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Abstract
We describe a new method to obtain upper bounds for exponential sums with multi-
plicative coefficients without the Ramanujan conjecture. We verify these hypothesis
for (with mild restrictions) the Rankin–Selberg L-functions attached to two cuspidal
automorphic representations.

Keywords Exponential sums · Rankin-Selberg L-functions · Automorphic
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1 Statement of results

Exponential sums with multiplicative coefficients have attracted a lot of attention
among mathematicians. In 1974, Daboussi [3] first studied a class of multiplicative
functions f ∈ F , where F denotes the set of those multiplicative functions f with
| f (n)| ≤ 1. He proved that if |α − a/q| ≤ 1/q2 for some (a, q) = 1 and 3 ≤ q ≤
(N/ log N )1/2, then one has

∑

n≤N

f (n)e(nα) � N

(log log N )1/2

uniformly for f ∈ F .
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128 G. Lü, Q. Ma

Montgomery and Vaughan [16] supposed that a class of multiplicative function f
satisfies the following two conditions:

| f (p)| ≤ A, for all primes p (1.1)

and
∑

n≤N

| f (n)|2 ≤ A2N , for all natural numbers N , (1.2)

where A is an arbitrary constant with A ≥ 1. They proved that if |α − a/q| ≤ 1/q2

for some (a, q) = 1 and 2 ≤ R ≤ q ≤ N/R, then

∑

n≤N

f (n)e(nα) � N

log N
+ N

R1/2 (log R)3/2

uniformly for f satisfying the conditions (1.1) and (1.2).
Very recently, Jiang et al. [8] generalized the work of Montgomery and Vaughan

[16]. They study exponential sums involving a multiplicative function f under milder
conditions on the range of f . More precisely, f satisfies the following conditions:

∑

n≤N

| f (n)|2 � N , (1.3)

∑

p≤N

| f (p)|2 log p � N (1.4)

and

∑

p≤N
p+h is prime

| f (p) f (p + h)| � h

ϕ(h)
· N

(log N )2
, (1.5)

where h is any positive integer. For f satisfying the conditions (1.3), (1.4) and (1.5),
they proved that if |α − a/q| ≤ 1/q2 for some (a, q) = 1 and 1 ≤ q ≤ N , then

∑

n≤N

f (n)e(nα) � N

log N
+ N

φ(q)1/2
+ (qN )1/2

(
log

(
N

q

))3/2

.

Letm ≥ 2 be an integer andπ be an automorphic irreducible cuspidal representation of
GLm over Q with unitary central character. Denote by λπ(n) the Dirichlet coefficients
of automorphic L-function L(s, π) attached to π . As an application, they used it
together with the analytic theory of automorphic L-functions to prove that for any
automorphic cuspidal representation π over GLm ,

Sλπ (x) =
∑

n≤x

λπ(n)e (nα) �π

x

log x
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Exponential sums with the Dirichlet coefficients of… 129

for any α ∈ R. A striking feature of their result is that it applies to the coefficients of
automorphic L-functions without the Ramanujan conjecture.

Actually, Jiang et al.’s result [8] can not apply to multiplicative function f the size
of the second power-moment of which is more than N . In this paper, we will use a
new method to study the exponential sum involving multiplicative function f under
milder conditions on the size of the second power-moment of f . Let A be an arbitrary
positive constant and M be the class of all multipticative functions f such that

∑

n≤x

| f (n)|2 � f x exp
(
(log log x)1+δ

)
(1.6)

and

∑

p≤x

log(p)| f (p)| � f x, (1.7)

where δ is a positive constant depending on f . For f ∈ M, the exponential sum
involving multiplicative function f is defined by

S(N , α) :=
∑

n≤N

f (n)e(nα).

Although by the Cauchy–Schwarz inequality and the Chebyshev theorem, we can
deduce condition (1.7) from condition (1.4), our results will apply to more classes of
L-functions than those in the work of Jiang et al. [8].

Using the theory of smooth numbers, we prove the following result.

Theorem 1.1 Uniformly in α ∈ R, we suppose that

α = a

q
+ θ

q2

with |θ | ≤ 1, 2 ≤ y ≤ q ≤ x/y and (a,q)=1. Then for any multiplicative function
f ∈ M, we have

S(N , α) � f x
(
exp

(
(log log x)1+δ

)) 1
2 exp

(
− (1 + o(1))

log x

log y

)

+ x(log x)

(
exp

(
(log log x)1+δ

)

y

) 1
2 + x

(
exp

(
(log log y)1+δ

)) 1
2 log y

log x
.

Remark 1.2 In Theorem 1.1, we establish a weak upper bound of S(N , α), but with a
much milder hypothesis on the size of the second power-moment of f . In particular,
our result will apply to all automorphic L-functions and (with mild restrictions) to
Rankin–Selberg L-functions attached to two automorphic representations.
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130 G. Lü, Q. Ma

In order tomake clear the application of our result, wewill review somemore or less
standard facts about L-functions arising from cuspidal automorphic representations
and their Rankin–Selberg convolutions in Sect. 3. Let A(m) be the set of all cuspidal
automorphic representations of GLm over Q with unitary central character. By the
general theory (see Sect. 3), each pair of π ∈ A(m) and π ′ ∈ A(m′) admits a Rankin–
Selberg L-function

L
(
s, π × π ′) =

∞∑

n=1

λπ×π ′(n)

ns

for �(s) > 1. We denote by π̃ the contragradient representation of π which is also an
irreducible cuspidal automorphic representation with unitary central character. More-
over, we say π and π̃ ′ are not twist equivalent when there exists no primitive character
χ satisfying the property that π̃ ′ = π ⊗ χ . Denote this by π � π̃ ′.

In this paper, we are concerned with obtaining upper bounds for exponential sums
with the coefficients of (with mild restrictions) Rankin–Selberg L-functions. More
precisely, we give a notablymilder hypothesis on the size of the second power-moment
of λπ×π ′(n). That is

∑

n≤x

|λπ×π ′(n)|2 �π,π ′ x exp((log log x)1+δ), (1.8)

where δ is the positive constant depending on π and π ′. Under the above hypothesis,
we shall apply the Hardy–Littlewood circle method to obtain the following result.

Theorem 1.3 Suppose π ∈ A(m) and π ′ ∈ A(m′). If π � π̃ ′ and λπ×π ′(n) satisfies
condition (1.8), then we have

∑

n≤x

λπ×π ′(n)e(nα) �π,π ′
x

(log x)1−ε

uniformly in α ∈ R.

Throughout our paper, ε denotes an arbitrarily small positive constant the value of
which may shift in different occurrences.

