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Abstract
A refinement of the Hille–Wintner comparison theorem is obtained for two half-linear
differential equations of the second order. As a consequence, some new nonoscillation
tests for such equations are derived by means of this improved comparison technique.
In most of our results coefficients and their integrals do not need to be nonnegative
and are allowed to oscillate in any neighborhood of infinity.
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1 Introduction

Two basic comparison principles in the theory of linear differential equations which
relate oscillation (resp. nonoscillation) of all solutions of a pair of equations

y′′ + q1(t)y = 0 (L1)

and

z′′ + q2(t)z = 0, (L2)
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where qi : [a,∞) → R, i = 1, 2, are continuos functions, are the Sturm comparison
theoremwhich asserts that nonoscillation of (L2) implies that of (L1) (or, equivalently,
oscillation of (L1) implies that of (L2)) provided that

q1(t) ≤ q2(t) (1.1)

for all sufficiently large t , and theHille–Wintner theorem inwhich the same conclusion
is obtainedunder the condition thatq1 andq2 are integrable on [a,∞) and the pointwise
inequality (1.1) between coefficients is replaced by the integral inequality

∣
∣
∣
∣

∫ ∞

t
q1(s)ds

∣
∣
∣
∣
≤

∫ ∞

t
q2(s)ds (1.2)

holding for all t large enough (see Hille [8] and Wintner [25, 26]).
Both results have been extended to the pair of nonlinear differential equations of

the form

(|y′|α−1y′)′ + q1(t)|y|α−1y = 0 (E1)

and

(|z′|α−1z′
)′ + q2(t)|z|α−1z = 0, (E2)

where α > 0 is a given constant and q1 and q2 are as before. See Mirzov [20] and
Elbert [4, 5] for generalization of the Sturm theorem and Kusano et al. [9, 14–16] for
extension of the Hille–Wintner integral comparison theorem.

Here, by a solution of (Ei ) for a fixed i we understand a real-valued function y which
is continuously differentiable on [ty,∞) for some ty ≥ a together with |y′|α−1y′ and
satisfies (Ei ) on [ty,∞). In this paper we consider only solutions of (Ei ) which are not
identically zero in any neighborhood of infinity.We call such a solution oscillatory if it
has arbitrarily large zeros in [ty,∞); otherwise we say that it is nonoscillatory. Since
it is well-known that if one solution of (Ei ) is oscillatory (resp. nonoscillatory), then all
of them are so, it is natural to call equation (Ei ) itself oscillatory (resp. nonoscillatory)
if one (and so all) of its solutions enjoy the respective property.

A variety of sufficient conditions for nonoscillation of (E1) can be obtained by
application of any of the above comparison theorems in particular situations where
(E2) is a suitable nonoscillatory equation. For example, if (E2) is the nonoscillatory
Euler type equation

(|z′|α−1z′
)′ +

(
α

α + 1

)α+1

t−α−1|z|α−1z = 0, t ≥ a ≥ 1,

then (1.2) gives the Hille’s nonoscillation criterion

tα
∣
∣
∣
∣

∫ ∞

t
q1(s)ds

∣
∣
∣
∣
≤ 1

α + 1

(
α

α + 1

)α

(1.3)
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which is assumed to hold on some [T ,∞), T ≥ a.
However, one shortfall of the classical Hille–Wintner theorem and its half-linear

extension is that it does not imply another well-known nonoscillation test which
improves (1.3), namely, the Hille-Nehari criterion which assumes the satisfaction of
the condition

− 2α + 1

α + 1

(
α

α + 1

)α

≤ tα
∫ ∞

t
q1(s)ds ≤ 1

α + 1

(
α

α + 1

)α

(1.4)

for all large t (see Došlý [1]).
Thus, one of our main purposes here is to extend and refine integral comparison

criterion (1.2) so that it would not only imply (1.4), but also unify other earlier results
and produce a series of new sufficient conditions for nonoscillation of equation (E1).
We emphasize that in our approach we do not suppose apriori that the coefficient
q1(t) and/or its integral

∫ ∞
t q1(s)ds (if it exists) is nonnegative in some neighborhood

of infinity. Some of our results were motivated by their linear prototypes which were
obtained by Kamenev [11–13] and Wong [27].

