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Abstract
In this essay, we investigate the blow-up scenario, global solution and propagation
speed for a modified Camassa–Holm (MCH) equation both dissipation and dispersion
in Sobolev space Hs,p(R), s ≥ 1, p ∈ (1,∞). First of all, by the mathematical
induction of index s, we establish the precise blow-up criteria, which extends the result
obtained by Gui et al. in article (CommMath Phys 319: 731–759, 2013). Secondly, we
derive the global existence of the strong solution of MCH equation both dissipation
and dispersion. Eventually, the propagation speed of the equation is studied when the
initial data are compactly supported.
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1 Introduction

In 1993, by using Hamiltonian methods, Camassa and Holm [3] derived the following
new completely integrable dispersive shallow water equation:

{
yt + vyx + 2vx y + 2kvx = 0, (t, x) ∈ R

+ × R,

v(t, x) |t=0= v0(x), x ∈ R,
(1.1)

i.e., the classical Camassa-Holm (CH) equation, where k denotes a constant related to
the critical shallow water wave speed, and the subscripts of y = v − vxx , v indicate
the partial derivative. Although Fuchssteiner et al. [17] researched the bi-Hamiltonian
equation using recursive operators as early as 1981 and derived the CH equation, the
work received little attention at that time.

As is known to all, the CH equation has been widely studied. This model simu-
lates the unidirectional propagation of shallow water waves on a flat bottom and the
axisymmetric wave propagation in a hyperelastic rod [3, 13]. The CH equation, in
contrast to the KdV equation, simulates the breaking phenomenon of shallow water
waves. Moreover, scholars have demonstrated the global existence and the blow-up
phenomenon of the solution [6, 8, 23]. The remarkable feature of the CH equation is
its peaked solitons at the form v(t, x) = ce−|x−ct |,where c is a wave speed and c ∈ R

[4]. At the same time, Constantin et al. [5, 11, 12, 17] not only studied the Hamiltonian
structure and integrability of the CH equation, but also proved the orbital stability of
peaked solitons. In recent years, many researchers have been greatly interested in the
CH equation and have conducted a great deal of research on it [1, 2, 7, 9, 14, 15, 28,
29].

The integrable modified Camassa-Holm (MCH) equation with cubic nonlinearity
was first introduced in 1996 by Fuchssteiner [16] and Olver et al. [25] using the
bi-Hamiltonian representation of the classical integrable system:

{
mt + (

ω2 − ω2
x

)
mx + 2ωxm2 + αωx = 0, (t, x) ∈ R

+ × R,

ω(t, x) |t=0= ω0(x), x ∈ R.
(1.2)

where m = ω − ωxx , ω = ω (t, x) is the fluid velocity and subscripts of m, ω

denote the partial derivatives, ω0 is the initial data. Until now, Fu and Gui et al. [18]
demonstrated that theMCHequation is locallywell-posed in the Besov space Bs

p,r (R),
obtained the blow-up scenario and the lower bound of the maximum existence time.
Futhermore, they proved that the nonexistence of smooth traveling wave solutions.
The creation of singularities and the presence of peaked traveling-wave solutions to
MCH equation were studied by Gui and Liu et al. [20]. Moreover, they proved the
existence of single peak solution and multi-peak solution. When α = 0, Wu and Guo
[30] investigated the persistence, infinite propagation and traveling wave solutions of
MCH equation. The local well-posedness and asymptotic behavior of MCH equation
solution were studied by Wu and Zhang [31, 32] successively.
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In this essay, we discuss the Cauchy problem of the modified Camassa-Holm equa-
tion both dissipation and dispersion:

{
mt + (

ω2 − ω2
x

)
mx + 2ωxm2 + kmx + λm = 0, (t, x) ∈ R

+ × R,

ω(t, x) |t=0= ω0(x), x ∈ R.
(1.3)

where m = ω − ωxx , k ∈ R is a dispersion parameter, and λ > 0 is a dissipation
coefficient. Recently, a number of researchers have investigated nonlinear models with
dissipation. Ott and Sudan [24] studied how the KdV equation was modified by the
existence of dissipation and what the influence of such a dissipation was on soliton
solutions of the KdV equation. Wu and Yin [26] discussed the local well-posedness,
blow-up rate and the global solutions of the weakly dissipative periodic CH equation.
In addition, the localwell-posedness, blow-up rate and decay of solutions to theweakly
dissipative Degasperis-Procesi equation were also established by them [27]. Hu [21]
investigated the local well-posedness, the global existence and blow-up phenomena
for a weakly dissipative periodic two-component CH equation. Thereafter, Hu and
Qiao [22] studied the local well-posedness, the precise blow-up scenario, the global
existence and propagation speed for a generalized CH model with both dissipation
and dispersion.

In this essay, we study the blow-up scenario, global solution and propagation speed
of strong solution for the IVP of Eq. (1.3). Our study shows that the blow-up scenario
for the solution of Eq. (1.3)(k, λ �= 0) is similar to that of Eq. (1.2)(k = λ = 0).
In addition, different from Gui’s approach, we used mathematical induction to study
the blow-up criterion in Theorem 2.1. It is worth noting that the dissipation term λm
and the dissipation term kmx in Eq. (1.3) have an impact on the global existence and
the propagation speed of its solution, see Theorem 3.1 and Theorem 4.1. In particular,
the propagation speed is heavily influenced by the dispersion parameter k and the
dissipation coefficient λ.