Remark 1.4 More specifically, we apply Theorem 1.1 to obtain an estimate in the sit-
uation where α belongs to so-called minor arcs. In the following proof, we need to
discuss how the coefficients λπ×π ′(n) satisfy condition (1.7). When α belongs to the
so-called major arcs, we will use a weak subconvexity bound which Soundarajan and
Thorner [20] obtained. Their result applies to all automorphic L-functions and (with
mild restrictions) the Rankin–Selberg L-functions attached to two cuspidal automor-
phic representations. For this question we are concerned about, we can also obtain our
result by using a convexity bound for Rankin–Selberg L-functions. The principal rea-
son why we use the subconvexity bound is to illustrate if we have a better subconvexty
bound, we can obtain a better saving for the result when α belongs to the major arcs.
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Exponential sums with the Dirichlet coefficients of… 131

Remark 1.5 In a number of special situations, condition (1.8) may be dropped, and we
give a few such examples.

• Either π or π ′ satisfies the Ramanujan conjecture (see Sect. 3). If π satisfies the
Ramanujan conjecture, by Lemma 3.1 and the Rankin–Selberg theory, we obtain

∑

n≤x

|λπ×π ′(n)|2 ≤ |λπ×π̃ (n)|
∑

n≤x

|λ
π ′×π̃ ′(n)| ≤ max

n≤x
{d2m(n)}

∣∣∣∣
∑

n≤x

λ
π ′×π̃ ′(n)

∣∣∣∣

�π,π ′ x exp
(
(log log x)1+δ

)
.

Especially, let f , g be newforms and j1, j2 ≥ 0. Denote by λsym j1 f ×sym j2 g(n)

the coefficients of the Dirichlet expansion of L
(
sym j1 f × sym j2 g, s

)
. Then by

the same method, we easily have

∑

n≤x

|λsym j1 f ×sym j2 g(n)|2 ≤ max
n≤x

{d2 j1+2(n)}
∣∣∣∣
∑

n≤x

λ
sym j2 g× ˜sym j2 g

(n)

∣∣∣∣

�π,π ′ x exp
(
(log log x)1+δ

)
.

• π and π ′ are both self-contragredient ∈ A(2). It’s known from [12] that

∑

n≤x

|λπ×π̃ (n)|2 �π x(log x)4.

Thus by Lemma 3.1 and the Cauchy–Schwarz inequality, we obtain that

∑

n≤x

|λπ×π ′(n)|2 �π,π ′ x(log x)4.

• π and π ′ are both self-contragredient and ∈ A(3). There exists π1 ∈ A(2) such
that

L(s, π × π × π × π) = L
(
s,
(
Ad4π1 � Adπ1 � 1

)

×
(
Ad4 π1 � Ad π1 � 1

))
,

where Ad4π1 
 Sym4 π ′ ⊗ω−2, andω is the central character of π1. Since Ad4π1
and Adπ1 are cuspidal automorphic representations, then by the (generalized)
Ikehara’s theorem, see [21, Chapter II.7, Theorem 15], we have

∑

n≤x

|λπ×π̃ (n)|2 �π x(log x)34.

Thus using Lemma 3.1 and the Cauchy–Schwarz inequality, we obtain that

∑

n≤x

|λπ×π ′(n)|2 �π,π ′ x(log x)34.

123



132 G. Lü, Q. Ma

• π and π ′ are self-contragredient automorphic cuspidal representations either on
GL2 or on GL3. By the same method as above, we deduce that

∑

n≤x

|λπ×π ′(n)|2 �π,π ′ x(log x)19.

Denote by μπ(n) the Dirichlet coefficients of the inverse of L(s, π) and μπ×π ′(n)

theDirichlet coefficients of the inverse of L(s, π×π ′). Another fascinating application
of our results is to obtain the upper bound of

Sμπ×π ′ (x, α) =
∑

n≤x

μπ×π ′(n)e(nα),

which is uniform in α. Jiang and Lü [7] first proved that under Hypothesis H and
Hypothesis S,

Sμπ (x, α) =
∑

n≤x

μπ(n)e(nα) �π x
log log x√

log x
.

Very lately, Jiang et al. [9] has proved

Mπ (x) =
∑

n≤x

μ(n)λπ (n)e(nα) �π

x

log x
,

where μ denotes the Möbius function. Since in [7], Jiang and Lü found Mπ (x) and
Sμπ (x) are equivalent by some relation, we easily have

∑

n≤x

μπ(n)e(nα) �π

x

log x
.

In this paper, we will use Theorem 1.1 and a standard zero-free region of Rankin–
Selberg L-functions [5, Theorem A.1] to obtain the following result with milder
hypothesis on the size of the second power-moment of μπ×π ′(n),

∑

n≤x

|μπ×π ′(n)|2 �π,π ′ x exp((log log x)1+δ). (1.9)

Theorem 1.6 Suppose π ∈ A(m) and π ′ ∈ A(m′). Assume that π is not self-dual, π ′
is self-dual and condition (1.9) holds, then we have

∑

n≤x

μπ×π ′(n)e(nα) �π,π ′
x

(log x)1−ε

uniformly in α ∈ R.
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Exponential sums with the Dirichlet coefficients of… 133

Remark 1.7 According to [10], when m �= 2, the density of self-dual cuspidal auto-
morphic representations is indeed zero. When m = 2, self-dual cuspidal automorphic
representations have positive density due to the fact that SO3 = PGL2—the lifts from
this group to GL2 provide for the positive proportion of self-dual representations. It’s
well known that L(s, π ×π) = L

(
s, π, sym2

)
L
(
s, π,∧2

)
, where L

(
s, π, sym2

)
are

the symmetric square L-functions and L
(
s, π,∧2

)
are the exterior square L-functions.

Thus from [14], the representation π is self-dual if and only if the symmetric square
or exterior square L-function has a pole. Furthermore, following from [17], we know
that π is a self-dual automorphic representation for GL3 if and only if π is a symmetric
square lift of a GL2 automorphic representation.

Define

Mπ×π ′(x) =
∑

n≤x

μ(n)λπ×π ′(n)e(nα).

Jiang and Lü established the Möbius randomness principle for the sequence
{λπ(n)e(nkα)} in [7]. The Möbius randomness principle asserts that μ is asymp-
totically orthogonal to any low-complexity function ξ : N → C in the sense that

∑

n≤x

μ(n)ξ(n) = o

(
∑

n≤x

|ξ(n)|
)

,

which is advanced by Sarnak [18]. Also, wewill find some relation betweenMπ×π ′(x)
and Sμπ×π ′ (x) to prove the sequence {λπ×π ′(n)e(nα)} and {μ(n)} are orthogonal.
Corollary 1.8 Suppose π ∈ A(m) and π ′ ∈ A(m′). Assume that π is not self-dual, π ′
is self-dual, condition (1.9) holds and

|απ×π ′, j (p)| ≤ pγ for 1 ≤ j ≤ mm′, (1.10)

where γ < 1/2 is a positive constant. Then we have

∑

n≤x

μ(n)λπ×π ′(n)e(nα) �π,π ′
x

(log x)1−ε

uniformly in α ∈ R.

