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Abstract
We study the best coapproximation problem in Banach spaces, by using Birkhoff–
James orthogonality techniques. We introduce two special types of subspaces,
christened the anti-coproximinal subspaces and the strongly anti-coproximinal sub-
spaces. We obtain a necessary condition for the strongly anti-coproximinal subspaces
in a reflexive Banach space whose dual space satisfies the Kadets–Klee Property. On
the other hand, we provide a sufficient condition for the strongly anti-coproximinal
subspaces in a general Banach space. We also characterize the anti-coproximinal
subspaces of a smooth Banach space. Further, we study these special subspaces in
a finite-dimensional polyhedral Banach space and find some interesting geometric
structures associated with them.
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1 Introduction

Franchetti and Furi introduced the best coapproximation problem in the framework of
Banach spaces in [7], as a complementary notion to the well-known best approxima-
tion problem. Unlike its counterpart, the best coapproximation problem remains a less
explored area of research, especially from the computational point of view. Indeed,
the difficulty of the problem arises from the fact that the existence of best coapproxi-
mation is not guaranteed even in finite-dimensional Banach spaces. Interested readers
are referred to [13, 15–17, 22] for more information on this topic. The concept of
contractive mapping is closely connected with the idea of best coapproximation, to
delve deeper the readers can go through [2, 3, 12]. Recently, an algorithmic approach
has been given in [20] and [21] to study the best coapproximation in �n∞ and �n1,

respectively. The purpose of this article is to identify some special types of subspaces
of a Banach space, which may be regarded as the least favorable candidates for the
purpose of the best coapproximation problem. We also illustrate that such subspaces
enjoy several geometric properties unique to them. Having described the motivation
behind this study, let us now introduce the relevant notations and terminologies.

Let X, Y denote real Banach spaces and let H denote a real Hilbert space. We
use the notations BX and SX, for the unit ball BX := {x ∈ X : ‖x‖ ≤ 1} and the
unit sphere SX := {x ∈ X : ‖x‖ = 1} of X, respectively. The dual space of X is
denoted by X

∗. The annihilator of a subspace Y of X is defined as Y
⊥ := { f ∈ X

∗ :
f (y) = 0, for each y ∈ Y}. For a subspace Z of X

∗, the pre-annihilator of Z is
defined as ⊥

Z := {x ∈ X : f (x) = 0, for each f ∈ Z}. For a non-empty convex
subset A of X, an element z ∈ A is said to be an extreme point of A if whenever
z = (1 − t)x + t y, for some t ∈ (0, 1) and some x, y ∈ A, then x = y = z. The
collection of all the extreme points of A is denoted as Ext(A). A Banach space X is
said to be strictly convex if Ext(BX) = SX. It is easy to observe that strict convexity
of X is equivalent to the geometric condition that SX does not contain any non-trivial
straight line segment. We recall that a point x ∈ SX is said to be a rotund point [8] of
BX if ‖y‖ = ‖ x+y

2 ‖ = 1 implies that x = y. Clearly, if every point of SX is rotund
then X is strictly convex. Given any non-zero x ∈ X, f ∈ SX∗ is said to be a support
functional of x if f (x) = ‖x‖. The set of all support functional(s) of a non-zero x ∈ X

is written as J (x) := { f ∈ SX∗ : f (x) = ‖x‖}. For any non-zero x ∈ X, x is said
to be smooth if J (x) is singleton. A Banach space X is said to be smooth if each
x ∈ SX is smooth. The collection of all smooth points in X is denoted by Sm(X). For
a subspace Y of X, let JY = { f ∈ SX∗ : f (y) = 1, for some y ∈ Sm(X) ∩ SY}. It is
easy to check that JY ⊆ Ext(BX∗). Whenever Sm(X) ∩ SY = ∅, we define JY = ∅.

Let us recall the well known definition of the modulus of smoothness of a Banach
space X( �= {0}), which is denoted by ρX(t), and is defined as follows:

ρX(t) = sup

{‖x + t y‖ + ‖x − t y‖
2

− 1 : x, y ∈ SX

}
,

where t ∈ (0,+∞). The space X( �= {0}) is said to be uniformly smooth ([14, Def.
5.5.2]) if ρX(t)

t → 0, as t → 0+.
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On some special subspaces of a Banach space... 971

Given any f ∈ X
∗, the kernel of f is denoted by ker f := {x ∈ X : f (x) = 0}. A

finite-dimensional Banach spaceX is said to be a polyhedral Banach space if Ext(BX)

is finite. A convex set F ⊂ SX is said to be a face of BX if for some x1, x2 ∈ SX,

(1 − t)x1 + t x2 ∈ F implies that x1, x2 ∈ F, where 0 < t < 1. A maximal face of
BX is said to be a facet. We use the notation int(F) to denote the interior of a face

F endowed with the usual subspace topology of F . Given a subset M of X
∗, M

w∗

denotes the closure of M with respect to the weak*- topology defined on X
∗. We also

recall that X satisfies the Kadets–Klee Property if whenever {xn} is a sequence in X

and x ∈ X such that xn
w→ x and ‖xn‖ → ‖x‖, it follows that xn → x .Next we recall

the definition of best coapproximation in Banach spaces.

