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Abstract
In this paper, we first construct some explicit solutions to the b-family of equations,
which will become unbounded in a finite time. Then, we investigate the asymptotic
stability of the aforementioned singular solutions of the b-family of equations in the
Sobolev space Hs with s > 7

2 . It is also interesting to point out that this stability highly
depends on the values of parameter b, that is, b ∈ (−1, 2]. The proof is based on the
detailed analysis on the estimates of the perturbed solutions and the properties of the
corresponding linear operators.

Keywords Shallow water wave equation · b-family of equation · Singular solution ·
Asymptotic stability

Mathematics Subject Classification 35B35 · 37L15 · 37L05

1 Introduction andmain results

1.1 Introduction

In this paper, we consider the following b-family of equations (b-equation)

ut − uxxt + (b + 1)uux − buxuxx − uuxxx = 0, (1.1)

and the initial datum is given by
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u(0, x) = u0(x). (1.2)

Here b is a real parameter, and u(x, t) is a horizontal velocity. The b-equation was
introduced originally by Degasperis, Holm and Hone [16, 17] (see also Holm and
Staley [29, 30]) and can be derived as the family of asymptotically equivalent shal-
low water wave equations [18, 19]. Note that the b-equation can be rewritten in the
following nonlocal form

ut + uux + ∂x (1 − ∂2x )
−1

(
b

2
u2 + 3 − b

2
(ux )

2
)

= 0, (1.3)

where the nonlocal term represents a balance between the dispersion and nonlinearity.
The equation (1.3) can be seen as a dispersive perturbation of the famous Burgers
equation ut + uux = 0.

We note that if we take b = 2 and b = 3, then the b-equation (1.1) reduces into two
integrable members, i.e., the Camassa–Holm (CH) equation [5] and the Degasperis-
Procesi (DP) equation [18], respectively. Moreover, for any b ∈ R, the b-equation
(1.1) possesses the following peakon traveling wave solutions

u(x, t) = ce−|x−ct |,

where c is a constant. In fact, this equation possesses n-peakons like

u(x, t) =
n∑
j=1

p j (t)e
−|x−q j (t)|,

where the positions q j and the momenta p j satisfy a system of ODEs [35].
The well-posedness of (1.1) in the Sobolev space Hs with s > 3/2 has been proved

extensively (see for instance Escher et al. [20], Escher and Yin [21], Zhang and Yin
[37], Grayshan [24] and Himonas and Holliman [28]). For the ill-posedness of b-
equation (1.1), Himonas et al. [27] showed that it is ill-posed in Hs when s < 3

2
and b > 1 on both the torus and the line. On the other hand, whenever b < 1,
Novruzov [35] established the ill-posedness for (1.1) by constructing some peakon-
antipeakon solutions. However, the results in [35] can hold by adding the b-equation
an additional dispersion term k(sign(u)(u − uxx )x . To the best of our knowledge,
if one removes this term, the ill-posedness of the b-equation (1.1) is still not clear.
For the remaining critical case s = 3

2 , Guo et al. pointed out that the b-equation

with 1 < b ≤ 3 is ill-posed in the critical Sobolev space H
3
2 on both the torus

and the line (see Remark 1.2 in [25]). Besides the above results, there is many other
literatures about the well-posedness theory, traveling wave solutions, stability of the
solution map, unique continuation and other analytic and geometric properties of the
b-equation, CH-equation and DP-equation (see [3, 4, 6, 10–12] and the references
therein). Here we would like to mention that there are also some interesting works
on the Lipschitz metrics for nonlinear wave equations or Novikov equation and other
shallow water wave equations [2, 7, 9].
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Recently, Li et al. [33] studied the wave-breaking mechanism and dynamical
behavior of solutions near the explicit self-similar singularity for the two component
Camassa–Holmequations. In 2019,Li andYan [34] considered the dynamical behavior
of solutions near explicit self-similar singularity for a class of nonlinear shallow water
models including the Camassa–Holm equation, the dispersive rod equation. They
showed that the constructed explicit self-similar solutions for the Dullin-Gottwald-
Holm equation, the Camassa–Holm equation and the dispersive rod equation are
asymptotic stable, but for the Korteweg-de Vries equation and the Benjamin-Bona-
Mahony equation being unstable. Gao and Chen [23] also studied the stability problem
of special solutions for the Dullin-Gottwald-Holm equation. For the stability of soli-
tary wave solutions to the shallow water wave equations, we refer the readers to the
works [13–15, 26] and the references therein.