2 Proof of Theorem 1.1

2.1 Contributions fromN1(x).

For a positive integer m, put P(m) for the largest prime factor of m with P(1) = 1.
Let

N1(x) = {1 ≤ n ≤ x : P(n) ≤ y}.
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134 G. Lü, Q. Ma

From the theory of smooth numbers [2], we know that in our range for y versus x ,

#N1(x) � x exp(−(1 + o(1))u), where u = log x

log y
(x → ∞). (2.1)

By the Cauchy–Schwarz inequality, (1.6) and (2.1), we have

∣∣∣∣
∑

n∈N1(x)

f (n)e(nα)

∣∣∣∣ ≤
( ∑

n∈N1(x)

| f (n)|2
) 1

2
( ∑

n∈N1(x)

1

) 1
2

≤ x
(
exp

(
(log log x)1+δ

))1/2
(
exp

(
− (1 + o(1))

log x

log y

))1/2

.

(2.2)

2.2 Contributions fromN2(x).

Define P(n) = p. Next let

N2(x) =
{
n ∈ [1, x] : p2 | n for p > y/2

}
.

Fixing p, the number of n ∈ [1, x] which are multiples of p2 is at most
⌊
x/p2

⌋ + 1.
Thus,

#N2(x) ≤
∑

y/2≤p≤x1/2

(⌊
x/p2

⌋
+ 1

)
� x

∑

y/2≤p≤x1/2

1

p2
+ π(

√
x) � x

y
.

Then, by the Cauchy–Schwarz inequality, we have

∣∣∣∣∣∣

∑

n∈N2(x)

f (n)e(nα)

∣∣∣∣∣∣
≤

∑

n∈N2(x)

| f (n)e(nα)|

≤ (�N2(x))
1/2

⎛

⎝
∑

n∈N2(x)

| f (n)|2
⎞

⎠
1/2

≤ x
(
exp

(
(log log x)1+δ

))1/2
y−1/2,

(2.3)

as x → ∞.

2.3 Contributions fromN3(x)

Consider N3(x) ⊆ [1, x]\ (N1(x)
⋃N2(x)

)
. Define P(n) = p. Let

N3(x) =
{
n ∈ [1, x] : n = pm, p2 � n where y < p <

x

y

}
.
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Exponential sums with the Dirichlet coefficients of… 135

For each such n = pm ∈ N3(x), letM(x) be the set of all possible values ofm. Then
by the multiplicative property of f (n), we consider

SN3(x) =
∑

n∈N3(x)

f (n)e(nα) =
∑

y<p<x/y

f (p)
∑

m≤x/p
P(m)<p

f (m)e(pmα)

=
∑

m∈M(x)

f (m)
∑

P(m)<p≤x/m

f (p)e(pmα)

≤
∑

1≤ j<log x
y2

+1

|S j |

(2.4)

with

S j =
∑

2 j−1y<m≤2 j y
m∈M(x)

f (m)
∑

P(m)<p≤x/m

f (p)e(pmα).

We use the Cauchy–Schwarz inequality and the inequality of arithmetic and geo-
metric means to estimate the sum

S j ≤
( ∑

2 j−1y<m≤2 j y
m∈M(x)

| f (m)|2
) 1

2

·
( ∑

2 j−1y<m≤2 j y
m∈M(x)

∑

P(m)<p1,p2≤x/m

f (p1) f (p2)e(m(p1 − p2)α)

) 1
2

≤
( ∑

2 j−1y<m≤2 j y
m∈M(x)

| f (m)|2
) 1

2

·
( ∑

x
2 j y

<p1≤ x
2 j−1 y

| f (p1)|2
∑

|p1−p2|≤ x
2 j y

∣∣∣∣
∑

mp1≤x,mp2≤x
P(m)<p1,P(m)<p2

e(m(p1 − p2)α)

∣∣∣∣

) 1
2

.
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136 G. Lü, Q. Ma

Then taking absolute values, S j (x) is bounded by

( ∑

2 j−1 y<m≤2 j y
m∈M(x)

| f (m)|2
) 1

2
( ∑

x
2 j y

<p1≤ x
2 j−1 y

| f (p1)|2

·
∑

|p1−p2|≤ x
2 j y

(∣∣∣∣
∑

m≤2 j y
m(p1−p2)≤x

e(m(p1 − p2)α)

∣∣∣∣ +
∣∣∣∣

∑

m≤2 j y
P(m)≥p1or P(m)≥p2

e(m(p1 − p2)α)

∣∣∣∣

)) 1
2

≤
( ∑

2 j−1 y<m≤2 j y
m∈M(x)

| f (m)|2
) 1

2
( ∑

x
2 j y

<p1≤ x
2 j−1 y

| f (p1)|2
) 1

2

·
( ∑

|p1−p2|≤ x
2 j y

∣∣∣∣
∑

m≤2 j y
m(p1−p2)≤x

e(m(p1 − p2)α)

∣∣∣∣ +
∑

x
2 j y

≤p≤p′≤x1/2

(⌊
x

pp′

⌋
+ 1

)) 1
2

,

where p′ = P(m). If x is sufficiently large, there is a reduced fraction a/q such that
|α − a/q| ≤ q−2. Then we use the following estimate from [6, Lemma 13.7] about
exponential sums, for any M, N ≥ 1,

∑

|n|≤N

∣∣∣∣
∑

m≤M
m≤x(n)

e(αmn)

∣∣∣∣ �
(
M + N + MN

q
+ q

)
log q,

to have

S j ≤
( ∑

2 j−1y<m≤2 j y
m∈M(x)

| f (m)|2
) 1

2

·
( ∑

x
2 j y

<p1≤ x
2 j−1 y

| f (p1)|2
) 1

2
((

2 j y + x

2 j y
+ x

q
+ q

)
log q + 22 j y2

x

) 1
2

.

We take y ≤ q ≤ x
y . By (2.4), (1.6) and the above inequality, we have

SN3(x) � f x(log x)
(
exp

(
(log log x)1+δ

))1/2
y−1/2. (2.5)

2.4 Contributions fromN4(x)

Next let N4(x) = [1, x]\ (N1(x)
⋃N2(x)

⋃N3(x)
)
. We know n = P(n)m and

m ≤ y, where n ∈ N4(x). Let P(n) = p.
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Exponential sums with the Dirichlet coefficients of… 137

By the multiplicative property of f (pm), we have

SN4(x) =
∑

n≤ x
y

f (n)e(nα) =
∑

m≤y

f (m)
∑

x
ym <p≤ x

m

f (p)e(mpα).
(2.6)

Due to (1.7), we know

log
x

ym

∑

x
ym <p≤ x

m

| f (p)| ≤
∑

x
ym <p≤ x

m

| f (p)| log p � x

m
.

