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Abstract
Diaconis and Gamburd computed moments of secular coefficients in the CUE ensem-
ble. We use the characteristic map to give a new combinatorial proof of their result.
We also extend their computation to moments of traces of symmetric powers, where
the same result holds but in a wider range. Our combinatorial proof is inspired by
gcd matrices, as used by Vaughan and Wooley and by Granville and Soundararajan.
We use these CUE computations to suggest a conjecture about moments of characters
sums twisted by the Liouville (or by theMöbius) function, and establish a version of it
in function fields. The moral of our conjecture (and its verification in function fields)
is that the Steinhaus random multiplicative function is a good model for the Liouville
(or for the Möbius) function twisted by a randomDirichlet character. We also evaluate
moments of secular coefficients and traces of symmetric powers, without any condi-
tion on the size of the matrix. As an application we give a new formula for a matrix
integral that was considered by Keating, Rodgers, Roditty-Gershon and Rudnick in
their study of the k-fold divisor function.
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28 O. Gorodetsky

1 Introduction

Consider the complex unitary group U (N ) endowed with the probability Haar mea-
sure. The nth secular coefficient of U ∈ U (N ) is defined through the expansion

det(z I +U ) =
N∑

n=0

zN−nScn(U ).

If A = (ai, j ) is anm×nmatrixwith nonnegative integer entries,Diaconis andGam-
burd [7] define the row-sum vector row(A) ∈ Z

m and column-sum vector col(A) ∈ Z
n

by

row(A)i =
n∑

j=1

ai, j , col(A) j =
m∑

i=1

ai, j .

Given two partitions μ = (μ1, . . . , μm) and μ̃ = (μ̃1, . . . , μ̃n) they denote by Nμ,μ̃

the number of nonnegativem×n integermatrices Awith row(A) = μ and col(A) = μ̃.
When m = n = k and μ1 = . . . = μk = μ̃1 = . . . = μ̃k , matrices counted by Nμ,μ̃

are known as magic squares of order k, see [7, §2.2] for a review. Given sequences
(a1, . . . , a�) and (b1, . . . , b�) of nonnegative integers, they proved the following equal-
ity [7, Thm. 2]:

∫

U (N )

�∏

j=1

Sc j (U )a jSc j (U )b j dU = Nμ,μ̃ (1.1)

as long as max
{∑�

j=1 ja j ,
∑�

j=1 jb j
} ≤ N , where μ and μ̃ are the partitions with

a j and b j parts of size j , respectively.
Identity (1.1) answered a question raised in [11, 26], where it was shown that∫

U (N )
Scn(U )dU = 0 and

∫
U (N )

|Scn(U )|2dU = 1 hold for 1 ≤ n ≤ N . The results
in [7] inspired the study of pseudomoments of the Riemann zeta function [5] and
were used in [19] to study the variance of the k-fold divisor function in short intervals.
Recently, Najnudel, Paquette and Simm studied the distribution of Scn with n growing
with N [22].

In §2 we give a new combinatorial proof of (1.1), which makes use of the char-
acteristic map. This is in the spirit of Bump’s derivation [2, Prop. 40.4] of the
Diaconis–Shahshahani moment computation [8].

In §3 we show that a result similar to (1.1) holds for traces of symmetric powers
in place of secular coefficients, with substantially relaxed conditions. These traces are
also the complete homogeneous symmetric polynomials hn evaluated on the eigenval-
ues of the matrix. This result can be derived from a theorem of Baxter [16, Prop. 2.11]
but again, our proof is combinatorial in nature.

In §4 we give two evaluations of (1.1) without any restriction on N . One evaluation
uses the RSK correspondence and generalizes a result of Rains [23], and the second
evaluation usesGelfand–Tsetlin patterns and generalizes an argument of Rodgers [24].
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Magic squares, the symmetric group and Möbius randomness 29

These evaluations extend tomoments of traces of symmetric powers.As an application,
we give a new formula for a matrix integral that was considered by Keating, Rodgers,
Roditty-Gershon and Rudnick in their study of the k-fold divisor function [19].

In §5 we show how an analogue of our proof of (1.1) has appeared in number-
theoretic works of Vaughan and Wooley and of Granville and Soundararajan. The
number-theoretic analogues of (1.1) concern moments of character sums on which
there are several unconditional results in the literature. However, our result on sym-
metric traces corresponds to a conjecture we make about moments of sums of the
Liouville (or the Möbius) function twisted by a Dirichlet character, which seems very
difficult and reflects the random nature of Möbius, see Conjecture 5.1. As we explain
in §5, the conjecture suggests that the Steinhaus random multiplicative function is a
good model for the Liouville (or the Möbius) function twisted by a random Dirichlet
character: λ · χ where χ is chosen uniformly at random from the group of Dirichlet

characters modulo q (q → ∞) and λ(n) = (−1)
∑

p, k≥1:pk |n 1.

2 Proof of the Diaconis–Gamburd Theorem

2.1 The symmetric group

For a permutation π we say that S is an invariant set for π if π(S) = S. Equivalently, S
is a union of cycles of π . Given a sequence λ = (λ1, . . . , λ�) of nonnegative integers
that sum to n, we define the following function on the symmetric group Sn acting on
[n] := {1, 2, . . . , n}:

dλ(π) = #{(A1, . . . , A�) : ·∪i Ai = [n], each Ai is an invariant set with |Ai | = λi },

where ·∪means disjoint union.We use the letter d here as short for divisor, as invariant
sets forπ are analogous to divisors of an integerm, and dλ is analogous to a generalized
divisor function over the integers, with divisors localized at certain scales (in the
integers we might define m �→ #{(m1,m2, · · · ,m�) : m1 · · ·m� = m, logmi ∈
[λi , λi + 1)}). The simplest examples are d(n) which is identically 1, and d(a,n−a)

which counts invariant sets of size a.