It is well-known that wave breaking phenomena often happens for shallow water
wave equations. For example, the b-equation admits multipeakon solutions.Moreover,
as pointed out most recently by Barnes and Hone [1] the b-family of equations admits
the Burgers “ramp and cliffs" solutions for −1 < b < 1, in particular the following
similarity ramp solution (see (1.19) in [1])

u(t, x) = x

(b + 1)t
. (1.4)

Beyond the ramp (1.4), the scaling similarity solutions of the b-equation are extensively
investigated and are related to an autonomous third-order ODE [1]. We remark here
that in Sect. 2, for our purpose we shall derive the following explicit singular solutions
to the b-equation

ū(t, x) = 1

1 + b
· c − x

T − t
, (1.5)

where T > 0, c are arbitrary constants. We mention that the work of Holm and Staley
[29, 30] presented a numerical study of the solutions of b-equation (1.1) for different
values of b. More precisely, they pointed out that there are three distinct parameter
regimes separated by b = 1 and b = −1, that is, peakon regime for b > 1, ramp-cliff
regime for −1 < b < 1 and lefton regime for b < −1. At the same time, there
have been some recent literatures on the (spectral) stability/instability of the peakon
solutions to the b-equation (1.1), see for example Charalampidis, Parker, Kevrekidis
et al. [8], Lafortune and Pelinovsky [32]. However, it seems that the stability for ramp
solutions (1.4), or (1.5) has not been proven before.

In this paper, we shall focus on the ramp solutions (1.5) to the b-equation and
prove the asymptotic stability of these solutions by employing the Banach fixed point
theorem and the analysis on the perturbed solutions. The most novelty is that our
results depend on the parameter b in the equation (1.1). More precisely, the stability
of the explicit solutions can persist only for b ∈ (−1, 2] including the corresponding
results for the CH-equation. On the contrary, if b /∈ (−1, 2], the stability for these
explicit solutions remains unsolved.
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1.2 Main results

We provide the stability of the above singular ramp solutions (1.5) for the b-equation
(1.1).

Theorem 1.1 Assume that −1 < b ≤ 2, s > 7
2 . Let ε > 0 is a sufficiently small

parameter. Then, the solution (2.4) of the b-equation (1.1) is asymptotically stable,
that is, whenever the initial data u0(x) satisfies

‖u0(·) − ū(0, ·)‖Hs+1 < ε, (1.6)

then there exists a solution u of (1.1) such that

lim
t→T− ‖u(t, ·) − ū(·)‖Hs = 0, (t, x) ∈ (0, T ) × R.

Remark 1.1 When b = 2, the b-equation (1.1) becomes the celebrated Camassa–Holm
equation. This means that the results in Theorem 1.2 also hold for the Camassa–Holm
equation.

Remark 1.2 The condition (1.6) for the initial data implies that Hs+1(R) norm of
u0(x)− c−x

(1+b)T is sufficiently small and u0(x) approaches to the linear function c−x
(1+b)T

as |x | → ∞. In addition, by the Sobolev embedding theorem [22] Hs(Rn) ↪→ Cr (Rn)

for s > r + n
2 , we know that u0(x) is actually smooth in C4(R).

