m > 0 are constants. which is viewed as a generalization of Eq.
(1.1) and the structure of this equation the non-local term with both W and W? is
complicated in comparison with the only W in (1.1). Especially, if k = 1 and m = %,
equation (1.4) is reduced to the classical FW equation (1.1).

In [25], the authers estiblished the local-well-posedness in Sobolev spaces H* (R)
with s > % and study the blow-up phenomena of solutions. However, the local-
well-posedness for equation in the Besov spaces B;’,(R) with 1 < p,r < oo and
s > max{1+ 1, %}(HS (R) = B ,(R) withs > %) has not been studied. In this paper,
view the idea of [8, 18, 26], we will study the local well-posedness and non-uniform
dependence on initial data for the Fornberg—Whitham-type equation (1.4) in Besov
spaces.
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Well-posedness and non-uniform dependence...

The first results concerning the local well-posedness for Fornberg—Whitham-type
equation (1.4) in Besov spaces. Which yields the following theorem.

Theorem1.1 Let 1 < p,r < oo and s > max{l + %, %} and the initial date
ug € B;’r(R). Then, there exists a time T > 0 such that the cauchy problem (1.4)
has a unique solution W & E;y,(T), and the map Wy — W is continuous from a
neighborhood of Wy in B), , into

C([0. T): B . (R) NC'([0. T: BY ' (R))

s’ < s whenr = 400 whereas s' = s whenr < +oo. Furthermore, forallt € [0, T],
we have

WOz, ® = CllWolss,®)- (1.5)

From our well-posedness result, we know that the data-to-solution map Wy - W
is continuous from any bounded subset of B), . into E7, .(T'), Moveover, by construct-
ing the initial data, we can demonstrate the data-to-solution map of Eq. (1.4) is not
uniformly continuous as follows.

Theorem 1.2 Let s > max{l + l, %} and1 < p <00, 1 <r < oo. Then the data-
to-solution map for Eq. (1.4) is not uniformly continuous from any bounded subset in
B;’ +(R) into C([0, T1; B;,, +(R)). That is, there exists two sequences of solutions W"
and V" such that

Wil +IVies <1, lim W — Vg =0,
IWg sy, + 1V 115 Tim WG = V{'llag,

pr ™~

lim inf [[W" (1) — V" ®)lls;, 2 1. 1 € (0, Tol,
n— 00 p.r

with small positive time To < T.

Remark Note that when p = 2,r = 2, one has B;,,(R) = H*(R). Thus, Theorem

1 and Theorem 2 imply that under the condition ug € H*(R) with s > %, we can
obtain the local well-posedness(see [25]) and the non-uniform continuity for the data-
to-solution map in sobolev spaces.

Notation The symbol A < B means that there is a uniform positive constant C
independent of A and B such that A < CB.

2 Preliminaries

Before proceeding, we recall the following properties in Besov spaces. In addition,
we need to review the transport equation theory, which will be used in the paper.

Definition 2.1 (Littlewood—Paley Decomposition) There exists a couple of smooth
functions (x, ¢) valued in [0,1], such that x is supported in the ball B £ {£ € R :
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] < %}, and ¢ is supported in the ring C £ (¢ e R : % <&l < %}. Moreover,

Ve e R x () + ) p7E) =1,

Jj=0

Ve e RU\{0), Y p2778) =1,

JEZ
lj —J' =2 = Suppp(2~/-) N Suppp(2~/") = 2,
j = 1= Suppx(-) N Suppp(2~/+) = @.

Then, we can define the nonhomogeneous dyadic blocks A; and nonhomogeneous
low frequency cut-off operator S; as follows:

pju=0, j<=2, A qju=yx(Du=F"(xFu),
Aju=eQR D =F eQ ) Fu), ifj=0,

j—1
Sju = Z Ajru.
j'=—00

Definition 2.2 [27] Lets € Rand 1 < p, r < co. The nonhomogeneous Besov space
B;)r(Rd ) (B‘;”) consists of all tempered distribution # such that

lull gy, ey £ 1271 8 ull Logay) jezllir @) < oo

We introduce a function spaces E‘;,’r(T) as follows.

C([0, T1; B, ) NC'(0, T1; By,H, if r < o0,

r

ES (T
e 0, T1; By, ) NCONI0, T1; By Y), if r =00

Therefore, we have the product laws as follows.