The essay is structured as follows. In Sect. 2, we first give three important lemmas
and establish the blow-up criterion for the solution of Eq. (1.3). The global existence
of strong solutions of Eq. (1.3) is studied in Sect. 3. In the last section, we study
the propagation speed of strong solutions to Eq. (1.3) provided the initial data have
compact support.

Notation: For convenience, all function spaces are over R, and if there is no ambi-
guity, we exclude R from our notation of function spaces. For 1 ≤ p ≤ ∞, ‖ · ‖L p

will stand for the norm in the Banach space L p(R), while the norm in the classical
Sobolev spaces Hs,p(R) will be written by ‖ · ‖Hs,p , s ∈ R. Furthermore, the norm of
Hs,p(R) is defined as follows

‖u‖Hs,p =
⎛
⎝ ∑

0≤|α|≤s

∫
R

∣∣Dαu
∣∣p dx

⎞
⎠

1
p

, 1 ≤ p < ∞,

where D̂s f (ξ) = |ξ |s f̂ (ξ) and f̂ (ξ) represents the Fourier transformation.
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374 X. Wu et al.

2 Blow-up scenario

In this section, we will show some significant results in order to achieve our goal. Let
the potential m = ω − ωxx , (t, x) ∈ R

+ × R, then we rewrite Eq. (1.3) in the form of
a quasi-linear evolution equation of hyperbolic type:

⎧⎪⎨
⎪⎩

ωt + (ω2 − 1
3ω

2
x + k)ωx + ∂x

(
1 − ∂2x

)−1 ( 2
3ω

3 + ωω2
x − λωx

)
+ (

1 − ∂2x
)−1 ( 1

3ω
3
x + λω

) = 0,
ω(t, x) |t=0= ω0(x).

(2.1)

Furthermore, Eq. (2.1) can be reformulated in the following form:

{
ωt + (ω2 − 1

3ω
2
x + k)ωx + ∂xG ∗ ( 2

3ω
3 + ωω2

x − λωx
) + G ∗ ( 1

3ω
3
x + λω

) = 0,
ω(t, x) |t=0= ω0(x),

(2.2)

where we used (1− ∂2x )
−1g = G ∗ g for all g ∈ L p, G(x) = 1

2e
−|x |, x ∈ R, namely

(1 − ∂2x )
−1m = G ∗ m = ω, here we represent by ∗ the convolution.

Apparently, similar to [32], the local well-posedness of the Cauchy problem Eq.
(1.3) in Hs,p(R), s ≥ 1 can be obtained by applying the Kato’s semigroup theorem.

Lemma 2.1 [32] Suppose that m0 ∈ Hs,p(R), s ≥ 1, p ∈ (1,∞), in other words, the
initial datum ω0 ∈ Hs+2,p(R). Then there exist a time T = T (m0) > 0 and a unique
strong solution m(t, x) to Eq. (1.3) such that

m(t, x) ∈ C([0, T ) ; Hs,p) ∩ C1([0, T ) ; L p).

Moreover, the solution m(t, x) depends continuously on m0, i.e., the mapping

m0 → m(t, x) : Hs,p → C([0, T ) ; Hs,p) ∩ C1([0, T ) ; L p)

is continuous.
In particular, the unique strong solution m(t, x) to Eq. (1.3) satisfies

m(t, x) ∈ C([0, T ) ; Hs,p) ∩ C1([0, T ) ; Hs−1,p).

Next, we consider the following ordinary differential system:

{ d
dt ρ(t, x) = (ω2 − ω2

x )(t, ρ(t, x)) + k, (t, x) ∈ [0, T ) × R,

ρ(t, x) |t=0= ω0(x), x ∈ R,
(2.3)

where ω is the corresponding strong solution to Eq. (1.3). It should be pointed out
that a similar system for Camassa-Holm defines the re-expression of that equation
as geodesic flow (a detail discussion can be found in [10]). The following several
lemmas, which are essential in the demonstration of global existence, can be obtained
by applying classical results in the theory of ordinary differential equations.

123



Blow-up, global existence... 375

Lemma 2.2 Assume that ω0 ∈ Hs,p(R), s ≥ 3, p ∈ (1,∞). Then there exist a
T = T (ω0) > 0 and a unique strong solution ρ ∈ C([0, T ) × R; R) to Eq. (2.3) such
that the function ρ(t, ·) is an increasing diffeomorphism of R with

ρx (t, x) = exp

(
2

∫ t

0
(mωx )(s, ρ(s, x))

)
ds > 0, ∀(t, x) ∈ [0, T ) × R.

Proof. Differentiating Eq.(2.3) with respect to x , it follows that

{ d
dt ρx (t, x) = 2mωx (t, ρ(t, x))ρx (t, x), (t, x) ∈ [0, T ) × R,

ρx (0, x) = 1, x ∈ R.
(2.4)

Solving the above equation derives the result of Lemma 2.2.

