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Abstract
In this paper we describe several new aspects of the foundations of the representation
theory of the space of smooth-automorphic forms (i.e., not necessarily K∞-finite
automorphic forms) for general connected reductive groups over number fields. Our
role model for this space of smooth-automorphic forms is a “smooth version” of
the space of automorphic forms, whose internal structure was the topic of Franke’s
famous paper (Ann Sci de l’ENS 2:181–279, 1998). We prove that the important
decomposition along the parabolic support, and the even finer—and structurally more
important—decomposition along the cuspidal support of automorphic forms transfer
in a topologized version to the larger setting of smooth-automorphic forms. In this
way, we establish smooth-automorphic versions of the main results of Franke and
Schwermer (MathAnn 311:765–790, 1998) and ofMœglin andWaldspurger (Spectral
Decomposition and Eisenstein Series, Cambridge University Press, 1995), III.2.6.
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Introduction

Context

It has been almost 30 years since J. Franke wrote his epochal paper [20] on the
space of automorphic forms AJ ([G]) attached to a connected reductive group G
over a number field F (and a fixed, but arbitrary ideal J of finite codimension). We
investigate a “smooth version” of Franke’s space of automorphic forms, to be denoted
A∞J ([G]) and to be called smooth-automorphic forms. This is to be understood as
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a certain topological completion of the original space AJ ([G]) – by getting rid of
the condition of K∞-finiteness of the elements of AJ ([G]) – which provides us the
benefit of now having the whole group G(A) act continuously by right translation and
thus regaining the representation-theoretical symmetry between the archimedean and
non-archimedean places of F .

This idea of replacing classical K∞-finite automorphic forms by a “smooth” version
of them (in the above sense) is not new, is well-known to the experts, and goes back to
early ideas of Bernstein, Casselman, Wallach et al., which are in turn closely related
to what one calls the Casselman-Wallach completion of Harish-Chandra modules1.

More recently, smooth-automorphic formsgained significant importance by supply-
ing the context in which the global Gan–Gross–Prasad conjectures were formulated,
[23], Sect. 22, p. 80 and, evenmore importantly, by the indispensable role theyplayed in
the very recent proof of these conjectures for (endoscopic) unitary groups by Beuzart-
Plessis–Chaudouard–Zydor, cf. [3], in particular Sect. 2.7 therein.

On the other hand, if G gives rise to a connected, non-compact semisimple Lie
group, the study of smooth-automorphic forms has turned out to be the key to a recent
result of Muić on the nature of closed irreducible admissible subrepresentations of the
strong dual of the Schwartz space (associated with a congruence subgroup of G(F)),
cf. [38]; while also, in [39], the same author has established a method to construct
cuspidal smooth-automorphic forms related to integrable discrete series.

Still, only rather basic results are known about the representation theory of smooth-
automorphic forms.

Results

In this paperwe extend the theory of smooth-automorphic forms of a general connected
reductive groupG over a number field by establishing two of the most important inter-
nal structural descriptions of the representation theory of Franke’s space AJ ([G]) in
the smooth-automorphic framework. More precisely, we show that the decomposi-
tion along the parabolic and the (more refined and hence structurally deeper) cuspidal
support transfer in a topologized version to the limit-Fréchet (LF) space of smooth-
automorphic forms A∞J ([G]). Our main result can be summarized as follows:

Theorem LetA∞J ([G]) be the LF-space of smooth-automorphic forms ϕ : G(F)AR

G\
G(A) → C, which are annihilated by a power ofJ . Then, we have the (bi-continuous)
decompositions of G(A)-representations as locally convex direct sums

A∞J ([G]) =
⊕

{P}
A∞J ,{P}([G]) =

⊕

{P}

⊕

π

A∞J ,{P},π ([G])

along the parabolic and the cuspidal smooth-automorphic support.Here,A∞J ,{P}([G])
denotes the G(A)-subrepresentation of smooth-automorphic forms, which are negli-
gible along every parabolic subgroup, which is not in the associate class {P} of the
1 To quote from [16], Rem. 3.6, which refers to the then newly developed theory of Casselman-Wallach
completions: This result suggests that one plausible, and perhaps useful, extension of the notion of automor-
phic form would be to include functions in Aumg(�\G)which are Z(g)-finite but not necessarily K -finite.
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parabolic subgroup P; and A∞J ,{P},π ([G]) denotes the G(A)-subrepresentation of
smooth-automorphic forms, which are limits of derivatives of regularized values of
Eisenstein series attached to the associate class of the cuspidal smooth-automorphic
representation π of L P (A).

As applied to the case P = G, the spaceA∞J ,{G}([G]) = A∞cusp,J ([G]) of cuspidal
smooth-automorphic forms decomposes as a countable locally convex direct sum over
the LF-spaces H∞A of globally smooth vectors in the irreducible Hilbert space sum-
mandsH of the unitary representation on theHilbert-space L2

cusp,J (G(F)AR

G\G(A)).
We refer to the body of the paper for the precise definitions of all terms and toTheorems
4.20, 4.31 and 4.34 for a proof.

Aside our main result, one driving source of motivation to write this paper was to
address and resolve severalmisunderstandings about the space of smooth-automorphic
forms, that can be found in the (rather sparse) literature on the subject. A basic but at the
same time crucial such misunderstanding concerns the question of how to topologize
the space of smooth-automorphic formsA∞J (G) (i.e., how to make it into a Hausdorff
locally convex topological vector space (LCTVS)), so that the right regular action
would naturally make it a representation of G(A). Some authors do not address this
point at all, and unfortunately we had to learn that several other authors even use
incorrect constructions, leading to incorrect proofs. This convinced us that one should
also provide a concise, short treatment of the basics of the theory, i.e., provide a source
where they are settled carefully.

Just to give the reader two hints of why this does not amount to a simple
exercise in carefulness: (1): Consider the space C∞umg,d(G(F)\G(A)) of smooth,
left-G(F)-invariant functions f : G(A) → C, which satisfy the growth condition
pd,X ( f ) := supg∈G(A) |(X f )(g)| ‖g‖−d < ∞, for a fixed d ∈ N and varying
X ∈ U(g). We could name at least three references in the literature, in which it
is claimed that the space C∞umg,d(G(F)\G(A)), its subspace of Z(g)-finite functions
C∞umg,d(G(F)\G(A))(Z(g)) or its subspace ofZ(g)-finite and right-Kn-invariant func-

tions C∞umg,d(G(F)\G(A))
Kn
(Z(g))

becomes a Fréchet space, when equipped with the
seminorms pd,X . However, none of these spaces is complete in the respective topology,
and so all the concepts to be found in the literature, which are based on such claims
must fail from the very beginning. Instead, here we show that the space of smooth-
automorphic forms A∞J (G) can be given a natural LF-space topology, exploiting the
non-trivial fact that the growth of all functions ϕ ∈ A∞J (G) can be uniformly bounded
by the same exponent of growth. This result, see our Proposition 2.8, seems to be
largely neglected in the relevant literature but is a necessary key to make all topologi-
cal constructions work. (2): Another frequently occurring misconception concerns the
role of the topology on irreducible smooth-automorphic representations V ⊂ A∞J (G):
It is unfortunately often neglected that it does not follow automatically that V , when
equipped with the subspace topology from A∞J (G), inherits the structure of an LF-
space. In fact, it was one of the striking early discoveries ofGroethendieck that a closed
subspace of an LF-space does not need to be an LF-space itself. However, the exis-
tence of an LF-space structure on V is indispensable, in order to obtain a (topologized)
version of the restricted tensor product theorem in the smooth-automorphic context,
i.e., the very key to a local–global principle for irreducible smooth-automorphic rep-
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resentations. Here, we solve both problems, providing a certain global analogue of a
famous result of Casselman and Wallach, see Proposition 3.8 and Theorem 3.15.

We express our hope that this paper will become a useful reference for anyone, who
seeks a clear and concise treatment of the internal, representation-theoretical structure
of the space of smooth-automorphic forms in complete generality.

1 Notation and basic assumptions

1.1 Number fields

We let F be an algebraic number field. Its set of (non-trivial) places is denoted S and
we will write S∞ for the set of archimedean places. The ring of adeles of F is denoted
AF or simply by A, the subring of finite adeles is denoted A f . If v ∈ S, Fv stands
for the topological completion of F with respect to the normalized absolute value,
denoted | · |v, of F . We write ‖ · ‖A :=∏v∈S | · |v for the adelic norm.

1.2 Algebraic groups

In this paper, G is a connected, reductive linear algebraic group over F .
We assume to have fixed a minimal parabolic F-subgroup P0 with Levi decom-

position P0 = L0N0 over F and let A0 be the maximal F-split torus in the center
ZL0 of L0. This choice defines the set P of standard parabolic F-subgroups P with
Levi decomposition P = LP NP , where LP ⊇ L0 and NP ⊆ N0. We let AP be the
maximal F-split torus in the center ZLP of LP , satisfying AP ⊆ A0. If it is clear from
the context, we will also drop the subscript “P”.

We put ǎP := X∗(AP )⊗ZR and aP := X∗(AP )⊗ZR, where X∗ (resp. X∗) denotes
the group of F-rational characters (resp. co-characters). These real Lie algebras are in
natural duality to each other. We denote by 〈·, ·〉 the pairing between ǎP and aP and
we let (·, ·) be the standard euclidean inner product on ǎP ∼= R

dim aP . The inclusion
AP ⊆ A0 (resp. the restriction of characters to P0) defines aP → a0 (resp. ǎP → ǎ0),
which gives rise to direct sum decompositions a0 = aP ⊕ aP0 and ǎ0 = ǎP ⊕ ǎP0 .

We let aQP := aP ∩ a
Q
0 and ǎ

Q
P := ǎP ∩ ǎ

Q
0 for parabolic F-subgroups Q and P .

Furthermore, we set ǎP,C := ǎP ⊗R C and aP,C := aP ⊗R C. Then the analogous
assertions hold for these complex Lie algebras.

The group P acts on NP by the adjoint representation. The weights of this action
with respect to the torus AP are denoted �(P, AP ) and ρP denotes the half-sum of
these weights, counted with multiplicity. We will not distinguish between ρP and its
derivative, so we may also view ρP as an element of ǎP . In particular, �(P0, A0)

defines a choice of positive F-roots of G. With respect to this choice, we shall use the
notation ǎG+P for the open positive Weyl chamber in ǎGP .

For P = LN ∈ P , let us write WL for the Weyl group of L with respect to A0,
i.e., for the Weyl group attached to the (potentially non-reduced) root system given
by the set of all ±α, where α ∈ �(P0, A0) is a positive F-root of G, which is not in
�(P, AP ). Following [37], II.1.7, we will write W (L) for the set of representatives
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of WG/WL of minimal length, for which wLw−1 is again the Levi subgroup of a
standard parabolic F-subgroup of G.

1.3 Locally compact groups

1.3.1 Generalities

We put G∞ := RF/Q(G)(R), where RF/Q denotes the restriction of scalars from F to
Q.We shall alsowriteGv := G(Fv), v ∈ S, whenceG∞ =∏v∈S∞ Gv. The analogous
notation is used for groups different from G. Lie algebras are denoted by the same
but lower case gothic letter, e.g., g∞ = Lie(G∞) or aP,v = Lie(AP,v). Moreover,
we write g = g∞. For every real Lie algebra h, we denote by Z(h) the center of the
universal enveloping algebra U(h) of the complex Lie algebra hC = h⊗R C. In this
paper, J will always stand for an ideal of finite codimension in Z(g).
We fix a maximal compact subgroup KA of G(A), which is in good position with
respect to our choice of standard parabolic subgroups, cf. [37] I.1.4. It is of the form
KA = K∞ × KA f , where K∞ = ∏v∈S∞ Kv is a maximal compact subgroup of G∞
and KA f =

∏
v/∈S∞ Kv is a maximal compact subgroup of G(A f ), which is hyper-

special at almost all places. For each v ∈ S, we choose the Haar measure dgv on
Gv with respect to which vol(Kv) = 1. The product measures dg∞ := ∏v∈S∞ dgv,
dg f := ∏v/∈S∞ dgv, and dg := dg∞ · dg f are then Haar measures on the respective
group. Once and for all, we will fix a cofinal sequence {Kn}n∈N (subject to the condi-
tions Kn ⊃ Kn+1 and

⋂
n Kn = {id}), forming a neighbourhood base of id ∈ G(A f )

of open compact subgroups Kn =∏v/∈S∞ Kn,v of KA f .
We denote by HP : LP (A) → aP,C the standard Harish-Chandra height function,
cf. [37] I.1.4(4). The group LP (A)1 := ker HP =⋂χ∈X∗(LP ) ker(‖χ‖A) then admits

a direct complement AR

P
∼= R

dim aP+ in LP (A) whose Lie algebra is isomorphic to
aP . With respect to KA, we obtain an extension HP : G(A) → aP,C by setting
HP (g) = HP (	) for g = 	nk. Recall that KA has trivial intersection with AR

G (but
may intersect non-trivially with AG,∞). The same is true for the image of G(F) via
the diagonal embedding into G(A).
The Lie algebra aP of the connected Lie group AR

P is viewed as being diagonally
embedded into aP,∞. Moreover, we will denote by S(aP,C) := ⊕n∈N

Symn(aP,C)

the symmetric algebra attached to aP,C, which wewill think of as being identified with
Z(aP ) as well as with the algebra of polynomials on ǎP,C, cf. [37], I.3.1. Analogously,
S(ǎGP,C

)will denote the symmetric algebra of ǎGP,C
, which may be viewed as the space

of differential operators with constant coefficients on ǎGP,C
.

1.3.2 Group norms

Once and for all we fix an embedding ι : G → GLN defined over F and define the
adelic group norm ‖ · ‖ = ‖ · ‖G(A) : G(A) → R>0,

‖g‖ :=
∏

v∈S
max

1≤i, j≤N

{∣∣ι(gv)i, j
∣∣
v ,

∣∣∣ι(g−1v )i, j

∣∣∣
v

}
.
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We note that ‖g‖ = ‖g∞‖ ·
∥∥g f
∥∥ for all g = (g∞, g f ) ∈ G(A) and that there exist

c0,C0 ∈ R>0 such that

‖g‖ ≥ c0 and ‖gh‖ ≤ C0 ‖g‖ ‖h‖ (1.1)

for all g, h ∈ G(A), cf. [37], I.2.2.

1.4 Locally convex topological vector spaces, direct limits and LF-spaces

We will use the abbreviation LCTVS to refer to complex, Hausdorff, locally convex
topological vector spaces.Moreover, wewill use the notion of a strict inductive limit of
an increasing sequence of LCTVSs as follows: Let (Vn)n∈N be a sequence of LCTVSs
such that for each n, Vn is a closed topological vector subspace of Vn+1 (not necessarily
a proper one). The strict inductive limit limn→∞ Vn of the sequence (Vn)n∈N is the
space V := ⋃∞n=1 Vn equipped with the finest locally convex topology such that the
inclusion maps ιn : Vn ↪→ V are continuous. Consequently, a linear map φ : V → V ′
into an LCTVS V ′ is continuous if and only if its restriction to each Vn , n ∈ N, is, and
a basis of neighbourhoods of 0 in V is given by the family of subsets

U := AConv

(
⋃

n∈N

Un

)
,

whereUn runs through a basis of neighbourhoods of 0 in each Vn and “AConv” denotes
the absolute convex hull in V . The space V induces on each step Vn its original
topology with which Vn becomes a closed subspace of V . If each Vn is complete
(resp., barrelled), then so is V . If each Vn is a Fréchet space, we say that V is an LF-
space (“limit Fréchet”) with a defining sequence (Vn)n∈N. In this case, V is complete,
barrelled and bornological, but it is not Fréchet unless (Vn)n∈N becomes stationary
(i.e., V = Vn for some n), because it cannot be Baire (the closed steps Vn have empty
interior, as otherwise they would be absorbing and hence all of V ). We remark that, if
each space Vn is finite-dimensional, then V carries its finest locally convex topology.
See [26], Chp. 4, Part 1, Proposition 1, Cor. 1, Propositions 2 and 3.
For a family {Wn}n∈N of LCTVSs, we denote by

n∈N
Wn

the locally convex direct sum of the spaces Wn , i.e., the strict inductive limit V =
limn→∞

⊕n
k=1 Wk . Obviously, if each Wn is Fréchet, then V is LF.