Lemma 2.1 [27]
1. Algebraic properties: Vs > 0, B}, . N L> is a Banach algebra. By, , is a Banach
algebra < B), . — L™ & s > Ldops=4 r=1.
2. Foranys > 0Qand1 < p,r < oo, there have
luvlips, < C(llullzelvlizy, 4 lvllzellullss,).
3. Letl < p,r <ocoands > max{%, 1+ %}. Then, we have
=2 < S— s—2.
vl gz < Cllul gooa [0l -2

4. Density: CZ° is dense in B, . < 1 < p,r < oo.
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Well-posedness and non-uniform dependence...

5. Fatou lemma: If {u,}nen is bounded in B;,r and u, — uin S, thenu € B;‘,’r
and

iz, < timinf 55,

6. Letn € R and g be an S™-multiplier. Then, the operator g(D) is continuous from
B, . to B) "

Next, we give some useful results in the transport equation theory, which are crucial
to show our main theorem.

Lemma 2.2 (Theorem 3.38, [27]) Assume 1 < p,r < oo and s > —%. Let v be a
d

vector field such that Vv € L'([0, T1; B;,j,l) ifs > 1+% orto L'([0, T1; B}, NL®)

otherwise. Suppose also that fo € By, .8 € L'([0,T1; B, ) and the function f €
L°°([0, T7T; B;’r) NC([0, T1; S') solves the d-dimensional linear transport equations

of+v-Vf=g, fli=o= fo- 2.1

Then there exists a constant C = C(d, p, r, s) such that the following statement
hold:

I Ifr =1ors #1+ 9, then

t t
1f gy, < lfollay, + fo Ig(@)llsy,dz +C fo V(I f @5y, dr 22)

or

p.r —

t
1)y, < CeVr® (IIfonB;, +/0 ecvﬂ‘”llg(rnmmd’), (23)

where V(1) = [y V()| g drifs < H—%ande(t) = /s Vo)l gy
Bp,NL>® ’

else.
2. If f = v, then for all s > 0O the estimate (3.3) holds with

t
V(1) = /0 170 o (gayds.

3. Ifr < oo, then f € C([0, T]; B;’,). If r = 400, then f € C([0, T]; B;/,,)for

all s’ < s.

Lemma 2.3 [27](Existence and uniqueness) For 1 < p,r,p; < 0o and s >

—dmin{#, %} with % + é = L. suppose that initial data fo € B, ,(R),g €

L0, T1; B‘;,,,).Letvbeatime—dependent vector field suchthatv € L° ([0, T]; B(;O{Moo

d
for some p > 1,M > 0 and Vv € Lo, T];B;r NL®) ifs < 1+ % and
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Vv e LY([0, T1; B;l’}) ifs > 1+% ors =1+ % andr = 1. Then the Eq. (3.1) have
a unique solution f € L*°([0, T]; B;’r N (Ny<sC([0, T1; B;/’l)) and the inequalities

in Lemma 2 hold true. Moreover, r < 00, then we have f € C([0, T, B;,l)'

3 Local well-posedness

In this section, we will study the local well-posedness of the Cauchy problem (1.4) in
Besov spaces. we divide four steps to prove the Theorem 1.1.

Step 1. Uniqueness and continuity with respect to the initial data Wy are immediate
consequence of the following Lemma:

Lemma3.1 Assume 1 < p,r < oo and s > max{l + %,%}. Let W,V €
L*(0,TT; B;’r) N C([0, T]; S") be two solutions of the Eq. (1.4) with initial data
Wo, Vo € B;,r' Thus, for any t € [0, T], we have

C [ AW @ gy , +HIV @y, )

IW(@) = VOl gt = 1Wo — Vol ps-re (3.1

Proof Let U = W — V, we can know that W, V € L°°([0, T']; B;,r) NC(0,T1; S,
which implies U € C([0, T]; B;_l), and U is the solution of the following equations

\r

{ Ui+ 3WU, = =3UV, +8,(1 — 9~ (kU + 322U W + V), 32

U(x,0) = Wy — V.

For s > %, Lemma 2.2 implies that

t

t 21 3—2m
+C A (U3 Vs, + 10x(1 = 8;)" (kU + uw + V))”Bj,;')dt'
(3.3)
The algebraic property for B;Trl fors > 1+ %, we can obtain
10DV gyt < CHU gy 18:Vpyor < CHUN gt IV, (B4)

Since the operator(1 — 8}%)_l is a S~2-multiplier, applying Lemma 2.1(6). We have

21 3—-2m
10 (1 —3;)" (kU +

Uw + V))“B;;l
= CUlUllgy-2 + IUW + V)l gs-2)
= WUl gyt + CllU N ge-r (AW Ly, + 1V 85,,)- (3.5)
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Well-posedness and non-uniform dependence...