Remark 2.1 The function d : Sn → C given by d := ∑n
a=0 d(a,n−a) equals the number

of invariant sets, namely d(π) = 2C(π) where C(π) is the number of cycles of π ; this
is the permutation analogue of the divisor function.

Remark 2.2 See [9] for a recent application of the analogy between invariant sets for
a permutation and divisors of an integer.

Given sequences μ and μ̃ of nonnegative integers summing to n, let us define

N ′
μ,μ̃ := 1

|Sn|
∑

π∈Sn
dμ(π)dμ̃(π).
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30 O. Gorodetsky

Proposition 2.3 Suppose μ, μ̃ 
 n. We have N ′
μ,μ̃ = Nμ,μ̃.

Proof By definition, given a partition λ = (λ1, . . . , λ�) 
 n we may express dλ(π) as
a sum over ordered set partitions:

dλ(π) =
∑

(A1,...,A�): ·∪Ai=[n]
|Ai |=λi

αA1,...,A�
(π) (2.1)

where αA1,...,A�
is the indicator function of permutations π ∈ Sn with π(Ai ) = Ai for

all i . Applying (2.1) with λ = μ and multiplying by (2.1) with λ = μ̃ we obtain

dμ(π)dμ̃(π) =
∑

(A1,...,A�(μ))·∪Ai=[n]
|Ai |=μi

∑

(B1,...,B�(μ̃))·∪Bi=[n]
|Bi |=μ̃i

αA1,...,A�(μ)
(π)αB1,...,B�(μ̃)

(π)

where �(λ) is the number of parts in a partition. Averaging this over Sn and inter-
changing the order of summation, we find

N ′
μ,μ̃ = 1

n!
∑

(A1,...,A�(μ))·∪Ai=[n]
|Ai |=μi

∑

(B1,...,B�(μ̃))·∪Bi=[n]
|Bi |=μ̃i

∑

π∈Sn
αA1,...,A�(μ)

(π)αB1,...,B�(μ̃)
(π). (2.2)

The inner sum in the right-hand side of (2.2) counts permutations π ∈ Sn for which
Ai are invariant sets, as well as the Bj . In particular π(Ai ∩ Bj ) ⊆ Ai , Bj , forcing
π(Ai∩Bj ) = Ai∩Bj . Conversely, given a permutation such thatπ(Ai∩Bj ) = Ai∩Bj

for all i and j , it necessarily satisfies π(Ai ) = Ai and π(Bj ) = Bj for all i and j .
Thus, the inner sum counts πs with π(Ai ∩ Bj ) = Ai ∩ Bj . The sets Ai ∩ Bj

(1 ≤ i ≤ �(μ), 1 ≤ j ≤ �(μ̃)) are pairwise disjoint and their union is [n], and so such
πs are determined uniquely by their restrictions to Ai ∩ Bj , which may be arbitrary,
proving that the inner sum is

∏n
i, j=1 |Ai ∩ Bj |!. Hence,

N ′
μ,μ̃ = 1

n!
∑

(A1,...,A�(μ))·∪Ai=[n]
|Ai |=μi

∑

(B1,...,B�(μ̃))·∪Bi=[n]
|Bi |=μ̃i

∏

i, j

|Ai ∩ Bj |!. (2.3)

Observe that the n × m matrix C = (|Ai ∩ Bj |) has row(C) = μ and col(C) = μ̃.
Hence

N ′
μ,μ̃ = 1

n!
∑

C=(ci, j ) a matrix
counted by Nμ,μ̃

∏

i, j

ci, j ! · #{[n] = ·∪i, jCi, j , |Ci, j | = ci, j }.

The inner expression in the right-hand side is the number of ordered set partitions of
[n] into subsetsCi, j of size ci, j (these sets correspond to Ai ∩ Bj and one reconstructs
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Magic squares, the symmetric group and Möbius randomness 31

Ai by Ai = ∪ jCi, j and similarly Bj = ∪iCi, j ). This is just the multinomial

(
n

(ci, j ) : 1 ≤ i ≤ �(μ), 1 ≤ j ≤ �(μ̃)

)
= n!∏

i, j ci, j !
,

so that (2.3) simplifies to

N ′
μ,μ̃ =

∑

C a matrix
counted by Nμ,μ̃

1 = Nμ,μ̃

as claimed. �

In the simple case μ̃ = (n), Proposition 2.3 reduces to
∑

π∈Sn dμ(π)/|Sn| = 1.

2.2 The characteristic map

Endow Sn with the uniform probability measure. The characteristic (or Frobenius)
map Ch(N ) is a linear map from class functions on Sn to class functions on U (N ),
with the property that if n ≤ N then it is an isometry with respect to the L2-norm, see
[2, Thm. 40.1]. It may be given by

Ch(N )( f ) = 1

n!
∑

π∈Sn
f (π)pλ(π),

see [2, Thm. 39.1]. Here λ(π) is the partition associated with π (the nondecreasing
sequence, summing to n, of integers corresponding to the cycle sizes in π ), and pλ is
the power sum symmetric polynomial associated with λ, evaluated at the eigenvalues
of U ∈ U (N ).

Lemma 2.4 Suppose λ 
 n. We have

Ch(N )(sgn · dλ) = eλ,

where sgn is the sign representation and eλ is the elementary symmetric polynomial
associated with the partition λ.