As it is well-known, a closed subspace W of an LF-space V does not need to be an
LF-space, cf. [28], p. 89.
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1.5 Representations

1.5.1 A few necessary generalities

A word on our notions concerning representations (which are the standard ones, to
be found, for instance in [10]), mainly put here to explain their interplay with LF-
spaces and in order to fix our specific use of notation, which is tailored to fit the
needs when treating representations of adelic groups. To this end, let G be a second-
countable, locally compact,Hausdorff topological group (e.g.,G= G(A),G∞,G(A f )

or G(Fv)). A representation of G is a pair (π, V ), where V is a complete LCTVS
and π : G → AutC(V ) a group homomorphism such that G × V → V , given
by (g, v) �→ π(g)v, is continuous. If V is barrelled, then the latter is equivalent to
(g, v) �→ π(g)v being separately continuous, i.e., that π(g) is a continuous linear
operator V → V for all g ∈ G and that for each v ∈ V the orbit map

cv : G→ V , g �→ π(g)v,

is continuous, cf. [12], VIII, Sect. 2, Sect. 1, Proposition 1. We let CG be the category
of G-representations with morphisms the G-equivariant continuous linear maps, and
irreducibility and equivalence of representations is henceforth meant within CG. A
representation (π, V ) ∈ CG is unitary, if V is a Hilbert space and π(g) preserves
its Hermitian form for all g ∈ G. In particular, if G is compact, then any irreducible
representation is finite-dimensional, cf. [32], Theorem 3.9, and admits an Hermitian
form, with respect to which it is unitary. We will use the notions of smoothness of
representations (π, V ) ∈ CG and vectors v ∈ V , as well as the one of admissibility
of (π, V ) ∈ CG, as in [10] 0, Sect. 2.3 & Sect. 2.4, if G is a real Lie group with finite
component group, resp. as in [10] X, Sect. 1.3, if G is totally disconnected.
It is worth noting that if G is totally disconnected, one obtains an equivalence of
categories between the subcategory Csm,adm

G of smooth admissible representations in
CG and the category of abstract admissible G-representations, see [10] X, Sect. 5.1
(i.e., using the notion of admissible representation as it is normally done in p-adic
representation theory, cf. [17], where V is given the discrete topology instead the
one of an LCTVS): This equivalence is given by attaching to an abstract admissible
G-representation the LF-topology defined by writing it as the countable increasing
union of its invariant subspaces under a suitable cofinal sequence of open compact
subgroups, see [10] X, Sect. 1.3 & Sect. 5.1. As pointed out in Sect. 1.4, this LF-space
topology is the finest locally convex topology. In particular, as any vector subspace of
an LCTVS, which carries its finest locally convex topology, is closed, this equivalence
respects irreducibles.

1.5.2 Smooth representations

Remaining in the totally disconnected case, let {Kn}n∈N be a decreasing cofinal
sequence of compact open subgroups of G, and given a representation (π, V ) of G, let
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EKn : V → V be the standard continuous projection onto V Kn :

EKn (v) := 1

vol Kn

∫

Kn
π(k)v dk,

for some fixed Haar measure dk on Kn . We define closed subspaces Vn , n ∈ N, of V
as follows:

Vn :=
{
V K1 , if n = 1,

ker
(
EKn−1

∣∣
V Kn

)
, if n > 1.

(1.2)

As the restriction EKn
∣∣
V Kn+1 is a continuous projection onto V Kn , one gets

V Kn =
n

i=1
Vi , n ∈ N, (1.3)

cf. [13], II, Sect. 4, Sect. 5, Proposition 6.We also record the following general lemma.

Lemma 1.4 LetG be totally disconnected and let (π, V ) be a smoothG-representation.
Then,

V =
n∈N

Vn . (1.5)

Consequently, every subrepresentation U of a smooth G-representation V is smooth.
Moreover, if V /U is a G-representation, then V /U is a smooth G-representation.

Proof If (π, V ) is a smoothG-representation, thenV = limn V Kn (1.3)= limn
n
i=1 Vi =

n∈N
Vn , which shows (1.5). Exploiting (1.3) once more, we get U = ⋃∞n=1UKn =⋃∞

n=1
⊕n

i=1Ui = ⊕∞
n=1Un as vector spaces for every subrepresentation U . Since

obviously Un ⊆ Vn for every n ∈ N, (1.5) and [13], II, Sect. 4, Sect. 5, Proposition

8.(i) imply that U = ∞
n=1Un = limn

n
i=1Ui

(1.3)= limn UKn , hence U is smooth.
Finally, in order to prove that V /U smooth (if it is a G-representation at all, see Rem.
1.7 below), it suffices to note that there are the following isomorphisms of LCTVS:

V /U
(1.5)=
(

n∈N

Vn
)
/
(

n∈N

Un

) ∼=
n∈N

Vn/Un = lim
n→∞

n

i=1
Vi/Ui ∼= lim

n→∞
( n

i=1
Vi
)
/
( n

i=1
Ui

)

(1.3)= lim
n→∞ V Kn/UKn ∼= lim

n→∞(V /U )Kn , (1.6)

Here, the first and second isomorphisms are the canonical ones (cf. [13], II, Sect. 4,
Sect. 5, Proposition 8.(ii)), while the last isomorphism is obtained from taking the
inverse of the limit of the LCTVS-isomorphisms (V /U )Kn

∼−→ V Kn/UKn , v +U �→
EKn (v)+UKn . ��
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Remark 1.7 In this generality it is not automatic that the quotient of two (smooth)
representations V /U as in Lemma 1.4 is a representation. Indeed, it may fail both that
the natural map G× V /U → V /U , (g, v +U ) �→ π(g)v +U is continuous as well
as that the quotient V /U is complete. However, suppose that each quotient V Kn/UKn

is complete and barrelled. Then, V /U is also complete and barrelled by (1.6) and
[26], Chp. 4, Part 1, Cor. 1 and Proposition 3. Thus, the separate continuity of the map
G× V /U → V /U , (g, v +U ) �→ π(g)v +U , implies that V /U is a representation
of G (see Sect. 1.5.1).

Likewise, if G is a real Lie group and (π, V ) a G-representation, then the C∞-
topology on its space of smooth vectors, i.e., the subspace topology from C∞(G, V ),
coincides with the locally convex topology given by the seminorms pν,X (v) :=
ν(π(X)v), ν running through the continuous seminorms on V and X through
U(Lie(G)), cf. [15], Lemma 1.2. Hence, also for Lie groups G any subrepresentation
of a smooth G-representation is smooth. Moreover, in the context of strict inductive
limits, we obtain

Lemma 1.8 Let V be a strict inductive limit of a sequence (Vn)n∈N of complete
LCTVSs. Let (π, V ) be a representation of a real Lie group G such that for each n,
the closed subspace Vn ⊆ V is a smooth G-representation. Then, (π, V ) is a smooth
G-representation.

Proof Obviously, every v ∈ V is smooth, as the steps Vn inherit from V their original
topology. It therefore suffices to prove that for every continuous seminorm ν on V
and X ∈ U(g), the seminorm pν,X is continuous, i.e., by [13], II, Sect. 4, Sect.
4, Proposition 5(ii), that the restrictions pν,X

∣∣
Vn
= ν
∣∣
Vn
◦ π(X)

∣∣
Vn

are continuous,
which holds by the smoothness of Vn . ��

1.5.3 Representations of G(A)

Let now (π, V ) be a representation of G(A). We will write V∞A (resp. V∞R , resp.
V∞ f ) for the space of vectors v ∈ V , for which cv (resp. cv|G∞ , resp. cv|G(A f )) is
smooth. ThenV∞A (aswell as V∞R andV∞ f ) is stable underG(A) and dense inV (by
a classical argument of Gårding, see [40], (10) and Cor. 2(3) for an explicit proof in the
current setup). We topologize V∞A as the inductive limit V∞A = limn→∞(V∞R)Kn ,
where V∞R is equipped with the C∞-topology. In this way, V∞A becomes a repre-
sentation of G(A) carrying a (potentially strictly) finer topology than the subspace
topology coming from V∞R (resp., V ). We say that (π, V ) is a smooth G(A)-
representation, if V = V∞A holds topologically. One checks easily that (π, V ) is
a smooth G(A)-representation if and only if its restrictions to G∞ and G(A f ) are
smooth representations. For every G(A)-representation (π, V ), V∞A is a smooth rep-
resentation of G(A). If V is Fréchet, then so is V∞R , and hence V∞A becomes an
LF-space in this case. We have the following basic

Lemma 1.9 Let (π, V ) be a smooth G(A)-representation, and let U ⊆ V be a sub-
representation. Then, U is a smooth G(A)-representation. Moreover, if V /U is a
G(A)-representation (which holds, e.g., if each quotient V Kn/UKn is complete and
barrelled, cf. Rem. 1.7), then V /U is a smooth G(A)-representation.
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Proof Since U is a smooth G(A f )-representation by Lemma 1.4 and is obviously a
smooth G∞-representation, it is a smooth G(A)-representation. Next, suppose that
V /U is a representation of G(A). To prove that it is a smooth G∞-representation,
we note that by restricting the natural exact sequence of G∞-representations 0 →
U ↪→ V � V /U → 0 to the subspaces of G∞-smooth vectors, we obtain a sequence
of homomorphisms of G∞-representations 0 → U ↪→ V → (V /U )∞R → 0. As
(V /U )∞R ⊆ V /U , the homomorphism V → (V /U )∞R remains surjective, whence
this sequence is exact, too. Thus, the identity map defines a continuous linear bijec-
tion V /U → (V /U )∞R . As its inverse is obviously continuous, V /U = (V /U )∞R

topologically, i.e., V /U is a smooth G∞-representation. Moreover, V /U is a smooth
G(A f )-representation by Lemma 1.4, hence it is a smooth G(A)-representation. ��
A G(A)-representation (π, V ) is called admissible, if for all irreducible (and
hence finite-dimensional, cf. Sect. 1.5.1) representations (ρ,W ) of KA the space
HomKA

(W , V ) is finite-dimensional. Combining [6], Sect. 2.5 and Proposition 3.6,
one verifies that this definition – intrinsic to the notion of G(A)-representations – is
equivalent to the one in [10], XII, Sect. 1.4: For all n ∈ N and for all irreducible rep-
resentations (ρ∞,W∞) of K∞, the space HomK∞(W∞, V Kn ) is finite-dimensional.
If V is admissible, V∞A

(K∞) = V
∞ f

(K∞) and V∞A is an admissible G(A)-representation
with the same KA-isotypic components.
We also recall the notion of a (g∞, K∞,G(A f ))-module: That is a (g∞, K∞)-module
V0, which carries a smooth linear action of G(A f ) (i.e., each vector v ∈ V0 has a
smooth orbit map cv : G(A f ) → V0), which commutes with the actions of g∞ and
K∞, see [10], XII, Sect. 2.2. A (g∞, K∞,G(A f ))-module is called admissible, if for
all irreducible (and hence finite-dimensional) representations (ρ,W ) of KA the space
HomKA

(W , V0) is finite-dimensional. The assignment V �→ V∞A

(K∞) defines a functor
from the category of G(A)-representations to the category of (g∞, K∞,G(A f ))-
modules [10], XII, Sect. 1.3 & Sect. 2.4. Obviously, a smooth representation (π, V ) of
G(A) is admissible, if and only if its underlying (g∞, K∞,G(A f ))-module V∞A

(K∞) =
V(K∞) is. The following lemma will be useful later:

Lemma 1.10 Let (π, V ) be a smooth G(A)-representation. Let V0 be an admissible
(g∞, K∞,G(A f ))-submodule of V(K∞) that is dense in V . Then, V(K∞) = V0 and so
(π, V ) is admissible.

Proof Let us prove that for all irreducible (hence finite-dimensional) representations
(ρ∞,W∞) of K∞ and n ∈ N, we have the equality of ρ∞-isotypic components

V Kn (ρ∞) = V Kn
0 (ρ∞). (1.11)

To this end recall the operator EKn
ρ∞ : V → V ,

EKn
ρ∞(v) := d(ρ∞)

vol Kn

∫

K∞

∫

Kn

ξρ∞(k∞) π(k∞k f )v dk f dk∞, (1.12)

where d(ρ∞) and ξρ∞ are, respectively, the degree and character of ρ∞. Then EKn
ρ∞ is a

continuous projection onto V Kn (ρ∞) and restricts to a projection of V0 onto V
Kn
0 (ρ∞),
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cf. [40], Lemma 19. Thus, we have

V Kn (ρ∞) = EKn
ρ∞(V ) = EKn

ρ∞ (ClV (V0)) ⊆ ClV
(
EKn

ρ∞(V0)
)

= ClV
(
V Kn
0 (ρ∞)

)
= V Kn

0 (ρ∞),

where the inclusion holds by the continuity of EKn
ρ∞ , and the last equality is true

because V Kn
0 (ρ∞) is finite-dimensional. Since the reverse inclusion is obvious, this

proves (1.11). Therefore,

V(K∞) =
⋃

n

⊕

ρ∞
V Kn (ρ∞)

(1.11)=
⋃

n

⊕

ρ∞
V Kn
0 (ρ∞) = V0,

which shows the first claim. As V is smooth, by our above observation, it is admissible,
if and only if its underlying (g∞, K∞,G(A f ))-module V∞A

(K∞) = V(K∞) is. However,
by what we have just proved, V(K∞) = V0, and so admissibility of V follows from the
assumption that V0 is admissible. ��

1.5.4 Casselman-Wallach representations

Following [15, 47], we say that a G∞-representation (π, V ) on a Fréchet space V is of
moderate growth, if for every continuous seminorm p on V , there exist a real number
d = dp and a continuous seminorm q = qp on V such that

p (π(g∞)v) ≤ ‖g∞‖dp qp(v) for all g∞ ∈ G∞, v ∈ V .

Here, ‖g∞‖ is the group norm from Sect. 1.3.2 as applied to g∞ = (g∞, id) ∈
G(A). We refer to [47], Sect. 11.5 for the basic properties of smooth representations
of moderate growth. We will call a smooth admissible G∞-representation (π, V )

of moderate growth a Casselman-Wallach representation of G∞, if its underlying
(g∞, K∞)-module V(K∞) is finitely generated (cf. [47] Sect. 11.6.8), or, equivalently,
Z(g)-finite (cf. [43], Cor. 5.4.16).
A smooth representation (π, V ) of G(A) such that for every n ∈ N, V Kn is a
Casselman-Wallach representation of G∞, will be called a Casselman-Wallach repre-
sentation of G(A). By the above said, every Casselman-Wallach representation (π, V )

of G(A) is admissible and V is an LF-space. Moreover, the following well-known,
classical results of Wallach translate into the “global” setup:

Lemma 1.13 (1) Let (π, V ) be a Casselman-Wallach representation of G(A). If U is a
subrepresentation of V , then U and V /U are Casselman-Wallach representations
of G(A).