Lemma 2.3 Suppose that ω0 ∈ Hs,p(R), s ≥ 3, p ∈ (1,∞), and let T = T (ω0) > 0
be the maximal existence time of the solutionω to Eq. (1.3) corresponding to the initial
data ω0. Then we have

m(t, ρ(t, x))ρx (t, x) = e−λtm0(x), (t, x) ∈ [0, T ) × R. (2.5)

For all (t, x) ∈ [0, T ) × R, if there exists M > 0 such that −mωx (t, x) ≤ M, then
we obtain

‖m(t)‖L∞ = ‖m(t, ρ(t, ·))‖L∞ ≤ e(2M−λ)t ‖m0‖L∞ , ∀t ∈ [0, T ). (2.6)

Proof.Differentiating the left-hand side of Eq. (2.5) with respect to t , by virtue of Eqs.
(1.3) and (2.3), it follows that

d

dt
[m(t, ρ(t, x))ρx (t, x)] = (mt + mxρt )ρx + mρt x

=
[
mt + mx (ω

2 − ω2
x + k)

]
ρx + 2ωxm

2ρx

=
[
mt + mx (ω

2 − ω2
x + k) + 2ωxm

2
]
ρx

= −λmρx .

Solving the above equation, one obtains

m(t, ρ(t, x))ρx (t, x) = e−λtm0(x).

In addition, it follows that

‖m(t)‖L∞ =
∥∥∥∥e−λtm0 exp

(
−2

∫ t

0
(mωx )(s, ρ(s, ·))

)
ds

∥∥∥∥
L∞

≤ e(2M−λ)t ‖m0‖L∞ .

Therefore, the proof of Lemma 2.3 have been completed.
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Lemma 2.4 [19] For s ≥ 0, p ∈ (1,∞), there exists a constant Cs such that the
following estimate holds:

‖ f1 f2‖Hs,p(R) ≤ Cs
(‖ f1‖Hs,p(R) ‖ f2‖L∞(R) + ‖ f1‖L∞(R) ‖ f2‖Hs,p(R)

)
.

Next, we will provide the precise blow-up criteria.

Theorem 2.1 Suppose m0 ∈ Hs,p(R), s ≥ 1, p ∈ (1,∞). Then the solution m of Eq.
(1.3) blows up in the finite time T > 0 if and only if

lim inf
t↑T (mωx )(t, ·) = −∞.

Proof. Sufficiency: If lim inf t↑T (mωx )(t, ·) = −∞, and mωx is continuous with
respect to x , by the Sobolev’s embedding theorem, then the solution m of Eq. (1.3)
will blow-up in finite time.

Necessity: Without loss of generality, we only prove the necessity when s ≥ 1, s ∈
N. If there exists a positive constant M > 0 such that −mωx (t, x) ≤ M for all
t ∈ [0, T ), then we need to prove that ‖m(t, ·)‖Hs,p < ∞. For the convenience
of writing, let A = e(2M−λ)t ‖m0‖L∞ . We will use mathematical induction for s to
demonstrate this statement.

(i) Let s = 1, we shall estimate ‖m(t, ·)‖H1,p < ∞.
Multiplying Eq. (1.3) by |m|p−2 m with p ≥ 2, and integrating over R with respect

to x , integration by parts, then we have

∫
R

mt |m|p−2 mdx = −
∫
R

(
ω2 − ω2

x

)
mx |m|p−2 mdx − 2

∫
R

ωxm
2 |m|p−2 mdx

− k
∫
R

mx |m|p−2 mdx − λ

∫
R

m |m|p−2 mdx

= 1

p

∫
R

(
ω2 − ω2

x

)
x |m|p dx − 2

∫
R

mωx |m|p dx − λ

∫
R

|m|p dx

= −
(
2 − 2

p

) ∫
R

mωx |m|p dx − λ

∫
R

|m|p dx

≤
((

2 − 2

p

)
M + λ

)
‖m‖p

L p ,

i.e.,

d

dt

∫
R

|m|p dx ≤ ((2p − 2)M + λp) ‖m‖p
L p . (2.7)

Differentiating Eq. (1.3) with respect to x , we get

mtx = −2ωxxm
2 − 6ωxmmx −

(
ω2 − ω2

x

)
mxx − kmxx − λmx . (2.8)
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Applying Eq. (2.8) by |mx |p−2 mx with p ≥ 2, and integrating over R with respect to
x , integration by parts leads to

∫
R

mtx |mx |p−2 mxdx

= −2
∫
R

ωxxm
2 |mx |p−2 mxdx − 6

∫
R

ωxmmx |mx |p−2 mxdx

−
∫
R

(
ω2 − ω2

x

)
mxx |mx |p−2 mxdx − k

∫
R

mxx |mx |p−2 mxdx

−λ

∫
R

mx |mx |p−2 mxdx

≤ 2
∥∥∥m2

∥∥∥
L∞ ‖ωxx‖L p ‖mx‖p−1

L p +
(
6 − 2

p

)
M ‖mx‖p

L p + λ ‖mx‖p
L p

≤ 2A2

p
‖m‖p

L p +
(
2A2(p − 1)

p
+

(
6 − 2

p

)
M + λ

)
‖mx‖p

L p , (2.9)

where the second inequality comes from

2
∥∥∥m2

∥∥∥
L∞ ‖ωxx‖L p ‖mx‖p−1

L p ≤ 2A2 ‖m‖L p ‖mx‖p−1
L p

≤ 2A2
(
1

p
‖m‖p

L p + p − 1

p
‖mx‖p

L p

)
.

By virtue of (2.9), one can easily deduce that

d

dt

∫
R

|mx |p dx ≤ 2A2 ‖m‖p
L p + (2A2(p − 1) + (6p − 2)M + λp) ‖mx‖p

L p .