Proof Given π ∈ Sn , we set pπ = pλ(π). We denote by �(λ) the number of parts in λ.
We then have, by plugging (2.1) in the definition of Ch(N )(sgn ·dλ) and interchanging
order of summation,

Ch(N )(sgn · dλ) = 1

n!
∑

(A1,...,A�(λ)): ·∪Ai=[n]
∀i : |Ai |=λi

∑

π∈Sn∀i :π(Ai )=Ai

sgn(π)pπ .
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32 O. Gorodetsky

We claim that the inner sum is eλ. Indeed, since π is determined by the restrictions
π |Ai , and since pλ = ∏

i pλi , we have

∑

π∈Sn∀i :π(Ai )=Ai

sgn(π)pπ =
�(λ)∏

i=1

⎛

⎝
∑

πi∈SAi
sgn(π)pπi

⎞

⎠ =
�(λ)∏

i=1

λi !eλi ,

where the last equality follows from theNewton–Girard identity
∑

π∈Sm sgn(π)pπ/m!
= em . To finish, note that the number of ordered set partitions of [n] into �(λ) sets of
sizes (λi )

�(λ)
i=1 is exactly the binomial coefficient

( n
λ1,...,λ�(λ)

)
. �

2.3 Conclusion of proof

Herewe establish (1.1). Let (a1, . . . , a�) and (b1, . . . , b�) be sequences of nonnegative
integers satisfying the condition max{∑�

j=1 ja j ,
∑�

j=1 jb j } ≤ N . Let μ and μ̃ be
the partitions with a j and b j parts of size j , respectively.

If
∑

j ja j �= ∑
j jb j , it is easy to see that both sides of (1.1) vanish. Indeed,

for the right-hand side, note that the integrand is an homogeneous polynomial in the
eigenvalues fofU , whose degree is nonzero, so its integral must vanish by translation-
invariance of the Haar measure. On the other hand, if Nμ,μ̃ is nonzero, we must have
that μ and μ̃ sum to the same number (if A = (ai, j ) is a matrix counted by Nμ,μ̃ then
both μ and μ̃ sum to

∑
i, j ai, j ).

Now assume
∑

j ja j = ∑
j jb j = n ≤ N . As

∏
j Sc j (U )a jSc j (U )b j = eμeμ̃ by

definition, the fact that Ch(N ) is an isometry if n ≤ N shows, through Lemma 2.4,
that the integral in (1.1) is equal to

1

|Sn|
∑

π∈Sn
(sgn · dμ)(π)sgn · dμ̃(π) = 1

|Sn|
∑

π∈Sn
dμ(π)dμ̃(π) = N ′

μ,μ̃,

and the proof is concluded by applying Proposition 2.3.

3 Symmetric powers

Let TrSymn(U ) be the trace of the nth symmetric power ofU ∈ U (N ). This is also the
nth complete homogeneous symmetric polynomial hn evaluated on the eigenvalues
of U .

Lemma 3.1 Let (a j )
�
j=1, (b j )

�
j=1 be sequences of nonnegative integers. We have

∫

U (N )

�∏

j=1

(TrSym j (U ))a j (TrSym j (U ))b j dU = Nμ,μ̃ (3.1)
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Magic squares, the symmetric group and Möbius randomness 33

as long as min{∑�
j=1 a j ,

∑�
j=1 b j } ≤ N, where μ and μ̃ are the partitions with a j

and b j parts of size j , respectively.

We start with the following corollary of Lemma 2.4.

Corollary 3.2 Suppose λ 
 n. We have Ch(N )(dλ) = hλ.

Proof This follows from Lemma 2.4 through the existence of an involution ι on the
space of symmetric polynomials, with the properties ι(Ch(N )( f )) = Ch(N )(sgn · f )
[2, Thm. 39.3] and ι(eλ) = hλ [2, Thm. 36.3]. Alternatively, one may repeat the proof
of Lemma 2.4 with the Newton–Girard identity

∑
π∈Sm pπ/m! = hm . �

At this point we can deduce (3.1) in the restricted range max{∑�
j=1 ja j ,∑�

j=1 jb j } ≤ N , in the same way we proved (1.1).
Next we prove the following well-known identity, often proved as a consequence of

the RSK correspondence. Recall that for given partitions λ and μ, the Kostka number
Kλ,μ is defined as the number of semistandard Young tableaux (SSYTs) of shape λ

and weight μ [7, §2.3].

Lemma 3.3 Given μ, μ̃ 
 n we have

∑

λ
n
Kλ,μKλ,μ̃ = Nμ,μ̃. (3.2)

Proof We may expand eμ and eμ̃ in the Schur basis, see [27, p. 335]:

eμ =
∑

λ
n
Kλ′,μsλ, eμ̃ =

∑

λ
n
Kλ′,μ̃sλ, (3.3)

where λ′ is the conjugate of λ. Let a j and b j be the number of js in μ and μ̃,
respectively. Orthogonality of Schur functions [7, Eq. (22)] implies that

∫

U (n)

�∏

j=1

Sc j (U )a jSc j (U )b j dU =
∑

λ
n
Kλ′,μKλ′,μ̃ =

∑

λ
n
Kλ,μKλ,μ̃.

On the other hand, this integral was shown to equal Nμ,μ̃ in (1.1). �
We now prove Lemma 3.1.

Proof The case
∑�

j=1 ja j �= ∑�
j=1 jb j is treated as in the secular coefficients case.

Next, assume that
∑

j ja j = ∑
j jb j = n and min{∑�

j=1 a j ,
∑�

j=1 b j } ≤ N . The

multiset of eigenvalues of TrSym j (U ) consists of products of j eigenvalues ofU , and
so the integrand in the left-hand side of (3.1) is hμhμ̃. We may expand hλ in the Schur
basis, see Stanley [27, Cor. 7.12.4]:

hμ =
∑

λ
n
Kλ,μsλ.
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34 O. Gorodetsky

Orthogonality of Schur functions implies that the left-hand side of (3.1) is

∑

λ
n
�(λ)≤N

Kλ,μKλ,μ̃. (3.4)

We claim Kλ,μ �= 0 implies �(λ) ≤ �(μ) (see e.g. [27, Prop. 7.10.5]). This fol-
lows from the definition of Kostka numbers: the first column of an SSYT counted by
Kλ,μ contains �(λ) increasing positive integers less than or equal to �(μ), hence the
implication.