(2) Two Casselman-Wallach representations (π, V ) and (σ,W ) of G(A) are isomor-
phic if and only if the underlying (g∞, K∞,G(A f ))-modules V(K∞) and W(K∞)

are isomorphic.
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Proof (1) The analogous assertion about Casselman-Wallach representations of G∞
follows from [47], Lemma 11.5.2 and implies the claims about U and V /U
using Lemma 1.9 together with the following elementary fact: For every n ∈ N,
the assignment v + U �→ EKnv + UKn defines a G∞-equivariant LCTVS-
isomorphism (V /U )Kn

∼−→ V Kn/UKn , cf. (1.6).
(2) It suffices to prove that a (g∞, K∞,G(A f ))-module isomorphism T0 : V(K∞)

∼−→
W(K∞) extends to an isomorphism of G(A)-representations T : V ∼−→ W . By a
celebrated result due to Casselman and Wallach, cf. see [47], Theorem 11.6.7(2),
for every n ∈ N we can extend the (g∞, K∞)-module isomorphism T0

∣∣
V Kn

(K∞)

:
V Kn

(K∞)

∼−→ WKn
(K∞) in a unique way to an isomorphism of G∞-representations

Tn : V Kn
∼−→ WKn . By the uniqueness of this extension, Tn+1 extends Tn . Hence,

going over to the direct limit over n ∈ N, we obtain a well-defined isomorphism of
G∞-representations T : V → W , which extends T0 (and is uniquely determined
by this property). Since T0 is G(A f )-equivariant, so is T by continuity, hence T

is an isomorphism of G(A)-representations T : V ∼−→ W .
��

2 The LF-space of smooth-automorphic forms

2.1 Spaces of functions of uniformmoderate growth

Let C∞(G(F)\G(A)) be the space of smooth functions G(A) → C, which are
invariant under multiplication by G(F) from the left. For n, d ∈ N we define
the space C∞umg,d(G(F)\G(A))Kn to consist of the right-Kn-invariant functions
f ∈ C∞(G(F)\G(A)) that satisfy the following uniform moderate growth condi-
tion: For every X ∈ U(g),

pd,X ( f ) := sup
g∈G(A)

|(X f )(g)| ‖g‖−d < ∞. (2.1)

We note that the space C∞umg(G(F)\G(A)) := ⋃n,d C
∞
umg,d(G(F)\G(A))Kn does

not depend on the choice of ι, used, in order to define ‖g‖, cf. Sect. 1.3.2, although
the individual spaces C∞umg,d(G(F)\G(A))Kn do. It follows from (1.1) that with this
definition

C∞umg,d(G(F)\G(A))Kn ⊆ C∞umg,d+1(G(F)\G(A))Kn , (2.2)

for all n, d ∈ N. We equip C∞umg,d(G(F)\G(A))Kn with the locally convex topology,
defined by the seminorms pd,X , X ∈ U(g). Let us point out that even with this natural
topology, (2.2) does not necessarily define an embedding of closed subspaces.

For fixed n and d, it will be useful to relate the spaceC∞umg,d(G(F)\G(A))Kn to the
spaces of smooth functions of uniform moderate growth on G∞, which is done in the
following standard way: We recall that there exists a finite set C ⊆ G(A f ) such that
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G(A) =⊔c∈C G(F)(G∞·c ·Kn), [7], Theorem 5.1. For every c ∈ C , the congruence
subgroup �c,Kn := cKnc−1 ∩G(F) of G(F) embeds into G∞ as a discrete subgroup
of finite covolume modulo AR

G . Let C
∞
umg,d(�c,Kn\G∞) denote the space of smooth,

left-�c,Kn -invariant functions f : G∞ → C such that

p∞,d,X ( f ) := sup
g∞∈G∞

|(X f )(g∞)| ‖g∞‖−d < ∞, X ∈ U(g).

Again, we equip C∞umg,d(�c,Kn\G∞) with the locally convex topology defined by the
seminorms p∞,d,X , X ∈ U(g). With this setup in place, we obtain

Proposition 2.3 The assignment f �→ ( f ( · c))c∈C defines an isomorphism of
Fréchet spaces

C∞umg,d(G(F)\G(A))Kn ∼=
c∈C

C∞umg,d(�c,Kn\G∞),

which restricts to an isomorphism of their closed subspaces of AR

G-invariant functions.

Proof It follows from [45], Lemma 2.7, that the spacesC∞umg,d(�c,Kn\G∞) (and hence
their finite direct sum) are Fréchet. The map f �→ ( f ( · c))c∈C is obviously a
continuous bijection, whose inverse is given by the following construction: For a
( fc)c∈C ∈ c∈C C∞umg,d(�c,Kn\G∞), let f ∈ C∞(G(F)\G(A))Kn be defined by

f (δg∞c	) := fc (g∞) , δ ∈ G(F), g∞ ∈ G∞, c ∈ C, 	 ∈ Kn .

In order to show that this inverse is continuous (only from which it will follow that
C∞umg,d(G(F)\G(A))Kn is also a Fréchet space), fix a Siegel setS in G(A) as in [37],
p. 20. Since the projection of S on G(A f ) is compact, S ⊆ �G∞CKn for some
finite set� ⊆ G(F). Moreover, since G(A) = G(F)S, by [37], I.2.2(vii) there exists
M ∈ R>0 such that for every X ∈ U(g),

pd,X ( f ) ≤ M sup
g∈S

|(X f )(g)| ‖g‖−d

≤ M sup
δ∈�, g∞∈G∞
c∈C, 	∈Kn

|(X f )(δg∞c	)| ‖δg∞c	‖−d

(1.1)≤ M sup
δ∈�, g∞∈G∞
c∈C, 	∈Kn

|(X fc) (g∞)| C3d
0 ‖δ‖d ‖g∞‖−d ‖c‖d ‖	‖d

≤ M C3d
0

(
max
δ∈�

‖δ‖d
)(

max
	∈Kn

‖	‖d
)(

max
c∈C ‖c‖

d p∞,d,X ( fc)

)
.

Thus, f �→ ( f ( · c))c∈C is an isomorphismof LCTVS and (therefore)C∞umg,d (G(F)

\G(A))Kn is a Fréchet space. The remaining claim about the closed subspaces of AR

G-
invariant functions is obvious. ��
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Remark/Warning 2.4 Let uswriteC∞umg,d(G(F)\G(A)) :=⋃n C
∞
umg,d(G(F)\G(A))Kn

for the space of smooth, left-G(F)-invariant functions, which satisfy (2.1) for a given
d ∈ N, and let a subscript “(Z(g))” denote the subspace of Z(g)-finite vectors. We
take the opportunity to point out that—although each of the corresponding claims
can be found in the sparse literature on smooth-automorphic forms—actually none
of the following three spaces is Fréchet, when equipped with the seminorms pd,X ,
X ∈ U(g):

C∞umg,d(G(F)\G(A)) ⊇ C∞umg,d(G(F)\G(A))(Z(g)) ⊇ C∞umg,d(G(F)\G(A))
Kn
(Z(g))

.

Indeed, one may easily verify that none of the above spaces is complete.
In our eyes, the resulting topological intricacies (as well as the resulting issues in
providing completely accurate references) make it necessary to lay down some details
on the topological structure of the (in this paper yet to be defined) space of smooth-
automorphic forms and the canonical action of G(A) by right translations, which
we will do in the remainder of this section. The reader, who is familiar with these
functional-analytic subtleties, may skip them and head on to Sect. 3.

2.2 Smooth-automorphic forms and absolute bounds of exponents of growth

2.2.1 Spaces of smooth-automorphic forms

Recall our arbitrary, but fixed ideal J �Z(g) of finite codimension. For each n ∈ N,
we let

A∞d (G)Kn ,J n := {ϕ ∈ C∞umg,d(G(F)\G(A))Kn | J nϕ = 0}

be the (closed, andhenceFréchet, cf. Proposition2.3) subspaceofC∞umg,d (G(F)\G(A))Kn

of functions, which are annihilated by the ideal J n . We obtain

Proposition 2.5 Acted upon by right translation R∞, the spacesA∞d (G)Kn ,J n
become

Casselman-Wallach representations of G∞.

Proof The arguments of [45], Sect. 2.5 and Lemma 2.7 imply thatC∞umg,d(�c,Kn\G∞)

is a smooth G∞-representation by right translation of moderate growth. Hence, so is
C∞umg,d(G(F)\G(A))Kn by virtue of Proposition 2.3 and so is the G∞-stable, closed

subspace A∞d (G)Kn ,J n
, cf. [47], Lemma 11.5.2. Moreover, the (g∞, K∞)-module(A∞d (G)Kn ,J n )

(K∞)
is admissible by [8, §4.3.(i)] and is obviously Z(g)-finite. This

shows the claim. ��
Definition 2.6 A smooth-automorphic form is an element of one of the spaces

A∞J (G) :=
⋃

n,d

A∞d (G)Kn ,J n
,

where J runs over the ideals of finite codimension in Z(g).
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Remark 2.7 Our definition is obviously compatible with the usual one: A smooth
function f : G(A) → C is usually defined to be a smooth-automorphic form, if it is
left-G(F)-invariant, right-KA f -finite,

2 annihilated by an idealJ �Z(g) of finite codi-
mension and of uniformmoderate growth. See [45], Sect. 6.1, where to our knowledge
the notion of smooth-automorphic forms has first been introduced (in the context of
real reductive groups and their arithmetic subgroups) or [18], Sect. 2.3 (forG = GLn).

We want to consider A∞J (G) as a representation of G(A) under right translation,
whence we have to specify a locally convex topology on A∞J (G), making it into a
complete LCTVS, cf. Sect. 1.5. In a very first try, it is tempting to put an ordering
on the set of tuples (d, n) ∈ N × N, with defining condition that A∞d (G)Kn ,J n ⊂
A∞d+1(G)Kn+1,J n+1

and then equipA∞J (G)with the inductive limit topology given by
the natural, continuous inclusions.
However, estimating the respective seminorms in question, it is a priori not clear at
all that the locally convex topology onA∞d+1(G)Kn+1,J n+1

(defined by the seminorms

pd+1,X , X ∈ U(g)), induces the original topology on A∞d (G)Kn ,J n
(defined by the

seminorms pd,X , X ∈ U(g)), nor if A∞d (G)Kn ,J n
is closed in A∞d+1(G)Kn+1,J n+1

,
see Sect. 2.1. Whence, it is a priori even unclear whether the latter inductive limit
topology yields a Hausdorff space at all, and even less, if the resulting space is a
complete LCTVS.
In order to overcome this problem, we shall make use of the following general result:

Proposition 2.8 Let J � Z(g) be an arbitrary, but fixed ideal of finite codimension.
Then there exists d ∈ N such that

A∞J (G) ⊂ C∞umg,d(G(F)\G(A)).

In other words, having fixedJ (or, equivalently, the string of ideals {J n}n∈N), then
there exists an exponent d, such that all smooth-automorphic forms inA∞J (G) satisfy
(2.1) for the same such d. In order to prove Proposition 2.8 we shall need the following
preparatory considerations:

2.2.2 Growth conditions for constant terms

Let P = LN ∈ P . Let us introduce coordinates aP
∼−→ R

nP , λ �→ λ, and the
following multi-index notation:

λα := λ
α1
1 · · · λ

αnP
nP , λ ∈ aP , α = (α1, . . . , αnP ) ∈ Z

nP≥0.

For a multi-index α as above, we write |α| :=∑nP
i=1 αi .

2 This condition is recalled here only for the sake of matching the way smooth-automorphic forms are
usually defined: Let us take the opportunity to point out that smoothness of ϕ makes the condition of being
right-KA f -finite superfluous.
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For every subset � of ǎP,C and N ∈ Z≥0, let PAR

P
(�, N ) be the space of functions

φ : AR

P → C of the form

φ(a) =
∑

λ∈�′
e〈λ,HP (a)〉 ∑

|α|≤N

cλ,αHP (a)α,

where �′ runs through the finite subsets of�, and cλ,α ∈ C (“polynomial exponential
functions”). For a continuous, left-G(F)-invariant function f : G(A) → C, we write
as usual

fP (g) :=
∫

N (F)\N (A)

f (ng) dn,

for the constant term along P , cf. [37], I.2.6.

Lemma 2.9 For every P ∈ P , let �P be a finite subset of ǎP,C. Then there exists an
r ∈ R>0 such that

{ f ∈C∞umg(G(F)\G(A)) | ∀P ∈P ∃N ∈ Z≥0 ∀g∈G(A)

fP ( · g)∈PAR

P
(�P , N )}

is contained in C∞umg,r (G(F)\G(A)).

Proof This follows from the proof of [1], Lemma 6.12, noting that the constant r
whose existence is proved in said lemma depends, in the notation of loc. cit., only
on dim a0 and on the constant maxP max(λ1,...,λnP )∈�P maxnPi=1 ‖λi‖, where ‖ · ‖ is a
fixed norm on XP , and does not depend on the numbers nP . ��

2.2.3 Ideals of finite codimension

Recall the symmetric algebra S(aP,C)
∼−→ Z(aP ) of aP,C, cf. Sect. 1.3.1, which we

identify with the algebra of polynomials on ǎP,C. Every ideal I � Z(aP ) of finite
codimension contains an ideal of the form

Z(aP ;�, N ) := {Y ∈ Z(aP ) | Y vanishes of order ≥ N in each λ ∈ �} ,

where � is a finite subset of ǎP,C and N ∈ N, see [37], I.3.1. Next note that for such
I, � and N , and for every k ∈ N there exists M ∈ N (depending on I, �, N , and k),
such that

⋂

λ∈�

Z (aP ; λ, N )M ⊆
(
⋂

λ∈�

Z (aP ; λ, N )

)k
.

Indeed, the existence of such an exponent M ∈ N is a corollary of the following
general
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Lemma 2.10 Let R be a commutativeNoetherian ring. Let n, k ∈ N, and letI1, . . . , In
be ideals in R. Then, there exists M ∈ N such that

n⋂

i=1
IM
i ⊆
(

n⋂

i=1
Ii
)k

.

Proof Lacking a good reference, we sketch the proof. Arguing inductively, let n = 2.
Then, by the lemma of Artin-Rees [11, §2.3, Lemma 1], there exists an l ∈ Z≥0 such
that Ik+l

1 ∩ Ik
2 = Ik

1

(Il
1 ∩ Ik

2

)
. Hence, setting M = k + l, in particular IM

1 ∩ IM
2 ⊆

Ik
1Ik

2 = (I1I2)k ⊆ (I1 ∩ I2)k holds. The induction-step is obvious. ��

Consequently,

Ik � Z (aP ;�, N )k =
(
⋂

λ∈�

Z (aP ; λ, N )

)k
⊇
⋂

λ∈�

Z (aP ; λ, N )M

=
⋂

λ∈�

Z (aP ; λ, MN ) = Z (aP ;�, MN ) .

We are now ready to give the

Proof of Proposition 2.8 By Lemma 2.9, it suffices to prove the following claim: For
every P ∈ P there exists a finite set �P ⊆ ǎP,C with the following property: For
every ϕ ∈ A∞J (G) there exists N ∈ Z≥0 such that

ϕP ( · g) ∈ PAR

P
(�P , N ), g ∈ G(A). (2.11)

First, we recall that, denoting by L the left action of U(g) on C∞(G(A)), we have

Y f = L(Y #) f , Y ∈ Z(g), f ∈ C∞(G(A)),

where (·)# is the unique anti-automorphism of U(g) such that 1# = 1 and X# = −X
for all X ∈ g∞.