In this paper, we denote the usual norms of Lebesgue space L2(R) and Sobolev
space Hs(R) by ‖ · ‖L2(R) and ‖ · ‖Hs (R), respectively. For brevity, we often use the
notations L2 and Hs , instead of L2(R), Hs(R). In the meantime, we use ∗ to represent
the convolution. The symbol [A, B] denotes the commutator of two linear operators
A, B. D(L) stands for the domain of the operator L.

The rest of this paper is organized as follows. In Sect. 2, we construct the explicit
singular solutions for the b-equation (1.1). Section3 is devoted to studying the stabil-
ity behavior of solutions near the derived explicit singular solutions and to proving
Theorem 1.1.

2 Explicit solutions

In this section, we are going to find the following solutions

u(t, x) =
n∑
j=0

a j (t)x
j ,

where a j (t) ( j = 0, 1, · · · , n) are to be determined. Substituting the above formula
into (1.1) and letting a j = 0 ( j ≥ 2) gives the following solutions

ū(t, x) = x + c2
(1 + b)t − c1

, (2.1)
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Stability of singular solutions to the b-family… 67

where c1, c2 are arbitrary constants. Here we have used the homogeneous balance
principle. Throughout this paper, we assume that

2 − b

1 + b
≥ 0, i.e., − 1 < b ≤ 2. (2.2)

Since we only have interest in the singular solutions, so we let c1 = (1+b)T , c2 =
−c. Then, (2.1) becomes

ū(t, x) = 1

1 + b
· c − x

T − t
, (2.3)

where T > 0, c are constants. Thus, as a conclusion, we obtain an existence result of
solutions to the b-equation (1.1).

Theorem 2.1 Assume T > 0 be the maximal existence time of the solution. Then, the
b-equation has the following singular solutions

ū(t, x) = 1

1 + b
· c − x

T − t
, (2.4)

where c is an arbitrary constant.

Remark 2.1 We know that

∂x ū(t, x) = − 1

1 + b
· 1

T − t
→ −∞,

as t tends to T from below. This implies the solutions (2.4) are indeed the singular
solutions to the b-family of equations (1.1).

3 Proof of main results

In this section, we consider stability of the explicit solution (2.3) for the b-equation
(1.1). Let

u(t, x) = v(t, x) + ū(t, x), (3.1)

where ū(t, x) is given in (2.3). Substituting (3.1) into (1.1) leads to the following
dissipative quasilinear equation with singular coefficients

vt − vxxt + (b + 1)vvx − bvxvxx − vvxxx

− 1

1 + b
· c − x

T − t
vxxx + b

1 + b
· 1

T − t
vxx + c − x

T − t
vx

− 1

T − t
v = 0, ∀ (t, x) ∈ (0, T ) × R, (3.2)
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and the initial condition is

v(0, x) = u0(x) − 1

1 + b
· c − x

T
, ∀x ∈ R. (3.3)

Due to the presence of singular terms in (3.2), we now introduce the coordinates in
the form

τ = − log(T − t), y = x

T − t
.

Then, we denote the solution v(t, x) = φ(τ, y). A direct computation shows that

vt = eτ (φτ + yφy), vx = eτ φy, vxx = e2τ φyy,

and

vxxx = e3τ φyyy, vt xx = e3τ (φτ yy + 2φyy + yφyyy).

Based on the above identities, the equation (3.2) can be transformed to

(
φ − e2τ φyy

)
τ

− ye2τ φyy + 1

1 + b
e2τ

(
y − ceτ

)
φyyy − φ

+ b

1 + b
e2τ φyy + (1 + b)φφy + ceτ φy = e2τ

(
bφyφyy + φφyyy

)
. (3.4)

Furthermore, we introduce the variables z = ye−τ , ψ(τ, z) = e−τ φ. Noting that

φτ = eτψ + eτψτ − zeτψz, φy = ψz, φyy = e−τψzz, φyyy = e−2τψzzz,

and

φτ y = ψτ z − zψzz, φτ yy = e−τ (ψτ zz − ψzz − zψzzz) ,

we can rewrite (3.4) as follows

ψτ − ψτ zz − 1

1 + b
ψzz − c + bz

1 + b
ψzzz + cψz + (b + 1)ψψz = bψzψzz + ψψzzz .