A survey of generalizations and extensions of the Hille-Wintner theorem in the
half-linear settings published before the year 2005 as well as an overwiev of methods
and techniques used in their proofs can be found in the monograph Došlý et al [2].
A number of useful nonoscillation criteria for half-linear differential equations of the
secondorder generalizing the classical linear results ofHille, Potter,Moore,Willett and
others have been obtained in Li and Yeh [18, 19]. For more recent results concerning
this topic we refer to Došlý and Pátiková [3], Fišnarová and Mařik [6], Hasil and
Veselý [7], Kandelaki, Lomtatidze and Ugulava [10], Li and Yeah [19], Naito [21],
Pátiková [22], Sugie and Wu [24] and Yang and Lo [28].

2 Main results

The following necessary and sufficient condition for nonoscillation of (E1) which will
be used in the proof of our main theorem is a direct consequence of the (generalized)
Sturm comparison theorem. For the proof see Skhalykho [23] or Li and Yeh [17].

Lemma 2.1 Eq. (E1) is nonoscillatory if and only if there exists a function u ∈
C1([t1,∞),R) for some t1 ≥ a such that

u′(t) + α
∣
∣u(t)

∣
∣1+ 1

α + q1(t) ≤ 0

for t ≥ t1.

Our main result now follows. As can be seen from its subsequent applications in the
nonoscillation theory of secod order half-linear differential equations, it significantly
improves the classical Hille–Wintner comparison theorem.
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Theorem 2.1 Let Q1(t)and Q2(t)be continuously differentiable real-valued functions
such that

Q′
1(t) = −q1(t) and Q′

2(t) = −q2(t)

on [a,∞) and equation (E2) be nonoscillatory. If there exists a T ≥ a such that

∣
∣v(t) − Q2(t) + Q1(t)

∣
∣ ≤ |v(t)| (2.1)

for t ≥ T , where v is a solution of

v′ + α|v|1+ 1
α + q2(t) = 0 (2.2)

on [T ,∞), then equation (E1) is also nonoscillatory.

Proof . Define

u(t) = v(t) − Q2(t) + Q1(t), t ≥ T ≥ a.

Then

u′(t) + α|u(t)|1+ 1
α + q1(t)

= v′(t) + q2(t) − q1(t) + α
∣
∣v(t) − Q2(t) + Q1(t)

∣
∣
1+ 1

α + q1(t)

= −α
∣
∣v(t)

∣
∣
1+ 1

α + α
∣
∣v(t) − Q2(t) + Q1(t)

∣
∣
1+ 1

α

= α

[
∣
∣v(t) − Q2(t) + Q1(t)

∣
∣1+ 1

α − ∣
∣v(t)

∣
∣1+ 1

α

]

≤ 0

for all large t because of (2.1) and the assertion follows from Lemma 2.1. �	
There exists a large class of primitives of −q1(t) and −q2(t) which can be used in

Theorem2.1 for Q1(t) and Q2(t), respectively. For example, if q1 and q2 are integrable
on [a,∞) (possibly only conditionally), we can take

Q1(t) =
∫ ∞

t
q1(s)ds, Q2(t) =

∫ ∞

t
q2(s)ds, t ≥ a. (2.3)

Or, if there exist finite limits

ci = lim
t→∞

α

tα

∫ t

a
sα−1

∫ s

a
qi (τ )dτds, i = 1, 2, (2.4)

we can take

Qi (t) = ci −
∫ t

a
qi (s)ds, t ≥ a, i = 1, 2. (2.5)
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We remark that if limt→∞
∫ t
a qi (s)ds exist and are finite, then

ci = lim
t→∞

∫ t

a
qi (s)ds =

∫ ∞

a
qi (t)dt i = 1, 2. (2.6)

On the other hand, there are functions for which the limit in (2.6) does not exist as
a finite number, but at the same time (2.4) is satisfied. An example of this type of
functions is given, for example, in [10].

It is known that if (2.4) holds for a fixed i and equation (Ei ) is nonoscillatory, then

the solution vi of the associated Riccati equation v′
i + α|vi |1+ 1

α + qi (t) = 0 can be
expressed as

vi (t) = Qi (t) + α

∫ ∞

t
|vi (s)|1+ 1

α ds (2.7)

on [T ,∞) for some T ≥ a, where Qi is given by (2.5) (see Kandelaki et al. [10]).