Now, let P = LN ∈ P . Then, denoting the Harish-Chandra homomorphism by
ν : Z(g) → Z(l), we get Y ∈ ν(Y )+ U(g)nC for all Y ∈ Z(g), and hence

(Y f )P = Y fP = L(Y #) fP = L(ν(Y #)) fP = ν(Y #)# fP (2.12)

for allY ∈ Z(g) and f ∈ C∞umg(G(F)\G(A)). AsZ(l) is a finitely generated ν(Z(g))-
module, Jl := Z(l)ν(J #)# is an ideal of finite codimension in Z(l).

Let ϕ ∈ A∞J (G), and let k ∈ N be such that J kϕ = 0. For every g ∈ G(A), the

function ϕ( ·g) : G(A) → C is also annihilated byJ k , hence by (2.12) the function
ϕP ( · g) : G(A) → C is annihilated by Z(l)ν((J k)#)# = J k

l . Since the algebra
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Z(aP ) embeds canonically intoZ(l), it follows that the function ϕP ( ·g) : AR

P → C

is annihilated by the following ideals in Z(aP ):

J k
l ∩ Z(aP ) ⊇ (Jl ∩ Z(aP ))k ⊇ Z(aP ;�P , M)

for some M ∈ N, where �P is chosen such that Jl ∩ Z(aP ) ⊇ Z(aP ;�P , N ) for
some N ∈ N, see Sect. 2.2.3 above. But by [37], I.3.1,

{
f ∈ C∞(AR

P ) : Z(aP ;�P , M) f = 0
}
⊆ PAR

P
(�P , M) .

Therefore,

ϕP ( · g) ∈ PAR

P
(�P , M) , g ∈ G(A).

Since �P depends only on J and P , this proves the above claim, cf. (2.11), and thus
Proposition 2.8. ��

2.2.4 The LF-space topology onA∞
J (G)

Asprovided byProposition 2.8, there exists a smallestd = d0 ∈ N such thatA∞J (G) ⊂
C∞umg,d(G(F)\G(A)).Wewill henceforth fix such an exponent d. Recall that for each

n ∈ N,A∞d (G)Kn ,J n
has been given the structure of a Fréchet space. Having fixed d,

we obtain canonical continuous inclusions ιn : A∞d (G)Kn ,J n
↪→ A∞d (G)Kn+1,J n+1

with closed images and we will hence equip the space of smooth-automorphic forms
A∞J (G) with its natural LF-space topology given by

A∞J (G) = lim
n→∞A∞d (G)Kn ,J n

. (2.13)

As remarked in Sect. 1.4, this makesA∞J (G) into a complete, barrelled, bornological
LCTVS (which, as we recall, for us includes the property of being Hausdorff). It is
easy to see that if (ϕi )i∈I is a convergent net in A∞J (G) with limit ϕ, then the net
of complex numbers ((Xϕi )(g))i∈I converges in C to (Xϕ)(g) for every X ∈ U(g)
and g ∈ G(A). In particular, every convergent net of smooth-automorphic forms is
pointwise convergent everywhere.

Remark 2.14 Our particular choice of an exponent of growth d is only made for the
convenience of normalization and can be replaced by any other integer d ′ ≥ d, with-
out change of topology, as the following argument shows: Let us for now denote
A∞J (G)d = limn→∞A∞d (G)Kn ,J n

and A∞J (G)d+1 = limn→∞A∞d+1(G)Kn ,J n
. By

the very assertion of Proposition 2.8, A∞d (G)Kn ,J n = A∞d+1(G)Kn ,J n
as sets for

every n ∈ N. Estimating the seminorms in question, using only the fact that the
adelic group norm ‖g‖ is bounded away from 0, cf. (1.1), one shows that the bijec-
tion given by the identity map A∞d (G)Kn ,J n → A∞d+1(G)Kn ,J n

is continuous for
every n ∈ N and hence – domain and target space being Fréchet – a topological
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isomorphism by the Open Mapping Theorem. Here we note that the observation that
A∞d (G)Kn ,J n = A∞d+1(G)Kn ,J n

as sets, which is all based on Proposition 2.8, is
crucial for the latter conclusion. Having said this, going over to the direct limits,
A∞J (G)d = A∞J (G)d+1 also topologically. The reader may also find an analogue of
this discussion (for real reductive groups and arithmetic sugroups) in [36], Sect. 3.1,
there, however, without proofs.

2.3 The right regular action of G(A) on smooth-automorphic forms

The following result on A∞J (G) is well-known and central for all our considerations
later on. However, lacking a good reference and given certain topological issues and
incompatibilities in the literature, cf. Remark-Warning 2.4, we prefer to give a full
proof of it.

Proposition 2.15 Acted upon by right translation R, the LF-space A∞J (G) becomes
a smooth representation of G(A).

Proof We will first verify that the right regular action R of G(A) defines a continuous
map G(A)×A∞J (G) → A∞J (G) and hence a representation of G(A): As A∞J (G) is
barrelled, it suffices to show that the lattermap is separately continuous, cf. Sect. 1.5. To
this end, let g = (g∞, g f ) ∈ G(A) arbitrary, but fixed, and consider the linear operator
R(g) : A∞J (G) → A∞J (G). By construction of the LF-space topology on A∞J (G) it

suffices to show the continuity of the restrictions R(g) : A∞d (G)Kn ,J n → A∞J (G)

for each n, in order to obtain the desired continuity of R(g), Sect. 1.4. So, let n ∈ N

be arbitrary. Proposition 2.5 implies that R((g∞, id)) = R∞(g∞) is a topological
automorphism of the Fréchet space A∞d (G)Kn ,J n

. On the other hand, R((id, g f ))

obviously defines a linear operator R((id, g f )) : A∞d (G)Kn ,J n → A∞d (G)
g f Kng

−1
f ,J n

whose image hence lies inside (any) Fréchet space A∞d (G)Km ,J m
, with m � n

such that g f Kng
−1
f ⊇ Km (such a Km exists, because {Kn}n∈N defines a base of

neighbourhoods of id). Hence, continuity of

R((id, g f )) : A∞d (G)Kn ,J n → A∞J (G)

follows from the fact that for every X ∈ U(g) and ϕ ∈ A∞d (G)Kn ,J n

pd,X (R((id, g f ))ϕ) = sup
g∈G(A)

|(Xϕ)(gg f )| ‖g‖−d

(1.1)≤ Cd
0 sup
g∈G(A)

|(Xϕ)(gg f )|
∥∥gg f
∥∥−d ∥∥g f

∥∥d

= Cd
0

∥∥g f
∥∥d pd,X (ϕ).

In summary, R(g) = R((id, g f ))◦ R((g∞, id)) is a continuous mapA∞d (G)Kn ,J n →
A∞J (G) for each n ∈ N, hence R(g) : A∞J (G) → A∞J (G) is continuous for all
g ∈ G(A).
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In order to prove continuity in the other variable, let ϕ ∈ A∞J (G) be an arbitrary,
but fixed smooth-automorphic form and consider its orbit map cϕ . Choose any n ∈ N

such that ϕ ∈ A∞d (G)Kn ,J n
. Then, by Proposition 2.5, cϕ restricts to a smooth, and

hence in particular continuous map, cϕ : G∞ → A∞d (G)Kn ,J n
. As A∞d (G)Kn ,J n

inherits from A∞J (G) its original Fréchet topology, cϕ also defines a continuous map
cϕ : G∞ → A∞J (G). On the other hand, ϕ being right-invariant under the open
compact subgroup Kn , we also obtain a continuous restriction cϕ : G(A f ) → A∞J (G).
Hence, by barrelledness of A∞J (G) and the just shown continuity of R((id, g f )) :
A∞J (G) → A∞J (G) the map G(A f ) × A∞J (G) → A∞J (G), (g f , φ) �→ R(g f )φ is
jointly continuous. Therefore, cϕ , factoring as

G(A)
∼−→ G∞ × G(A f ) −→ A∞J (G)× G(A f ) −→ A∞J (G)

g �−→ (g∞, g f ) �−→ (cϕ(g∞), g f ) �−→ R(g f )cϕ(g∞) =cϕ(g)

is continuous as it is a composition of continuous maps.
Hence, G(A) × A∞J (G) → A∞J (G), (g, ϕ) �→ R(g)ϕ = ϕ( · g) is separately

continuous and hence, by barrelledness of A∞J (G), also jointly continuous.
We now prove smoothness. Combining Lemma 1.8 and Proposition 2.5, right trans-
lation on the LF-space A∞J (G) is a smooth representation of G∞. To prove that
it is also a smooth representation of G(A f ), i.e., that topologically A∞J (G) =
limn→∞A∞J (G)Kn , we need to argue that that the identity map

A∞J (G) = lim
n→∞A∞d (G)Kn ,J n id−→ lim

n→∞A∞J (G)Kn

is bicontinuous: By definition of the strict inductive limit topology, this is equivalent
to that the restrictions

A∞d (G)Kn ,J n
↪→ lim

m→∞A∞J (G)Km and A∞J (G)Kn ↪→ A∞J (G) (2.16)

to the limit-steps are continuous for all n ∈ N. The second inclusion is contin-
uous by construction, as is the map A∞d (G)Kn ,J n

↪→ A∞J (G). However, as the

image of the latter map lands inside A∞J (G)Kn ⊂ A∞J (G) and again, A∞J (G)Kn ↪→
limm→∞A∞J (G)Km is continuous by construction, also the first map in (2.16) is con-
tinuous. ��
Remark 2.17 We recall that any smooth function f : G(A) → C is automatically
continuous. In fact, for smooth-automorphic forms this also follows from the the fact,
shown in the proof of Proposition 2.15, that the orbit maps cϕ : G(A) → A∞J (G) are
all continuous, as ϕ = evid ◦ cϕ .

2.4 (Relation to) K∞-finite automorphic forms

Obviously, the space of (usual) automorphic forms AJ (G), cf. [8], Sect. 4.2, which
are annihilated by a power of the fixed ideal J , identifies as the dense subspace
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of right-K∞-finite vectors in A∞J (G).3 It is very well known that AJ (G) is a
(g∞, K∞,G(A f ))-module (but it also follows directly from Proposition 2.15 above,
as AJ (G) = A∞J (G)(K∞) = A∞J (G)

∞A

(K∞)). Although dense in A∞J (G), and hence,
topologically “almost all” ofA∞J (G), the spaceAJ (G) is much smaller thanA∞J (G)

from the perspective of vector spaces: Indeed, AJ (G) is of countable dimension by
a theorem of Harish-Chandra, cf. [31], Theorem 1 (see also [8], Theorem 1.7 and
Sect. 4.3.(i) therein), whereas A∞J (G) is of uncountable dimension (since it contains

infinite-dimensional Fréchet spaces A∞d (G)Kn ,J n
).

3 Smooth-automorphic representations

3.1 Smooth-automorphic representations

In this paper we propagate the idea to give preference to A∞J (G), rather than to
AJ (G), as the former allows a representation of G(A) and not only the structure
of a (g∞, K∞,G(A f ))-module (which breaks the symmetry between the role of the
archimedean and the non-archimedean factors ofG(A)).Moreover, to round this up by
a subtlety (whichmay suit the taste of purists among the readers), the space of functions
AJ (G) changes with the very choice of K∞, whereas A∞J (G) is independent of any
particular additional choices: Once J is given, A∞J (G) depends on nothing else than
the group-scheme G/F itself (which we believe is a much more satisfactory setup).
In order to substantiate this approach, we will show here that the representation theory
evolving out ofA∞J (G) is rich enough in order to recover the representation-theoretical
phenomena in automorphic forms.
Indeed, as a first step and as some sort of ground-work, in this section we shall prove
an “automorphic analogue” of a famous result of Harish-Chandra (on admissibleG∞-
representations and their underlying (g∞, K∞)-modules); moreover, we will establish
a natural 1-to-1 correspondence between the irreducible smooth-automorphic repre-
sentations of G(A) (i.e., irreducible G(A)-subquotients of A∞J (G)) and the usual
irreducible automorphic representations (i.e., irreducible (g∞, K∞,G(A f ))-module
subquotients ofAJ (G)); finally, wewill also verify the fundamental and all-important
local–global property of irreducible smooth-automorphic representations, provided by
a topologized version of the restricted tensor product theorem.
In analogy with the classical definition of automorphic representations, we introduce
the following

Definition 3.1 AG(A)-representation (π, V ) is a smooth-automorphic representation
if it is equivalent to a quotient U/W , where W ⊆ U are G(A)-subrepresentations of
A∞J (G) (for some ideal J of Z(g) of finite codimension). Moreover, if W = 0, we
say that (π, V ) is a smooth-automorphic subrepresentation.

We shortly observe that by Lemma 1.9 and Proposition 2.15 the word “smooth” in
our terminus “smooth-automorphic representation” does not amount to an abuse of

3 Reading the definition in [8], Sect. 4.2 very carefully, in order to render the identity AJ (G) =
A∞J (G)(K∞) really obvious, one should recall Rem. 2.17 from above.
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terminology as every smooth-automorphic representation is indeed a smooth G(A)-
representation in the sense of Sect. 1.5.3.

Remark 3.2 By definition, the notion of a smooth-automorphic representation entails
the assumption that the quotient U/W is complete, as it is supposed to be a repre-
sentation of G(A). We warn the reader that in general, the quotient of a complete
LCTVS by a closed subspace does not need to be complete, nor is it automatic that
the quotient of two G(A)-representations is again a representation, cf. Rem. 1.7. It
is our conjecture, however, that for all G(A)-subrepresentations W ⊆ U ⊆ A∞J (G),
the quotient U/W is complete and defines a smooth-automorphic representation. Let
us point out that according to Lemma 1.9, this is certainly the case, if each quotient
UKn/WKn is complete and barrelled. It follows that U/W is in particular complete,
if there exists an m ∈ N such that J mU = 0, as then UKn is a closed subspace of the
Fréchet space A∞d (G)Kn ,J n

for all n ≥ m and hence Fréchet itself. Since the actions
of Z(g) and G(A) commute, the latter applies in particular, if U is finitely generated
as a G(A)-representation.

The following lemmagives a first glimpse into the relationship between the classical
automorphic representations and smooth-automorphic representations.

Lemma 3.3 Let V0 be a (g∞, K∞,G(A f ))-submodule of AJ (G). Then, the topo-
logical closure of V0 in A∞J (G), V := ClA∞

J (G)(V0), is a smooth-automorphic
subrepresentation.

Proof We need to prove that V is G(A)-invariant. LetU be the smallest closed G(A)-
invariant subspace of A∞J (G) containing V0:

U = ClA∞
J (G)(spanCR(G(A))V0). (3.4)

Obviously, U ⊇ V . So, suppose that U � V . Then, by the Hahn-Banach theorem
there exists a non-zero continuous linear functional b : U → C such that b

∣∣
V = 0.

For every φ ∈ V0, let us look at the function ϕφ ∈ C∞(G(A)),

ϕφ(g) := b(R(g)φ), g ∈ G(A).

For every X ∈ g∞, we have

(Xϕφ)(g) = d

dt

∣∣∣
t=0b(R(g exp(t X))φ) = b(R(g)R(X)φ) = ϕXφ(g), g ∈ G(A).