(3.5)

Recall the operator � = (1− ∂2z )
1/2 and we know that �−2 f = p ∗ f for any f ∈

L2(R), where p(z) = 1
2e

−|z| is the fundamental solution to the equation (1−∂2z )p = δ.
Then, it would be convenient to introduce a new unknown w = (1 − ∂2z )ψ , which
implies that

ψ = �−2w = p ∗ w.
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It is easy to see that

(p ∗ w)zz = p ∗ w − w, ψzzz = (p ∗ w)z − wz .

As a consequence, the equation (3.5) can be written by in the non-local form

wτ + 1

1 + b
w + c + bz

1 + b
wz − 1

1 + b
p ∗ w + b(c − z)

1 + b
(p ∗ w)z

+(1 + b)(p ∗ w)(p ∗ w)z

= b(p ∗ w)z(p ∗ w − w) + (p ∗ w)
(
(p ∗ w)z − wz

)
. (3.6)

We need to derive the corresponding initial condition for w. Note the relations

v(t, x) = eτψ(τ, z), τ = − log(T − t), z = ye−τ = x

T − t
(T − t) = x,

we have

v(0, x) = 1

T
ψ(− log T , x), vxx (0, x) = 1

T
ψzz(− log T , x)

and

w(− log T , z) = ψ(− log T , z) − ψzz(− log T , z)

= T

[
u0(x) − u′′

0(x) − 1

1 + b
· c − x

T

]
.

Hence, it suggests to let t ′ = τ + log T and the initial condition for w can be given as

w(0, z) = T [u0(z) − u′′
0(z)] − c − z

1 + b
≡ w0(z). (3.7)

The boundary conditions for w are

lim|z|→+∞ w(τ, z) = 0, lim|z|→+∞ wz(τ, z) = 0. (3.8)

While, the equation (3.6) can be rewritten in the form

wt ′ + 1

1 + b
w + c + bz

1 + b
wz − 1

1 + b
p ∗ w + b(c − z)

1 + b
(p ∗ w)z

+(1 + b)(p ∗ w)(p ∗ w)z = b(p ∗ w)z(p ∗ w − w) + (p ∗ w)
(
(p ∗ w)z − wz

)
.

For simplicity, we still denote t ′ by τ and have the equation in the form (3.6).
We introduce a commutator estimate which can be found in [31].
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Lemma 3.1 Let s > 0. Then it holds that

‖[�s, u]v‖L2 ≤ C
(
‖∂xu‖L∞‖�s−1v‖L2 + ‖�su‖L2‖v‖L∞

)
, (3.9)

where positive constant C depending only on s.

Now we are ready to derive some a priori estimates for the solution of perturbation
equations (3.6), (3.7) and (3.8). Applying �s with s > 0 at the both sides of (3.6)
yields

(�sw)τ + 1

1 + b
�sw + �s

(
c + bz

1 + b
wz

)
− 1

1 + b
�s(p ∗ w)

+�s
[
b(c − z)

1 + b
(p ∗ w)z

]

+(1 + b)�s[(p ∗ w)(p ∗ w)z]
= b�s[(p ∗ w)z(p ∗ w − w)] + �s

[
(p ∗ w)

(
(p ∗ w)z − wz

)]
. (3.10)

Lemma 3.2 Let s > 7
2 and the Assumption (2.2) holds. Then, we have

‖w‖Hs ≤ C exp

(
− 2 − b

2(1 + b)
τ

)
‖w0‖Hs , (3.11)

where C is a positive constant depending on s and b.

