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Abstract

We prove in this paper a generalization of Hardy’s theorem for Gabor transform in
the setup of the semidirect product R” x K, where K is a compact subgroup of
automorphisms of R”. We also solve the sharpness problem and thus obtain a complete
analogue of Hardy’s theorem for Gabor transform. The representation theory and
Plancherel formula are fundamental tools in the proof of our results.
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1 Introduction

It is a well-known fact in classical Fourier analysis that an integrable function f
defined on the real line and its Fourier transform f cannot be simultaneously and
sharply localized unless f = 0 almost everywhere. This property of functions is
widely known as the uncertainty principle in Fourier analysis. The following result of
Hardy makes the rather vague statement above precise (see [11]):

Theorem 1 Let p, q, ¢ be positive real numbers and f a measurable function on R”"
such that:

(D) 1f ()] < ce P I x e R,

(i)) IF )] < cema P,k e R,
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If pg > 1, then f =0a.e. If pg = 1then f(t) = Ce"’”””'z,for some constant C. If
pq < 1, then any finite linear combination of Hermite functions satisfies (i) and (ii).

Here the Fourier transform f is defined by
)= [ rwettoar, y e,
Rn

where xy = 27:1 xjyj,and [|x|| = V/x2 is the Euclidean norm.

Naturally, there has been some effort to prove Hardy-like theorems for various
connected Lie groups G. Specifically, analogues and variants of Hardy’s theorem have
been shown for motion groups [22, 23], compact extensions of R" [1], non-compact
connected semisimple Lie groups G with finite center [6, 18, 20, 21] and nilpotent Lie
groups [5, 12, 19, 24].

Unlike the classical Fourier transform, the continuous Gabor transform gives a
simultaneous representation of the space and the frequency variables. Let ¢ € L*(R")
be a fixed non-zero function usually called a window function. The Gabor transform of
a function f € L2(R") with respect to the window function 1 is defined on R” x R"
by

Gy fx, w) := /1;@1 FOIW (= x)e 2™y,

According to [9], we have for all fi, f2, ¥, Y2 € LZ(R") the functions Gy, f1 and
Gy, f> belong to L2([R" x R") and

<g1//1 Vil gl//zf2>L2(Rn xRny = (f1, fZ)L2(Rn)<’ﬁl’ ¢2)L2(Rn)- (H

It has been shown in the early 2000 s that many uncertainty principles for the Fourier
transform have a counterpart for the continuous Gabor transform (see [2, 10]). We
specify that a Hardy-type theorem has been established in [10, Theorem 2.6.2].

Theorem 2 Let £, € L*(R"). Assume that
)gwf(xa w)‘ < ce~ F@IxIP+alw®)

for some constants p, q, c > 0. Then three cases can occur.

(i) If pq > 1, then either f =0ory =0.

(ii) If pqg = 1 and Gy, f is not zero almost everywhere, then both [ and r are multiples
of some time-frequency shift of the Gaussian e~ P7I¥ I,

(iii) If pq < 1, then the decay condition is satisfied whenever f and  are finite linear
combinations of Hermite functions.

In 2012, the continuous Gabor transform for separable locally compact unimodu-
lar group of type I has been introduced by Farashahi and Kamyabi-Gol [7]. A brief
description is given in Section 2. One should notice that, in the Euclidean setting, the
continuous Gabor transform has many symmetries which are lost in the Lie group
setting (the dual of G does not identify with G) and this is then a serious obstacle
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Hardy’s uncertainty principle for Gabor transform on... 583

for stating uncertainty principles for the continuous Gabor transform. However, some
attempts to extend Theorem 2 on special classes of non-Abelian Lie groups have
already been made. Recently, analogues of Hardy’s theorem for Gabor transform have
been established for locally compact abelian groups having noncompact identity com-
ponent and groups of the form R” x K, where K is a compact group having irreducible
representations of bounded dimension (see [3]). On the other hand, the author and K.
Abid [17] proved an analogue of Hardy’s theorem for Gabor transform on connected,
simply connected nilpotent Lie groups. However, in the last two references the results
obtained concern only the case pg > 1. In this paper, we prove a generalization of
Hardy’s theorem for Gabor transform on a general compact extension R"” x K, where
K is a compact subgroup of automorphisms of R”, providing evidence to the three
cases cited above. The proof of our result, which is given in Section 3, exploits Hardy’s
theorem for R” and representation theory and the harmonic analysis of R” x K.