Obviously,

∑

x
ym <p≤ x

m

| f (p)| ≤ x

m

(
log

x

ym

)−1

. (2.7)

We use the Cauchy–Schwarz inequality and (1.6) to obtain

∑

n≤x

| f (n)| � f x
(
exp

(
(log log x)1+δ

))1/2
. (2.8)

Hence it follows from (2.6), (2.7), partial summation and (2.8) that

SN4(x) � f
x
(
exp

(
(log log y)1+δ

))1/2 log y
log x

. (2.9)

Combining (2.2), (2.3), (2.5) with (2.9), we deduce

∑

n≤x

f (n)e(nα) � f x
(
exp

(
(log log x)1+δ

))1/2 exp
(

− (1 + o(1))
log x

log y

)

+ x(log x)
(
exp

(
(log log x)1+δ

))1/2
y−1/2

+ x
(
exp

(
(log log y)1+δ

))1/2 log y
log x

.

3 Preliminaries

3.1 Standard L-functions

Let m ≥ 2 be an integer, and let A(m) be the set of all cuspidal automorphic repre-
sentations of GLm over Q with unitary central character. Fix π ∈ A(m). The standard
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138 G. Lü, Q. Ma

function L(s, π) is given by a Dirichlet series and Euler product

L(s, π) =
∞∑

n=1

λπ(n)

ns
=

∏

p

L p(s, π),

L p(s, π) =
m∏

j=1

(
1 − α j,π (p)

ps

)−1

=
∞∑

j=0

λπ

(
p j

)

p js
,

with both the series and the product converging absolutely for �s > 1. The function
L−1(s, π) can be written as

L−1(s, π) =
∞∑

n=1

μπ(n)

ns

for �s > 1. Then it can be given by

μπ(n) =
{
0, pm+1 | n for some prime p,
∏

p�‖n(−1)�
∑

1≤ j1<···< j�≤m α j1,π (p) . . . α j�,π (p) , for all � ≤ m.

Clearly, μπ(n) is multiplicative. Taking the logarithmic derivative for L(s, π), we
define, for �s > 1,

− L ′

L
(s, π) =

∞∑

n=1

aπ (n)�(n)

ns
,

where �(n) is the von Mangoldt function defined by

�(n) :=
{
log p, if n = pk,

0, otherwise.

Then for �s > 1,

log L(s, π) =
∞∑

n=2

aπ (n)�(n)

ns log n
, log L p(s, π) =

∞∑

k=1

aπ

(
pk

)

kpks
,

where

aπ

(
pk

)
=

m∑

j=1

α j,π (p)k .
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Let Nπ denote the conductor of π . At the archimedean place of Q, there exist m
complex Langlands parameters μπ( j) from which we define

L∞(s, π) = Ns/2
π π−ms/2

m∏

j=1

�

(
s + μπ( j)

2

)
.

Let π̃ denote the contragredient of π ∈ A(m), which is also an irreducible cuspidal
automorphic representation in A(m). For each p < ∞, we have

{
α j,π̃ (p) : 1 ≤ j ≤ m

} =
{
α j,π (p) : 1 ≤ j ≤ m

}

and

{μπ̃ ( j) : 1 ≤ j ≤ m} =
{
μπ( j) : 1 ≤ j ≤ m

}
.

The generalized Ramanujan conjecture and Selberg’s conjecture assert that

∣∣α j,π (p)
∣∣ = 1 and |�μπ( j)| = 0 (1 ≤ j ≤ m).

Due to Kim and Sarnak [11] (2 ≤ m ≤ 4) and Luo, Rudnick and Sarnak [13] (m ≥ 5),
the best known record is

∣∣α j,π (p)
∣∣ ≤ pθm , and − �μπ( j) ≤ θm

for all primes p and 1 ≤ j ≤ m, where

θ2 = 7

64
, θ3 = 5

14
, θ4 = 9

22
, θm = 1

2
− 1

m2 + 1
(m ≥ 5). (3.1)

The analytic conductor of π is defined by

C(π, t) = Nπ

m∏

j=1

(1 + |i t + μπ( j)|) , C(π) = C(π, 0),

which we need to use in the following proof.

3.2 Rankin–Selberg L-functions

Let π ′ = ⊗pπ
′
p ∈ A (

m′) and π = ⊗pπp ∈ A (m). We define the Rankin–Selberg
L-function L

(
s, π × π ′) associated to π and π ′ to be

L
(
s, π × π ′) =

∏

p

L
(
s, πp × π ′

p

)
=

∞∑

n=1

λπ×π ′(n)

ns
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for �(s) > 1. For each (finite) prime p, the inverse of the local factor L
(
s, πp × π ′

p

)

is defined to be a polynomial in p−s of degree ≤ mm′,

L
(
s, πp × π ′

p

)−1 =
m∏

j=1

m′∏

j ′=1

(
1 − α j, j ′,π×π ′(p)

ps

)
(3.2)

for suitable complex numbersα j, j ′,π×π ′(p).With θm as in (3.1), we have the pointwise
bound

∣∣α j, j ′,π×π ′(p)
∣∣ ≤ pθm+θm′ ≤ p1−

1
mm′ . (3.3)

If p � Nπ Nπ ′ , we have the equality of sets

{
α j, j ′,π×π ′(p) : j ≤ m, j ′ ≤ m′} =

{
α j,π (p)α j ′,π ′(p) : j ≤ m, j ′ ≤ m′} .

(3.4)

The inverse of L(s, π × π ′) is

L−1(s, π × π ′) =
∞∑

n=1

μπ×π ′(n)

ns
,

where

μπ×π ′ (n) =
{
0, pmm′+1 | n for some prime p,
∏

p�‖n(−1)�
∑

1≤ j1<···< j�≤mm′ α j1,π×π ′ (p) . . . α j�,π×π ′ (p) , for all � ≤ mm′.
(3.5)

Taking the logarithmic derivative for L(s, π × π ′), we define, for �s > 1,

− L ′

L
(s, π × π ′) =

∞∑

n=1

aπ×π ′(n)�(n)

ns
.

Then for �s > 1,

log L(s, π × π ′) =
∞∑

n=2

aπ×π ′(n)�(n)

ns log n
, log L p(s, π × π ′) =

∞∑

k=1

aπ×π ′
(
pk

)

kpks
,

where

aπ×π ′
(
pk

)
=

m∑

j=1

m′∑

j ′=1

α j, j ′,π×π ′(p)k . (3.6)
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At the archimedean place of Q, there are mm′ complex Langlands parameters
μπ×π ′

(
j, j ′

)
from which we define

L∞
(
s, π × π ′) = π−mm′s

2

m∏

j=1

m′∏

j ′=1

�

(
s + μπ×π ′( j, j ′)

2

)
.