As min{�(μ), �(μ̃)} = min{∑ j a j ,
∑

j b j } ≤ N by assumption, we deduce (3.4)
is equal to the full sum

∑
λ
n Kλ,μKλ,μ̃ and the proof is concluded by (3.2). �

Remark 3.4 Lemma 3.1 may also be derived from a theorem of Baxter on Toeplitz
determinants for certain generating functions [1] (cf. [16, Prop. 2.11]), special cases
of which appeared in earlier works of Szegő and Onsager. Concretely, Baxter proved
that (originally in the language of Toeplitz determinants) if min{�,m} ≤ N then

∫

U (N )

1
∏�

j=1 det(I − a jU )

1
∏m

i=1 det(I − biU )
dU =

m∏

i=1

�∏

j=1

1

1 − a jbi
(3.5)

for complex |a j | < 1 and |bi | < 1. Expanding the rational functions in both sides
as power series and comparing coefficients, one obtains Lemma 3.1. In a sense, the
appearance of magic squares in randommatrix theory could have been anticipated due
to (3.5).

Remark 3.5 Aweaker version of Lemma 3.1, withmax in place ofmin,may be derived
from formulas for averages of ratios of characteristic polynomials [3, 6].

Remark 3.6 See [22, Thm. 1.6] for a variant of Lemma 3.1 and (3.5), where one works
in the circular β-ensemble and takes N → ∞.

4 General moments

Given a matrix with nonnegative integer entries, an SE-chain is a sequence of entries
in which each entry is located weakly to the right of and weakly below the preceding
entry. The length of an SE-chain is defined as the sum of elements in it. An ne-chain
is a sequence of nonzero entries in which each entry is strictly to the right of and
strictly above the preceding entry. The length of an ne-chain is defined as the number
of elements in it.

The RSK correspondence is a bijection from the set of matrices with nonnegative
integers to the set {(P1, P2) : Pi are SSYTs with the same shape}, see [27, Ch. 7.11]
for its description. The bijection takes a matrix A to a pair (P1, P2) where the weight
of P1 is row(A) and the weight of P2 is col(A). We denote by λ the common shape
of P1 and P2. A theorem of Schensted [25] (cf. Theorem 8 of Krattenthaler [21] with
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Magic squares, the symmetric group and Möbius randomness 35

k = 1) tells us that the largest part of λ (resp. the number of parts in λ) equals the
length of the longest SE-chain (resp. ne-chain) of A.

Proposition 4.1 Let N ≥ 1. Given sequences (a1, . . . , a�) and (b1, . . . , b�) of nonneg-
ative integers, letμ and μ̃ be the partitions with a j and b j parts of size j , respectively.
The integral

∫

U (N )

�∏

j=1

Sc j (U )a jSc j (U )b j dU (4.1)

is equal to the the number of �(μ)× �(μ̃) matrices A with nonnegative integer entries
such that row(A) = μ, col(A) = μ̃ and the longest SE-chain in A has length ≤ N.
The integral

∫

U (N )

�∏

j=1

(TrSym j (U ))a j (TrSym j (U ))b j dU (4.2)

is equal to the the number of �(μ)× �(μ̃) matrices A with nonnegative integer entries
such that row(A) = μ, col(A) = μ̃ and the longest ne-chain in A has length ≤ N.

Proposition 4.1 generalizes (1.1) and Lemma 3.1. If a j = b j = 0 for j ≥ 2 and
a1 = b1 = n, Proposition 4.1 shows

∫

U (N )

|Tr(U )n|2 dU

is equal to the number of permutations in Sn with longest increasing subsequence of
length ≤ N , a result of Rains [23].

Proof of Proposition 4.1 The proof of the evaluation of (4.1) is almost the same as the
proof of (1.1) in [7], where N ≥ max{∑ j ja j ,

∑
j jb j } was imposed. Instead of

imposing this we invoke Schensted’s theorem at the end of the proof:
As in the proof of (1.1) we may assume

∑
j ja j = ∑

j jb j = n for some n ≥ 0.

Since
∏�

j=1 Sc j (U )a j = eμ(U ) and
∏�

j=1 Sc j (U )b j = eμ̃(U ), the expansions in
(3.3) together with orthogonality of Schur functions [7, Eq. (22)] imply that (4.1)
equals

∑

λ
n
�(λ)≤N

Kλ′,μKλ′,μ̃ =
∑

λ
n
λ1≤N

Kλ,μKλ,μ̃,

i.e. the number of pairs (P, Q) of SSYTs where P has weight μ, Q has weight μ̃, and
P and Q have a common shape λ 
 n such that λ1 ≤ N . By the RSK correspondence
and Schensted’s theorem [25], such pairs are in one-to-one correspondence with the
matrices described in the first part of the proposition.
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36 O. Gorodetsky

Now consider (4.2). As we saw in the proof of Lemma 3.1, (4.2) is equal to the
sum in (3.4), i.e. the number of pairs (P, Q) of SSYTs where P has weight μ, Q has
weight μ̃, and P and Q have a common shape λ such that λ 
 n and �(λ) ≤ N . By
the RSK correspondence and Schensted’s theorem [25], such pairs are in one-to-one
correspondence with the matrices described in the second part of the proposition. �

Let

Ik(n; N ) :=
∫

U (N )

|[un] det(I + uU )k |2 dU =
∫

U (N )

∣∣∣∣∣∣

∑

j1+...+ jk=n

k∏

i=1

Sc ji (U )

∣∣∣∣∣∣

2

dU .

Summing (4.1) over all sequences (a j ) j and (b j ) j of nonnegative integers such that∑
j ja j = ∑

j b j = n,
∑

j a j = ∑
j b j = k and applying the first part of Proposi-

tion 4.1, we obtain

Corollary 4.2 Let n, k, N ≥ 1. Then Ik(n; N ) is equal to the number of k× k matrices
with nonnegative integer entries whose sum is n, and their longest SE-chain has length
≤ N.