Proof Taking L2-inner product with (3.10) by �sw gives

1

2

d

dτ
‖w‖2Hs + 1

1 + b
‖w‖2Hs +

∫
R

�sw · �s
(
c + bz

1 + b
wz

)
dz

− 1

1 + b

∫
R

�sw · �s(p ∗ w)dz +
∫
R

�sw · �s
[
b(c − z)

1 + b
(p ∗ w)z

]
dz

+(1 + b)
∫
R

�sw · �s[(p ∗ w)(p ∗ w)z]dz

= b
∫
R

�sw · �s[(p ∗ w)z(p ∗ w − w)]dz

+
∫
R

�sw · �s
[
(p ∗ w)

(
(p ∗ w)z − wz

)]
dz. (3.12)

Next we shall estimate each term in (3.12). First, by the integration by parts, we
have

∫
R

�sw · �s
(
c + bz

1 + b
wz

)
dz =

∫
R

(
c + bz

1 + b
wz

)
�2swdz

= − b

1 + b

∫
R

(
�sw

)2
dz −

∫
R

c + bz

1 + b
(�sw)z�

swdz
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= − b

1 + b
‖w‖2Hs − 1

2

∫
R

c + bz

1 + b

[
(�sw)2

]
z
dz

= − b

1 + b
‖w‖2Hs + 1

2
· b

1 + b
‖w‖2Hs

= −1

2
· b

1 + b
‖w‖2Hs .

It is easy to see that

∫
R

�sw · �s(p ∗ w)dz = ‖w‖2Hs−1 .

Still by the integration by parts, we have

∫
R

�sw · �s
[
b(c − z)

1 + b
(p ∗ w)z

]
dz =

∫
R

b(c − z)

1 + b
�2sw · (p ∗ w)zdz

= b

1 + b
‖w‖2Hs−1

−1

2

∫
R

b(c − z)

1 + b

[
(�s−1w)2

]
z
dz

= b

1 + b
‖w‖2Hs−1 − 1

2
· b

1 + b
‖w‖2Hs−1

= 1

2
· b

1 + b
‖w‖2Hs−1 .

In addition, we have

∫
R

�sw · �s[(p ∗ w)(p ∗ w)z]dz

= 1

2

∫
R

�sw · �s[(p ∗ w)2]zdz

= −1

2

∫
R

wz�
2s(p ∗ w)2dz = −1

2

∫
R

wz

(
�s−2w

)2
dz

≤ 1

2
‖wz‖L∞‖w‖2Hs−2 ≤ 1

2
‖w‖3Hs−2 ,

since we have assumed s > 7
2 . Here we have made use of the embedding result

Hs−1(R) ⊂ L∞(R) with s > 3
2 .

By using the commutator estimate (3.9), the Cauchy-Schwartz inequality and the
embedding Hs−1(R) ⊂ L∞(R) with s > 3

2 , we have

∫
R

�sw · �s[(p ∗ w)z(p ∗ w − w)]dz

=
∫
R

�sw ·
(
[�s, p ∗ w − w](p ∗ w)z + (p ∗ w − w)�s(p ∗ w)z

)
dz
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=
∫
R

�sw · [�s, p ∗ w − w](p ∗ w)zdz +
∫
R

�sw · (p ∗ w − w)�s(p ∗ w)zdz

≤ C
(
‖(p ∗ w − w)z‖L∞‖�s−1(p ∗ w)z‖L2

+‖�s(p ∗ w − w)‖L2‖(p ∗ w)z‖L∞
)
‖w‖Hs

+
(
‖p ∗ w − w‖L∞ + ‖(p ∗ w − w)z‖L∞

)
‖w‖2Hs

≤ C‖w‖3Hs ,

where C is a positive constant depending on s. Here we have utilized the following
facts

‖(p ∗ w − w)z‖L∞ , ‖(p ∗ w)z‖L∞ , ‖p ∗ w − w‖L∞ ≤ C‖w‖Hs , s >
3

2
,

which are valid due to ‖p ∗ w‖L∞ ≤ ‖w‖L∞ and the inequality Hs−1(R) ⊂ L∞(R)

with s > 3
2 .