These parameters satisfy the pointwise bound

� (
μπ×π ′

(
j, j ′

)) ≥ −θm − θm′ . (3.7)

As with L(s, π), we define the analytic conductor of π × π ′ to be

C
(
π × π ′, t

) = Nπ×π ′
m∏

j=1

m′∏

j ′=1

(
1 + ∣∣i t + μπ×π ′

(
j, j ′

)∣∣) , C
(
π × π ′)

= ssC
(
π × π ′, 0

)
,

where Nπ×π ′ is the conductor ofπ×π ′. Bushnell andHenniart [1] proved that Nπ×π ′ |
Nm′

π Nm
π ′ . It will be essential to be able to decouple the dependencies of C

(
π × π ′, t

)

on π, π ′, and t . The combined work of Bushnell and Henniart [1, Theorem 1] and
Brumley [5, Lemma A.2] yields

C
(
π × π ′, t

) ≤ C
(
π × π ′) (1 + |t |)m′m, C

(
π × π ′) ≤ eO(m+m′)C(π)m

′
C
(
π ′)m .

The first result is due to Jiang et al. [8]. They proved an inequality between the
coefficients of the L-function L(s, π) and those of the Rankin–Selberg L-function
L(s, π × π̃).

Lemma 3.1 Let π ∈ A(m) and π ′ ∈ A (
m′). Then the inequality

∣∣λπ×π ′(n)
∣∣ ≤ √

λπ×π̃ (n)λπ ′×π̃ ′(n)

holds for any positive integer n. In particular, for any π ∈ A(m), we have

|λπ(n)|2 ≤ λπ×π̃ (n).

In order to prove Theorem 1.3, we need the weak bound of Rankin–Selberg L-
functions, which is obtained by Soundarajan and Thorner [20].

Lemma 3.2 If π ∈ A (m) and π ′ ∈ A (
m′) are two cuspidal automorphic represen-

tations, then

∣∣L
(
1/2, π × π ′)∣∣ �m,m′

∣∣L
(
3/2, π × π ′)∣∣2 C

(
π × π ′)1/4

(logC (π × π ′))1/(1017m3m′3)
.
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Remark 3.3 The above result for the L-values is at the central point 1/2. In the t-aspect,
the results in [20] can apply equally to any point 1/2 + i t on the critical line with
trivial modifications. Their work gives the weak subconvexity bound

∣∣L
(
1/2 + i t, π × π ′)∣∣ �π1,π2

∣∣L
(
3/2, π × π ′)∣∣2 C

(
π × π ′, t

)1/4

(logC (π × π ′, t))1/(1017m3m′3)
.

By the condition (1.8) and partial summation, we know L
(
3/2, π × π ′) is bounded

for π and π ′ in Theorem 1.3.

In the proof of Theorem 1.6, we need a standard zero-free region whenever at least
one of the forms is self-dual. This is the following lemma which is proved by Brumley
in [5, Appendix A].

Lemma 3.4 Let π ∈ A(m) and π ′ ∈ A (
m′). Assume that π ′ is self-dual. There is

an effective absolute constant c > 0 such that L
(
s, π × π ′) is non-vanishing for all

s = σ + i t ∈ C satisfying

σ ≥ 1 − c

(m + m′)3 log (C(π)C (π ′) (|t | + 3)m)

with the possible exception of one real zero whenever π is also self-dual.

3.3 twists

Let χ be a primitive Dirichlet character with conductor q, π ′ = ⊗pπ
′
p ∈ A (

m′) and
π = ⊗pπp ∈ A (m). It’swell known thatπ⊗χ ∈ A (m). The twistedRankin–Selberg
L-function is defined by

L(s, π ⊗ χ × π ′) =
∞∑

n=1

λπ⊗χ×π ′(n)

ns
=

∏

p

m∏

j=1

m′∏

j ′=1

(
1 − α j, j ′,π⊗χ×π ′(p)

ps

)−1

,

in which

λπ⊗χ×π ′(n) = χ(n)λπ×π ′(n).

Moreover, by (3.4), if p � q, then

{
α j, j ′,π⊗χ×π ′(p) : 1 ≤ j ≤ m, 1 ≤ j ′ ≤ m′}

= {
χ(p)α j1, j2,π×π ′(p) : 1 ≤ j ≤ m, 1 ≤ j ′ ≤ m′} .
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Thus, we have

∞∑

n=1

χ(n)λπ×π ′(n)

ns
=

∏

p

m∏

j=1

m′∏

j ′=1

(
1 − χ(p)α j, j ′,π×π ′(p)

ps

)−1

= L(s, π ⊗ χ × π ′)
∏

p|q

m∏

j=1

m′∏

j ′=1

(
1 − α j, j ′,π⊗χ×π ′(p)

ps

)
.

Denote Nπ⊗χ×π ′ the conductor of π ⊗χ ×π ′. In fact, due to the work of Bushnell
and Henniart [1], the conductor Nπ⊗χ×π ′ has the upper bound

Nπ⊗χ×π ′ ≤ Nπ×π ′qmm′
.

Using Lemma 3.4 and the samemethod in [7, Lemma 4.2], we obtain upper bounds
for 1

L(s,π⊗χ×π ′) .

Lemma 3.5 For any Dirichlet character χ(mod q) and for all s = σ + i t ∈ C, let c
be the constant in Lemma 3.4, and suppose that

σ ≥ 1 − c

2 (m + m′)3 log (C(π ⊗ χ)C(π ′)(|t | + 3)m)
.

Then

1

L(s, π ⊗ χ × π ′)
�π,π ′ log

(
C(π ⊗ χ)C(π ′)(|t | + 3)

)
. (3.8)

Proof In order to derive the estimate for 1
L(s,π⊗χ×π ′) , we need to consider the estimate

for L ′
L (s, π ⊗ χ × π ′).

Firstly, suppose that χ is a primitive character modulo q. Then L(s, π ⊗ χ × π ′)
is an L-function of degree mm′. By Proposition 5.7 in [6], we know that the number
of zeros ρ = β + iγ such that |γ − T | ≤ 1, say m(T , π ⊗ χ × π ′), satisfies

m(T , π ⊗ χ × π ′) � log
(
C(π ⊗ χ)m

′
C(π ′)m(|T | + 3)m

′m
)

(3.9)

and for any s in the strip −1/2 ≤ σ ≤ 2,

L ′

L
(s, π ⊗ χ × π ′) −

∑
∣∣∣s+μπ⊗χ×π ′ ( j, j ′)

∣∣∣<1

1

s + μπ⊗χ×π ′( j, j ′)
−

∑

|s−ρ|<1

1

s − ρ

� log
(
C(π ⊗ χ)m

′
C(π ′)m(|t | + 3)m

′m
)

.
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So by (3.7), we get

L ′

L
(s, π ⊗ χ × π ′) �

∑

|t−γ |<1

1

|σ − β + i(t − γ )|

+ log
(
C(π ⊗ χ)m

′
C(π ′)m(|t | + 3)m

′m
)

.