(2.10)

Add up (2.7) and (2.10), it follows that

d

dt
‖m‖p

H1,p ≤ c1 ‖m‖p
H1,p , (2.11)

where c1 = max{2A2 + (2p − 2)M + λp, 2A2(p − 1) + (6p − 2)M + λp}.
By virtue of Gronwall’s inequality, one gets

‖m‖p
H1,p ≤ ec1t ‖m0‖p

H1,p . (2.12)

(i i) Let s = 2, we will estimate ‖m(t, ·)‖H2,p < ∞.
Differentiating Eq. (1.3) twice with respect to x , we have

mtxx = −2ωxxxm
2 − 10ωxxmmx − 6ωxm

2
x − 8ωxmmxx

−
(
ω2 − ω2

x

)
mxxx − kmxxx − λmxx .

(2.13)
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Multiplying Eq. (2.13) by |mxx |p−2 mxx with p ≥ 2, and integrating over R with
respect to x , then we obatin

∫
R

mtxx |mxx |p−2 mxxdx

= −2
∫
R

ωxxxm
2 |mxx |p−2 mxxdx − 10

∫
R

ωxxmmx |mxx |p−2 mxxdx

−6
∫
R

ωxm
2
x |mxx |p−2 mxxdx − 8

∫
R

ωxmmxx |mxx |p−2 mxxdx

−
∫
R

(
ω2 − ω2

x

)
mxxx |mxx |p−2 mxxdx − k

∫
R

mxxx |mxx |p−2 mxxdx

−λ

∫
R

mxx |mxx |p−2 mxxdx

≤ 2
∥∥m2

∥∥
L∞ ‖ωxxx‖L p ‖mxx‖p−1

L p + 10 ‖ωxx‖L∞ ‖m‖L∞ ‖mx‖L p ‖mxx‖p−1
L p

+6 ‖ωx‖L∞
∥∥m2

x

∥∥
L p ‖mxx‖p−1

L p +
(
8 − 2

p

)
M ‖mxx‖p

L p + λ ‖mxx‖p
L p

≤ 12A2

p
‖m‖p

H1,p + c2
p

‖m‖p
H2,p +

(
p − 1

p
(12A2 + c2) +

(
8 − 2

p

)
M + λ

)
‖mxx‖p

L p ,

(2.14)

where the constant c2 = 6Ae
c1 t
p ‖m0‖H1,p and the third inequality comes from

2
∥∥m2

∥∥
L∞ ‖ωxxx‖L p ‖mxx‖p−1

L p + 10 ‖ωxx‖L∞ ‖m‖L∞ ‖mx‖L p ‖mxx‖p−1
L p

+6 ‖ωx‖L∞
∥∥m2

x

∥∥
L p ‖mxx‖p−1

L p

≤ 12A2 ‖m‖H1,p ‖mxx‖p−1
L p + 6A ‖m‖H1,p ‖m‖H2,p ‖mxx‖p−1

L p

≤ 12A2 ‖m‖H1,p ‖mxx‖p−1
L p + c2 ‖m‖H2,p ‖mxx‖p−1

L p

≤ 12A2
(
1

p
‖m‖p

H1,p + p − 1

p
‖mxx‖p

L p

)
+ c2

(
1

p
‖m‖p

H2,p + p − 1

p
‖mxx‖p

L p

)

≤ 12A2

p
‖m‖p

H1,p + c2
p

‖m‖p
H2,p + p − 1

p

(
12A2 + c2

) ‖mxx‖p
L p . (2.15)

Then we have

d

dt

∫
R

|mxx |p dx ≤ 12A2 ‖m‖p
H1,p + c2 ‖m‖p

H2,p + c3 ‖mxx‖p
L p , (2.16)

where the constant c3 = (p − 1)(12A2 + c2) + (8p − 2)M + λp.
Combining (2.11) with (2.16), it yields that

d

dt
‖m‖p

H2,p ≤ (c1 + c2 + c3 + 12A2) ‖m‖p
H2,p . (2.17)
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Thanks to Gronwall’s inequality, one has

‖m‖p
H2,p ≤ e(c1+c2+c3+12A2)t ‖m0‖p

H2,p . (2.18)

(i i i) Suppose that ‖m(t, ·)‖Hs−1,p < ∞, thus we will prove ‖m(t, ·)‖Hs,p < ∞. In
other words, we only need to prove

∥∥∂sxm(t, ·)∥∥L p < ∞.
Differentiating Eq. (1.3) with respect to x variable s times, applying the result by∣∣∂sxm∣∣p−2

∂sxm with p ≥ 2, and integrating by parts, we obtains

1

p

d

dt

∫
R

∣∣∂sxm∣∣p dx =
s∑

i=0

∫
R

Ci
s∂

i
x (ω

2 − ω2
x )∂

s−i+1
x m

∣∣∂sxm∣∣p−2
∂sxmdx

−2
s∑

j=0

∫
R

C j
s ∂

j+1
x ω∂

s− j
x m2

∣∣∂sxm∣∣p−2
∂sxmdx

−k
∫
R

∂s+1
x m

∣∣∂sxm∣∣p−2
∂sxmdx − λ

∫
R

∂sxm
∣∣∂sxm∣∣p−2

∂sxmdx .