The integral Ik(n; N ) was studied extensively in [19]. According to Theorem 1.5
of [19],

Ik(n; N ) = Nk2−1(γk(n/N ) + Ok(1/N ))

holds uniformly forn, N ≥ 1,whereγk : R≥0 → R≥0 is an explicit function supported
on [0, k] [19, Eq. (1.12)]. Thus, in viewofCorollary 4.2, ifwepick uniformly at random
a k × k matrix with nonnegative integer entries that sum to n, the probability that its
longest SE-chain has length ≤ N can be shown to be

Ik(n; N )

Ik(n; n)
= γk(n/N )

γk(1)(n/N )k
2−1

+ Ok(1/n).

Theorem 1.4 of [19] (cf. [24, Thm. 1.5]) shows Ik(n; N ) equals the number of arrays
(xi, j )1≤i, j≤k of nonnegative integers satisfying x1,1 ≤ N ,

∑k
i=1 xi,i = n, and xi, j

is weakly decreasing when either i or j is fixed. We give a similar description of the
integrals in Proposition 4.1 using an idea of Rodgers [24, p. 1270].

Proposition 4.3 Let N ≥ 1. Given sequences (a1, . . . , a�) and (b1, . . . , b�) of nonneg-
ative integers, letμ and μ̃ be the partitions with a j and b j parts of size j , respectively.
The integral (4.1) (resp. (4.2)) equals the number of arrays (xi, j )1≤i≤�(μ), 1≤ j≤�(μ̃) of
nonnegative integers satisfying each of the following conditions:

1. x1,1 ≤ N (resp. xi,i = 0 for N + 1 ≤ i ≤ min{�(μ), �(μ̃)}),
2. xi, j is weakly decreasing when either i or j is fixed,
3.

∑
j−i=r−�(μ) xi, j = μ1 + . . . + μr for 1 ≤ r ≤ �(μ) and

∑
i− j=s−�(μ̃) xi, j =

μ̃1 + . . . + μ̃r for 1 ≤ s ≤ �(μ̃).
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Proof If
∑

j ja j �= ∑
j jb j , i.e.

∑
i μi �= ∑

i μ̃i , then the integrals (4.1) and (4.2)
vanish as in the proof of (1.1). In this case there can be no arrays satisfying the third
condition with (r , s) = (�(μ), �(μ̃)), which is what we needed to show. From now on
we assume that

∑
j ja j = ∑

j jb j = n for some n.
A Gelfand–Tsetlin pattern (or GT-pattern) of k rows is a triangular array of nonneg-

ative integers (ai, j )1≤i≤ j≤k with ai, j ≤ ai+1, j+1 ≤ ai, j+1 when 1 ≤ i, j ≤ k − 1; its
largest element isa1,k . SSYTswith entries in {1, 2, . . . , k} are in one-to-one correspon-
dence, described in detail by Stanley [27, pp. 313-314], with such arrays. SSYTs of
shape λ = (λ1, . . . , λm) and weight (w1, . . . , wr ) (r ≤ k) correspond to GT-patterns
of k rows such that a1,i = λk−i+1 and

∑
j∈[i,k] ai, j = w1 + w2 + . . . + wk−i+1 for

all 1 ≤ i ≤ k (here wi ≡ 0 if i > r , λi ≡ 0 if i > m). In words, the first row of
the pattern recovers the shape of the SSYT (by reversing the row), and the row sums
recover the weight.

In the proof of Proposition 4.1 we saw that (4.1) (resp. (4.2)) equals the number of
pairs (P, Q) of SSYTs where P has weight μ, Q has weight μ̃, and P and Q have
the same shape. This common shape, let us call it λ, satisfies λ 
 n and λ1 ≤ N
(resp. �(λ) ≤ N ). Necessarily �(λ) ≤ min{�(μ), �(μ̃)}, otherwise there are no such
pairs. We apply the above one-to-one correspondence with GT-patterns to obtain all
pairs ((ai, j )1≤i≤ j≤�(μ), (bi, j )1≤i≤ j≤�(μ̃)) of patterns, such that their (common) first
row is λ (in reverse order), and their respective row sums encode μ and μ̃.

Assume without loss of generality that �(μ) ≥ �(μ̃). We make the following
observation: since �(λ) ≤ �(μ̃), it follows that a1,i = 0 for all 1 ≤ i ≤ �(μ) − �(μ̃).
Due to the property ai, j ≤ ai+1, j+1 ≤ ai, j+1, this forces ai, j = 0 for all 1 ≤ i ≤
j ≤ �(μ) − �(μ̃).
Next we define an array (xi, j )1≤i≤�(μ), 1≤ j≤�(μ̃), satisfying the three conditions in

the proposition, by xi, j := a1+i− j,�(μ)+1− j if i ≥ j and xi, j := b1+ j−i,�(μ̃)+1−i if
i ≤ j , giving the desired result.

In the secular coefficient case, the condition λ1 ≤ N is encoded by the inequalities
a1,�(μ) = b1,�(μ̃) ≤ N which become x1,1 ≤ N . In the symmetric traces case, the
condition �(λ) ≤ N is encoded by the relations a1,i = 0 for 1 ≤ i ≤ �(μ) − N
and b1,i = 0 for 1 ≤ i ≤ �(μ̃) − N (recall λ – in reverse order – is the first row
of the patterns (ai, j )1≤i≤ j≤�(μ) and (bi, j )1≤i≤ j≤�(μ̃)), which become xi,i = 0 for
N + 1 ≤ i ≤ �(μ̃). �

Summing Proposition 4.3 over all sequences (a j ) j and (b j ) j of k nonnegative
integers such that

∑
j ja j = ∑

j jb j = n and
∑

j a j = ∑
j b j = k, we recover

Theorem 1.4 of [19].