Due to

β < 1 − cm,m′

log (C(π ⊗ χ)C(π ′)(|t | + 3))
, σ > 1 − cm,m′

2 log (C(π ⊗ χ)C(π ′)(|t | + 3))

and (3.9), we have

L ′

L
(s, π ⊗ χ × π ′) �π,π ′ log

(
C(π ⊗ χ)C(π ′)(|t | + 3)

) ( ∑

|t−γ |<1

1 + 1

)

� log2
(
C(π ⊗ χ)C(π ′)(|t | + 3)

)
.

(3.10)

Then, suppose χ∗ modulo q∗ with q∗ | q is the primitive character which includes
χ(mod q). We deduce the following equality between logarithmic derivatives

− L ′

L
(s, π ⊗ χ × π ′) = − L ′

L

(
s, π ⊗ χ∗ × π ′) + O

⎛

⎝
∑

p|q,p�q∗

∣∣∣∣
L ′

L

(
s, πp ⊗ χ∗ × π ′

p

)∣∣∣∣

⎞

⎠ ,

using equality

L(s, π ′ × π ⊗ χ) = L
(
s, π ⊗ χ∗ × π ′) ∏

p|q,p�q∗
L
(
s, πp ⊗ χ∗ × π ′

p

)
.

For the second term on the right hand side, it follows from (3.3) that

L ′

L

(
s, πp ⊗ χ∗ × π ′

p

)
�

∑

1≤ j≤n

∑

1≤ j ′≤n′

∣∣απ ′×π, j, j ′(p)
∣∣ p−σ log p

1 − ∣∣απ ′×π, j, j ′(p)
∣∣ p−σ

� 1

which holds for any σ > 1 − 1/(mm′). Thus, we control the error term by

∑

p|q
1 � log(q + 1).

Combining with (3.10), we have, for any character χ ,

L ′

L
(s, π ⊗ χ × π ′) � log2

(
C(π ⊗ χ)C(π ′)(|t | + 3)

)
. (3.11)
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Next, consider bounding L−1(s, π⊗χ×π ′). Let s1 = 1+ 1
log2(C(π⊗χ)C(π ′)(|t |+3))

+
i t . To get an estimate for the logarithmof L(s, π⊗χ×π ′), we integrate the logarithmic
derivative along the horizontal line

log L(s, π ⊗ χ × π ′) − log L
(
s1, π ⊗ χ × π ′)

=
∫ s

s1

L ′

L
(w, π ⊗ χ × π ′)dw

� |s1 − s| log2 (C(π ⊗ χ)C(π ′)(|t | + 3)
)

� 1,

(3.12)

where the penultimate inequality is due to the estimate (3.11). It’s known from [20,
Lemma 2.2] that

|aπ×π ′(n)| ≤
√
aπ×π̃ (n)a

π ′×π̃ ′(n). (3.13)

Then if 1 < σ < 3/2, by (3.13) and estimating trivially, we obtain

| log L(s, π ⊗ χ × π ′)| ≤
∞∑

n=2

�(n)
√
aπ×π̃ (n)a

π ′×π̃ ′(n)

nσ log n

≤
∞∑

n=2

�(n)aπ×π̃ (n)

nσ log n
+

∞∑

n=2

�(n)a
π ′×π̃ ′(n)

nσ log n
.

Using Shahidi’s non-vanishing result of L(s, π × π̃) on �s = 1 (see [19]), we get

∑

n≤x

�(n)aπ×π̃ (n) ∼ x . (3.14)

Then we will use the exponential integral formula [4, 3.35(5)]

∫ ∞

1

e−μx

x
dx = −Ei(−μ) for μ > 0

and the asymptotic representation [4, 8.214(1)] of the function

Ei(x) = C + log(−x) +
∞∑

k=1

xk

k · k! for x < 0.
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By partial integral and the above two equalities, we have

| log L(s, π ⊗ χ × π ′)| ≤ 2
∫ ∞

2

1

tσ log t
dt + O(1)

≤ 2
∫ ∞

1

e(1−σ)x

x
dx + O(1)

� | log(σ − 1)| + O(1).

Especially, at the point s1, the estimate

∣∣log L
(
s1, π ⊗ χ × π ′)∣∣ � log log

(
C(π ⊗ χ)C(π ′)(|t | + 3)

)

holds. Thus it follows from (3.12) and the above inequality that log L(s, π ′ × π ⊗ χ)

has the same upper bound. Since

log
1

|L(s, π ⊗ χ × π ′)| = −� log L(s, π ⊗ χ × π ′),

we get the result (3.8) that we want. ��

4 Proof of Theorems 1.3 and 1.6

4.1 The circle method

We shall consider α ∈ [0, 1). Let 1 < P < Q, PQ = x , P , Q be parameters to be
chosen later. By the Dirichlet approximation theorem, for any α ∈ [0, 1), there exists
a rational number a/q such that

∣∣∣∣α − a

q

∣∣∣∣ ≤ 1

qQ
, (a, q) = 1, 0 ≤ a < q ≤ Q. (4.1)

The initial step of the Hardy–Littlewood circle method would be to divide all α into
the major arcs and the minor arcs. For 0 ≤ a < q ≤ P , we first denote the major arcs
by

M(a, q) =
[
a

q
− 1

qQ
,
a

q
+ 1

qQ

]
.

WriteM for the union of all the major arcs

M =
⋃

q≤P

⋃

1≤a≤q
(a,q)=1

M(a, q).
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Next, define

m = [0, 1]\M,

which is the complement of M in [0, 1).