2 Backgrounds
2.1 Continuous Gabor transform
Let G be a separable locally compact unimodular group of type I, and let dg be its

Haar measure. We endow the unitary dual of G with the Mackey Borel structure. We
denote by L?(G) the space of L?-functions on G for p > 1, and we define

2(f) = /G F@n(e)dg. 7 eG. feLG).

Then by the abstract Plancherel theorem, there exists a unique Borel measure p on G
such that for any function f € L'(G) N L*(G),

f If(g)*dg = / Iz ()3 sdp ().
G G

where (|7 (f)|lus = (tr(n(f)*n(f))) 12 denotes the Hilbert-Schmidt norm of 7 (f).
Let f € C.(G), the set of all continuous complex-valued functions on G with
compact supports, and ¥ a fixed nonzero function in L?(G), usually called window
function. For (x,7) € G x G, the continuous Gabor transform of f with respect to
the window function y is defined as a measurable field of operators on G x G by

6y fx.m) = [ TG e
Let f&j be the function defined on G by

f1(@=f@¥ g, Vged.
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584 K. Smaoui

Then, f; € L'(G) N L*(G) and

n(fj)=/Gf$(g)n(g)dg=/Gf(g)W(x_1g)ﬂ(g)dg=Q¢f(x,n)- 2

By the Plancherel theorem, Gy, f (x, ) is a Hilbert-Schmidt operator for all x € G
and for almost all 7 € G. Furthermore,

/G/éllgwf(x,ﬂ)llilsdp(n)dxz||1/f||%||f||§~ 3)

Thus, the continuous Gabor transform Gy, : f +— Gy f (f € C.(G)) is a multiple of
an isometry. So, we can extend Gy uniquely to a bounded linear operator on L*(G)
which we still denote by Gy, and this extension satisfies (3) for each f e L?(G).

2.2 Compact extensions of R"

Let G = R" x K be a semidirect product of R” and a compact subgroup K of the
automorphisms group Aut(R"). In the whole paper, R" is equipped with an Euclidean
scalar product which embeds the compact group K as a subgroup of orthogonal trans-
formations (for details see [15]). The multiplication law in G is given by

(a,k)-(b,h) = (a+ kb, kh),

for (a, k), (b, h) € G.We fixe once for all a Haar measure dg on G by dg = dad u(k),
where da denotes the Lebesgue measure on R” and d (k) the normalized Haar mea-
sure on K. Let us remark that the compactness of K leads to the proof that da is
invariant under the action of K on R" given by R” 3 a > k~lak, fork € K.

By Mackey’s little group theory [16], the set G is given by the following procedure.
Let y be a non-zero real linear form on R”" and let x,, be the unitary character of R”"
defined by x,, (a) = e 27V@ 4 e R". The naturel action g -y on R" is given by (g-
y,a) = (y,g 'ag)forg e Ganda e R".IfG actson R” by g-xy(a) = x, (g~ ag)
then g - x, = xg.,. We identify R with R" by the mapping R" 5 y — y, € R”,

Let K, be the set of all k € K such that k - x, = x,,then G, = R" x K, is
the stabilizer of x, in G. Let us take the normalized Haar measure d, on K, and a
K -invariant measure d i, on K /K, such that

/w(k)du(k)=/ / @(kk)dpy (K)dfy (KKy).
K K/Kk, JK,

Noting that the measure d i, is normalized so that f K/K, dir, = 1. Let dy be the

image of the Lebesgue measure on R” /K by the canonical projection R* 5 y >y =
K -y € R"/K such that

/ w()/)dy=/ fw(k~y)du(k)d7-
R” R'/K JK
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On the other hand, let (o, H,) be a unitary and irreducible representation of K,
and H, » be the completion of the vector space of all continuous mapping functions
¢ : K - H, for which

pkk'y = (K) k), Yk e K, VK € K,,

with respect to the norm

Il = ( fK ||¢(k>||%odu(k>)2 .

The induced representation 7, 5 := Indgy (Xxy ® 0), realized on H, , by

Ty (@, K)o(h) = xp (W~ al) (k™ h) = Xy @@k~ h), “
for9 € Hy s, (a,k) € G and h € K, is an irreducible unitary representation of
G. Furthermore, every infinite dimensional irreducible unitary representation of G is
equivalent to some representation 7y, ;.

We note that, every irreducible unitary representation t of K extends trivially to an
irreducible representation (also denoted by t) of the entire group G, defined by

t(a, k) =t(k), aeR" and k € K.