5 Number-theoretic connections

5.1 A polynomial analogue of d�

Let λ 
 n. Over Fq [T ], the polynomial ring over the finite field of q elements, it is
straightforward to define an analogue of dλ. Letting Mn,q ⊆ Fq [T ] be the subset of
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monic polynomials of degree n, we set

dλ,q( f ) :=
∑

f1··· f�(λ)= f
∀i : deg( fi )=λi , fi monic

1.

If μ, μ̃ are partitions of n then we claim

lim
q→∞

1

qn
∑

f ∈Mn,q

dμ,q( f )dμ̃,q( f ) = 1

|Sn|
∑

π∈Sn
dμ(π)dμ̃(π) = Nμ,μ̃. (5.1)

The second equality in (5.1) is just Proposition 2.3. The first equality in (5.1) has to
do with a general principle and applies to a general class of functions1 However, the
fact that the left-hand side of (5.1) equals to the right-hand side can be established
directly, as we sketch now. By definition,

∑
f ∈Mn,q

dμ,q( f )dμ̃,q( f ) counts solutions
to the equation

f1 f2 · · · f�(μ) = g1g2 · · · g�(μ̃)

where deg fi = μi and deg g j = μ̃ j . We explain how to count such solutions. We can
associate with any pair of tuples of solutions ( fi )i and (g j ) j a gcd matrix

hi, j := gcd(gi , f j ),

analogous to the matrix constructed in the proof of Proposition 2.3. At least if the
(gi )i are pairwise coprime and so are ( f j ) j , we may reconstruct them from hi, j via
gi = ∏

j hi, j and h j = ∏
i hi, j . Fortunately, in the large-q limit we can impose these

coprimality conditions and only incur an error of oq→∞(qn) (the details are left to the
reader).

Given a gcd matrix (hi, j )i, j (coming from pairwise coprime (gi )i and pairwise
coprime ( f j ) j ) we can further form a degree matrix (deg hi, j )i, j of the same size,
which is counted by Nμ,μ̃. For each degree matrix (di, j )i, j counted by Nμ,μ̃ we
need to count the number of gcd matrices corresponding to it, that is, monic hi, j
with deg hi, j = di, j and hi, j being pairwise coprime (a consequence of the pairwise
coprimality of (gi )i and ( f j ) j ). As already mentioned, in the large-q limit these
coprimality conditions do not affect asymptotics, and the number of such hi, j is

q
∑

i, j di, j (1+oq→∞(1)) = qn(1+oq→∞(1)) (so, always asymptotic to qn , regardless
of the specific (di, j )i, j ). All in all, we obtain that the left-hand side of (5.1) is equal
to the right-hand side, without using the first equality in (5.1).

This idea can be made to work for fixed q as well using a clever construc-
tion of Vaughan and Wooley [28, §8], which can be used to show that in fact

1 Let α : Sn → C be class function. Let αq : Mn,q → C be a function with the following property: if
f is squarefree then αq ( f ) = α(π) whenever the multiset of degrees of the primes in the factorization
of f matches with the multiset of cycle lengths of the cycles in the cycle decomposition of π . Then∑

f ∈Mn,q
αq ( f )/qn = ∑

π∈Sn α(π)/n! + On,max |αq |(1/q). This follows e.g. from Cohen [4].
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∑
f ∈Mn,q

dμ,q( f )dμ̃,q( f ) is a polynomial in q of degree n and leading coefficient
Nμ,μ̃, but we do not give details. They construct matrices which take into account
common factors. They used an inductive process to associate with a solution of
m1 · · ·m�(μ) = n1 · · · n�(μ̃) a �(μ) × �(μ̃) matrix (ai, j )i, j such that mi = ∏�(μ̃)

i=1 ar ,i
and ni = ∏�(μ)

i=1 ai,r ; this also works with polynomials instead of integers. The pro-
cess goes by letting a1,1 = gcd(m1, n1) and then defining, using induction on i + j ,
ai, j = gcd(mi/

∏
�< j ai,�, n j/

∏
�<i a�, j ). The above process was discovered inde-

pendently by Granville and Soundararajan in the proof of [10, Thm. 4]. We explain
how these gcd matrices arose in their work because it is not to difficult to relate it
to matrix integrals. They were interested in the order of magnitude of moments of
character sums:

Mk(x, q) = 1

φ(q)

∑

χ mod q

∣∣∣∣∣
∑

n≤x

χ(n)

∣∣∣∣∣

2k

.

Here the sum is over all Dirichlet characters modulo q. Using orthogonality of char-
acters, we have

Mk(x, q) = #{n1n2 · · · nk ≡ m1m2 · · ·mk mod q, ∀i : ni ,mi ≤ x, (nimi , q) = 1}.

If xk ≤ q, this reduces to

Mk(x, q) = #{n1n2 · · · nk = m1m2 · · ·mk, ∀i : ni ,mi ≤ x, (nimi , q) = 1}.

Theywere also interested inmoments of sums of the (Steinhaus) randommultiplicative
function, which we denote by α and whose definition we now recall. It is a random
completely multiplicative function (α(nm) = α(n)α(m) for all n,m ≥ 1), chosen in
such a way that (α(p))p (p prime) are i.i.d. random variables taking values uniformly
on {z ∈ C : |z| = 1}. Then we have the orthogonality relation

Eα(n)α(m) = δnm (5.2)

and similarly,

Mk(x) := E

∣∣∣∣∣
∑

n≤x

α(n)

∣∣∣∣∣

2k

= #{n1n2 · · · nk = m1m2 · · ·mk, ∀i : ni ,mi ≤ x}.