(2.19)

Obviously, one gets

k
∫
R

∂s+1
x m

∣∣∂sxm∣∣p−2
∂sxmdx = 0,

and

λ

∫
R

∂sxm
∣∣∂sxm∣∣p−2

∂sxmdx ≤ λ
∥∥∂sxm

∥∥p
L p .

Note that in the following inequalities, we applied ‖m‖H2,p < ∞ and the assump-
tion ‖m‖Hs−1,p < ∞.

As i = 0 and i = 1, it follows that

∫
R

(
(ω2 − ω2

x )∂
s+1
x m + C1

s ∂x (ω
2 − ω2

x )∂
s
xm

) ∣∣∂sxm∣∣p−2
∂sxmdx

= − 1

p

∫
R

(ω2 − ω2
x )x

∣∣∂sxm∣∣p dx + 2s
∫
R

ωxm
∣∣∂sxm∣∣p dx

=
(
2s − 2

p

) ∫
R

mωx
∣∣∂sxm∣∣p dx

≤ c ‖mωx‖L∞
∥∥∂sxm

∥∥p
L p

≤ c
∥∥∂sxm

∥∥p
L p .

When i = s, we have
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∫
R

Cs
s ∂

s
x (ω

2 − ω2
x )∂xm

∣∣∂sxm∣∣p−2
∂sxmdx =

∫
R

∂s−1
x (2ωxm)∂xm

∣∣∂sxm∣∣p−2
∂sxmdx

≤ c ‖∂xm‖L∞
∥∥∥∂s−1

x (ωxm)

∥∥∥
L p

∥∥∂sxm
∥∥p−1
L p

≤ c ‖m‖H2,p ‖ωxm‖Hs−1,p

∥∥∂sxm
∥∥p−1
L p

≤ c
∥∥∂sxm

∥∥p
L p ,

where

‖ωxm‖Hs−1,p ≤ ‖ωx‖Hs−1,p ‖m‖L∞ + ‖ωx‖L∞ ‖m‖Hs−1,p

≤ ‖m‖Hs−2,p ‖m‖H1,p + ‖m‖L p ‖m‖Hs−1,p < ∞.

For 2 ≤ i ≤ s − 1, i ∈ N, it yields that

∫
R

Ci
s∂

i
x (ω

2 − ω2
x )∂

s−i+1
x m

∣∣∂sxm∣∣p−2
∂sxmdx

≤ c
∥∥∥∂ ix (ω

2 − ω2
x )

∥∥∥
L∞

∥∥∥∂s−i+1
x m

∥∥∥
L p

∥∥∂sxm
∥∥p−1
L p

≤ c
∥∥∥ω2 − ω2

x

∥∥∥
Hs,p

‖m‖Hs−1,p

∥∥∂sxm
∥∥p−1
L p

≤ c
∥∥∂sxm

∥∥p
L p ,

where the above inequality comes from

∥∥∥ω2 − ω2
x

∥∥∥
Hs,p

≤ ‖(ω + ωx )(ω − ωx )‖Hs,p

≤ ‖ω + ωx‖Hs,p ‖ω − ωx‖L∞ + ‖ω + ωx‖L∞ ‖ω − ωx‖Hs,p < ∞.

When j = 0, one shows that

2
∫
R

∂xω∂sxm
2
∣∣∂sxm∣∣p−2

∂sxmdx ≤ c
∫
R

∂xω∂s−1
x (2mmx )

∣∣∂sxm∣∣p−2
∂sxmdx

≤ c ‖∂xω‖L∞
∥∥∥∂s−1

x (mmx )

∥∥∥
L p

∥∥∂sxm
∥∥p−1
L p

≤ c ‖m‖L p ‖mmx‖Hs−1,p

∥∥∂sxm
∥∥p−1
L p

≤ c
∥∥∂sxm

∥∥p
L p ,

where

‖mmx‖Hs−1,p ≤ ‖m‖Hs−1,p ‖mx‖L∞ + ‖m‖L∞ ‖mx‖Hs−1,p

≤ ‖m‖Hs−1,p ‖m‖H2,p + ‖m‖H1,p ‖m‖Hs,p < ∞.
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As j = 1, one gets that

2
∫
R

C1
s ∂

2
xω∂s−1

x m2
∣∣∂sxm∣∣p−2

∂sxmdx ≤ c
∥∥∥∂2xω

∥∥∥
L∞

∥∥∥∂s−1
x m2

∥∥∥
L p

∥∥∂sxm
∥∥p−1
L p

≤ c ‖m‖H1,p

∥∥∥m2
∥∥∥
Hs−1,p

∥∥∂sxm
∥∥p−1
L p

≤ c ‖m‖H1,p ‖m‖L∞ ‖m‖Hs−1,p

∥∥∂sxm
∥∥p−1
L p

≤ c
∥∥∂sxm

∥∥p
L p .

When j = s, it follows that

2
∫
R

Cs
s ∂

s+1
x ωm2

∣∣∂sxm∣∣p−2
∂sxmdx ≤ c

∥∥∥m2
∥∥∥
L∞

∥∥∥∂s+1
x ω

∥∥∥
L p

∥∥∂sxm
∥∥p−1
L p

≤ c
∥∥∥m2

∥∥∥
H1,p

‖m‖Hs−1,p

∥∥∂sxm
∥∥p−1
L p

≤ c
∥∥∂sxm

∥∥p
L p .