According to [13, 14], the Plancherel formula for f € LY (G)NL*(G) is given by

/ |f (a, k)|>dad (k) =/ > o (Hllsdy.
G R'/K

o€k,

where

7y.6(f) =/Gf(a,k)7ty,g(a,k)dadu(k)

is a kernel operator. Its kernel is defined for (s, u) € K/K, x K/K, as
H(f,y,o)(s,u) = /K f, svuil)A(s -y)o()duy, (v), 5)
Y

where f (-, svu~! ) denotes the partial Fourier transform of the function f with respect
to the Euclidean variable.

3 The main result

The main motivation of the present study is to generalize Theorem 2, writing down
a generalized analogue of Hardy’s uncertainty principle for Gabor transform on G =
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586 K. Smaoui

R" » K. Before stating our main result, we need some notations. For every x, w €
R", we denote by M, and 7, the modulation and the translation operators defined
respectively on L?(R") by

VzeR", My f(z) =e ™" f(2),
VzeR", T.f(z) = f(z—x).

Then we deduce that,
VieR", My(Tf)@) =" f(z —x),

and ' .
V2R, Ti(Muf)() = e M eH T f(z —x).

On the other hand, for a measurable function ¢ on G, let

¢(. k) (a) == ¢la, k), (a,k)eG.

Our main result is the following:

Theorem 3 Let p and q be positive real numbers. Let f, ¥ € L*(G) be such that
1Gy £(8. 7ty.0) s < by (k, o)e” TPl +aly ), ©)

forall g = (a,k) € G,y e R"and o € Iey, with ”¢V”L2(K><I€},) < C for some
psitive constant C independent of y. Then three cases can occur.

(@) If pqg > 1, then either f =0or ¢ = 0.

(ii)Ifpg = Vand Gy x) f (-, h) # Oforeachk, h € K suchthat the Gabor transform
of f (-, h) with respect to ¥ (-, k) is well defined, then for all a € R" and almost all
hek,

— 2
f(a’ h) = C] (h)MM(h)ISl(h)e wplall
and (a, h) = Co(h) My, Tsyane P14,

where C; € L%*(K) and Aj,8; are functions from K to R", j :=1, 2.
@iii) If pg < 1, then there are infinitely many linearly independent pairs (f, V)
satisfying (6).

3.1 Some lemmas

The results in the following lemma are quite standard.

Lemmal Let f, ¢ € L*(R") and &, i, y, z € R". Then,
(D) GM Ty MTy ) (x, w) = 2T 2T W=AH0G, f(x — y + 2, w — A+ ).
In particular, Gy (M T, ) (x, w) = e_Zi”yweZi”y)‘gwf(x —y,w—X).
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(ii) Gy f (—x, —w) = e 5™V G (x, ). _
(iii) Let F (x, w) = Gy f(x, w)Gy f(—x, —w)e2 TV Then,

F(v,0)=F(—60,v), v,0cR".
Now, we shall give two lemmas which are required to prove Theorem 3. Let g =

(a, k) be an element of G and f, ¥ € L*(G).For h € K, let (f,f)h be the complex
valued function defined on R” by

(fn(e) == f5C () = fie,h) = fe, (@ k)~ (b))

It is easy to see that ff € LY(G) for all g € G, it sufficient to use Cauchy—Schwarz
inequality. Moreover by [4, Lemma 3.1], we have

Gy f(g, m) = m(f), 0

for all g € G. We should also mention that fé € L%(G), for almostall g € G. In fact,

[ [isgeoraxa= [ [ 1reriue ordxds = 11RIWIE < o.
GJG GJG

Then obviously [ |f$ (x)|?dx < oo, for almost all g € G. By setting f]/“f’k = f]f, we
have the following lemma.

Lemma2 Let f, € L?(G) meet the condition (6) of Theorem 3. Then

2
e = f ( / |(f$”‘)h<c>|dc) dpdue) < oo,
K JK R~

foralla € R".