Plugging (3.4), (3.5) into (3.3) gives

p.r

13
Ul gs-1 = 1Toll gs-1 +C/0 1N g1 AW ls;, + 11V, +Ddr. (3.6)

By using the Gronwall’s inequality, which yield the Lemma 3.1.

Step 2. Next, will start the proof of Theorem 1.1, which is motivated by the proof of
the Cauchy problem about Camassa-Holm-type equation [7]. We can use the classical
Friedrichs regularization method to construct approximate solution to Eq. (1.4).

Lemma3.2 , Let 1 < p,r < oo and s > max{l + %, %}. Assume WO = 0, there

exist a sequence of smooth function {W"},cn solves the following linear transport
equation:

8th+l + %Wnax Wn+1 =0,(1 — 83)_1(](W” + 3—42m(Wn)2)’

(3.7)
W(x,0) = Wo(x).

Then, we have {W"}, N is uniformly bounded in E;’,(T) and {W"},eN is a Cauchy
sequence in C([0, T]; B‘I‘)_l).

\r
Proof From Lemma 2.2, we know that the Eq. (3.7) has a global solution W"*+! ¢
Ey, (T) with s > max{1 %, %} and the following inequality

1 C [EIW" ()|l gs dt
[wnt ®ls, <Ce Bpr Wollss,

t T (YSUNTID ’ 3-2
—I—C/ ¢ C Jy IW"(x )HE}rvrdr <||3x(1 . 83)—1 (kW” + m(W")z) HB;,,) dt) . (3.8)
o ,

4

We know that By, .., Bz;l are Banach algebras and the embedding By, , — B;,Trl >
L*® fors > 1+ % Note that the operator (1 — 8%)_1 is a S~2-multiplier. Thus, we

have

_ 3—-2m
19:(1 =89! (kW" + T(W"V) gy, < CAW 5y, + IW" g ).

(3.9)
Thus, we can obtain
C oW @lips d
W Ol < eI Ol g
t T / /
=C Jo IW"(@)llps d
+C / eI I T oy, + WO, Hdr. (3.10)
A ,

If we choose M" (1) = ||W”(t)||3§” + 1, My = ||W0||Bf” + 1. Then, we have

t
M (1) < € o M @dz g0 C/ LM O yno)2q7 (3.11)
0
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Fix T > 0, suchthat T < 1 by induction, we can claim that

4CMyp°
My < — M0 oy veeo.7) (3.12)
= T-2CMet — " o ‘
Plugging (3.12) into (3.11), forany0 < 7 < ¢ < W we have

1
ecfrt M (t)dt! - eCf: %d!’ _ 1— ZCM()'L' 2
= 1= 2CMyt

and

My M?
1 + L 1
(1=2CMpt)2 (1 —2CMy1)?2

t
M (1) < / (1 —2CMyr)"3dt
0

My My 1
= Tt 1 r—1
(1 —2CMyt)2 (1 =2CMyt)2 | (1 —2CMyt)2
My

— M o 3.13
1—2CMyt — 0 (-13)

Thus, {W"},en is uniformly bounded in C([0, T']; B;‘,),) and
IW"()lgy, <20 Wollgy,. Viel0,T]. (3.14)

Using the Eq. (3.7), we can easily showed that {0, W"}, < is uniformly bounded in
C(0, T1; B;,’l). Thus, the sequence {W"},cn is uniformly bounded in E;’,(T).

B
Step 3. we will prove that {W"}, < is a Cauchy sequence in C([0, T]; B;,frl). For
any n, j € N, we have

at(Wn+j+l _ Wn+1) + %Wn+jax(Wn+j+l _ Wn+1)

= 3w — Wty Wty

9 (1 — )L k(WnH) — Wy + 322m (Wt — Wy (Wt + W),
(Wn+j+l _ W”+1)(x, 0) = 0.

(3.15)

Applying Lemma 2.2 again, and the uniform boundedness of W", B f,_rl is a Banach
algebra, we have

j+1 1
||Wn+j+ — wnt ”B;J

C W @lgs dr [T —C [FIW @)llps d7’ ;
< LI W Ollgy, dv / ¢ Clo W @llgy,, CAW (@) = WD) g)d
A ,

t
< c/ W™+ (x) = W) || go-1)dT. (3.16)
0 pr
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Well-posedness and non-uniform dependence...