It follows that

(Xϕφ)(g) = ϕXφ(g) = b(R(g)R(X)φ), X ∈ U(g), g ∈ G(A). (3.5)

In particular, for n ∈ N such that J nφ = 0, we have J nϕφ = 0. Note also that ϕφ

is KA-finite on the right. Denoting by G◦∞ the identity component of G∞, it follows
that for every g f ∈ G(A f ), the function ϕφ( · g f ) : G◦∞ → C is smooth, K∞-finite
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on the right and Z(g)-finite, hence it is real analytic (see, e.g., [4], 3.15). Moreover,
we have

X(ϕφ( · g f ))(idG∞) = (Xϕφ)(g f )
(3.5)= b(R(g f )R(X)φ

︸ ︷︷ ︸
∈V

) = 0, X ∈ U(g),

hence ϕφ(g∞g f ) = 0, for all g∞ ∈ G◦∞ and g f ∈ G(A f ). This means that b vanishes
on

ClA∞
J (G)

(
spanCR(G◦∞ × G(A f ))V0

)

= ClA∞
J (G)

(
spanCR(G◦∞ × G(A f ))R(K∞)V0

)

= ClA∞
J (G)

(
spanCR(G(A))V0

) (3.4)= U ,

(3.6)

where the second equality holds because K∞ meets every connected component of
G∞. Thus, b is identically zero, which is a contradiction. Hence, V = U and so V is
G(A)-stable. ��

3.2 The general dictionary I: admissibility and an automorphic variant of a
theorem of Harish-Chandra

The following result, see Theorem 3.7 below, provides a fundamental dictionary
between smooth-automorphic subrepresentations of A∞J (G) and automorphic sub-
representations of AJ (G) (where the expression “automorphic subrepresentation” is
used in the usual way, i.e., denoting a (g∞, K∞,G(A f ))-submodule): We show that
the irreducible (and, more generally, even all the admissible)G(A)-subrepresentations
of A∞J (G) are exactly the topological closures of the irreducible (resp., admissible)
automorphic subrepresentations of AJ (G) within A∞J (G). We invite the reader to
view this result of ours as a global, or automorphic analogue of Harish-Chandra’s
result, providing a 1:1-correspondence between theG∞-subrepresentations of a given
admissible G∞-representation V and the (g∞, K∞)-submodules of its underlying
(g∞, K∞)-module, cf. [29] or [42], Theorem II.7.14.

Theorem 3.7 The admissible smooth-automorphic subrepresentations stand in one-
one correspondence with the admissible (g∞, K∞,G(A f ))-submodules V0 of
AJ (G), the correspondence V ↔ V0 being

V0 = V(K∞) and V = ClA∞
J (G)(V0).

Moreover, the above correspondence respects irreducibility. Hence, every admissible
(resp., irreducible) automorphic subrepresentation of AJ (G) lifts to an admissible
(resp., irreducible) smooth-automorphic subrepresentation, recovering the original
automorphic representation as its space of K∞-finite vectors.

Proof Firstly, we recall that by [8], Proposition 4.5.(4) every irreducible automor-
phic subrepresentation V0 is automatically admissible. Hence, if we manage to show
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that the underlying (g∞, K∞,G(A f ))-module of an irreducible smooth-automorphic
subrepresentation V of A∞J (G) remains irreducible, then – V being a smooth G(A)-
representation by Lemma 1.9 and Proposition 2.15, as already observed above – V
is admissible, too. With this observation in mind, it therefore suffices to prove the
following four claims:

(1) Let V0 be an admissible (g∞, K∞,G(A f ))-submodule of AJ (G). Then, V :=
ClA∞

J (G)(V0) is an admissible G(A)-representation, and we have V(K∞) = V0.
(2) Let V be an admissible smooth-automorphic subrepresentation. Then, V0 :=

V(K∞) is an admissible (g∞, K∞,G(A f ))-module, and we have ClA∞
J (G)(V0) =

V .
(3) Let V0 be an irreducible (g∞, K∞,G(A f ))-submodule of AJ (G). Then, V :=

ClA∞
J (G)(V0) is an irreducible G(A)-representation.

(4) Let V be an irreducible smooth-automorphic subrepresentation. Then, the
(g∞, K∞,G(A f ))-module V(K∞) is irreducible.

Ad (1): By Lemma 3.3, V is a G(A)-subrepresentation of A∞J (G), and hence,
smooth by Lemma 1.9 and Proposition 2.15. It is obvious from the construction that
V0 is a (g∞, K∞,G(A f ))-submodule of V(K∞) and dense in V . As V0 is further-
more assumed to be admissible, Lemma 1.10 implies that V(K∞) = V0 and that V is
admissible as a G(A)-representation.

Ad (2): The first part of the claim holds by definition, and the second one by [30],
Lemma 4.

Ad (3): As we observed above, V0 is admissible, so by (1), V is a G(A)-
subrepresentation ofA∞J (G) and V(K∞) = V0. LetU �= 0 be a closed G(A)-invariant
subspace of V . Since U(K∞) is dense in U (again, see [30], Lemma 4), U(K∞) �= 0,
which by irreducibility of V0 implies that U(K∞) = V0, hence U = ClV (V0) = V .

Ad (4): Since V(K∞) is dense in V ([30], Lemma 4), V(K∞) �= 0. Thus, it suffices
to prove that for every φ ∈ V(K∞)\{0}, we have

V0,φ := 〈φ〉(g∞,K∞,G(A f )) = V(K∞).

Combining Lemma 3.3 and the irreducibility of V , we get ClA∞
J (G)(V0,φ) = V . Thus,

by applying (1) to V0,φ (which, being spanned by one single automorphic form, is
admissible by [8], Proposition 4.5.(4)), we get that V(K∞) = V0,φ . ��

3.3 The general dictionary II: extension to all irreducibles and
smooth-automorphic Casselman-Wallach representations

Theorem 3.7 provides (in particular) a dictionary between the irreducible smooth-
automorphic subrepresentations of A∞J (G) and the irreducible automorphic sub-
representations of AJ (G). For a completely general understanding of the internal
representation theory of the space of smooth-automorphic forms it is essential, how-
ever, to extend this comparison from irreducible subrepresentations to all irreducible
subquotients, as only those will capture the representation-theoretical phenomena of
A∞J (G) in sufficient generality. This section is devoted to such a general comparison
of irreducibles.
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We begin our analysis by studying smooth-automorphic Casselman-Wallach repre-
sentations of G(A) (see Sect. 1.5.4), examples of which we describe in Proposition
3.8 and its fundamental corollary, Cor. 3.10 (representations, spanned by one smooth-
automorphic form ϕ), below:

Proposition 3.8 Let (π, V ) be a smooth-automorphic subrepresentation that is anni-
hilated by a power of J (e.g., an irreducible smooth-automorphic subrepresentation).
Then, V is a Casselman-Wallach representation of G(A). In particular, V is an LF-
space.

Proof Let k ∈ N such thatJ kV = 0. For every n ∈ N, V Kn is aG∞-subrepresentation
of A∞d (G)Km ,J m

, where m := max(k, n). Hence, combining Proposition 2.5 with
[47], Lemma 11.5.2, V Kn inherits from A∞d (G)Km ,J m

the structure of a Casselman-
Wallach representation of G∞. As V is furthermore a smooth G(A)-representation,
cf. Lemma 1.9 and and Proposition 2.15, V is a Casselman-Wallach representation of
G(A) by definition and hence V is an LF-space.

To prove that every irreducible smooth-automorphic subrepresentation (π, V ) sat-
isfies the assumption of the proposition, recall that by the irreducibility of V and the
continuity of the right regular action R we have V = ClA∞

J (G)(spanCR(G(A))ϕ) for

any non-zero ϕ ∈ V . Hence, by the continuity of the action of U(g), J kV = 0 for
every k ∈ N such that J kϕ = 0. ��

We shall need the following variant of (1.12): For a G(A)-representation (π, V )

and an irreducible K∞-representation (ρ∞,W∞), the usual continuous projection
Eρ∞,V : V → V onto the ρ∞-isotypic component of V is defined by

Eρ∞,V (v) := d(ρ∞)

∫

K∞
ξρ∞(k∞) π(k∞)v dk∞. (3.9)

When the ambient representation V is clear from the context, we will write Eρ∞ =
Eρ∞,V . The following corollary of Proposition 3.8 is fundamental:

Corollary 3.10 Let ϕ ∈ A∞J (G). Then, the (g∞, K∞,G(A f ))-module

V0,ϕ :=
∑

ρ∞
〈Eρ∞(ϕ)〉(g∞,K∞,G(A f )),

spanned by the (g∞, K∞,G(A f ))-modules generated by the images Eρ∞(ϕ), ρ∞
ranging through the equivalence-classes of irreducible K∞-representations, is anni-
hilated by a power ofJ and is an admissible and finitely generated (g∞, K∞,G(A f ))-
submodule of AJ (G). Moreover, the G(A)-subrepresentation of A∞J (G) generated
by ϕ,

Vϕ := ClA∞
J (G)(spanCR(G(A))ϕ) = ClA∞

J (G)(V0,ϕ),

is a Casselman-Wallach representation of G(A). In particular, Vϕ is an LF-space and
the right regular action R of G(A) on Vϕ defines an admissible G(A)-representation.
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Proof Let us fixm ∈ N such thatϕ ∈ A∞d (G)Km ,J m
. By construction, V0,ϕ ⊆ AJ (G)

is annihilated byJ m . Thus, for every irreducible representation ρ∞ of K∞ and n ∈ N,
we have

EKn
ρ∞(V0,ϕ) ⊆

{
φ ∈ AJ (G) : J mφ = 0 and EKn

ρ∞(φ) = φ
}

.

As the space on the right-hand side is finite-dimensional, cf. [8], Sect. 4.3(i), V0,ϕ is
an admissible (g∞, K∞,G(A f ))-module. Consequently, V Km

0,ϕ is an admissible and
Z(g)-finite (g∞, K∞)-module, hence a finitely generated (g∞, K∞)-module, cf. [43],
Cor. 5.4.16. In order to deduce that hence V0,ϕ is finitely generated, observe that it is
generated as aG(A f )-module by

∑
ρ∞〈Eρ∞(ϕ)〉(g∞,K∞), which, by construction, is a

(g∞, K∞)-submodule of V Km
0,ϕ . This shows the first assertion. For the second assertion,

observe that V0,ϕ being an admissible (g∞, K∞,G(A f ))-submodule of AJ (G), by
our Theorem 3.7, ClA∞

J (G)(V0,ϕ) is an admissible subrepresentation of A∞J (G), and
it is obviously annihilated by J m , so it is a Casselman-Wallach representation of
G(A) by Proposition 3.8. It remains to prove that Vϕ = ClA∞

J (G)(V0,ϕ). The inclusion
ClA∞

J (G)(V0,ϕ) ⊆ Vϕ is obvious. On the other hand, by [30, Lemma 5] we have that
ϕ =∑ρ∞ Eρ∞(ϕ) ∈ ClA∞

J (G) V0,ϕ , hence Vϕ ⊆ ClA∞
J (G)(V0,ϕ). ��

Remark 3.11 We remark again that the sheer fact that Vϕ is a closed subspace of an
LF-space, namely A∞J (G), does not imply that Vϕ is necessarily an LF-space itself,
whence this needed an extra argument. Moreover, it does not follow from purely
abstract considerations that a G(A)-representation, spanned by one single function,
is necessarily admissible (and hence even less so necessarily a Casselman-Wallach
representation): For instance, this will even fail for (equivalence classes of) functions
f ∈ L2

dis(G(F)AR

G\G(A)) in the discrete part of the L2-spectrum. Indeed, the reader
may easily construct a function f ∈ L2

dis(G(F)AR

G\G(A)) such that the correspond-
ing G(A)-subrepresentation

V f := ClL2
dis (G(F)AR

G\G(A))(spanCR(G(A)) f )

of the Hilbert-space L2
dis(G(F)AR

G\G(A)) is not admissible. We remark that the
Z(g)-finiteness of ϕ ∈ A∞J (G) was essential in order to obtain Cor. 3.10

We are now ready to prove a general result, comparing irreducible smooth-
automorphic representations with irreducible automorphic representations:

Theorem 3.12 If V is an irreducible smooth-automorphic representation, then V(K∞)

is an irreducible automorphic representation. In particular, every irreducible smooth-
automorphic representation is admissible. Conversely, let V0 be an irreducible
automorphic representation of G(A). Then, there exists an irreducible smooth-
automorphic representation V such that V(K∞)

∼= V0.

Proof Let W ⊆ U be closed G(A)-invariant subspaces of A∞J (G) such that V :=
U/W is an irreducible G(A)-representation. We show that the (g∞, K∞,G(A f ))-
module V(K∞) is irreducible. Let us denote by ϕ (resp., M) the image of an
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arbitrary ϕ ∈ A∞J (G) (resp., M ⊆ A∞J (G)) under the canonical epimorphism
A∞J (G) � A∞J (G)/W . Since U(K∞) is dense in U ([30], Lemma 4), we have
U(K∞) \ W �= ∅. Thus, it suffices to prove that for every φ ∈ U(K∞), which is
not in W , the (g∞, K∞,G(A f ))-submodule

V0,φ := 〈φ〉(g∞,K∞,G(A f )) = 〈φ〉(g∞,K∞,G(A f ))

of V(K∞) equals V(K∞). To this end, note that by Lemma 3.3,

ClU
(〈φ〉(g∞,K∞,G(A f )) +W(K∞)

)

is a closed G(A)-invariant subspace ofU . As it obviously containsW as a proper sub-
space, by the irreducibility of V it equalsU . In particular,U0,φ := 〈φ〉(g∞,K∞,G(A f ))+
W(K∞) is dense in U , which implies that U0,φ = V0,φ is dense in U = V . As V0,φ is
moreover an admissible (g∞, K∞,G(A f ))-submodule of V(K∞) by [8], Proposition
4.5.(4), and as V is a smoothG(A)-representation by Lemma 1.9 and Proposition 2.15,
Lemma1.10finally implies thatV0,φ = V(K∞), as desired.Hence,V(K∞) is irreducible.
At the same time, the other implication of Lemma 1.10 shows that V is admissible as
claimed.
We will now prove the second assertion: To prove the existence of V , let W0 ⊆ U0
be (g∞, K∞,G(A f ))-submodules of AJ (G) such that U0/W0 ∼= V0. Let us fix a
φ0 ∈ U0, which is not in W0 and denote U1 := 〈φ0〉(g∞,K∞,G(A f )) ⊆ U0. By the irre-
ducibility ofU0/W0, the canonical homomorphismU1 → U0/W0 is surjective, hence,
denoting its kernel byW1, we have the following isomorphisms of (g∞, K∞,G(A f ))-
modules:

U1/W1 ∼= U0/W0 ∼= V0. (3.13)

Let us fix k ∈ N such that J kφ0 = 0. Since by [8], Proposition 4.5.(4) the
(g∞, K∞,G(A f ))-submodules W1 ⊆ U1 of AJ (G) are admissible, Theorem 3.7
implies that their closures W 1 := ClA∞

J (G)(W1) and U 1 := ClA∞
J (G)(U1) are admis-

sible smooth-automorphic subrepresentations satisfying

(W 1)(K∞) = W1 and (U1)(K∞) = U1. (3.14)

Since moreover the spaces W 1 ⊆ U 1 are obviously annihilated by J k , by Proposi-
tion 3.8 they are Casselman-Wallach representations of G(A), and hence so is their
quotient V := U 1/W 1 by Lemma 1.13.(1). Moreover, we have the following isomor-
phisms of (g∞, K∞,G(A f ))-modules:

V(K∞) =
⊕

ρ∈̂K∞
Eρ(U1/W 1) =

⊕

ρ∈̂K∞
(EρU1 +W 1)/W 1 = ((U 1)(K∞) +W 1)/W 1

(3.14)= (U1 +W 1)/W 1 ∼= U1/W1

(3.13)∼= V0,
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where the inverse of the next-to-last isomorphism is just the canonical map that is

obviously surjective and is injective becauseU1∩W 1 = (W 1)(K∞)
(3.14)= W1. Finally,

the irreducibility of V(K∞)
∼= V0 implies the irreducibility of the G(A)-representation

V as in the proof of claim (3) in the proof of Theorem 3.7. ��

3.4 The general dictionary III: the local–global principle and the restricted tensor
product theorem

As it is implicit in the proof of Theorem 3.12, the underlying (g∞, K∞,G(A f ))-
module V(K∞) of every irreducible smooth-automorphic representation V allows a
completion as a Casselman-Wallach representation of G(A). By Lemma 1.13.(2) this
completion is in fact unique up to isomorphism of G(A)-representations.
Our next result provides the necessary local–global principle for all such irreducible
smooth-automorphic Casselman-Wallach representations. Its underlying algebraic
assertion seems well-known to experts (see [18], Theorem 3.4, for G = GLn), albeit
the decisive question, which is the correct choice of a locally convex topology on
restricted tensor products, seems to remain open in the available literature, whence,
lacking a precise reference, we decided to include the result in our paper and fill this
gap. In order to state the result, we let⊗pr, resp.⊗in, denote the completed projective
tensor product, resp. completed inductive tensor product, of LCTVSs. We refer to
[27], I, Sect. 1, n◦’s 1–3 and [49], App. 2.2, for their basic properties.