Definition 1.1 [7] Let Y be a subspace of Banach space X. Given any x ∈ X, we say
that y0 ∈ Y is a best coapproximation to x out of Y if ‖y0 − y‖ ≤ ‖x − y‖, for all
y ∈ Y.

Given any x ∈ X and a subspace Y of X, RY(x) denotes the (possibly empty) set
of all best coapproximations to x out of Y. A subspace Y of the Banach space X is
said to be coproximinal if for any x ∈ X,RY(x) �= ∅. The concept of Birkhoff–James
orthogonality plays a vital role in the study of the best coapproximation problem.
Given x, y ∈ X, we say that x is Birkhoff–James orthogonal [1, 10] to y, written as
x ⊥B y, if ‖x + λy‖ ≥ ‖x‖, for all λ ∈ R. As mentioned in [7], it is easy to observe
that given any subspaceY of a Banach spaceX and an element x ∈ X, y0 ∈ Y is a best
coapproximation to x out ofY if and only ifY ⊥B (x− y0), i.e., y ⊥B (x− y0), for all
y ∈ Y. We also need the notion of approximate Birkhoff–James orthogonality in our
study. In [6], Dragomir first introduced the approximate Birkhoff–James orthogonality
in the following way:
Let ε ∈ [0, 1). Then for x, y ∈ X, x is said to be approximate ε-Birkhoff–James
orthogonal to y if for each λ ∈ R, the following holds:

‖x + λy‖ ≥ (1 − ε)‖x‖.

Later on Chmieliński [4] introduced another version of the approximate Birkhoff–
James orthogonality. Let ε ∈ [0, 1). Given any x, y ∈ X, we say that x is said to be
approximate orthogonal to y, written as x ⊥ε

B y, if

‖x + λy‖2 ≥ ‖x‖2 − 2ε‖x‖‖λy‖.

Recently [5], an equivalent definition of the approximate orthogonality has been
obtained:

x ⊥ε
B y ⇐⇒ ‖x + λy‖ ≥ ‖x‖ − ε‖λy‖, for every λ ∈ R.

In view of this characterization of approximate orthogonality, it is natural to consider
the following approximate version of the best coapproximation problem:
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Definition 1.2 Let Y be a subspace of Banach space X. Let ε ∈ [0, 1). Given any
x ∈ X,we say that y0 ∈ Y is an ε-best coapproximation to x out of Y if Y ⊥ε

B x − y0,
i.e., y ⊥ε

B (x − y0), for all y ∈ Y.

The primary purpose of our study is to investigate the least favorable scenario that
can arise in studying the best coapproximation problem. Accordingly, we introduce
the following two types of subspaces of a Banach space from the perspective of best
coapproximation and ε-best coapproximation.

Definition 1.3 Let Y be a subspace of Banach space X. Then

(i) Y is said to be an anti-coproximinal subspace of X if for any given x ∈ X\Y,

there does not exist any best coapproximation to x out of Y.

(ii) Y is said to be a strongly anti-coproximinal subspace ofX if for any given x ∈ X\Y

and for any ε ∈ [0, 1), there does not exist ε -best coapproximation to x out of Y.

It is easy to observe that if Y is (strongly) anti-coproximinal in X and Z is a
subspace of X containing Y then Y is (strongly) anti-coproximinal in Z. However, it
is quite obvious that if Y is (strongly) anti-coproximinal in Z, it does not imply that Y
is (strongly) anti-coproximinal in X (see Remark 2.27). Therefore, it is important to
specify themother space whenever we consider the anti-coproximinal and the strongly
anti-coproximinal subspaces.