4.2 Major arcs

Due to (4.1) and partial summation, we obtain that

∑

n≤x

f (n)e(nα) �
(
1 + x

qQ

)
max
1≤t≤x

∣∣∣∣∣
∑

n≤t

f (n)e

(
an

q

)∣∣∣∣∣ . (4.2)

It follows from the orthogonality of Dirichlet characters that

∑

n≤t

f (n)e

(
an

q

)
=

q∑

h=1

e

(
ah

q

) ∑

n≤t
n≡h(mod q)

f (n)

=
∑

d|q

q/d∑

h=1
(h,q/d)=1

e

(
adh

q

) ∑

l≤t/d
l≡h(mod q/d)

f (dl)

=
∑

d|q

1

ϕ(q/d)

∑

χ(mod q/d)

q/d∑

h=1
(h,q/d)=1

χ̄ (h)e

(
adh

q

) ∑

l≤t/d

f (dl)χ(l)

=
∑

d|q

1

ϕ(q/d)

∑

χ(mod q/d)

χ(a)τ (χ̄)
∑

l≤t/d

f (dl)χ(l),

where ϕ is the Euler function. As the Gauss sum τ(χ̄) has the well-known bound

τ(χ̄) =
q/d∑

h=1
(h,q/d)=1

χ̄ (h)e

(
dh

q

)
� (q/d)

1
2 ,

we get

∑

n≤t

f (n)e

(
an

q

)
� q1/2

∑

d|q

1

d1/2
max

χ(mod q/d)

∣∣∣∣∣∣

∑

l≤x/d

f (dl)χ(l)

∣∣∣∣∣∣
.
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The multiplicative functions f (dl) need to be factored over l. So let l = l1l2 with
l1 | d∞ and (l2, d) = 1. Then by (3.3), we have

∑

n≤t

f (n)e

(
an

q

)
� q

1
2
∑

d|q
d

1
2− 1

m2 − 1
m′2

∑

l1|d∞
l1≤t

l
1− 1

m2 − 1
m′2

1 max
χ(mod q/d)

∣∣∣∣∣∣

∑

l2≤t/(dl1)

f (l2) χ (l2)

∣∣∣∣∣∣
.

(4.3)

Now it suffices to estimate the sum of type

∑

n≤X

f (n)χ(n) (4.4)

for any χ(mod r) with 0 < r ≤ q and 0 < X ≤ t . We choose a function φ supported
on [0, X + Y ], such that φ(z) = 1 if Y ≤ z ≤ X and φ( j)(x) � j Y− j for all
j ≥ 0. Here, the parameter Y will be chosen later subject to 1 ≤ Y ≤ X . By partial
integration, the Mellin transform of φ satisfies

φ̂(s) =
∫ X+Y

0
φ(z)zs−1dz � Y

X1−σ
·
(

X

|s|Y
) j

for any j ≥ 1 and 1/2 ≤ σ = �s ≤ 2.
By the Cauchy–Schwarz inequality and (1.6), we derive that

∑

X<n≤X+Y

| f (n)| �
⎛

⎝
∑

X<n≤X+Y

| f (n)|2
⎞

⎠

1
2
⎛

⎝
∑

X<n≤X+Y

1

⎞

⎠

1
2

� f X
1
2+εY

1
2

for 1 ≤ Y ≤ X . Thus we can smooth the sum (4.4) by writing

∑

n≤X

f (n)χ(n) =
∑

n

f (n)χ(n)φ(n) + O(X
1
2+εY

1
2 ). (4.5)

Case 1: f (n) = λπ×π̃ (n). By Mellin’s inverse transform, we can write

∑

n

λπ⊗χ×π ′(n)φ(n) = 1

2π i

∫

(2)
φ̂(s)L(s, π ⊗ χ × π ′)ds. (4.6)

If χ is induced by a primitive character χ1 (mod r1), then r1 | r and

L(s, π ⊗ χ × π ′) = L
(
s, π ⊗ χ1 × π ′) ∏

p| r
r1

m∏

j=1

m′∏

j ′=1

(
1 − απ⊗χ1×π ′, j, j ′(p)p

−s) .
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Due to the estimate (3.3), for �s = 1
2 ,

∏

p| r
r1

m∏

j=1

m′∏

j ′=1

(
1 − απ⊗χ1×π ′, j, j ′(p)χ1(p)p

−s) �
(
r

r1

)m+m′
2 −m+m′

mm′
.

Moving the vertical line of integration in (4.6) to �s = 1/2, we obtain by Cauchy’s
theorem and Lemma 3.2 that

∑

n≤X

λπ⊗χ×π ′(n)φ(n)

�
(
r

r1

)m+m′
2 −m+m′

mm′
.

∫

(�s)

∣∣∣φ̂(s)L
(
s, π ⊗ χ1 × π ′)

∣∣∣ ds

�π,π ′
(
r

r1

)m+m′
2 −m+m′

mm′
(∫ X/Y

0

Xσ

t + 1
r

mm′
4

1
(2 + |t |)mm′/4

(log r1(2 + |t |))1/(1017m3m′3)
dt

+
∫ ∞

X/Y

Y

X1−σ
·
(

X

tY

)mm′
4 +2

r
mm′
4

1
(2 + |t |)mm′/4

(log r1(2 + |t |))1/(1017m3m′3)
dt

⎞

⎠

�π,π ′
(
r

r1

)m+m′
2 −m+m′

mm′
r

mm′
4

1

(
X

Y

)mm′
4

(
log

r1X

Y

) −1
1017m3m′3

X
1
2 .

We gather the above results to obtain

∑

n≤X

λπ⊗χ×π ′(n) �π,π ′
(
r

r1

)m+m′
2 −m+m′

mm′
r

mm′
4

1

(
X

Y

)mm′
4

(
log

r1X

Y

) −1
1017m3m′3

X
1
2

+X
1
2+εY

1
2 .

Then choose Y
1
2 =

(
r
r1

)(m+m′
2 −m+m′

mm′
)

2
2+mm′

r
mm′

2(2+mm′)
1 X

mm′
2(2+mm′) +ε

obtaining

∑

n≤X

λπ⊗χ×π ′(n) �π,π ′ r
m+m′
2+mm′ + 1

2 X
1+mm′
2+mm′ +ε

.

Inserting this bound into (4.3) yields

∑

n≤t

λπ×π ′(n)e

(
an

q

)
�π,π ′ q

m+m′
2+mm′ +1t

1+mm′
2+mm′ +ε

. (4.7)
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Finally, it follows from (4.2) and (4.7) that

∑

n≤x

λπ×π ′(n)e(nα) �π,π ′,ε P
m+m′
2+mm′ +1x

1+mm′
2+mm′ +ε

, (4.8)

where α ∈ M.
Case 2: f (n) = μπ×π ′(n). Also, from Mellin’s inverse transform, we can write

∑

n

μπ⊗χ×π ′(n)φ(n) = 1

2π i

∫

(2)
φ̂(s)L−1(s, π ⊗ χ × π ′)ds.

Define

� =
{
s = σ + i t | σ ≥ 1 − c

2 (m + m′)3 log (C(π ⊗ χ)C(π ′)(|t | + 3)m)

}
.

Lemma 3.4 shows that the left edge Z of � has no zeros. That is to say, we need not
care about any pole and only estimate the integral over the left edgeZ of �. It follows
from Lemma 3.5 that for any s ∈ Z ,

L−1(s, π ⊗ χ × π ′) �π,π ′ log
(
C(π ⊗ χ)C(π ′)(|t | + 3)

)
.