Theorem 3.15 (Tensor product theorem) Let (π, V ) be an irreducible smooth-
automorphic Casselman-Wallach representation of G(A). Then, for each v ∈ S,
there is an irreducible smooth admissible representation (πv, Vv) of G(Fv), which
is furthermore of moderate growth, if v ∈ S∞, such that as G(A)-representations

π ∼=
⊗

pr
v∈S∞

πv ⊗in

⊗′

v/∈S∞
πv, (3.16)

where the restricted tensor product
⊗′

v/∈S∞ πv is endowed with the finest locally
convex topology. Among all representations with the aforementioned properties, the
πv are unique up to isomorphy.

Proof By Theorem 3.12, V(K∞) is an irreducible admissible (g∞, K∞,G(A f ))-
module. It hence follows from the classical restricted tensor product theorem, [19],
Theorem 3, and our Sect. 1.5.1, that there are irreducible admissible (gv, Kv)-modules
(π0,v, V0,v), v ∈ S∞, and irreducible smooth admissible G(Fv)-representations
(πv, Vv), v /∈ S∞, which are all unique up to isomorphism, such that V(K∞)

∼=⊗
v∈S∞ V0,v ⊗ ⊗′

v/∈S∞ Vv as (g∞, K∞,G(A f ))-modules. Hence, for each n ∈ N,

V Kn
(K∞) and

⊗
v∈S∞ V0,v ⊗ ⊗′

v/∈S∞ V
Kn,v
v are isomorphic (finitely generated, admis-
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sible) (g∞, K∞)-modules, hence share the same Casselman-Wallach completion,

V Kn
(K∞)

CW ∼=
⎛

⎝
⊗

v∈S∞
V0,v ⊗

⊗′

v/∈S∞
V

Kn,v
v

⎞

⎠

CW

,

to a smooth admissible G∞-representation of moderate growth, cf. [47], Sect.
11.5.6 and Sect. 11.6.8. Since V Kn is a Casselman-Wallach representation of
G∞, and

⊗′
v/∈S∞ V

Kn,v
v is finite-dimensional, we obtain an isomorphism of G∞-

representations

V Kn ∼=
⎛

⎝
⊗

v∈S∞
V0,v

⎞

⎠

CW

⊗
⊗′

v/∈S∞
V

Kn,v
v ,

cf. [47], Theorem 11.6.7, which, according to [44], Lemma 9.9.(3), simplifies to

V Kn ∼=
⊗

pr
v∈S∞

Vv ⊗
⊗′

v/∈S∞
V

Kn,v
v ,

for (πv, Vv) := (π0,v
CW, V0,v

CW
). Taking the inductive limit and applying [49],

Theorem A.2.2.5, we hence obtain an isomorphism of G∞-representations

V ∼=
⊗

pr
v∈S∞

Vv ⊗in

⊗′

v/∈S∞
Vv

where by construction,
⊗′

v/∈S∞ Vv carries the finest locally convex topology, cf.
Sect. 1.4. Invoking the classical tensor product theorem once more, this isomorphism
is seen to be G(A f )-equivariant on the dense subspace of K∞-finite vectors. Hence,
the theorem follows from the continuity of this isomorphism and the continuity of the
action of G(A f ). ��

4 Main results: parabolic and cuspidal support

4.1

In this section we will prove our main results on the decomposition of the space of
smooth-automorphic forms along the parabolic and the more refined cuspidal support.
As far as the parabolic support of a smooth-automorphic form is concerned, our result
provides a topological version of Langlands’s algebraic direct sum decomposition of
the space of smooth functions of uniform moderate growth, recorded and proved in
two different ways in [9], Theorem 2.4, and a little earlier in [16], Theorem 1.16 and
Cor. 4.7, respectively. We refer to [33] for the most original source.

123



On the notion of the parabolic and the cuspidal support... 485

On the other hand, our result on the cuspidal support formally mirrors the main result
of [21], cf. Theorem 1.4.(2), on the level of smooth-automorphic forms. As a part
of our analysis, we will prove a fine structural, topological decomposition of the
space of cuspidal smooth-automorphic forms, which is a “smooth” analogue of the
famous theorem of Gelfand–Graev–Piatetski-Shapiro [24],§7.2, (see also [25]) on the
decomposition of the space of cuspidal L2-functions into a direct Hilbert sum.We refer
to Theorem 4.31 below for this characterization of the irreducible cuspidal smooth-
automorphic representations and to Theorem 4.34 for our main result on the cuspidal
support of a general smooth-automorphic form.

4.2 AR

G -invariant smooth-automorphic forms

In order to obtain a meaningful notion of square-integrable smooth-automorphic
forms, as usual, we shall pass over from G(F)\G(A) to the smaller quotient
G(F)AR

G\G(A) ∼= G(F)\G(A)1, which is of finite volume, i.e., we shall work with
left-G(F)AR

G-invariant functions rather than with left-G(F)-invariant functions from
now on. So, for every n ∈ N, let A∞d ([G])Kn ,J n

be the closed (and hence Fréchet)
subspace of AR

G-invariant elements in A∞d (G)Kn ,J n
. We define the LF-space

A∞J ([G]) := lim
n→∞A∞d ([G])Kn ,J n

. (4.1)

Remark 4.2 In the notation of Franke, cf. [20], the underlying vector space of the LF-
space A∞J ([G]) was denoted FinJ (C∞umg(GAG(R)o\G)). Franke, however, did not
specify any topology on the vector space FinJ (C∞umg(GAG(R)o\G)).

Observe that it is a priori by no means clear that the above LF-topology on A∞J ([G])
agrees with the subspace-topology inherited from the inclusionA∞J ([G]) ⊆ A∞J (G),
i.e., that A∞J ([G]) is in fact a smooth-automorphic subrepresentation of A∞J (G).
However, we shall see now that our ad hoc chosen LF-topology onA∞J ([G]) behaves
wellwith respect to theLF-topologyonA∞J (G). To this end, recall that Lie(AR

G) = aG .
Since obviouslyA∞J ([G]) = A∞J+〈aG 〉Z(g)

([G]),when studying the spacesA∞J ([G]),
there is hence no loss of generality in assuming that J ⊇ aG . We shall therefore
suppose from now on that J ⊇ aG . Doing so, we obtain

Proposition 4.3 The space A∞J ([G]), together with the right regular action, is a
smooth-automorphic subrepresentation. Otherwise put, the LF-space topology on
A∞J ([G]), as defined by (4.1), agrees with the subspace topology inherited from
A∞J (G).

Proof As indicated by the last sentence,we need to prove thatA∞J ([G]) is a topological
subspace of A∞J (G). Since for every n ∈ N, A∞d ([G])Kn ,J n

is a closed topologi-

cal subspace of A∞d (G)Kn ,J n
, the inclusion map provides a continuous embedding

A∞J ([G]) = limn A∞d ([G])Kn ,J n
↪→ limn A∞d (G)Kn ,J n = A∞J (G). To finish the

proof, we show that there exists a continuous retraction A∞J (G) → A∞J ([G]), the
continuity here being the subtle point:
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In order to construct such a retraction, let us fix a Haar measure da on AR

G . Since
G(A) = AR

G × G(A)1, it follows from [45], Lemma 2.2, that there exists r ∈ N such
that
∫
AR

G
‖a‖−r da < ∞. Let d0 := d + r ∈ N and D0 :=

∫
AR

G
‖a‖−d0 da ∈ R>0.

We claim that the linear operator PAR

G ,d0
: A∞J (G) → A∞J ([G]), given by

(
PAR

G ,d0
(ϕ)
)

(a′g) := D−10

∫

AR

G

ϕ(a′g) ‖a‖−d0 da, a′ ∈ AR

G , g ∈ G(A)1,

is a well-defined, continuous retraction as desired. Indeed, using (1.1) and [2, Propo-
sition A.1.1(i)], one directly checks that for every n ∈ N and ϕ ∈ A∞d (G)Kn ,J n

,
PAR

G ,d0
(ϕ) is a well-defined left-G(F)AR

G-invariant, right-Kn-invariant, smooth func-
tion G(A) → C satisfying

X PAR

G ,d0
(ϕ) = PAR

G ,d0
(Xg1∞ϕ), X ∈ U(g), (4.4)

where, denoting G1∞ := G∞ ∩ G(A)1, Xg1∞ is the projection of X on U(g1∞) with

respect to the direct sum decomposition U(g) = 〈aG〉U(g) ⊕ U(g1∞). Since the latter
decomposition restricts to the decomposition Z(g) = 〈aG〉Z(g) ⊕ Z(g1∞), and J ⊇
aG , we have that J = 〈aG〉Z(g) ⊕

(J ∩ Z(g1∞)
)
, hence

J n PAR

G ,d0
(ϕ)

(4.4)= PAR

G ,d0

(((
〈aG〉Z(g) ⊕

(
J ∩ Z(g1∞)

))n)

g1∞
ϕ

)

= PAR

G ,d0

((
J ∩ Z(g1∞)

)n
ϕ
)
= 0.

Finally, by [37, I.2.2(viii)] and (1.1) there exist M ∈ R>0 and t ∈ N such that

‖g‖ ≤ M ‖ag‖t , a ∈ AR

G, g ∈ G(A)1, (4.5)

hence we obtain the estimate

ptd,X (PAR

G ,d0
(ϕ))

(4.4)= sup
g∈G(A)1

a′∈AR

G

∣∣∣
(
PAR

G ,d0
(Xg1∞ϕ)

)
(a′g)
∣∣∣
∥∥a′g
∥∥−td

(4.5)≤ sup
g∈G(A)1

D−10

∫

AR

G

∣∣∣
(
Xg1∞ϕ

)
(ag)
∣∣∣ ‖a‖−d0 da Md ‖g‖−d

≤ Md

D0
sup

g∈G(A)1

∫

AR

G

pd,X
g1∞

(ϕ) ‖ag‖d ‖a‖−d0 ‖g‖−d da

(1.1)≤ (MC0)
d

D0

∫

AR

G

‖a‖−r da · pd,X
g1∞

(ϕ), X ∈ U(g), ϕ ∈ A∞
d (G)Kn ,J n

.

This proves that for everyn ∈ N, PAR

G ,d0
restricts to awell-defined, continuous operator

A∞d (G)Kn ,J n → A∞td ([G])Kn ,J n
. Going over to the direct limit, it follows that PAR

G ,d0
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is a well-defined, continuous retraction

A∞J (G) = lim
n→∞A∞d (G)Kn ,J n → lim

n→∞A∞td ([G])Kn ,J n = A∞J ([G]),

where the last equality holds by our Proposition 2.8 and Rem. 2.14 (which applies
equally well to A∞J ([G])). ��

4.3 LF-compatible smooth-automorphic representations and their direct sums

It will be convenient to introduce the following notion: We will call a smooth-
automorphic G(A)-representation (π, V ) LF-compatible, if V = limn→∞ V Kn ,J n

topologically. Here we used the suggestive notation V Kn ,J n
to indicate the closed

G∞-invariant subspace of Kn-invariant elements of V that are annihilated by J n . As
we have just observed,A∞J ([G]) is an LF-compatible smooth-automorphic represen-
tation, as well as every smooth-automorphic G(A)-representation that is annihilated
by a power ofJ , hence in particular every irreducible smooth-automorphic representa-
tion.Obviously, if (π, V ) is anLF-compatible smooth-automorphic subrepresentation,
then V = limn→∞ V Kn ,J n

is an LF-space.
We record the following lemma, which is based on two results of Harish-Chandra and
the fact that A∞d (G)Kn ,J n

is a Casselman-Wallach representation:

Lemma 4.6 Let n ∈ N, and let
{
V0,i
}
i∈I be a family of (g∞, K∞)-submodules of

AJ (G)Kn ,J n
whose sum is direct. Then, the sum of G∞-invariant subspaces V0,i :=

ClA∞
d (G)Kn ,J n (V0,i ) of A∞d (G)Kn ,J n

is also direct.

Proof For every i ∈ I , by Proposition 2.5 and [42], Theorem II.7.14, V0,i is a
G∞-invariant subspace of A∞d (G)Kn ,J n

, and
(
V0,i
)
(K∞)

= V0,i . Now, suppose

that
∑

i∈I φi = 0 for some φi ∈ V0,i , where φi = 0 for all but finitely many i .
Then, for every irreducible representation ρ∞ of K∞,

∑
i∈I Eρ∞(φi ) = 0. Since

Eρ∞(φi ) ∈ (V0,i
)
(K∞)

= V0,i , and the sum of V0,i ’s is direct, it follows that

Eρ∞(φi ) = 0 for all ρ∞ and i ∈ I . Thus, since A∞d (G)Kn ,J n
is a smooth repre-

sentation of K∞, by [30, Lem. 5] we have that φi = ∑ρ∞ Eρ∞(φi ) = 0 for every
i ∈ I . ��

The next result on LF-compatible smooth-automorphic subrepresentations will be
crucial.

Proposition 4.7 Let V be an LF-compatible smooth-automorphic subrepresentation,
and denote V0 := V(K∞). Suppose that

V0 =
⊕

i∈I
V0,i (4.8)

for some (g∞, K∞,G(A f ))-submodules V0,i ⊆ V0, and denote Vi := ClA∞
J (G)(V0,i ).

Then, we have the following decomposition into a locally convex direct sum of LF-
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compatible smooth-automorphic subrepresentations:

V =
i∈I

Vi . (4.9)

In particular, for every i ∈ I , we have

(Vi )(K∞) = V0,i , (4.10)

hence, if the (g∞, K∞,G(A f ))-module V0,i is irreducible, then so is the G(A)-
representation Vi . Moreover,

Vi = lim
n→∞ V Kn ,J n

i = lim
n→∞ V Kn ,J n

0,i , (4.11)

where V Kn ,J n

0,i := ClA∞
d (G)Kn ,J n

(
V Kn ,J n

0,i

)
. For every fixed n ∈ N,

V Kn ,J n

i = V Kn ,J n

0,i = 0 for all but finitely many i ∈ I . (4.12)

Proof Let us first show that for every fixed n ∈ N,

V Kn ,J n

0,i = 0 for all but finitely many i ∈ I . (4.13)

Since by (4.8)

V Kn ,J n

0 =
⊕

i∈I
V Kn ,J n

0,i , (4.14)

it suffices to prove that the (g∞, K∞)-module V Kn ,J n

0 is finitely generated, which

holds by [43], Cor. 5.4.16, since V Kn ,J n

0 ⊆ AJ (G)Kn ,J n
is obviously Z(g)-finite

and is admissible by [8], Sect. 4.3(i).
Next, by Lemma 3.3, Vi is a smooth-automorphic subrepresentation for every i ∈ I .