We note from [20, Example 2.13] that if a subspace Y is not coproximinal in X

then it is not necessarily true that Y is an anti-coproximinal subspace of X. On the
other hand, if Y is a strongly anti-coproximinal subspace of X, it implies that Y is an
anti-coproximinal subspace of X. However, as we will observe in Example 2.21, the
converse of this fact is not true. It should be noted that every one-dimensional subspace
is coproximinal in any Banach space [7, Lemma 1]. Whenever the anti-coproximinal
and the strongly anti-coproximinal subspaces are concerned, we only consider the
proper subspaces of dimension strictly greater than one. In order to facilitate the
understanding of these two special types of subspaces of aBanach space, let us consider
the following simple example:

Example 1.4 Let ṽ1 = (3, 0, 2), ṽ2 = (0, 3, 2) ∈ �3∞ and let Y = span{̃v1, ṽ2}.
Applying [20, Th. 2.10] along with some straightforward calculations, we observe
that for any x ∈ �3∞\Y, there does not exist a best coapproximation to x out of Y.

In other words, Y is an anti-coproximinal subspace of �3∞. We will see that the same
subspace happens to be a strongly anti-coproximinal subspace of �3∞ as well. On the
other hand, we will also present several explicit examples of the anti-coproximinal
subspaces of a Banach space, which are not strongly anti-coproximinal in that Banach
space.

This article is divided into two sections including the introductory one. The main
results are separated in two subsections, viz., Sections I and II. In Section I, we char-
acterize the anti-coproximinal subspaces in a smooth Banach space and using that
we characterize the Hilbert spaces among smooth Banach spaces. We also present
a necessary condition for a subspace to be strongly anti-coproximinal in a reflexive
Banach space, whose dual space satisfies the Kadets–Klee Property. On the other
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hand, a sufficient condition for the same is obtained in any Banach space. In Section
II, we exclusively consider the finite-dimensional polyhedral Banach spaces. We char-
acterize the strongly anti-coproximinal subspaces in a finite-dimensional polyhedral
Banach space and show that the strongly anti-coproximinal subspaces of such spaces
possess some nice geometric structures. We study the spaces �n∞ and �n1 separately
and characterize the anti-coproximinal and the strongly anti-coproximinal subspaces
of these distinguished polyhedral Banach spaces, which is especially advantageous
from the computational point of view.

2 Main results

Section-I

We begin this section with the following two well-known observations.

Theorem 2.1 [16, Th. 2.1] Let Y be a subspace of a Banach space X and let x ∈ X.

Then y0 ∈ Y is a best coapproximation to x out of Y if and only if for any y ∈ Y,

there exists fy ∈ J (y) such that fy(x − y0) = 0.

Theorem 2.2 [5, Th. 2.3] Let X be a Banach space. Let x, y ∈ X and let ε ∈ [0, 1).
Then the following conditions are equivalent:

(i) x ⊥ε
B y

(ii) there exists f ∈ J (x) such that | f (y)| ≤ ε‖y‖

Using Theorem 2.1, a simple characterization of the anti-coproximinal subspace
follows immediately.

Proposition 2.3 Let Y be a subspace of Banach space X. Then Y is an anti-
coproximinal subspace of X if and only if for any x ∈ X \ Y, there exists a y0 ∈ Y

such that x /∈ ker f , for any f ∈ J (y0).

We next obtain a characterization of the ε-best coapproximation, by applying The-
orem 2.2.

Proposition 2.4 Let Y be a subspace of a Banach space X. Then the following state-
ments are equivalent:

(i) y0 is an ε-best coapproximation to x out of Y

(ii) for any y ∈ Y, ‖x − y‖ ≥ ‖y0 − y‖ − ε‖x − y0‖
(iii) for any y ∈ Y, there exists fy ∈ J (y) such that | fy(x − y0)| ≤ ε‖x − y0‖.

Proof (i) ⇒ (i i): Let y0 be an ε-best coapproximation to x out of Y. Therefore,
Y ⊥ε

B (x − y0), i.e., y ⊥ε
B (x − y0), for any y ∈ Y. Thus for any y ∈ Y, ‖y + λ(x −

y0)‖ ≥ ‖y‖ − ε‖λ(x − y0)‖, for all λ ∈ R. Putting λ = 1, we get ‖y + (x − y0)‖ ≥
‖y‖ − ε‖(x − y0)‖, from which the desired inequality follows easily.
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(i i) ⇒ (i i i): For any y ∈ Y and for any non-zero λ ∈ R,

‖y + λ(x − y0)‖ = |λ|‖x − (y0 − 1

λ
y)‖

≥ |λ|{‖y0 − (y0 − 1

λ
y)‖ − ε‖x − y0‖}

= |λ|(‖1
λ
y‖ − ε‖x − y0‖)

= ‖y‖ − ε‖λ(x − y0)‖.