Thus, employing the induction procedure, we can obtain

( )n+1

||Wn+j+1 Wn+l||L°°(B < C27 ", (3.17)

S Dl S

Which implies that {W"}, < is a Cauchy sequence in C([0, T']; B;,;l).
Step 4. We prove the existence and uniqueness for Eq. (1.4) in Besov space.

Proof of Theorem 1.1 From Lemma 3.2, we know that the sequence{W"},cn is a
Cauchy sequence in C([0, T']; B ) Hence, {W"}, ciy converges to some limit func-

tion W € C([0, T1; BY 1) Now, we need to show that the limit functionW € E‘ A(T)

and solves Eq. (1.4). Because {W”},,GN is uniformly bounded in L*°([0, T']; B s

we can deduce that W € L°°([0, T]; B 1) by the Fatou property for Besov spaces
Thanks to

W' — W in C((0.T]; B}, (3.18)
and the interpolation inequality, we have
w" - W in C([0,T]; B‘;:r) for any s’ <s.
Thus, it is a routine to pass the limit in Eq. (4.7) and show that W is a solution of
Eq. (1.4).
For the case r < oo, Lemma 2.2 tell us that W € C([0, T']; B S ,) for anys’ < s.

Using Eq. (1.4), it is easy to obtain that ;W € C([0, T]; B ) if r < o0, and

oW eC(0,T]; BY 1) otherwise. Thus, the solutionW € E (T).
The continuity W1th respect to initial data for s’ < s in

c(0, T%; By, (R) N C'([0, TT; By, (R)),
can be get by Lemma 3.1 and interpolation property. For the cases’ = s can be get
though the viscosity approximation method for Eq. (1.4), The approximation solution
{W¢}e=0 converges uniformly in

. p 1 . ps—1

C([0,T1; B, ,(R)NC ([0, TT; By, (R))
imply the continuity of the solutionW in E3, .(T'). Then, we have finished the proof
of Theorem 1.1. O
4 Non-uniform continuous dependence
In this section, we will give the proof of Theorem 1.2. The local well-posedness
result in Theorem 1.1 yield that the data-to-solution map is continuously dependence

on the initial. Furthermore, we show that this data-to-solution map is not uniformly
continuous in Besov spaceB withs > max{1+— —} andl < p <oo,1 <r < o0.
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Next, we need to introduce smooth, radial cut-off functions to localize the frequency
region. Let ¢ € C3°(R) be an even, real-valued and non-negative function on R and
satisfy

—= 1, if €1 <3
$ () = { 0. : 4.1)
cif 15l = 5.
Next, we recall the following Lemma in [18]
Lemma 4.1 Forany p € [1, 0o], there exists a positive constant M such that
L ) 17__,
lim inf ||¢“(x)cos | —=27"x ) |lr = M. 4.2)
n—00 12

Proof we can assume that p € [1, 00). Using the Fourier inversion formula and the
Fubini’s theorem, we see that

[¢llzoe = sup S— V ¢ (&) cos(x§)d§

xeR 2z

<L / (&)dz, 43)
where
1 -
$(0) = 2—/ 3&)ds 0.
7 Jr

Since ¢ is a real-valued and continuous function on R, then there exists some § > 0
such that

$(x) = M, x € By(0).

Therefore, we deduce

17 0)2 8 17
||¢2cos<1 )||Lp > ¢(4) /lcos <§2"x)|pdx
0

8 12 ~ 17
= —¢>2(0)—~f lcosx|Pdx with § = —.
4 27§ Jo 126
With the following fact
2§ T
) 1 1
lim — |cosx|Pdx = — |cos x|Pdx.
n—o00 2§ J T Jo

Hence, we conclude the desired result.
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Well-posedness and non-uniform dependence...

Lemma4.2 Let s € R and (p,r) € [1,00] x [0, 00). Define the hight frequency
function f, by

—ns s 17 n
fn =2 ¢()C) sin 52 x), n> 1.
Then for any o € R we have

I fallgg, <271l r. (44)

Proof 1t is easy to compute that

f=2m"l [a (s + E2") - $(s - 22”)] :
12 12

which implies

—~ 17, 1 17, 1
supp fn C EGR:EZ —§§|§|552 it
we deduce
, ifj=n,
Ay =1 I
0, ifj#n.