Proof By using (6), we have

ek,

< f / / / S (1 a2k, o)e P11V G G da dp k)
K JR" JRY/K T
oek

v

/ f / 37+ 1al) Gy £ (@, k). my.0) 1357 da dpth)
K n n/K(T

< C/ 1+ ||a||2)e_”p”“”2da/ v g
R7 R"/K

—c / 1+ llal2ye~ 71l gg / / TR 440 (k) d
R® n/K JK

=C{| (+ ||a||2)efﬂp”“”2da/ ef’”f”ynzdy < 00.
Rn

n
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By (7) and the Plancherel formula, we obtain

00 > fK / ) f o Z (1 + lal®) | 7y.o (£35) 357 dadpuih)
O'GKV

=f /f /Rn<1+||a||2)!f(c,h>w((a,k>—1<c,h))}chth)dadu(k)
/Rf / <1+||a||2>!f(c,hw(—k“(a—c),k“h)lzdcdmmdadu(k)

///(l+||a||)|f(c myy(—kh™'a+kh™ )|2dcdu(h)dadu(k)
R7

Il

./Rz/;( (1 + lla — k™"l | f (e, b)Y (a, K)* dedpu(h) da d (k).

Therefore,
Iw(a,k)lsz (1 + lla — kbl | £ (e )P de du(h) < oo,
K R)l

for almostalla € R"” and k € K. As  is non identically zero, there exists ag, ko such
that ¥ (agp, ko) # 0, and

/ (1 + llag — ko~ clI®) | f (¢, B)[* de du(h) < oco. ®)
K ]Rn

On the other hand, we have

2
10,9 a) = / / (/ )f(c,hw((a,k)‘(ah))\dc) dp(h) dpa(h)
K JK R~

- AL 2
= /K/K ([;&n i l_f llatf)—i—_]/zohc’llz”zh)‘ dc)

x (/R (1 ¥ llao — koh”cnz) ’f(c, h)‘zdc> du(h) du (k)

2
fe.my(—ka+k e, k*‘h)‘ dc) du(h) duk)

(using Cauchy—Shwartz inequality)

AT

x </ (1 + flao — koh—1c||2) ‘f(c, h))zdc) du(h) du(k)

L (Lot

2
— K a ke k)| dc>

@ Springer



Hardy’s uncertainty principle for Gabor transform on... 589

x </ (1 + flao — koh—1c||2) ‘f(c, h))zdc) du(h) du(k)
=0l [ [ (14 tao —kobei?) | pee. o[ deanin,
K JRrn

which is finite by (8). O

Lemma3 Foralla,y € R",

[ ]o,

Proof Let E(a) be the function defined on R” by

2
du(h) du(k) < Ce~*@lal*+alyI®),

E@© = [ [ gt Ghednth du,

where ¢ € R" and (le’k);l(c) = (fIZ’k)h(—c). Then E(a) € L'(R"), forall a € R".
In fact for all a € R",

E@@ide = [ [ [ jgtnollegne - olddum dudo de
R~ R*JK JK JR"

2
-/ ( / |<f;”‘)h<c>|dc) dph) dph) < o0
K JK R?

(using Lemma 2). Thus,
Eao) = [ [ 1 e Pauman. v <r. ©)
For U € L'(R"), define U  f{’* on G by
U e h) = /R U@ fy e -1 hydt

and then E(a)y : R" — C by

E@u© = [ [ (@ 55 (@ 70)°) @ duth dnio),
It is not hard to see that

E(@y(c) = /K fK (U % (£ ) * (U (£ (©) dputh) d k).
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590 K. Smaoui

Therefore, for every n € R"

— ~ 2
Eawum = [ [ [ guon] dutauw

~ - 2 ~ —
= 0GP fK /K (5w duty du) = 1I0mPE@ ). (10)
By the inversion formula for R”, we have
/ E@u ) dn = E@y(0)

Z/// | £y o) dedphy due)
K JK JR"

= /K 1T 5 £ 1172y dn ). (1D

On the other hand ford € Nand y € R”, let

1 1
= R” - — < < —
La(y) {ne Iyl 261,_||77||_||7/||+2d}

denote the annulus in R” and v, its volume. For every d € N, there exists a sequence
(Ud.m)m of L'-functions on R” satisfying following properties:

D0 <Ugp < 1.
(ii) (Ug,m),, converges pointwise to the characteristic function x,(,) of L4(y).
As E(a) is continuous and L, (y) has volume vy, we have

lim E(@)(n) (Uan ()’ dn

n m—

E@() = dlif;ov‘?l/z ( )f(a\)(n)dn :dlif;ov‘;lf
m(y

= lim v, / lim E(a)y,,(ndn  (using (10)
R

d—00 n M—00
T —1 1 a,k 2 :
= Jim vg! lim fK 1Uam % £ 172y dik)  (using (1)
. 1 4 Jky 2 =
= Jim vz! lim /K / » > o (Uam * £57) 15 sdii dpa ().