Then we obtain by Cauchy’s theorem and Lemma 3.5 that

∑

n≤X

μπ⊗χ×π ′(n)φ(n) �
∫

(�s)

∣∣∣φ̂(s)L−1 (s, π ⊗ χ1 × π ′)
∣∣∣ ds

�
∫ X/Y

0

Xσ(t)

t + 1
log

(
C(π ⊗ χ)C(π ′)(|t | + 3)

)
dt

+
∫ ∞

X/Y

Y

X1−σ(t)
·
(

X

tY

)2

log
(
C(π ⊗ χ)C(π ′)(|t | + 3)

)
dt

�π,π ′ Xσ( X
Y ) log2

(
C(π ⊗ χ)C(π ′)( X

Y
+ 3)

)
,

where σ( XY ) = 1 − c

2(m+m′)3 log
(
C(π⊗χ)C(π ′)( X

Y +3)m
) . We know Xε ≤ exp

(
(log log

X)1+δ
)
in (4.5). So we choose X

Y = exp
( √

log X
2(m+m′)3

)
getting

∑

n≤X

μπ ′×π (n)χ(n) � X exp

(
− c1 log X√

log X + 2 (m + m′)3 log (C(π ⊗ χ)C(π ′))

)

· log2 (C(π ⊗ χ)C(π ′)X
) + X

1
2+εY

1
2

� (C(π ⊗ χ)C(π ′))
1
2 X exp

(
−c2

2

√
log X

)
+ X

1
2+εY

1
2

�π,π ′ r
mm′
2 X exp

(
−c3

2

√
log X

)
,
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where c3 depends on π and π ′. Inserting this bound into (4.3) yields

∑

n≤t

μπ ′×π (n)e

(
an

q

)
� q

mm′+1
2 t exp

(
−c3

2

√
log t

)
. (4.9)

Finally, for α ∈ M, we plug (4.9) back into (4.2) and then obtain

∑

n≤x

μπ ′×π (n)e(nα) �π,π ′,ε

(
P + x

Q

)
P

mm′−1
2 x exp

(
−c3

2

√
log x

)
. (4.10)

4.3 Minor arcs

We appeal to the following recursion (see [15, Eq. (24)])

kλπ×π̃

(
pk

)
=

k∑

l=1

∣∣∣aπ

(
pl
)∣∣∣

2
λπ×π̃

(
pk−l

)

for any k > 0. Especially, when k = 1, we note that

λπ×π̃ (p) = |λπ(p)|2 = |aπ (p)|2 .

By the above equation and (3.14), we have

∑

n≤x

λπ×π̃ (p) log p � x .

Then the multiplicative function λπ×π ′(n) satisfies the second condition (1.7). Due to
(3.6) and (3.5), we deduce that

μπ×π ′(p) = aπ×π ′(p).

SoEq. (3.14) implies that themultiplicative functionμπ×π ′(n) also satisfies the second
condition (1.7). Hence applying Theorem 1.1, for α ∈ m, we get

∑

n≤x

λπ×π ′(n)e(nα) �π,π ′ x
(
exp

(
(log log x)1+δ

)) 1
2 exp

(
− (1 + o(1))

log x

log P

)

+ x(log x)
(
exp

(
(log log x)1+δ

)) 1
2 P− 1

2

+ x
(
exp

(
(log log P)1+δ

)) 1
2 log P

log x

(4.11)
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and

∑

n≤x

μπ×π ′(n)e(nα) �π,π ′ x
(
exp

(
(log log x)1+δ

)) 1
2 exp

(
− (1 + o(1))

log x

log P

)

+ x(log x)
(
exp

(
(log log x)1+δ

)) 1
2 P− 1

2

+ x
(
exp

(
(log log P)1+δ

)) 1
2 log P

log x
.

(4.12)

4.4 The choices of parameters

Put P = exp
(
4(log log x)1+δ

)
. Due to (4.8) and (4.10), we deduce that if α ∈ M,

∑

n≤x

λπ×π ′(n)e(nα) �π,π ′,ε x
1+mm′
2+mm′ +ε exp

(
8(log log x)1+δ

)

and

∑

n≤x

μπ ′×π (n)e(nα) �π,π ′ x exp
(
4(mm′)(log log x)1+δ

)
exp

(
−c3

2

√
log x

)
.

For α ∈ m, it follows from (4.11) and (4.12) that

∑

n≤x

λπ×π ′(n)e(nα) �π,π ′
x

(log x)1−ε

and

∑

n≤x

μπ×π ′(n)e(nα) �π,π ′
x

(log x)1−ε
. (4.13)

By the above results, we complete the proof of Theorems 1.3 and 1.6.

5 Proof of Corollary 1.8

Define the Dirichlet series

D(s) =
∞∑

n=1

μ(n)λπ×π ′(n)n−s .

Moreover, admit an Euler product

D(s) =
∏

p

(
1 − λπ×π ′(p)

ps

)
(5.1)
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which converges absolutely for �s > 1. By (3.2), we have

λπ×π ′ (p) =
m∑

j=1

m′∑

j ′=1

α j, j ′,π×π ′(p). (5.2)

It’s known that L(s, π × π ′) converges absolutely for �s > 1. Thus the product
L(s, π × π ′)D(s) is also given by a Dirichlet series, namely we have

L(s, π × π ′)D(s) = H(s) =
∞∑

n=1

h(n)n−s .

Since L−1(s, π × π ′) converges absolutely for �s > 1, we can write

D(s) = L−1(s, π × π ′)H(s). (5.3)

Then it follows that

μ(n)λπ×π ′(n) =
∑

d|n
μπ×π ′(d)h

(n
d

)
. (5.4)

It follows from (3.5) that

L−1(s, π × π ′) =
∏

p

⎛

⎝1 + μπ×π ′(p)

ps
+ μπ×π ′

(
p2

)

p2s
+ · · · +

μπ×π ′
(
pmm′)

pmm′s

⎞

⎠ .

(5.5)

Combining (5.1), (5.3), (5.5), (5.2) with (3.5), we obtian

H(s) =
∏

p

(
1 + O

(∣∣απ×π ′,1(p)
∣∣2 + · · · + ∣∣απ×π ′,mm′(p)

∣∣2

p2σ

))
:=

∞∑

n=1

h(n)

ns
.

By (1.10), we know that H(s) converges absolutely in σ > 1/2 + γ . Thus it follows
from (5.4), the absolute inequality and (4.13) that

∑

n≤x

μ(n)λπ×π ′(n)e (nα) =
∑

m≤x1−ε

h(m)
∑

d≤x/m

μπ×π ′(d)e (dmα) + O(x1−ε)

�π,π ′
x

(log x)1−ε
,

uniformly in α ∈ R.
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