Hence, the definition of the Besov spaces tells us that the desired result.
Lemma4.3 Lets € Rand p € [1, 00]. Define the low frequency function g, by

12__,

gn=-752"¢(x), n>1

17

Then we have
lgnllsy, < C27",

other there exists a positive constant M such that

lim inf ||g,0x fullps . > M. 4.5)
n—o00

P00 —
Proof We know that
—~ 1
suppgn C {SeR:OSISISE},
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combing suppg, we can get

Aj(gn) =927 =0, j=>0,

therefore

12 y—n —n
lgnllBs, = ﬁ2 a1 llLr =27"ollLe.

Then, we have

_ 17 17
Suppgndx fu C {E €R: 2" —1<|E| < 2"+ 1}
which implies

g?’laanv lf.] =n,

Aj(gnaxfn) = { 0 ifj £n.

Using the definitions of f, and g,, we have

”gnaxfn”B;oo = 2ns||An(gnaxfn)”Ll’ = 2m||gnaxfn||Ll’
17 17 17
= [|¢*(x) cos + 27" ()@ (x) sin | —2"x | [ILr
12 12 12

> 1¢%(x) cos (1—72"

o x) lLr —C27".

Thus, the Lemma 4.1 enables us to finish the proof of the Lemma 4.3.
Assume that W is a solution of Eq. (1.4) with the initial data W := f,,(x). Then,
we have the following estimate

Proposition 4.1 . Let (s,p,r) meet the condition in Theorem 1.2, we have forj = £1
IW" | o1y < €277, (4.6)
and
IW" = Wil ey < €275, @.7)

where 2eg = min{s — 1 — %, 2}

Proof The well-posedness result Theorem 1 insures that the solution {W"},cn €
c(o, 11; BY 1) with a lifespan 7" ~ 1. Moreover, we have

IW*llLeess,) < ClIWg By, < C, (4.8)
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and the similar as (3.8), we have for any r € [0, T] and j = %1,
n _ n .
IW" Ol g < IWG 1o
! 3—2m
+ c/ (19, (1 — a7~ (kW” + T(W")2> I gs)dT
0 N
13
n . n . n 2
< CIWG g+ C [ AWl + IW @1 . “9)
Applying the Gronwall’s inequality and (4.4), we have for all ¢ € [0, T']
W gs—1 < C27", [[W"]| gst1 < C2". (4.10)
p.r p.r
Since s —€;, — 1 > %, the embed property leads to
[WLoe < CIW™ || gs—es-1. (4.11)
p.r

Now, we estimate || W" — wy || B, Using the fundamental theorem of calculus we
have ’

t
W= W, = [ 10w @)y, . (4.12)
0
Applying the Eq. (1.4), embed property and (4.4), we have
t
IW" — Wiligy, <C / IW" 3 W" 155,
0

! 3—2m
+f (191 = a)~! (kW" + T(W")2> | gyr)d
O N
< CUW™lIgy, 10 W™ llzoo + IIW" [[ L 10 W" 135 ,)
+CUAW" Dl gs-1 + WO,
p.r p.r

< C(z—qn + 2—(ex+l)n2n + 2—}1)
<C27 ST (27"
< C27%", (4.13)

The proof of this proposition is completed.

In order to prove that the nun-uniform continuous dependence result, we construct
another sequence of approximate solutions to Eq. (1.4) with initial data

V(? = fu+ &n.
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Proposition 4.2 . Let (s,p,r) meet the condition in Theorem 1.2. Assume V" is a solution
of Eq. (1.4) with initial data Vj'. Then, for all t € [0, T], we have

3
V" — VI + zzv(;fax Vi'llsy, < Cr*+C275", (4.14)

Proof Applying the Theorem 1.1 yields that the solution V" € C([0, T']; By, ) with
T ~ 1, and Lemma 4.2, Lemma 4.3, we have

IV"llgss < CUV L ges < CULfull gy + gnll i) < €2 forj = 1,

(4.15)
and
[ Vo' 0x Vé’llB;tj < C(IIVJ‘IIBW 19 V' ll oo + ”axVon”B;*;_.i”V()n”Lc’o)
< C2/m 4 ¢c27mplithn
<C2/" forj=0,=+l. (4.16)

Thus, we can obtain that

3
IV Ve VeV g < IV VEL VGO VR Ly < 27 (4.17)

Bp,r

Next, we estimate ||| g5 ., where " = V" — Vi — 1 P with Pjl = —gvgax V-
We know that 5" is a solution of the following equation

s+ 3B = 317002y — 30— VG
+10.(1 = 9~ (kP + 3V Fy)

+9,(1 — 33)71 [(k + #Vﬂ) nn +kV(;1 + 3—42m anon] ,
7 (x, 0) = 0.