In a similar way, we have

∫
R

�sw · �s
[
(p ∗ w)

(
(p ∗ w)z − wz

)]
dz

=
∫
R

�sw ·
(
[�s, p ∗ w]

(
(p ∗ w)z − wz

)
+ (p ∗ w)�s

(
(p ∗ w)z − wz

))
dz

≤ C
[
‖(p ∗ w)z‖L∞‖�s−1

(
(p ∗ w)z − wz

)
‖L2

+‖�s(p ∗ w)‖L2‖(p ∗ w)z − wz‖L∞
]
‖w‖Hs

+‖p ∗ w‖L∞‖w‖2Hs

≤ C‖w‖3Hs ,

where C is a positive constant depending on s.
Combining the above analysis yields

1

2

d

dτ
‖w‖2Hs + 2 − b

2(1 + b)
‖w‖2Hs + b − 2

2(1 + b)
‖w‖2Hs−1 ≤ 1 + b

2
‖w‖3Hs−2 + C‖w‖3Hs ,

and thus,

d

dτ
‖w‖2Hs + 2 − b

1 + b
‖w‖2Hs ≤ C‖w‖3Hs , (3.13)

whereC is a positive constant depending on s and b. Equation (3.13) is aBernoulli-type
differential inequality. A direct analysis shows that

− d

dτ

(
1

‖w‖Hs

)
+ 2 − b

2(1 + b)

1

‖w‖Hs
≤ C,
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Stability of singular solutions to the b-family… 73

which implies that

‖w‖Hs ≤ C exp

(
− 2 − b

2(1 + b)
τ

)
‖w0‖Hs ,

where C is a positive constant depending on s and b. The proof is completed. �
Now we are going to study the global well-posedness for (3.6) with the initial data

(3.7) and the boundary condition (3.8). By introduce the following linear operator

L[w] := − 1

1 + b
w − c + bz

1 + b
wz − 1

1 + b
p ∗ w − b(c − z)

1 + b
(p ∗ w)z, (3.14)

we can rewrite the equation (3.6) as

wτ = L[w] + f (w), (3.15)

where the nonlinear term f (w) is given by

f (w) := − (1 + b)(p ∗ w)(p ∗ w)z + b(p ∗ w)z(p ∗ w − w)

+ (p ∗ w)
(
(p ∗ w)z − wz

)
. (3.16)

By the definition of operator L, we can see that

Lemma 3.3 Assume s > 7
2 . Then, it holds that

L[w] ∈ Hs, ∀w ∈ D(L).

Moreover, L is closed and densely defined in Hs.

Lemma 3.4 Assume s > 7
2 . Then the linear operator L in (3.14) is dissipative in Hs.

Proof It suffices to prove that

〈L[w], w〉Hs ≤ 0. (3.17)

By the previous computation, we have

∫
R

(
�sL[w])�swdz = − 1

1 + b
‖w‖2Hs −

∫
R

�sw�s
(
c + bz

1 + b
wz

)
dz

− 1

1 + b

∫
R

�sw�s(p ∗ w)dz

−
∫
R

�sw�s
(
b(c − z)

1 + b
(p ∗ w)z

)
dz

= − 1

1 + b
‖w‖2Hs − b

2(1 + b)
‖w‖2Hs − 1

1 + b
‖w‖2Hs−1
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− b

2(1 + b)
‖w‖2Hs

= −‖w‖2Hs − 1

1 + b
‖w‖2Hs−1 < 0. (3.18)

Thus, the proof is completed. �

Lemma 3.5 Assume s > 7
2 . The operator L in (3.14) is invertible in Hs and can

generate a C0-semigroup {S(t)}t≥0 in Hs.

Proof Step 1 We prove the operator L is invertible. We only need to verify that L is
injective and surjective. Let w ∈ D(L) such that L[w] = 0. Then, it follows that

− 1

1 + b
�sw−�s

(
c + bz

1 + b
wz

)
− 1

1 + b
�s(p ∗ w)−�s

(
b(c − z)

1+b
(p ∗ w)z

)
=0.