o€k,

From [1, p. 732], one has that

k 77 k
1.0 (Udm * iy Wirs < Udom sy - m 17000 (£ s
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Hardy's uncertainty principle for Gabor transform on... 591

for some s, € K. It follows, using (6), that

E@)(y) < lim v;' lim //
d—o00 m—0o0 [ R"/K

Z by (K, 0)2@;(Sn ) 2e T PlalP+alnl®) g 4 k)

oeky,
=C lim v;' lim Udom (s - )2~ PllalP+alni®) g7
d— 00 m— 00 R /K
. -1 _ 2 2y
=C lim v, / Xﬁd(y)('?)zé’ 7 (pllal”+qlnl™) g3
d— o0 R/K

d— o0

=C lim vd_l/ / Xﬁd(y)(h . n)e—”(l’HaHz-‘rqHnl\z)du(h) dn
Ri/K JK

d— o0

. — _ 2 2
=C lim vdlfR XLa(r)(Me m(pllall®+qlinl )dn

—C lim vglf e~ Plal’+aInl®) gy — ce=mpllal*+alyI®)
Ed(}’)

d— o0

Finally, Eq. (9) allows us to conclude. O

3.2 Proof of Theorem 3

Fork, h € K, let fi , and Y , be the complex-valued functions defined on R” by
fen(@) = fla,kh) and Yy p(a) =k 'a, h).
Then obviously fx n, Yk.n € LZ(R"), foralmostall # € K and all k € K.
For fixed A, y € R", let F ,(k, h) and K f’ly’(pz be the functions defined on R” x R"
by
Fiy(k, h)(a, ¥) = Gy, (Mo Ty fion) (@, V)G, MAT, fen) (—a, —y)es ™.

and
Kf,';‘pz(a,y)=/K/KFx,y(k,h)(a,V)fpl(k)fpz(h)du(k)du(h),

where ¢1, ¢ are bounded functions on K. Noting that, F} y(k, h) is well defined for
almostall 2 € K and all k € K and

Fyy(k, h)(a,y) = ™ e 200G, fina—y.y — 1)
xe_2i”(_”_)‘)yg¢k_h Jen(—a—y,—y —2) (using i) in Lemma 1). (12)

Lemma4 There exists a positive constant Cy such that

_ 2 2
‘K;my,wz(a’ y)‘ < ¢y e (plalP+alv i)
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foralla,y € R". Moreover; the constant C1 does not depend on A and y.

Proof By using Cauchy—Schwartz inequality, we obtain
K0 @] = [ [ 000 T @Gy VT fed(—a =)
|1 (002 ) |dpuy dpa k)

< torlolioales [ [ G0y VAT, find @ )Gy, VT, i) ==
xdu(h) dph)

1
2 2
= lotllsligzll (L/K\gm<MxTyfk,h)(a,y>\ du(h)du(k)>
1

2 2
) (/K/K ‘g‘/""‘ M, fien) (=a, —V)) du(h) du(k)) .
Remark that,
2
/;(/1< ’gwk,h(Mx%fk,h)(a, y)‘ du(h) duk)
2

:f / ’gw,f,fk,h(a—y,y —A)‘ du(h) du(k)

K JK

. —_ o 5 2

=f / ‘/ Sen@Fnle = a+y)e 2R de| duh) duk)

K JK Rn

_ ' )

:_/ / ‘_/ f(c,kh)w(—k*'a+k*1(c+y),h)e*2mc<y—k)dc‘ Ay du(k)

K JK Rn
Z/ / | f(c’hﬁ(*’fla+k’l(c+y>,k*‘h)e*”“(y*”dc)zdu(h)du(k)

K JK R~
=/ / ‘/ fle. Y ((a _y’k)_l(C,h))e‘zi”"(y"\)dc‘zdu(h)du(k)

K JK R®

Ay ik 2

=f f ’(flz_y’k)h()/—)»)‘ du(h) dp(k).

K JK

It results that,
— 3
S, )| < 191l 921 ( / / Pty - A>|2du<h>du<k)>
- K JK

1
—_— 7
x (/ / |(fw_a_y’k)h(—y—A)|2du(h)du(k)>
K JK

1
= Cllgpiloollpzlloo (e77PleFraly =212)

1
(e*”(p”‘”y”%q””HHZ)) * (using Lemma 3)
_ 2 2
< Cllgilloollgal|cce ™™ Plal™+alr %),

which is the desired result. O
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Hardy’s uncertainty principle for Gabor transform on... 593

Lemma5 Forall w,6 € R",
RO w,0)] < 1 o~ (PlO1+glwi?)
Proof By using (iii) in Lemma 1, we have
R0 = [ [ B, 630t dun

- /K fK Fry (=6, w1 (0020 dpa () dia(h) = K259 (=6, w).