Remark 2.1 Clearly, if both limits in (2.4) exist as finite numbers and the functions
Q1(t) and Q2(t) defined by (2.5) satisfy

∣
∣Q1(t)

∣
∣ ≤ Q2(t)

for all large t , then from (2.7) it follows that v(t) − Q2(t) ≥ 0 and

∣
∣v(t) − Q2(t) + Q1(t)

∣
∣ ≤ [

v(t) − Q2(t)
] + ∣

∣Q1(t)
∣
∣

≤ v(t) − Q2(t) + Q2(t) = v(t)

for any (nonnegative) solutionv of (2.2), so that theHille-Wintner criterion is contained
in the new result.

Corollary 2.1 Let k > 0 be a given constant. If Q1 is a continuously differentiable
function such that Q′

1(t) = −q1(t) on [a,∞) and

− k
α

α+1 − k ≤ tαQ1(t) ≤ k
α

α+1 − k (2.8)

for all sufficiently large t, then equation (E1) is nonoscillatory.

Proof Compare (E1) through (2.1) with the nonoscillatory equation

(|z′|α−1z′
)′ + α

(

k
α

α+1 − k
)

t−α−1|z|α−1z = 0

for which v(t) = kα/(α+1)t−α is the exact solution of the corresponding Riccati
equation. �	
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Remark 2.2 The right-hand side of the second inequality in (2.8) as the function of k
assumes its maximum at k = (

α/(α +1)
)α+1. With this value of k the condition (2.8)

becomes the Hille–Nehari criterion

−2α + 1

α + 1

(
α

α + 1

)α

≤ tαQ1(t) ≤ 1

α + 1

(
α

α + 1

)α

which extends (1.4) (where Q1(t) = ∫ ∞
t q1(s)ds) to the larger class of coefficients

satisfying (2.4) (cf. with Theorem 1.6 from Kandelaki [10]).

Theorem 2.2 Suppose that (2.4) holds and Eq. (E2) is nonoscillatory. If

∣
∣
∣
∣
α

∫ ∞

t

∣
∣v(s)

∣
∣
1+ 1

α ds + Q1(t)

∣
∣
∣
∣
≤

∣
∣
∣
∣
α

∫ ∞

t

∣
∣v(s)

∣
∣
1+ 1

α ds + Q2(t)

∣
∣
∣
∣

(2.9)

for t ≥ T ≥ a, where v is the solution of (2.2) on [T ,∞), then Eq. (E1) is also
nonoscillatory.

Proof Since (2.4) holds and (E2) is supposed to be nonoscillatory, we can express

the solution v of (2.2) as v(t) = Q2(t) + α
∫ ∞
t |v(s)|1+ 1

α ds. Inserting this integral
expression for v into the left-hand side of (2.1) and using (2.9), we find that all
conditions of Theorem 2.1 are satisfied, and so equation (E1) is nonoscillatory. �	

A class of explicitly solvable Riccati equations of type (2.2) which can be used in
Theorems 2.1 and 2.2 includes equations

v′ + α|v|1+ 1
α − α| f (t)|1+ 1

α − f ′(t) = 0 (2.10)

and

v′ + α|v|1+ 1
α + f ′(t) − α| f (t)|1+ 1

α = 0

with the exact solutions v = f and v = − f , respectively. In particular, if in (2.9) we

use (2.10) and define Q2 by (2.3) where q2(t) = −α| f (t)|1+ 1
α − f ′(t), we obtain

Theorem 2.3 Suppose that for q1 the limit in (2.4) exists as a finite number and define
Q1 by (2.5). If there exists a function f ∈ C1([a,∞),R) such that limt→∞ f (t) = 0,
∫ ∞
a | f (t)|1+ 1

α dt < ∞ and

∣
∣
∣
∣
α

∫ ∞

t

∣
∣ f (s)

∣
∣1+ 1

α ds + Q1(t)

∣
∣
∣
∣
≤ | f (t)|

for all large t, then Eq. (E1) is nonoscillatory.

Remark 2.3 . Similarly as in the linear case (seeKamenev [12]) it can be shown that the
existence of a function f with the properties stated in Theorem 2.3 is also a necessary
condition for nonoscillation of (E1).
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Corollary 2.2 Suppose that (2.4) holds. If

∫ ∞

a

∣
∣Q1(t)|(α+1)/αdt < ∞

and for all sufficiently large t the inequality

∫ ∞

t
|Q1(s)|1+ 1

α ds ≤ (α + 1)− α+1
α

α

[

(α + 1)|Q1(t)| − Q1(t)
]

, (2.11)

holds, then Eq. (E1) is nonoscillatory.