The gcd matrices one associates with the solutions counted by Mk(x, q) (if xk ≤ q)
and Mk(x) can be counted and in turn lead to bounds on Mk(x, q) and Mk(x) as in
[10, Thms. 4.1–4.2]. We refer the reader to Heap and Lindqvist [15] for asymptotics
results for Mk(x, q) (xk ≤ q) and Mk(x) (cf. Harper, Nikeghbali and Radziwiłł [14]).
See also Harper [12, 13] for estimates on Mk(x) in a wide range of k ≥ 0, including
noninteger k.
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In function fields, the connection between character sums and secular coefficients is
natural. If χ is a nonprincipal Dirichlet character modulo Q, we can form its Dirichlet
L-function

L(u, χ) =
∑

f monic

χ( f )udeg f ,

which is a polynomial whose nth coefficient is exactly a character sum. By Weil’s
Riemann hypothesis, we can see that

∑

f ∈Mn,q

χ( f ) �n,deg Q q
n
2 . (5.3)

If χ is odd (i.e. χ is not trivial on F×
q ) and primitive we have deg L(u, χ) = deg Q−1

and the zeros of L all lie on |u| = q−1/2 so that we canwrite L(u, χ) as a characteristic
polynomial of a scaled unitary matrix:

L(u, χ) = det(Ideg Q−1 − u
√
q�χ), �χ ∈ U (deg Q − 1).

Comparing coefficients, we find that

Scn(�χ) = (−1)n

q
n
2

∑

f ∈Mn,q

χ( f ). (5.4)

If nk ≤ deg Q then orthogonality relations show

1

φ(Q)

∑

χ mod Q

∣∣∣∣∣∣

∑

f ∈Mn,q

χ( f )

∣∣∣∣∣∣

2k

= #{ f1 f2 · · · fk = g1g2 · · · gk, ∀i : deg fi

= deg gi = n, ( fi gi , Q) = 1}. (5.5)

Since in the large-q limit a random polynomial will be coprime to Q with probability
approaching 1, we can deduce from (5.5) (using gcd matrices as used in establishing
(5.1)) that

1

φ(Q)

∑

χ mod Q

∣∣∣∣∣∣

∑

f ∈Mn,q

χ( f )

∣∣∣∣∣∣

2k

= (1 + oq→∞(1))qnk N(nk ),(nk) (5.6)

holds as q → ∞, where we assume nk ≤ deg Q and that n, k and deg Q are fixed.
Here (nk) stands for the partition of nk consisting of n repeated k times. The term
oq→∞(1) goes to 0 as q → ∞ and may depend on the fixed parameters. We can also
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package (5.5) as

1

φ(Q)

∑

χ mod Q

∣∣∣∣∣∣

∑

f ∈Mn,q

χ( f )

∣∣∣∣∣∣

2k

= E

∣∣∣∣∣∣∣∣∣

∑

f ∈Mn,q
( f ,Q)=1

α( f )

∣∣∣∣∣∣∣∣∣

2k

(5.7)

where now α is a Steinhaus random multiplicative function in Fq [T ] which satisfies
orthogonality relations similar to (5.2), and nk ≤ deg Q.

In the large-q limit almost all characters are primitive and odd [20, Eq. (3.25)] and
we obtain from (5.3) and (5.4) that

1

φ(Q)

∑

χ mod Q

∣∣∣∣∣∣

∑

f ∈Mn,q

χ( f )

∣∣∣∣∣∣

2k

= qnk
(
E χ odd,
primitive mod Q

∣∣Scn(�χ)
∣∣2k + oq→∞(1)

)

(5.8)

if nk ≤ deg Q − 1 (to handle the contribution of the principal character). Comparing
(5.8) and (5.6) we find that

lim
q→∞E χ odd,

primitive mod Q

∣∣Scn(�χ)
∣∣2k = N(nk ),(nk ) =

∫

U (deg Q−1)
|Scn(U )|2k dU

(5.9)

where the last equality is (1.1). Here n, k and deg Q are fixed and satisfy nk ≤
deg Q − 1. The fact that the left-hand side of (5.9) converges to the right-hand side is
essentially a special case of a deep equidistribution theorem of Katz [17]. Katz proved
that – at least for squarefree Q – the ensemble (�χ)χ odd, primitive mod Q equidistributes
in U (deg Q − 1) as q → ∞. In other words, the average of a continuous function
f : U (deg Q − 1) → C over the finite ensemble (�χ)χ odd, primitive mod Q converges,
as q → ∞, to an average of f over the full group U (deg Q − 1).2 For certain test
functions f , Katz’s result can be proved elementarily, and in fact his proof proceeds
by first (without using algebraic geometry) establishing it for a particular family of
functions. The elementary proof of (5.9), which corresponds to f (U ) = |Scn(U )|2k ,
certainly does not generalize to general functions.

What about traces of symmetric powers? These arise when twisting the Möbius
function by a character. Given a Dirichlet character χ modulo Q, we have

1

L(u, χ)
=

∑

f monic

μ( f )χ( f )udeg f . (5.10)

2 Strictly speaking, Katz requires f to be invariant under scalars: f (cU ) = f (U ) for |c| = 1.
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The nth coefficient of this rational function is

∑

f ∈Mn,q

μ( f )χ( f ) �n,deg Q q
n
2 (5.11)

by Weil’s Riemann hypothesis. If χ is odd and primitive we have

1

L(u, χ)
= 1

det(Ideg Q−1 − u
√
q�χ)

=
∞∑

n=0

q
n
2 unTrSymn(�χ),

i.e.

∑

f ∈Mn,q

μ( f )χ( f ) = q
n
2 TrSymn(�χ) (5.12)

for all n. In the large-q limit almost all characters are primitive and odd and we obtain
from (5.10), (5.11) and (5.12) that

1

φ(Q)

∑

χ mod Q

∣∣∣∣∣∣

∑

f ∈Mn,q

μ( f )χ( f )

∣∣∣∣∣∣

2k

= qnk
(
E χ odd,
primitive mod Q

∣∣TrSymn(�χ)
∣∣2k + oq→∞(1)

)

if k ≤ deg Q − 1 (to handle the contribution of the principal character). In particular,
by using Katz’s equidistribution result [17, Thm.],

1

φ(Q)

∑

χ mod Q

∣∣∣∣∣∣

∑

f ∈Mn,q

μ( f )χ( f )

∣∣∣∣∣∣

2k

∼ qnk
∫

U (deg Q−1)

∣∣TrSymn(U )
∣∣2k

= qnk N(nk ),(nk ) (5.13)

holds as q → ∞ if k ≤ deg Q − 1, at least if Q is squarefree (a condition required by
Katz). In the second equality in (5.13) we used Lemma 3.1, which is the reason for
the range k ≤ deg Q − 1.