(13)
Therefore,
[R5 w.0] < lorlolialie [ [ |On, MATs =6, w)
X |Gy (MGT, fi )0, —w)|dpu(h) d k).
As in the proof of the Lemma 4 we can show that,
[RE572@,0)] < Clgtlocllgalloce ™™ (P11 +00017),
which allows us to conclude. O

(i) For fixed A, y and 6 in R", let R; , ¢ be the function defined on R" by
R yo(a) = K{" (@, ) (®),

where K (,0|y(p2 (a, .) is the partial Fourier transform of K} Y192 with respect to the second
variable y. It follows, using (13), that

Ry yo(w) = Iéf’ly’*"z(w, 0) = K}, (=0, w). (14)
There exists a positive constant C, such that
’Rk,yﬂ(a)‘ < Cyemrmlal’,
In fact, from Lemma 4 we have,
|Ry..y.0(a) = ‘K"" " (a, .)A(e)‘ < /R ‘K;”}y"”(a, v)|dy

< C1/ o (Pl +aly ) 4, _ ) p=prlal’?,

@ Springer



594 K. Smaoui

where C, = C; fR” e—nql\yllzdy, On the other hand, by (14) and Lemma 4, we have
R — 2
|[Riyo(w)| = ‘Kij’m(—e, w)| < cre—amIvI?,

By Hardy’s theorem, this implies R y 9 = 0 and él,y,g =0forall A, y,6 € R". We
then obtain

KL (=0, w) = /K fK Fyy (ks 1) (=6, w)pr (g2 (W) d () du () = 0,

for any bounded function ¢ and ¢ on K. Therefore, F; y(k, h)(—6, w) = 0 for all
A,y,01in R" and almost all w € R". As F_; _,(k, h) is continuous on R" x R",

|F_—y(k, 1)(0,0)] = |Gy, fin(y. ))I* =0 (using (12)).
Hence, gl/,k,,, Jfx.n = 0. By using (1), we have

2 2
1Vkn 21l fenllz =0,

which implies either ¥ 5, = 0 or fi 5 = 0. Observe that,

/ / Wk 311 fienl3d ) dni)
K JK

K JK R R”
K JK R» R7 dﬂ

= ||f||%f / [y (t, k) [2dtdu (k) = | FI31¥113.
K JR"?

This allow us to achieve this case.
(i1) We start by treat the case p = ¢ = 1. By using Lemmas 4 and 5, the function
Kfy‘}’,wz verifies the decay conditions of Hardy’s theorem on R x R". Then,

2 2
(207 ¢1,92 ,—T +
KY' P (a,y) = Cf' e (a1 +v12)

where C;"%* is a positive constant.

Fort € K , let ulr be the matrix coefficients of 7 in an orthonormal basis {e% 1 <
Jj <d;} of its associated Hilbert space H, of dimension d. In other words, ui’i k) =
(t(k)ef, e?), for each k € K. Peter-Weyl Theorem asserts that the set of functions

{ deuf; v € K, 1<i,j< d } is an orthonormal basis of L?(K). Allowing now
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@1 and ¢; to vary over this base, we obtain

/ / Fyy(k, ), y)u”(k)u/ “d (o) du(h) = ” N (||anz+ny||2),
This entails that

Fry(k )@, y) = Gy k. hye ™ (lalP+I7IP), (15)

where Cy (6, 1) = 3, ¢ Sicijcar Lk Lrcijrea, Cry 0 ulytousl, ().
Moreover by using (12),

Coy(k, ) = Fyy(k, h)(0,0) = e (Gy , fin) (—y, —2). (16)

O

Lemma6 There exist Lo, yo € R" such that Cy,y,(k, h) is different to zero whenever
it exists.