To prove the proposition, it remains to prove that

V =
i∈I

lim
n→∞ V Kn ,J n

0,i . (4.15)

Indeed, (4.15) implies that Vi = limn→∞ V Kn ,J n

0,i for every i ∈ I and that (4.9) holds;
(4.9) and (4.8) imply (4.10); Theorem 3.7 – or, alternatively, a combination of (4.10)
and [30], Lemma 4 – implies that Vi is irreducible whenever V0,i is; moreover, (4.10)

implies that for every n ∈ N,
(
V Kn ,J n

i

)

(K∞)
= V Kn ,J n

0,i , hence by [30], Lemma 4,

V Kn ,J n

i = V Kn ,J n

0,i , which finishes the proof of (4.11) and, by (4.13), (4.12).
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Therefore, we are left to prove (4.15). The locally convex direct sum on the right-
hand side of (4.15) is well-defined since by Lemma 4.6, for every n ∈ N the sum of

subspaces V Kn ,J n

0,i ⊆ A∞d (G)Kn ,J n
is direct. Next, we have

i∈I
lim
n→∞ V Kn ,J n

0,i = lim
n→∞

i∈I
V Kn ,J n

0,i , (4.16)

which is obvious as an equality of vector spaces, and the topology of both sides is
easily seen to be the finest locally convex topology with respect to which the inclusion

maps of the subspaces V Kn ,J n

0,i are continuous (a detail, which we leave to the reader).
To prove (4.15), by (4.16) and the LF-compatibility of V it suffices to prove that for
every n ∈ N,

V Kn ,J n =
i∈I

V Kn ,J n

0,i . (4.17)

By Proposition 2.5, [47], Lemma 11.5.2, and [42], Theorem II.7.14, for every i ∈
I , V Kn ,J n

0,i is a Casselman-Wallach representation of G∞ and

(
V Kn ,J n

0,i

)

(K∞)

=

V Kn ,J n

0,i . By [30], Lemma 4, (4.13) and (4.14), it follows that i∈I V
Kn ,J n

0,i is a

Casselman-Wallach representation of G∞ having V Kn ,J n

0 as its (g∞, K∞)-module
of K∞-finite vectors. Since by Proposition 2.5 and [47], Lem. 11.5.2, the same holds
for V Kn ,J n

, by [47], Theorem 11.6.7(2) the identity map on V Kn ,J n

0 extends to a
G∞-equivalence

ι :
i∈I

V Kn ,J n

0,i → V Kn ,J n
.

By [30], Lemma 4 (and the uniqueness of continuous extensions from a dense sub-
space), ι coincides with the (obviously continuous) inclusion map, hence ι is the
identity map. This proves (4.17) and hence the proposition. ��

4.4 The parabolic support of a smooth-automorphic form

Let A∞cusp([G]) denote the space of functions ϕ ∈ A∞([G]) := ⋃J A∞J ([G]) that
are cuspidal, i.e., satisfy ϕP = 0 for every proper parabolic F-subgroup P of G. We
say a function f ∈ C∞umg(G(F)\G(A)) is negligible along a parabolic F-subgroup
Q = LN of G, if

λQ,g,ϕ( f ) :=
∫

L(F)\L(A)1
fQ(lg) ϕ(l) dl = 0, ∀g ∈ G(A), ∀ϕ ∈ A∞cusp([L]).

(4.18)
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Remark 4.19 Usually negligibility is defined as an orthogonality-relation with respect
to all cuspidal automorphic forms, i.e., one supposes that (4.18) only holds for all
φ ∈ Acusp([L]). See [9], Sect. 2.2, [5], Sect. 6.7, [21], Sect. 1.1 and (most explicitly)
[41], p. 82 (which refers to Langlands’s original work [34]). In course of proving
Theorem 4.20 below, we will show that our definition is in fact equivalent to the
common one, but has the advantage to be intrinsic to the notion of smooth-automorphic
forms.

For every P ∈ P , let {P} denote the associate class of P , i.e., the set of parabolic F-
subgroups Q = LQNQ of G such that LQ is conjugate to LP by an element of G(F).
We defineA∞J ,{P}([G]) to be the space of smooth-automorphic forms ϕ ∈ A∞J ([G]),
which are negligible along all Q /∈ {P}. The following theorem is our first main result:

Theorem 4.20 We have the following, G(A)-equivariant decomposition into a locally
convex direct sum of LF-compatible smooth-automorphic subrepresentations:

A∞J ([G]) =
{P}

A∞J ,{P}([G]).

Proof We proceed in several steps.
Step 1: Let KL,n := Kn ∩ L(A f ). For given f ∈ C∞(L(F)AR

Q\L(A)), d ∈ Z and
X ∈ U(l), let us abbreviate

qd,X ( f ) := sup
l∈L(A)1

|(X f )(l)| ‖l‖−d[L]

where ‖l‖[L] := infγ∈L(F) ‖γ l‖ and define S([L])KL,n to be the space, which consists
of all functions f ∈ C∞(L(F)AR

Q\L(A))KL,n such that qd,X ( f ) < ∞ for all d ∈ Z

and X ∈ U(l). We equip S([L])KL,n with the Fréchet topology generated by the
seminorms qd,X and define the global Schwartz space

S([L]) := lim
n→∞S([L])KL,n .

As for any compact set C ⊆ N (A) such that N (A) = N (F)C and d = d0 ∈ N as in
Sect. 2.2.4

∣∣ fQ(lg)
∣∣ ≤
∫

C
| f (nlg)| dn

≤ pd,1( f )
∫

C
‖nlg‖d dn

1.1≤ C2d
0 pd,1( f ) ‖l‖d ‖g‖d

∫

C
‖n‖d dn, l ∈ L(A)1,

we have

∫

L(F)\L(A)1

∣∣ fQ(lg) ϕ(l)
∣∣ dl ≤ C2d

0 pd,1( f ) ‖g‖d
∫

C
‖n‖d dn

∫

L(F)\L(A)1
|ϕ(l)| ‖l‖d[L] dl

≤
(
C2d
0 ‖g‖d

∫

C
‖n‖d dn vol(L(F)\L(A)1)

)
pd,1( f ) q−d,1(ϕ)
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for all f ∈ A∞J ([G]) and for all ϕ ∈ S([L]). Hence, we have shown that for each
fixed g ∈ G(A), the function λQ,g,ϕ( f ) is separately continuous in the arguments
f ∈ A∞J ([G]) and ϕ ∈ S([L]).
Step 2: As announced in Rem. 4.19, we will now show that our definition of neg-
ligibility coincides with the usual (weaker) one, i.e., we will prove that a f ∈
C∞umg(G(F)\G(A)) is negligible along a parabolic F-subgroup Q = LN of G if
and only if λQ,g,φ( f ) = 0 for all g ∈ G(A) and all φ ∈ Acusp([L]). Necessity
being obvious, we show sufficiency: Suppose λQ,g,φ( f ) = 0 for all g ∈ G(A)

and all φ ∈ Acusp([L]), i.e., Acusp([L]) ⊆ ker λQ,g,•( f ) for every g ∈ G(A).
By continuity of λQ,g,•( f ) : S([L]) → C, as shown in Step 1 above, it follows that
ClS([L])(Acusp([L])) ⊆ ker λQ,g,•( f ) for every g ∈ G(A). Thus, it suffices to prove
that

A∞cusp([L]) ⊆ ClS([L])(Acusp([L])). (4.21)

To this end, note that for every ideal J in Z(l) and n ∈ N, we have an equality of
Fréchet spaces

A∞cusp,J ([L])KL,n ,J n = Scusp([L])KL,n ,J n
, (4.22)

Scusp([L])KL,n ,J n
(resp. A∞cusp,J ([L])KL,n ,J n

) denoting the subspace of cuspidal,

J n-annihilated functions in S([L])KL,n (resp. A∞J ([L])KL,n ). Indeed, it is a simple
consequence of [37], Cor. I.2.11 and I.2.2.(vi), ibidem, that these two spaces coincide
as sets. Moreover, for every parabolic F-subgroup Q′ = L ′N ′ of L , l ∈ L(A) and
Y ∈ J n , the inequalities

∣∣ fQ′(l)
∣∣ ≤
∫

N ′(F)\N ′(A)

∣∣ f (n′l)
∣∣ dn′ ≤ ‖ f ‖∞ = q0,1( f ) for all f ∈ S([L])KL,n

qd,X (Y f ) = sup
l∈L(A)1

|(XY f )(l)| ‖l‖−d[L] = qd,XY ( f ) for all d ∈ Z, X ∈ U(l) and

f ∈ S([L])KL,n

imply that the assignments f �→ fQ′(l) and f �→ Y f define continuous linear
operators S([L])KL,n → C and S([L])KL,n → S([L])KL,n , respectively. Thus, the
intersection Scusp([L])KL,n ,J n

of their kernels is a closed subspace of S([L])KL,n

and hence Fréchet. As the identity map Scusp([L])KL,n ,J n → A∞cusp,J ([L])KL,n ,J n

is obviously continuous, the claimed equality (4.22) of Fréchet spaces finally fol-
lows from the open mapping theorem. Thus, writing Acusp,J ([L])KL,n ,J n :=
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A∞cusp,J ([L])KL,n ,J n

(K∞) , we have

A∞cusp([L]) =
⋃

n,J
A∞cusp,J ([L])KL,n ,J n

=
⋃

n,J
ClA∞

cusp,J ([L])KL,n ,J n (Acusp,J ([L])KL,n ,J n
)

(4.22)=
⋃

n,J
ClScusp([L])KL,n ,J n (Acusp,J ([L])KL,n ,J n

)

⊆
⋃

n,J
ClS([L])(Acusp,J ([L])KL,n ,J n

)

⊆ ClS([L])

⎛

⎝
⋃

n,J
Acusp,J ([L])KL,n ,J n

⎞

⎠

= ClS([L])(Acusp([L])).

This proves (4.21) and hence that a function f ∈ C∞umg(G(F)\G(A)) is negligible
along a parabolic F-subgroup Q = LN of G if and only if λQ,g,φ( f ) = 0 for all
g ∈ G(A) and all φ ∈ Acusp([L]).
Step 3: Step 2 now allows us to use Langlands’s algebraic direct sum decomposition

C∞umg(G(F)\G(A)) =
⊕

{P}
C∞umg,{P}(G(F)\G(A)), (4.23)

whereC∞umg,{P}(G(F)\G(A)) denotes the space of functions f ∈ C∞umg(G(F)\G(A))

that are negligible along all Q /∈ {P}. See [9], Theorem 2.4, or [16], Theorem 1.16
and Cor. 4.7 for a proof. Since the spaces C∞umg,{P}(G(F)\G(A)) are invariant under
the action of G(A) and U(g) by right translation, (4.23) implies that

A∞J ([G]) =
⊕

{P}
A∞J ,{P}([G]) (4.24)

as a G(A)-equivariant decomposition of vector spaces and

AJ ([G]) =
⊕

{P}
AJ ,{P}([G]), (4.25)

as a decomposition of (g∞, K∞,G(A f ))-modules, where AJ ,{P}([G]) := A∞J ,{P}
([G])(K∞). See also [21], 1.1. It hence follows from our Proposition 4.7 that we
have the following decomposition into a locally convex direct sum of LF-compatible
smooth-automorphic subrepresentations:

A∞J ([G]) =
{P}

ClA∞
J ([G])(AJ ,{P}([G])). (4.26)
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Therefore, it remains to prove that for every {P}, ClA∞
J ([G])(AJ ,{P}([G])) =

A∞J ,{P}([G]). By (4.26) and (4.24) it suffices to prove that ClA∞
J ([G])(AJ ,{P}([G])) ⊆

A∞J ,{P}([G]). We recall from Step 1 above that the linear functional λQ,g,ϕ :
A∞J ([G]) → C is continuous for every F-parabolic subgroup Q = LN of G,
g ∈ G(A) and ϕ ∈ S([L]), hence, by (4.22), in particular for every ϕ ∈ A∞cusp([L]) ⊆
S([L]). Therefore, A∞J ,{P}([G]) is closed in A∞J ([G]). This shows the claim. ��
Remark 4.27 If one applies the common definition of “being in the support of {P}” by
using classical cuspidal automorphic forms in the notion of negligibility, cf. Rem. 4.19,
then it seems to us that also an alternative approach to Theorem 4.20 is possible:
Working with weighted L2-spaces as Franke in [20], §3, or Bernstein-Lapid in their
proof or their main result in [1], it might be that the arguments leading to Franke’s
Theorem 6 in [20] (which shows a topological decomposition of a certain weighted
Sobolev space of functions of uniform moderate growth) can be adapted to prove a
topological direct sum decomposition of C∞umg(G(F)AR

G\G(A)) along the classical
parabolic support. Otherwise said, this approach is likely to provide a topologized,
adelic version of the analogous decomposition given in [9], Theorem 2.4, and in [16],
Theorem 1.16 and Cor. 4.7. Our argument here, however, has the advantage to be
self-contained, shorter in presentation and also to be tuned to fit smooth-automorphic
forms best (by defining negligibility intrinsically for smooth-automorphic forms).

4.5 Cuspidal smooth-automorphic forms

We will now consider the subspace A∞cusp,J ([G]) of cuspidal functions in A∞J ([G])
more closely. It is well-known (cf. combine Step 2 in the proof of Theorem 4.20 with
[9], Proposition 2.3 ) that

A∞cusp,J ([G]) = A∞J ,{G}([G]).

Thus, Theorem 4.20 implies the following

Corollary 4.28 The space of cuspidal smooth-automorphic forms A∞cusp,J ([G]) is an
LF-compatible smooth-automorphic subrepresentation.

It is the goal of this subsection to give a refined description of the smooth-
automorphic G(A)-representation A∞cusp,J ([G]) as a countable locally convex direct
sum of irreducible subrepresentations.
First, to settle terminology,wewill call a smooth-automorphic representation cuspidal,
if it is isomorphic to a subquotient ofA∞cusp,J ([G]) (for some idealJ ofZ(g) of finite

codimension). Now, let L2
cusp([G]) be the Hilbert space of classes of left-G(F)AR

G-
invariant cuspidal functions f : G(A) → C, which are square-integrable modulo
G(F)AR

G , endowed with the L2-norm. As it is well-known (following from [24],
Sect. 7.2), L2

cusp([G]) is a unitary representation of G(A) by right translation, which
decomposes as a countable direct Hilbert sum of irreducible subrepresentations Hi ,

L2
cusp([G]) =

⊕̂
i∈I Hi , (4.29)
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eachofwhich appearingwithfinitemultiplicitym(Hi ) := dimHomG(A)(Hi , L2
cusp([G]))

(which may grow unboundedly, though, as Hi varies through i ∈ I , cf. [22],
(1.1)). It is finally a consequence of [6], Proposition 5.26, that hence there exists
a (unique) subset I (J ) ⊆ I such that we have the following decomposition of
Acusp,J ([G]) := A∞cusp,J ([G])(K∞) into a countable algebraic direct sum of irre-
ducible (g∞, K∞,G(A f ))-modules:

Acusp,J ([G]) ∼=
⊕

i∈I (J )

H∞A

i,(K∞). (4.30)

Here we identify each element of the right-hand side, which is by definition an equiv-
alence class of almost everywhere equal measurable functions on G(F)AR

G\G(A),
with its unique continuous representative.
On the level of cuspidal smooth-automorphic forms, it easily follows from [5], Eq.
6.8.4 in combination with our Proposition 2.3, that we have an identification of vector
spaces

L2
cusp,J ([G])∞A

(Z(g))
∼= A∞cusp,J ([G]),

of the space of smooth, Z(g)-finite vectors4 in L2
cusp,J ([G]) := ⊕̂i∈I (J ) Hi and

the space of cuspidal smooth-automorphic forms, given by assigning each class in
L2
cusp,J ([G])∞A

(Z(g))
its unique continuous representative.