For 2 ≤ j ≤ s − 1, j ∈ N, we have

2
∫
R

C j
s ∂

j+1
x ω∂

s− j
x m2

∣∣∂sxm∣∣p−2
∂sxmdx ≤ c

∥∥∥∂
j+1
x ω

∥∥∥
L∞

∥∥∥∂
s− j
x m2

∥∥∥
L p

∥∥∂sxm
∥∥p−1
L p

≤ c ‖m‖Hs−1,p

∥∥∥m2
∥∥∥
Hs−2,p

∥∥∂sxm
∥∥p−1
L p

≤ c
∥∥∂sxm

∥∥p
L p .

Plugging the above inequalities into (2.19) yields that

d

dt

∥∥∂sxm
∥∥p
L p ≤ c

∥∥∂sxm
∥∥p
L p . (2.20)

In view of Gronwall’s inequality, there exists a constant c(M, p, s, λ) > 0 such that

∥∥∂sxm
∥∥p
L p ≤ ect

∥∥∂sxm0
∥∥p
L p . (2.21)

In summary, we have completed the proof of Theorem 2.1.

Remark 2.1 Theorem 2.1 shows that the dispersion coefficient k and the dissipation
parameter λ have no effect on the blow-up criterion of solution of Eq. (1.3). That is to
say, when k = λ = 0, Theorem 2.1 also holds.

Lemma 2.5 Let m0 ∈ Hs,p(R), s ≥ 1, p ∈ (1,∞). Then as long as the solution ω(t)
given by Lemma 2.1 exists for any t ∈ [0, T ), we have

‖ω(t)‖2H1 = e−2λt ‖ω0‖2H1 .
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Proof. Multiplying Eq. (1.3) by ω and integration by parts, it yields that

∫
R

ωmtdx +
∫
R

ω
(
ω2 − ω2

x

)
mxdx

+ 2
∫
R

ωωxm
2dx + k

∫
R

ωmxdx + λ

∫
R

ωmdx = 0.

Owning to

k
∫
R

ωmxdx = 0,

and
∫
R

ω
(
ω2 − ω2

x

)
mxdx + 2

∫
R

ωωxm
2dx

=
∫
R

ω
(
ω2 − ω2

x

)
mxdx +

∫
R

ω
(
ω2 − ω2

x

)
x
mdx

= −
∫
R

ωx

(
ω2 − ω2

x

)
(ω − ωxx ) dx

= −
∫
R

(
ω3ωx − ω2ωxωxx − ωω2

x + ω3
xωxx

)
dx

= −
∫
R

(
ω3ωx + ωω2

x − ωω2
x + ω3

xωxx

)
dx

= 0,

one can easily check that

∫
R

ωmtdx + λ

∫
R

ωmdx =
∫
R

ω(ωt − ωt xx )dx + λ

∫
R

ω(ω − ωxx )dx

=
∫
R

(ωωt + ωtωt x )dx + λ

∫
R

(ω2 + ω2
x )dx

= 1

2

d

dt

∫
R

(ω2 + ω2
x )dx + λ

∫
R

(ω2 + ω2
x )dx

= 1

2

d

dt
‖ω(t)‖2H1 + λ ‖ω(t)‖2H1 = 0.

Applying Gronwall’s inequality, we have

‖ω(t)‖2H1 = e−2λt ‖ω0‖2H1 .

This completes the proof of Lemma 2.5.
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3 Global existence of solution

In this section, we provide global existence result for strong solutions to Eq. (1.3).

Theorem 3.1 Let m0 ∈ Hs,p(R), s ≥ 1, p ∈ (1,∞), and m0 = ω0 − ω0,xx . If

m0(x) �= 0, x ∈ R and ‖m0‖H1 ≤ ( 2λc )
1
2 , then the solution m(t, x) of Eq. (1.3)

globally exists in time.

Proof.Multiplying Eq. (1.3) bym, and integrating overRwith respect to x , integration
by parts, then we have

d

dt

∫
R

m2dx = −2
∫
R

ωxm
3dx − 2λ

∫
R

m2dx . (3.1)

Applying Eq. (2.8) by mx , and integrating over R with respect to x , integration by
parts leads to

d

dt

∫
R

m2
xdx = 4

3

∫
R

ωxm
3dx − 10

∫
R

ωxmm2
xdx − 2λ

∫
R

m2
xdx . (3.2)

Add up (3.1) and (3.2), it yields that

d

dt

∫
R

(m2 + m2
x )dx = −2

3

∫
R

ωxm
3dx − 10

∫
R

ωxmm2
xdx − 2λ

∫
R

(m2 + m2
x )dx .

(3.3)

Applying both side of Eq. (3.3) by e2λt , one gets

d

dt

(
e2λt

∫
R

(m2 + m2
x )dx

)
= −2

3
e2λt

∫
R

ωxm
3dx − 10e2λt

∫
R

ωxmm2
xdx .