Proof There exist Ao, yo € R" such that Cy, ,, # 0, otherwise using (16), we have
Gy fin = 0, for almost all h € K and all k € K. Hence, Y4, = 0 or fi, = 0, for
almostallz € K andall k € K. By taken k = 1d, we obtain ¥ (-, s) = Oor f(-,1) =0,
foralmostall s, t € K. Itresults that, Gy (. 5) f (-, 1) = 0, contradicting the assumption
of the theorem. Now, if there exist ko, ip € K such that Cy, y,(ko, ko) = 0, then
[ Fyg,vo (ko, ho)(a, y)| =0, forall a, y € R". By using (12), we have

Gy g Jho.ho (@ — yo, v — Ko)‘ ‘Q%,ho Jro.no(—=a = yo. =y — 20)| =0,

for all a, y € R". Thus, Gy, , fro.ng = 0 and Yy ny = 0 0r figny = 0. As the
Lebesgue measure da is invariant under the action of K onR”, we obtain ¢ (-, hg) = 0.
Therefore for almost all k, & € K, Gy (..ng) f (-, k) = 0 or Gy n) f (-, koho) = 0. This
contradicts again the hypothesis of the theorem. O

The previous lemma and (15) imply that |F)»0.y0 (k, h)(a, y)} # 0, foralla, y € R".
This in turn will imply that

|Gyin fin(@ =0, v — 20)| |Gy, fron(—a — yo, =y — Xo)| # 0,

forall a, y € R". In particular, Gy, , fx.n(a, y) # 0, for all a, y € R". Thus we may
define H (k, h)(a, y) = log (g],,k,h Jen(—a, —y)). Combining (12), (15) and (16), we
get

. 2 _ 2 2
(G fen) (—y. —a)e T (1P HII)
= T AT =Yg, fon(a—y,y —A)
e mCYTING,  fin(—a =y, —y — ).
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By taking log on both sides, we obtain

dmiry +2H(k, h)(y, ) — 7 (lal* + Iy %)
=2imay —2in(y —A)y+ Hk,h)(y—a,A—y) —=2in(—y — Ny
+H(k,h)(a+y,y + 1)+ 2izm,

for some m € Z. Letting a = y = 0 shows that m = 0, hence we get the following
difference equation,

Hk, h)((y, 1) + (@, y)) —2H(k, 1) (y, ) + H(k, h)((y. 1) — (a, y))
= —n(lal* + Iy %) — 2izay.

The solution of the above equation can be written as
Hk,h)(a,y) = —x(lal* + Iy 1?)/2 = inay +ak, ha + k. by + sk, h),
where a(k, h), B(k, h) € C" and ¢ (k, h) € C. This shows that
G fin @, v) = Ck, e (1l P)mimar—atiapichny - y7)
where C is complex valued function on K x K. Hence,
(G finta. )| = |E Gk, e~ 3 (014 P)-RetnaRepemny (1)

The computation in the proof of Lemma 4 shows that,

//|9wk,hfk,h(a,V)|2du(h)du(k)
K JK

iGe

for all a, y € R". It follows, using (18), that

2
du(h) du(k) < Ce=mUalP+lyI?)

/ / ‘C‘(k, h)‘z672Re(a(k,h))asze(ﬁ(k,h)))/d'u(h)du(k) <cC,
Kk JK

for all a, y € R". Hence for all @ and all y in the countable set Z",

‘é(k, h)‘ze—2Re(o¢(k,h))a—2Re(/3(k,h))y < o0,

for almost all #, k € K. This implies that ‘C‘(k, h)‘ is finite for almost all 4,k € K,
Re(a(k, h)) = 0 and Re(B(k, h)) = 0. By choosing A(k, h) = —a(k, h)/2xi and
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8(k, h) = B(k, h)/2mi we have for all @ € R" and almost all i, k € K,

gl/fk/ fk h(a’ 7/) — é(k, h)eZT[i()»(k,h)a75(k,/’l)}/)67%(H(JHZ‘I’”V”z)e*in’(JV (using (17))
Then it follows from Theorem 1.2 in [8], that for all « € R" and almost all 4,k € K,

fen(a) = fla, kh) = Cy(k, hyeX™irkmag=mlla=3k.m)*
and Yin(@) = Yk 'a, h) = Ca(k, h)e2™HEmag=rlla=skni?

where C’z (k, h), 62 (k, h) are multiplicative constants depending on k and 4. Fix kg in
K such that for almost all & € K, Re(a(kg, 7)) = Re(B(kg, h)) = 0. We then obtain