In the restricted range nk ≤ deg Q we can mimic (5.5)–(5.7) and obtain

1

φ(Q)

∑

χ mod Q

∣∣∣∣∣∣

∑

f ∈Mn,q

μ( f )χ( f )

∣∣∣∣∣∣

2k

= E

∣∣∣∣∣∣∣∣∣

∑

f ∈Mn,q
( f ,Q)=1

μ2( f )α( f )

∣∣∣∣∣∣∣∣∣

2k

. (5.14)

The asymptotic relation (5.13) can be shown to imply that if we replace equality in
(5.14) with an asymptotic then it continues to hold in the much wider range k ≤
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deg Q−1, at least if one takes a large-q limit and assumes Q is squarefree. We believe
this should hold without taking the large-q limit and for all Q, and we suggest the
following conjecture in integers.

Conjecture 5.1 Suppose q and x tend to ∞ and that k < log q. We have

1

φ(q)

∑

χ mod q

∣∣∣∣∣
∑

n≤x

μ(n)χ(n)

∣∣∣∣∣

2k

∼ E

∣∣∣∣∣∣∣∣

∑

n≤x
(n,q)=1

μ2(n)α(n)

∣∣∣∣∣∣∣∣

2k

,

1

φ(q)

∑

χ mod q

∣∣∣∣∣
∑

n≤x

λ(n)χ(n)

∣∣∣∣∣

2k

∼ E

∣∣∣∣∣∣∣∣

∑

n≤x
(n,q)=1

α(n)

∣∣∣∣∣∣∣∣

2k

.

Here k is allowed to vary with x and q, and λ is the Liouville function λ(n) =
(−1)

∑
p, k≥1: pk |n 1.

This should be contrasted with the more modest range xk ≤ q that occurs in the
same problem but without an appearance of μ or λ:

1

φ(q)

∑

χ mod q

∣∣∣∣∣
∑

n≤x

χ(n)

∣∣∣∣∣

2k

= E

∣∣∣∣∣∣∣∣

∑

n≤x
(n,q)=1

α(n)

∣∣∣∣∣∣∣∣

2k

. (5.15)

Remark 5.2 The range xk ≤ q is essentially optimal (up to xo(1)), even if we replace
equalitywith an asymptotic. In the current formulation this is trivial, since the principal
character contributes x2k/φ(q) to the left-hand side of (5.15). If one removes the
principal character, this still should be optimal. We do not attempt to demonstrate this
here, but make two comments: 1) if x is an integer divisible by q then

∑
n≤x χ(n)

vanishes for any nonprincipal χ , showing the left-hand side of (5.15) vanishes for
x = q if we remove the principal character, 2) the optimality claim is related to∫
U (N )

|Scn(U )|2k dU ∼ N(nk),(nk ) failing to hold if N ≤ nk(1 − ε) and n → ∞,
which we expect can be demonstrated using Proposition 4.3 and the tools in [19].

Already for k = 1 Conjecture 5.1 is a very difficult open problem, related to the
variance of μ and λ in arithmetic progressions, see e.g. [18].

We view Conjecture 5.1 as a manifestation of Möbius randomness. One interpreta-
tion of it is that the Steinhaus randommultiplicative function α (resp. α ·μ2) is a good
model for λ (resp.μ) twisted by a random Dirichlet character χ modulo q (q → ∞).3

It certainly models λ times a random character better than it models just a random
character, at least from the point of view of moments.

3 Of course, α is never zero while χ vanishes at primes dividing q. This can be remedied by multiplying
α by the principal character modulo q, or alternatively by working with q that is a prime.
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Let

μx,k(n) :=
∑

n1n2···nk=n,∀i : ni≤x

k∏

i=1

μ(ni ),

λx,k(n) :=
∑

n1n2···nk=n,∀i : ni≤x

k∏

i=1

λ(ni ) = λ(n)
∑

n1n2···nk=n,∀i : ni≤x

1.

From orthogonality of characters we have the identities

1

φ(q)

∑

χ mod q

∣∣∣∣∣
∑

n≤x

μ(n)χ(n)

∣∣∣∣∣

2k

= 1

φ(q)

∑

χ mod q

∣∣∣∣∣∣

∑

n≤xk

μx,k(n)χ(n)

∣∣∣∣∣∣

2

=
∑

n,m≤xk
n≡m mod q
(nm,q)=1

μx,k(n)μx,k(m). (5.16)

and similarly

1

φ(q)

∑

χ mod q

∣∣∣∣∣
∑

n≤x

λ(n)χ(n)

∣∣∣∣∣

2k

= 1

φ(q)

∑

χ mod q

∣∣∣∣∣∣

∑

n≤xk

λx,k(n)χ(n)

∣∣∣∣∣∣

2

=
∑

n,m≤xk
n≡m mod q
(nm,q)=1

λx,k(n)λx,k(m). (5.17)

Observe that the diagonal terms in (5.16) are
∑

n≤xk , (n,q)=1 μx,k(n)2, and this sum
satisfies (using (5.2))

∑

n≤xk , (n,q)=1

μx,k(n)2 = E

∣∣∣∣∣∣∣∣

∑

n≤x
(n,q)=1

μ2(n)α(n)

∣∣∣∣∣∣∣∣

2k

.

Hence, Conjecture 5.1 says that the diagonal terms n = m give (asymptotically) the
main contribution to the 2kth moment in (5.16), as long as k < log q andmin{q, x} →
∞. Similarly, the same applies to (5.17), according to the conjecture.
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