(3.4)

By using Sobolev embedding theorem H1 ↪→ L∞, we have

‖m‖L∞ ≤ c ‖m‖H1 , (3.5)

and

‖mωx‖L∞ ≤ ‖m‖L∞ ‖ωx‖L∞ ≤ c ‖m‖L∞ ‖m‖L∞ ≤ c ‖m‖2H1 , (3.6)

where constant c > 0 and (3.6) comes from

‖ωx‖L∞ ≤ ‖Gx‖L1 ‖m‖L∞ ≤ ‖m‖L∞ .
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So, plugging (3.5) and (3.6) into (3.4), it follows that

d

dt

(
e2λt

∫
R

(m2 + m2
x )dx

)
≤ ce2λt ‖m‖2H1

∫
R

(m2 + m2
x )dx

= ce−2λt
(
e2λt

∫
R

(m2 + m2
x )dx

)2

. (3.7)

Set g(t)
.= e2λt

∫
R
(m2 + m2

x )dx . For all t ∈ R and m0(x) �= 0, x ∈ R, then we
have g(t) > 0. If m0(x) �= 0, x ∈ R, then m(t, ρ(t, x)) �= 0, x ∈ R from (2.5).
Obviously, g(t) > 0.

Replacing e2λt
∫
R
(m2 + m2

x )dx in (3.7) with g(t), one obtains

d

dt
(g(t)) ≤ ce−2λt (g(t))2. (3.8)

Solving the above equation implies that

d

dt
(g(t)−1) ≥ −ce−2λt . (3.9)

Integrating Eq. (3.9) with respect to t , we can derive

g(t)−1 − g(0)−1 ≥ −c
∫ t

0
e−2λsds = c(e−2λt − 1)

2λ
,

namely, it follows that

g(t)−1 ≥ g(0)−1 − c

2λ
≥ 0,

where g(0)−1 − c
2λ ≥ 0 is guaranteed by the assumption ‖m0‖H1 ≤ ( 2λc )

1
2 .

In addition, we have

[
g(0)−1 − c

2λ

]−1 ≥ g(t),

i.e.,

[(∫
R

(m2
0 + m2

0,x )dx

)−1

− c

2λ

]−1

≥ e2λt
∫
R

(m2 + m2
x )dx .

Thus, it yields that

‖m‖2H1 ≤ e−2λt
[
‖m0‖−2

H1 − c

2λ

]−1
. (3.10)
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Combining (3.5), (3.6) with (3.10), we can easily obtain thatm andmωx are bounded,
namely,

‖m‖L∞ ≤ c ‖m‖H1 ≤ e−λt
[
‖m0‖−2

H1 − c

2λ

]− 1
2
,

‖mωx‖L∞ ≤ c ‖m‖2H1 ≤ e−2λt
[
‖m0‖−2

H1 − c

2λ

]−1
.

Therefore, we can obtain the solutionm(t, x) of Eq. (1.3) globally exists in time. This
completes the proof of Theorem 3.1.

Remark 3.1 From Theorem 3.1, one can easily check that the dissipation term λm
affects the global existence of the strong solution of Eq. (1.3), however the dispersion
term kmx does not affect the global solution.

4 Propagation speed

The effect of the dispersion coefficient k and the dissipation parameter λ on the prop-
agation speed of the strong solutions to Eq. (1.3) will be examined in this section.

Theorem 4.1 Let m0 ∈ Hs,p(R), s ≥ 1, p ∈ (1,∞). The maximal existence time that
the solutionω(t, x) toEq. (1.3)with the initial dataω0 can exist is given by T = T (ω0).
If the initial data ω0 are compactly supported in [aω0 , bω0 ], for all t ∈ [0, T ), then we
have

ω(t, x) =
⎧⎨
⎩

1
2e

−x E+(t), as x ≥ q(t, b),

1
2e

x E−(t), as x < q(t, a),

(4.1)

where the compact support [q(t, a), q(t, b)] of m(t, ·) is contained in the interval
[q(t, aω0), q(t, bω0)]. Furthermore, if the initial potential m0 = ω0 − ω0,xx does not
change sign on R and for any t ∈ [0, T ) the solution ω �≡ 0, then for m0 ≥ 0, we
have E+(t) > 0 and E−(t) < 0; on the contrary, for m0 ≤ 0, one obtains E+(t) < 0
and E−(t) > 0, where E+(t), E−(t) are continuous non-vanishing functions, and
E+(0) = E−(0) = 0.

Proof. If ω0 is compactly supported in the closed interval [aω0 , bω0 ], then m(t, ·)
has compact support with its support contained in the interval [q(t, a), q(t, b)] ⊆
[q(t, aω0), q(t, bω0)] according to Lemma 2.3. We define the following two necessary
functions:

E+(t) =
∫ q(t,b)

q(t,a)

eym(t, y)dy, E−(t) =
∫ q(t,b)

q(t,a)

e−ym(t, y)dy. (4.2)

123



386 X. Wu et al.

In view of ω(t, x) = G ∗ m = 1
2e

−|x | ∗ m, it yields that

ω(t, x) = 1

2
e−x

∫ x

−∞
eym(t, y)dy + 1

2
ex

∫ ∞

x
e−ym(t, y)dy. (4.3)

Due to (4.2) and (4.3), we can derive

ω(t, x) =

⎧⎪⎨
⎪⎩

1
2e

−x E+(t) = 1
2e

−x
∫ q(t,b)
q(t,a) e

ym(t, y)dy, if x ≥ q(t, b),

1
2e

x E−(t) = 1
2e

x
∫ q(t,b)
q(t,a) e

−ym(t, y)dy, if x < q(t, a).