W(a, h) = Ca(ko, h)e2*komkoa g=rlikoa—=3 ko,

_ - » X
= Cy(ko, h)e*™iko Mkoha ,—rlla—ky"8(ko. I

for all @ € R" and almost all 4 € K. Therefore, we may define Ca(h) = éz(ko, h),
Ao (h) = kg 'A(ko, h) and 8(h) = kg '8 (ko, h) and obtain for  the form claimed in
the theorem. It is obvious that C, € L2(K), simce Ve L?(G). On the other hand, we

have
f(a, koh) = C; (ko, h)e2nik(ko,h)ae—nHa—&(ko,h)l\z’

for all a € R" and almost all 2 € K. As du is a Haar measure on K, we get
fla,h) = 61 (ko ko—lh)e2nik(k0,k5]h)ae—n||a—8(k0,k0_'h)|\2'

By setting C (h) = Cy(ko, kg '), k1 (h) = A(ko, kg 'h) and 8 (h) = 8(ko, ky 'h), we
have 2
fla,h) = Ci() M, Ts, e 1417,

for all a € R" and almost all & € K.
To prove the general case where pg = 1, we apply the following dilation. Let
e =(q/p)"*, fo(a, h) = &"/* f(ea, h) and Y, (a, h) = ">y (ca, h). Noting that,

gl//sfs((a,k)a 77:%0') = /]\(/l.gn f&‘(c, h)wg(_kil(a — C), kilh)ny,a(()’ h)dcdu(h)
= {-,‘”/ / f(ec, h)a(—kil(sa —&c), kill’l)ﬂy,g(C, h)de du(h)
K JR"

= / fle, Y (k" ea —¢), k' hymy o (c/e, hde du(h)
K JR"

= Gy f((ca, k), Ty )e.0) (using(4)).
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Therefore for all (a,k) € G,y e R"and o € I%l,

|Gy fe((@, ), 70y.0) | s = |G [ (€a, k), 7y 1e0) | s
=< ¢y ek, a)e‘%(Pl\w||2+qlly/8\|2)

= ¢/ (k, o)e FVPallalP+lvI?),

This implies that f; and v, have the required form, as well as f and .
(iii) We show in this case that the functions f, , and ¥, , defined on G by

Jer(e, ) =8 (hye ™ 1<I” and Ve (e, h) = oo (hyemrlel’

satisfy condition (6) of Theorem 3 for any r € [p, 1/q] and any ¢, & € L*(K).
Indeed, for g = (a, k) € G, we have

(o), @) = o WPy (@ 07 (e 1)
= farr(e, WYey (= k' a—c), k™ "h)
— 1 (WG (k hyemrlel? g=mrlle—al?

Thus,

(I —nr|cl|? —mr|c—a|? —2inyc
(el ) ) = calhTae ™y [ emmrelenrtenat 2imvege

-0 (h)éfz(k—lh)e—mya/ e—rrr|\c+a/2\|2e—nr\|(r—a/2||2e—2inycdc

n

=7 (h)g(k—lh)e—inyae—%r”anz / e—27‘rr|\cHze—2inych

n

_zlyl?

:(2,.)—;1/24,1(h)a(kflh)efiﬂyaef%rl\al\ze -

By using (5), the kernel of the operator 17, » ((fg1 ”)ic ) isdefinedon K /K, xK /K,
2.7
by

" ((f(l,r)im’ v 0) (s,u) = (2r)_"/2e_i”S'V“e_%(’“““2+%”V“z)
x | tisvu ok sou o (v)dp, (v)
KJ/

= (2r) 2T va =3 ClalPH 1Y P g (2 (5, u, k)

where ¢ (s, u, k)(v) = ¢ (svu~ (k" svu™"), for all v € K,,. It follows, using
(7), that
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’1-15 = Hny,a < (fc“r)f/ftzm ) HHS

— _z 24 Ly, 2 . .
= @r)"2em 20l ( / / llo <c<s,u,k)>|%,Sduy@Ky)duy(uKy))
K/Ky JK/Ky

|Gey. feir (700

1
2

< @), (k, oye FPlal+alyI®),

where (6, 0) = (fiesi, sk, 10 GG kDI iy (K diy (K, ).
Finally, notice that

/K Z by (k, 0)?

o€k,

=[] ]S te @ s dity (K iy Ky dnd)
K Jk/K, JK /K,

' _ 2
= [ f / / cisvu” Nk svuh| dpy, (v)
k Jk/k, JK/K, JK,

dlly (SKy)dlly(uKy) du(k)

(using the Plancherel formula forK, )

2
et [ [ Jawu] de @ diy 6K )diy wky)
K/K, JK/K, JK,
2 -1 2 . 2 2
oot [ [ ferte ) dueco dr ) < eaiZien
K/K, JK

which is independent of y. This completes the proof.
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