Multiplying �sw on the both sides of the above equation and integrating it over R
leads to

−‖w‖2Hs − 1

1 + b
‖w‖2Hs−1 = 0,

which implies thatw = 0 since the boundary condition (3.8). This means the operator
L is injective.

Now we show that L is surjective. Indeed, for any h ∈ Hs , we assume

L[w] = h.

Then, applying �s to the above equation and multiplying it by �sw and integrating
over R gives

‖w‖2Hs + 1

1 + b
‖w‖2Hs−1 = −

∫
R

�sh · �swdz,

which furthermore we have

‖w‖Hs ≤ C‖h‖Hs .

Thus, by the standard theory of elliptic partial differential equations, there exists a
unique weak solution w ∈ Hs . Moreover, for this solution if h ∈ Hs , then we have
w ∈ Hs+1. This implies that L is surjective.

Step 2 By the Lumer-Philips theorem (cf. Chapter 1 in [36]), we can find that the
operator L generates a C0-semigroup {S(t)}t≥0 in Hs . The proof is finished. �

Combining the results in Lemmas 3.3-3.5 yields the following conclusions.
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Proposition 3.1 Let s > 7
2 . The Cauchy problem

d

dτ
w = L[w], w(0) = w0,

with the zero boundary condition admits a unique solution

w(τ) = S(τ )w0,

where the initial data w0 is given in (3.7).

In the sequel, we consider the nonlinear problem (3.16). By making use of the
Duhamel’s principle and Proposition 3.1, we are able to write (3.16) in an abstract
form.

w(τ) = S(τ )w0 +
∫ τ

0
S(τ − t) f (w(t))dt .

As usual, to prove the above integral equation has a solution, one can consider the
closed ball in Hs as follows.

Bε =
{
w ∈ Hs : ‖w‖ < ε, s >

7

2

}
,

where ε > 0 is a small constant.
Define the map

T w(τ) = S(τ )w0 +
∫ τ

0
S(τ − t) f (w(t))dt .

Now we aim to show that the map T has a fixed point in Bε for some ε < 1. Here we
shall employ the Banach fixed point theorem.

First, we recall the following well-known results [31].

Lemma 3.6 The space Hs ∩ L∞ with s > 0 is an algebra. Moreover, it holds that

‖uv‖Hs ≤ C (‖u‖L∞‖v‖Hs + ‖u‖Hs‖v‖L∞) ,

where C is a positive constant depending upon s.

Next we have the following lemma.

Lemma 3.7 Let s > 7
2 . Assume that ‖w0‖Hs+1 < ε. Then T maps Bε into Bε. More-

over, the map T is a contractive mapping.

Proof Based on Lemma 3.6, we have

‖ f (w)‖Hs ≤ (1 + b)‖(p ∗ w)(p ∗ w)z‖Hs + |b| · ‖(p ∗ w)z(p ∗ w − w)‖Hs
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+‖(p ∗ w)
(
(p ∗ w)z − wz

)
‖Hs

≤ (1+b)‖(p ∗ w)‖Hs‖(p ∗ w)z‖L∞+|b| · ‖(p ∗ w)z‖L∞‖p ∗ w−w‖Hs

+‖(p ∗ w)‖Hs‖(p ∗ w)z − wz‖L∞ .

Bearing in mind that Hs−2 ⊂ L∞ with s > 7
2 and Lemma 3.2, we conclude that

‖ f (w)‖Hs ≤ C‖w‖2Hs ≤ C‖w0‖2Hs ≤ Cε2 < ε,

which implies the map T is indeed a self-mapping on Bε.
Next we shall prove the mapping T is contractive. Suppose w, w̃ ∈ Bε. By Lemma

3.6 and the embedding inequality Hs ⊂ L∞, we have

‖ f (w) − f (w̃)‖
=

∥∥∥−(1 + b)(p ∗ w)(p ∗ w)z + b(p ∗ w)z(p ∗ w − w) + (p ∗ w)
(
(p ∗ w)z − wz

)