Proof It follows from Theorem 2.3 where f (t) = (α + 1)
∣
∣Q1(t)

∣
∣. �	

Remark 2.4 . Under the additional restriction Q1(t) ≥ 0 on [a,∞), condition (2.11)
in Corollary 2.2 reduces to the Opial type nonoscillation criterion

∫ ∞

t
Q1(s)

1+ 1
α ds ≤ (

α + 1
)− α+1

α Q1(t) (2.12)

for all sufficiently large t . This results can be generalized further as follows.

Theorem 2.4 Let Q1 : [a,∞) → [0,∞) be a continuously differentiable function
such that Q′

1(t) = −q1(t) on [a,∞). If there exists a function β(t) such that

α

∫ ∞

t

∣
∣Q1(s) + β(s)

∣
∣
1+ 1

α ds ≤ β(t) (2.13)

for all large t, then equation (E1) is nonoscillatory.

Proof Define

u(t) = Q1(t) + α

∫ ∞

t

∣
∣Q1(s) + β(s)

∣
∣
1+ 1

α ds
( ≥ 0

)

.

Then

u′(t) = −q1(t) − α
∣
∣Q1(t) + β(t)

∣
∣
1+ 1

α

and since |u(t)|1+ 1
α ≤ |Q1(t) + β(t)|1+ 1

α by (2.13), we finally obtain

u′(t) + α|u(t)|1+ 1
α + q1(t) ≤ −α|Q1(t) + β(t)|1+ 1

α + α|Q1(t) + β(t)|1+ 1
α = 0

for all t large enough. Conclusion now follows from Lemma 2.1. �	
Remark 2.5 . If, in Theorem 2.4, the function β(t) is set equal to αQ1(t), then (2.13)
reduces to Opial’s criterion (2.12). The advantage of more general condition (2.13) is
illustrated by the following example.
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Example 2.1 Consider equation (E1) with the coefficient

q1(t) = 1

ctα

(

α
1 + sin t

t
− cos t

)

, c > 0, (2.14)

which changes its sign infinitely often on any interval of the form [T ,∞), T ≥ 1. It
is easy to verify that in this case we can take

Q1(t) = 1 + sin t

ctα
( ≥ 0

)

, t ≥ 1.

To apply Theorem 2.4, we choose

β(t) = 1

ctα
,

and showwithout difficulty that (2.13) holds for all large t if c ≥ 3α+1, so that equation
(E1) with q1 given by (2.14) is nonoscillatory in this case. It is to be remarked that
Opial’s condition (2.12) is not satisfied for any c > 0.

The proof of the following theorem is similar to that of Theorem 2.4 and is omitted.

Theorem 2.5 Let Q1 be a continuously differentiable real-valued function such that
Q′

1(t) = −q1(t) and Q1(t) ≤ 0 on [a,∞). If there exists a function β(t) such that

α

∫ ∞

t

∣
∣ − Q1(s) + β(s)

∣
∣1+ 1

α ds ≤ −2Q1(t) + β(t)

for all large t, then equation (E1) is nonoscillatory.

Example 2.2 Consider equation (E1) with the oscillatory coefficient as in (2.14), but
with the opposite sign, i.e.

q1(t) = 1

ctα

(

cos t − α
1 + sin t

t

)

, c > 0. (2.15)

In this case Q1(t) ≤ 0 on [1,∞) and neither (2.12) nor Theorem 2.4 are applicable.
However, if we take β(t) = 1/(ctα) with c ≥ 3α+1, then it is not difficult to verify
that all conditions of Theorem 2.5 are satisfied, and so equation (E1) with coefficient
q1 given by (2.15) must be nonoscillatory.

Motivated byWong’s Theorem 4 in [27] we unify the above two theorems in a way
which enables to handle also the case where Q1(t) is not eventually nonnegative or
eventually nonpositive.

Theorem 2.6 Let Q1 ∈ C
([a,∞),R

)

be such that Q′
1(t) = −q1(t) on [a,∞). If

there exists a function β(t) such that

∣
∣Q1(t) + α

∫ ∞

t

∣
∣Q1(s) + β(s)

∣
∣1+ 1

α ds
∣
∣ ≤ ∣

∣Q1(t) + β(t)
∣
∣
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for all sufficiently large t, then equation (E1) is nonoscillatory.

The proof of this theorem is left to the reader.
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