(4.4)

Combining (4.2) with (4.4), we have

⎧⎨
⎩

ω(t, x) = −ωx (t, x) = ωxx (t, x) = 1
2e

−x E+(t), as x ≥ q(t, b),

ω(t, x) = ωx (t, x) = ωxx (t, x) = 1
2e

x E−(t), as x < q(t, a).

(4.5)

Apparently, ω0(x) is compactly supported in the interval [aω0 , bω0 ], with E+(0) =
E−(0) = 0. Thanks to

E−(0) =
∫ q(t,b)

q(t,a)

e−ym0(y)dy =
∫
R

e−xm0(x)dx

=
∫
R

e−x (ω0(x) − ω0,xx (x))dx

=
∫
R

e−xω0(x)dx −
∫
R

e−xω0(x)dx = 0.

Since m(t, ·) is compactly support in the interval [q(t, a), q(t, b)] and ω(t, x) =
ωx (t, x) as x < q(t, a). Differentiating Eq. (4.2) with respect to t , combining with
Eq. (1.3) yields

d

dt
E−(t) =

∫ q(t,b)

q(t,a)

e−ymt (t, y)dy =
∫
R

e−ymt (t, y)dy

= −
∫
R

[(
ω2 − ω2

x

)
mx + 2ωxm

2 + kmx + λm
]
e−xdx

= −
∫
R

[(
ω2 − ω2

x

)
m

]
x
e−xdx − (k + λ)

∫
R

me−xdx . (4.6)

It follows from (4.6) that

d

dt
E−(t) + (k + λ)E−(t) = f , (4.7)
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where f
.= − ∫

R

[(
ω2 − ω2

x

)
m

]
x e

−xdx . We can easily check that

f
.= −

∫
R

[(
ω2 − ω2

x

)
m

]
x
e−xdx

= −
∫
R

(
ω2 − ω2

x

)
me−xdx

= −
∫
R

(
ω3 − ω2ωxx − ωω2

x + ω2
xωxx

)
e−xdx

= −
∫
R

(
2

3
ω3 + ωω2

x + 1

3
ω3
x

)
e−xdx . (4.8)

Since m0 does not change sign on R, we have

{
0 ≤ |ωx | ≤ ω, if m0 ≥ 0,
0 ≤ |ωx | ≤ −ω, if m0 ≤ 0.

(4.9)

Now we consider the case m0 ≥ 0. As ωx ≥ 0, then 0 ≤ ωx ≤ ω, we can easily get

2

3
ω3 + ωω2

x + 1

3
ω3
x ≥ 0,

otherwise, as ωx ≤ 0, then 0 ≤ −ωx ≤ ω, i.e., ω3 + ω3
x ≥ 0, one has

2

3
ω3 + ωω2

x + 1

3
ω3
x = 1

3
ω3 + 1

3
(ω3 + ω3

x ) + ωω2
x ≥ 0.

Combining the above two inequalities and (4.8), it follows that

f = −
∫
R

(
2

3
ω3 + ωω2

x + 1

3
ω3
x

)
e−xdx ≤ 0, (4.10)

which means

d

dt
E−(t) + (k + λ)E−(t) ≤ 0, (4.11)

namely,

d

dt

[
e(k+λ)t E−(t)

]
≤ 0, (4.12)

then from (4.12) we obtain

e(k+λ)t E−(t) ≤ 0. (4.13)

Thus it follows that E−(t) ≤ 0 for the case m0 ≥ 0. Analogous to the above process,
if m0 ≤ 0, we can get E−(t) ≥ 0.
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Obviously, similar to (4.6), it follows that

d

dt
E+(t) =

∫ q(t,b)

q(t,a)

eym(t, y)dy =
∫
R

eymt (t, y)dy

= −
∫
R

[(
ω2 − ω2

x

)
m

]
x
exdx − (λ − k)

∫
R

mexdx, (4.14)

From the above relation (4.14), we deduce

d

dt
E+(t) + (λ − k)E+(t) = g, (4.15)

where g
.= − ∫

R

[(
ω2 − ω2

x

)
m

]
x e

xdx . Thus one can get

g
.= −

∫
R

[(
ω2 − ω2

x

)
m

]
x
exdx

= −
∫
R

(
ω2 − ω2

x

)
mexdx

= −
∫
R

(
ω3 − ω2ωxx − ωω2

x + ω2
xωxx

)
exdx

= −
∫
R

(
2

3
ω3 + ωω2

x − 1

3
ω3
x

)
exdx . (4.16)

When m0 ≥ 0, one has g ≤ 0, similar to (4.10–4.13), it yields that E+(t) ≥ 0. For
the same reason, as m0 ≤ 0, we can get E+(t) ≤ 0. In summary,

{
E+(t) ≥ 0, E−(t) ≤ 0, if m0 ≥ 0,
E+(t) ≤ 0, E−(t) ≥ 0, if m0 ≤ 0.

(4.17)

This completes the proof of Theorem 4.1.

Remark 4.1 From the proof of Theorem 4.1, it follows that the dispersion coefficient
k and the dissipation parameter λ have an effect on the propagation speed of the
solution to Eq. (1.3). When k = λ = 0 in [30], E+(t) and E−(t) are both non-
vanishing functions. For m0 ≥ 0, E+(t) is strictly increasing function and E−(t)
is strictly decreasing function; conversely, for m0 ≤ 0, E+(t) is strictly decreasing
function and E−(t) is strictly increasing function.
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