(4.18)

Using Lemma 2.2 and (4.11), we have

V705 Py ll g1 < CAUV e ll0x Py'll g+ IV a1 10x Pyl 2o)
= CUV gy 11Ve' 3 Vo' Ny, + 11V 1y, 105 Byl o165 X4.19)

p.r p.r

<C2T"4Cc2ms"
and

< CUIV" i N9 Pyl sy, + V" I8, 19x Py ll o)

s
p.r — p.r p.r

< CUV N gyt VG 3 VGl gaer + 11V Uy, 110 Py'll gs=1)

p.r

<C (4.20)

IV"ox Py'll 8
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Applying Lemma 2.2 again, we have

IV = V)0 Vil gt < CIV = Vil ot 10V gy
<c2™, 4.21)

and

(V™ = Vi)oxVy'llsy,
S CUIV" = Villzello: Vg llsy, + V" = Vi llsy, 10 Vo' lle)

= CUV" = Vil 1V gy + 1V = Vg 10Vl )
<C.

(4.22)

Using the fact B;frl is a Banach algebra, and Lemma 2.2(6),the operator (1 — 83)’]
is S~2-multiplier, we get

3—-2m

35 (1 — 3~ (kP5’+ J V"P(;’) Iy

= C”P(?”B;—rz + C"Vnp(;l”B;—rz

(4.23)
< C|IPy s + CIIV”IIB;;I 175 118,
<Cc2™,

and
_ 3—2m
(1 — 87~ (kPé’ + V”Pé’) Is;,,
n n n

= ClIFgllgs1 + CIVFyll gy (4.24)

<C| PKIIB;;I + CIIV”IIB;;I ||Pon||B;',‘,
<c2™,

The same procedure of estimates as above, we also obtain

3—2m

9.1 =)~ [(k+ Z V"v(;’] I3
< ClIn"llgs-2 + CIIV" 1"l g2 + CIVG | g2 + CIV" Vi ll o2 (4.25)
= C||77n ”B?frl + szn,

3—2m

V”) n" +kVy +
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and

19:(1 = 9~ [(k + V"Vﬂ s,

< Cln" g1 + CIV" " st + CIVG st + CIV Vil ey (420)
p.r p.r p.r p.r

3—-2m 3—2m

V") 0" +kVy +

<ClIn"llgs—1 +C27",
p.r
Applying the Gronwall’s inequality and (4.19), (4.21), (4.23), (4.25), we have
" llps-1 = Cr22™" 4 C27"s, (4.27)

Applying the Gronwall’s inequality and (4.19), (4.21), (4.23), (4.25), (4.27), we have
t
In"llg;, < Ct*+Ci27" 4+ C / 17" ()l y-1dT < Ct>+C27"  (4.28)
» 0 T

Thus, we completed the proof of Proposition 4.2.
With the proposition 4.1, proposition 4.2, we gives the proof of Theorem 2.

Proof of the Theorem 1.2 Using The Lemma 4.3, we have

IWo — Vo'llsy, = lignlls;, < C27". (4.29)
Thus, we can obtain
. n __ n B — . .
Tim WG = Vg'llay, =0 (4.30)

Moveover, we have
IW" = V"ligy, = IW" = fo = gn = 0" = 1P |15y,
= CltPg iy, = CIW" = fully, = Cligullsy, = Clin" Iz,
> Ct||Pg |y, — C1* — C27".
4.31)

Since

3
P(;l = _E(fnaxfn + fnaxgn +gn8xfn + &n0x&n)
by simple calculation, we can get

”(fnaxfn”BS

p.r =

| fudegallzy, < 1 fullsy, lgnllges < €27,

Igndxgnllps, < lgnllsy, llgnllgs+r < C27".
» p.r

pr —

< Wfalleell full gyt 4 105 fulleoel fullgy, < €277,

p.r —
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Thus, we have

IW" = V"ligs, = Ctlignds full g ., — C1* = C27".

Thank to (4.5), we can get

liminf |[W" — V"|lgs =1, €0, Tol, (4.32)
n—o00 pr

for Ty small enough. This completes the proof of Theorem 1.2.
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