+(1 + b)(p ∗ w̃)(p ∗ w̃)z − b(p ∗ w̃)z(p ∗ w̃ − w̃) − (p ∗ w̃)
(
(p ∗ w̃)z − w̃z

)∥∥∥
Hs

≤ C
{
‖(p ∗ w)(p ∗ (w − w̃))z‖Hs + ‖(p ∗ (w − w̃))(p ∗ w̃)z‖Hs

+‖(p ∗ (w − w̃))z(p ∗ w − w)‖Hs + ‖(p ∗ w̃)z(p ∗ (w − w̃)) − (w − w̃)))‖Hs

+‖(p ∗ (w − w̃))
(
(p ∗ w)z − wz

)
‖Hs

+‖(p ∗ w̃)
(
(p ∗ (w − w̃))z − (w − w̃)z

)
‖Hs

}

≤ C
{
‖p ∗ w‖L∞‖(p ∗ (w − w̃))z‖Hs + ‖(p ∗ (w − w̃))‖Hs ‖(p ∗ w̃)z‖L∞

+‖(p ∗ (w − w̃))z‖Hs ‖(p ∗ w − w)‖L∞

+‖(p ∗ w̃)z‖L∞‖(p ∗ (w − w̃)) − (w − w̃)))‖Hs

+‖(p ∗ (w − w̃))‖Hs ‖
(
(p ∗ w)z − wz

)
‖L∞

+‖(p ∗ w̃)‖L∞‖
(
(p ∗ (w − w̃))z − (w − w̃)z

)
‖Hs

}
≤ Cε‖w − w̃‖Hs .

Then, it follows that

‖T w − T w̃‖Hs = ‖
∫ τ

0
S(τ − t)[ f (w) − f (w̃)]dt‖Hs

≤
∫ τ

0
‖S(τ − t)[ f (w) − f (w̃)]‖Hs dt

≤ Cε‖w − w̃‖Hs < ‖w − w̃‖Hs ,

provided that ε > 0 is sufficiently small. This means that T is a contractive mapping.
�

Now we have the following existence results.
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Proposition 3.2 Assume s > 7
2 and −1 < b ≤ 2. Let ε be a positive and sufficiently

small constant. Then, it holds that

(i) if the initial data ‖w0‖Hs+1 < ε, then there is a unique solution w ∈ Bε to the
nonlinear problem (3.6), (3.7) and (3.8);

(ii) there admits a global solution φ(τ, y) ∈ Hs to the equation (3.5) with the
initial data (3.7) and boundary condition (3.8). In addition, if the initial data
‖φ0‖Hs+1 < ε, then it holds that

‖φ‖Hs ≤ Cε exp

(
− 4 + b

2(1 + b)
τ

)
,

where C is a positive constant and may depends on b.

Proof (i) By Lemma 3.7 and the Banach fixed point theorem, we find that the map
T has a fixed point in the set Bε, which is exactly the solution of (3.6) with the
initial-boundary conditions (3.7), (3.8).

(ii) By the conclusion in (i), we have the solution φ(τ, y) to (3.4) satisfying

φ(τ, y) = eτψ(τ, y) = eτ
[
p ∗ w(τ, e−τ z)

]
,

which implies that

φyy = (p ∗ w)zze
−τ = e−τ (p ∗ w − w).

As a consequence, by Lemma 3.2 we have

‖φyy‖Hs−2 ≤ e−τ‖p ∗ w − w‖Hs−2 ≤ Ce−τ‖w‖Hs ≤ Cε exp

(
− 4 + b

2(1 + b)
τ

)
,

where we used ‖w0‖Hs ≤ ε. Note that the constant C may depend on the param-
eter b.

�
Finally, by Proposition 3.2 we can obtain the results in Theorem 1.1 (see also [23]

for similar discussions). Thus, the proof of Theorem 1.1 is completed.
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