It is by no means clear, however, that this identification is compatible with the direct
sum decomposition of L2

cusp,J ([G]), i.e., it is not clear that the LF-spaces of globally
smooth vectors in the irreducible subrepresentations Hi , i ∈ I (J ), of the Hilbert
space representation L2

cusp([G]) identify with irreducible subrepresentations of the
LF-space A∞cusp,J ([G]). It is the goal of this section to establish the following

Theorem 4.31 The isomorphism (4.30) extends to a G(A)-equivariant decomposition
into a countable locally convex direct sum of LF-compatible smooth-automorphic
subrepresentations:

A∞cusp,J ([G]) ∼=
i∈I (J )

H∞A

i .

Consequently, for each i ∈ I (J ), H∞A

i = limn(H∞R

i )Kn with its natural LF-space
topology embeds as a G(A)-subrepresentation intoA∞cusp,J ([G]). This characterises
the irreducible cuspidal smooth-automorphic subrepresentations of A∞J (G) as the

subrepresentations isomorphic to the LF-spacesH∞A

i of smooth vectors in the unitary
Hilbert space representations Hi , i ∈ I (J ).

Proof For each i ∈ I , let uswrite θi for the linearmap assigning each class [ f ] ∈ H∞A

i
its unique continuous representative and let us abbreviate H∞A

i,(K∞) := θi (H∞A

i,(K∞)).

4 Unlike stated in the literature, the additional assumption of Z(g)-finiteness is essential as
L2cusp,J ([G])∞A �= A∞cusp,J ([G]).
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Then, combining Proposition 4.3, Cor. 4.28 and (4.30) with Proposition 4.7 implies
that we have the following decomposition of the G(A)-representation A∞cusp,J ([G])
into a locally convex direct sum of irreducible LF-compatible smooth-automorphic
subrepresentations:

A∞cusp,J ([G]) =
i∈I (J )

ClA∞
J ([G])(H∞A

i,(K∞)).

We now prove that for every i ∈ I (J ) the map θi extends to an isomorphism
H∞A

i
∼= ClA∞

J ([G])(H∞A

i,(K∞)) of G(A)-representations. As we have just observed, for

every i ∈ I (J ), ClA∞
J ([G])(H∞A

i,(K∞)) is an irreducible smooth-automorphic subrepre-

sentation. Hence, by Proposition 3.8 eachClA∞
J ([G])(H∞A

i,(K∞)) is a Casselman-Wallach

representation of G(A), which has H∞A

i,(K∞) as its (g∞, K∞,G(A f ))-module of K∞-
finite vectors, cf. Theorem 3.7 and Proposition 4.3. Similarly, by [47], Lemmas
11.5.1 and 11.5.2 (and the well-known fact that an irreducible unitary representa-
tion of G(A) is admissible, cf. [19], Theorem 4.(2)) H∞A

i = limn
(H∞R

i

)Kn is a
Casselman-Wallach representation ofG(A). Obviously, θi is an isomorphism between
the (g∞, K∞,G(A f ))-modules H∞A

i,(K∞) and H∞A

i,(K∞). Thus, as argued in the proof
of Lemma 1.13.(2) θi must extend to an equivalence of G(A)-representations (and
hence, in particular, a bi-continuous map)

θ̄i : H∞A

i
∼−→ ClA∞

J ([G])(H∞A

i,(K∞)).

In order to complete the proof, it remains to show that θ̄i ([ f ]) = θi ([ f ]) for every
[ f ] ∈ H∞A

i . If [ f ] ∈ H∞A

i , then [ f ] ∈ (H∞R

i

)Kn for some n ∈ N, hence by [30,

Lemma 4] there exists a sequence ([ fm])m∈N, fm ∈
(H∞R

i

)Kn

(K∞)
converging to [ f ] in

(H∞R

i

)Kn , hence in H∞A

i , hence in Hi ⊆ L2([G]) and hence, replacing the original
sequence ([ fm])m∈N by a suitable subsequence and choosing (any) representatives for
our classes in sight, the sequence ( fm)m∈N converges almost everywhere on G(A)

to f . On the other hand, by the continuity of θ̄i , θi ([ fm]) = θ̄i ([ fm]) → θ̄i ([ f ])
in A∞J ([G]), hence also pointwise everywhere on G(A), cf. Sect. 2.2.4. It follows

that θ̄i ([ f ]) = f almost everywhere on G(A), which, together with the continuity of
θ̄i ([ f ]), cf. Rem. 2.17, implies that θ̄i ([ f ]) = θi ([ f ]), which proves the claim. ��
Remark 4.32 Theorem 4.31 has the following consequence: Every cuspidal smooth-
automorphic form ϕ is a finite sum of smooth cuspidal functions ϕi ∈ H∞A

i . For K∞-
finite cuspidal automorphic forms this is well-known and an immediate consequence
of (4.30), whereas it is in general wrong for elements of the space L2

cusp,J ([G]). In
view of the above mentioned, natural inclusions

L2
cusp,J ([G]) � A∞cusp,J ([G]) � Acusp,J ([G])

this finiteness-statement hence amounts to thedictum that cuspidal smooth-automorphic
forms ϕ are more similar to K∞-finite cuspidal automorphic forms than to
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square-integrable cuspidal functions. Remarkably, this is so, though the quotient
A∞J ([G])/AJ ([G]) has uncountable dimension.

4.6 The cuspidal support of a smooth-automorphic form

We will now give a definition of the cuspidal support of a smooth-automorphic form.
Our notion of cuspidal support—which will be intrinsic to the smooth-automorphic
setting—will extend the usual definition for classical automorphic forms to the frame-
work of smooth-automorphic forms. Theorem 4.31 will be a crucial ingredient in what
follows.
Let {P} denote an associate class of parabolic F-subgroups of G, represented by
P = LP NP ∈ P . Given an ideal J of Z(g) of finite codimension, an associate class
of cuspidal smooth-automorphic representations is represented by a pair ([π̃ ],�),
where

(1) [π̃] is an equivalence class of an irreducible cuspidal smooth-automorphic sub-
representation π̃ of LP (A) and

(2) � : AR

P → C
∗ is a Lie group character, which is trivial on AR

G ,

such that the following compatibility-hypothesis is satisfied: Let λ0 := d� ∈ ǎGP,C
be

the derivative of� and consider the irreducible smooth-automorphic subrepresentation
π := e〈λ0,HP (·)〉 ·π̃ of LP (A).We suppose that theWeyl group orbit of the infinitesimal
character of π∞ :=⊗pr

v∈S∞
πv (cf. Theorem 3.15) annihilates J . Here, J is viewed by

means of the Harish-Chandra isomorphism as an ideal of the algebra S(h)WG of WG-
fixed elements in the symmetric algebra S(h) of a Cartan subalgebra h of g∞,C, which
contains a0,C.
In fact, given a pair ([π̃ ],�) as above, the actual associate class of smooth-automorphic
subrepresentations, represented by ([π̃ ],�) (or, equivalently, by [π ]), is given by the
collection ϕ([π ]) = {ϕQ([π ])}Q∈{P} of finite sets of equivalence classes ϕQ([π ]) :=
{[w · π ] | w ∈ W (LP ) such that wLPw−1 = LQ} of smooth-automorphic subrepre-
sentations w · π of LQ(A), where as usual (w · π)(	) := π(w−1	w) for 	 ∈ LQ(A).
Given J , we denote by �J ,{P} the set of all associate classes ϕ([π ]), represented by
a pair ([π̃],�) as above.
We point out that our notion of associate classes of cuspidal smooth-automorphic
subrepresentations extends the usual notion of associate classes (cf. [21], Sect. 1.2)
into the context of smooth-automorphic forms, i.e., the collections ϕ([π(K∞)]) of finite
sets of equivalence classes of (g∞, K∞,G(A f ))-modules of K∞-finite vectors in π

and itsW (LP )-conjugates coincide with the associate classes of cuspidal automorphic
representations as defined in [21], Sect. 1.2 (for ideals J stemming from coefficients
in automorphic cohomology; however, see also [21], Rem. 3.4): The verification of
this claim relies crucially on the characterization of the irreducible cuspidal smooth-
automorphic subrepresentations as the spaces of globally smooth vectorsH∞A

i , i ∈ I ,
provided by Theorem 4.31 as applied to the Levi-subgroups LQ(A), and the following
lemma:

123



On the notion of the parabolic and the cuspidal support... 497

Lemma 4.33 For any two irreducible direct summandsH andH′ in the decomposition
L2
cusp([L]) =

⊕̂
i∈I Hi , the following assertions are equivalent:

(1) H ∼= H′
(2) H∞A ∼= H′∞A

(3) H∞A

(K∞)
∼= H′∞A

(K∞)

Proof Recalling from Theorem 4.31 and Proposition 3.8 that H∞A and H′∞A are
Casselman-Wallach representations of G(A), the equivalence of (2) and (3) is the
assertion of Lemma 1.13.(2). That (3) implies (1) follows from well-known results on
irreducible unitary representations of local groups G(Fv), proved by Harish-Chandra,
Bernstein and Godement, or, more precisely, from a combination of [19], Theorem 3
& 4, [46], Theorem 3.4.11 and [14], Theorem 2.8 & Sect. 2.8 ibidem. ��

Having recalled this dictionary of definitions, let ϕ([π ]) ∈ �J ,{P} and let I GP (π̃) be
the space of all smooth, left L(F)N (A)AR

P -invariant functions f : G(A) → C, such
that for every g ∈ G(A) the function l �→ f (lg) on L(A) is contained in

i∈I
H∞A

i
∼=π̃

H∞A

i
∼= π̃m(π̃),

where m(π̃) denotes the finite multiplicity of π̃ inA∞cusp,JL
([L]) (in one – and hence

any – A∞cusp,JL
([L]), into which π̃ embeds). By Lemma 4.33, this use of notation is

consistent with our previous one, i.e.,

m(π̃) = dimHomL(A)(π̃ ,A∞cusp,JL
([L])) = dimHomL(A)(Hi , L

2
cusp([L])),

for each Hi , i ∈ I , such that H∞A

i
∼= π̃ . For a function f ∈ I GP (π̃), λ ∈ ǎGP,C

and
g ∈ G(A) an Eisenstein series may be formally defined as

EP ( f , λ)(g) :=
∑

γ∈P(F)\G(F)

f (γ g)e〈λ+ρP ,HP (γ g)〉.

If f is K∞-finite, the so-defined Eisenstein series is known to converge absolutely and
uniformly on compact subsets of G(A)×{λ ∈ ǎGP,C

| e(λ) ∈ ρP + ǎG+P }. In this case,
EP ( f , λ) is an automorphic form. The map λ �→ EP ( f , λ)(g) can be analytically
continued to a meromorphic function on all of ǎGP,C, cf. [37], Theorem IV.1.8 or [34],
Sect.7. Its singularities (i.e., poles) lie along certain affine hyperplanes of the form
Rα,t := {ξ ∈ ǎGP,C

|(ξ, α) = t} for some constant t and some root α ∈ �(P, AP ),
called “root-hyperplanes” (cf. [37], Proposition IV.1.11 (a) or [34], pp. 170–171). This
entails the assertion that for each ξ0 ∈ ǎGP,C

, there is a finite subset �ξ0 ⊆ �(P, AP )

and an integer k ≥ 0, such that the function

qξ0(λ) :=
∏

α∈�ξ0

〈λ− ξ0, α̌〉k,
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which is a non-zero, holomorphic function in λ ∈ ǎGP,C
, has the property to make the

assignment ǎGP,C
→ C λ �→ qξ0(λ)EP ( f , λ)(g) holomorphic in a small neighbour-

hood of ξ0 for all K∞-finite f ∈ I GP (π̃) and g ∈ G(A).
Now, let S(ǎGP,C

) be the symmetric algebra of ǎGP,C
, viewed as the space of differential

operators ∂ with constant coefficients on ǎGP,C, cf. Sect. 1.3.1. Then, at λ0 = d� as
above, the formal assignment defined by

Eisπ̃ ,λ0( f ⊗ ∂) := ∂(qλ0(λ)EP( f , λ))|λ=λ0

turns out to be a well-defined map on the K∞-finite elements f ∈ I GP (π̃) and ∂ ∈
S(ǎGP,C

) and we set for each ϕ = ϕ([π ]) ∈ �J ,{P},

AJ ,{P},ϕ([G]) := Im(Eisπ̃ ,λ0).

Its definition is independent of the choice of the representatives P and ([π̃ ],�),
thanks to the functional equations satisfied by the Eisenstein series considered, cf.
[37], Theorem IV.1.10. Moreover, AJ ,{P},ϕ([G]) is a (g∞, K∞,G(A f ))-submodule
of AJ ,{P}([G]), cf. [21], p. 778. Hence, combining Lemma 3.3, Proposition 4.3 and
Theorem 4.20,

A∞J ,{P},ϕ([G]) := ClA∞
J ([G])(AJ ,{P},ϕ([G]))

is a smooth-automorphic subrepresentation, lying inside the LF-compatible subrepre-
sentation A∞J ,{P}([G]). The following is our last main result:

Theorem 4.34 For every P ∈ P , we have the following G(A)-equivariant decom-
position into a locally convex direct sum of LF-compatible smooth-automorphic
subrepresentations:

A∞J ,{P}([G]) =
ϕ∈�J ,{P}

A∞J ,{P},ϕ([G]).

Proof After our preparatorywork above,we only need to observe that for every P ∈ P ,
we have a decomposition

AJ ,{P}([G]) =
⊕

ϕ∈�{P}
AJ ,{P},ϕ([G])

into a direct sum of (g∞, K∞,G(A f ))-submodules [21], Theorem 1.4 and Rem. 3.4,
loc. cit. Thus, our Proposition 4.7 implies the desired result. ��
Remark 4.35 As implied by Theorem 4.34, taking the topological closure inA∞J ([G])
of the image of what is given by forming all possible derivatives of residues of Eisen-
stein series, attached to the subspace of K∞-finite elements in the various induced
representations I GP (π̃), yields all smooth-automorphic forms. It will be interesting to
know, whether this process can be inverted in the sense that the steps of taking topolog-
ical closures and taking K∞-finite vectors can be interchanged, i.e., whether one may
continuously extend the map Eisπ̃ ,λ0 to all of I

G
P (π̃) and still obtainA∞J ,{P},ϕ([G]) as
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its image. Yet, to this end, one would need to specify a meaningful topology on I GP (π̃)

that reveals the space of K∞-finite vectors inside as a dense subspace. Interesting
results in this direction are contained in [35, 48]. However, in this reference a very
much different topological approach, which is more suited to an ad-hoc analysis of
induced representations rather than to the full spaces A∞J ,{P},ϕ([G]), was taken. We
hope to report on this question in the forthcoming “part 2” of the present paper, which
we will devote to the analytic continuation of smooth-automorphic Eisenstein series,
i.e., to a smooth-automorphic version of the results in [37], IV.
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