For λ = 0, the above inequality holds trivially. This implies y ⊥ε
B (x − y0), for any

y ∈ Y and so the result follows from Theorem 2.2.
(i i i) ⇒ (i): Following Theorem 2.2, we get y ⊥ε

B x − y0, for all y ∈ Y. Thus we
obtain Y ⊥ε

B x − y0. ��
Throughout the next part of this section, we focus on the anti-coproximinality and

the strong anti-coproximinality of the closed subspaces in a Banach space. In the
following proposition, we observe that every dense subspace of a Banach space is
strongly anti-coproximinal in that space and consequently, anti-coproximinal too.

Proposition 2.5 Let Y be a dense subspace of a Banach space X. Then Y is a strongly
anti-coproximinal subspace of X.

Proof Suppose on the contrary that Y is not a strongly anti-coproximinal subspace of
X.Then there exists an ε ∈ [0, 1) and an x ∈ X\Y such thatY ⊥ε

B x . SinceY is dense
in X, it follows that there exists a sequence {yn}n∈N ⊂ Y such that yn → x . Also, we
note that yn ⊥ε

B x . Then for each λ ∈ R, we have ‖yn + λx‖ ≥ ‖yn‖ − ε‖λx‖. Since
the norm function is continuous, letting n → ∞,we get that ‖x+λx‖ ≥ ‖x‖−ε‖λx‖,
for each λ ∈ R. This implies that x ⊥ε

B x, and therefore x = 0, which contradicts the
fact that x ∈ X \ Y. ��

In the next theorem we characterize the anti-comproximinal subspaces in a smooth
Banach space.

Theorem 2.6 Let Y be a subspace of a smooth Banach space X. Then Y is an anti-

coproximinal subspace of X if and only if span JY

w∗ = X
∗.

Proof Let us first prove the sufficient part of the theorem. Suppose on the contrary that
Y is not an anti-coproximinal subspace of X. This implies that for some x ∈ X\Y,

there exists a y0 ∈ Y such that y0 is a best coapproximation to x out of Y. Since X

is smooth, it follows from Theorem 2.1 that for any y ∈ Y, fy(x − y0) = 0, where
J (y) = { fy}. It is easy to see that JY = { fy : y ∈ Y}. This implies, g(x − y0) = 0,

for any g ∈ span JY.Now let us consider f ∈ X
∗. Since span JY

w∗ = X
∗, it follows

that there exists a net { fα}α∈� ⊂ span JY such that fα is weak*-convergent to f .
Since fα(x − y0) = 0, for each α ∈ �, it follows that f (x − y0) = 0. Note that
f ∈ X

∗ is taken arbitrarily. Thus we obtain that f (x − y0) = 0, for all f ∈ X
∗, i.e.,

x − y0 = 0, which contradicts the fact that x ∈ X\Y.
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Now we prove the necessary part of the theorem. Suppose on the contrary that

span JY

w∗
� X

∗. Clearly, ⊥(span JY) = ∩ f ∈JY
ker f . We note from [18, Th. 4.7]

that (⊥(span JY))⊥ = span JY

w∗
.This implies that (∩ f ∈JY

ker f )⊥ = span JY

w∗
.

Following [18, Th.4.7], we obtain that (∩ f ∈JY
ker f )∗ is isometrically isomorphic to

X
∗/span JY

w∗
. Therefore, (∩ f ∈JY

ker f )∗ �= 0, which implies that ∩ f ∈JY
ker f �=

0.Moreover, it is straightforward to see that (∩ f ∈JY
ker f )∩Y = {0}. So, there exists

a z ∈ X\Y such that z ∈ ∩ f ∈JY
ker f . Since X is smooth, applying [10, Th. 2.1], we

obtain that Y ⊥B z. Thus 0 is a best coapproximation to z out of Y. This contradicts
the fact that Y is an anti-coproximinal subspace of X. This proves the necessary part
and completes the proof of the theorem. ��

If X is finite-dimensional then we have the following corollary.

Corollary 2.7 Let Y be a subspace of an n-dimensional smooth Banach space X. Then
Y is an anti-coproximinal subspace of X if and only if dim(span JY) = n.

Next we give an example of an anti-coproximinal subspace in �np, where 2 < p <

∞.We require the following well-known result which explicitly describes the support
functional of an element of �np. Suppose that φ is the isometric isomorphism between

(�np)
∗ and �nq , where

1
p + 1

q = 1.

Lemma 2.8 Let x̃ = (x1, x2, . . . , xn) ∈ �np, where 1 < p < ∞. Then J (̃x) = { f̃ },
where φ( f̃ ) =

(
x1|x1|p−2

‖x̃‖p/q
p

,
x2|x2|p−2

‖x̃‖p/q
p

, . . . ,
xn |xn |p−2

‖x̃‖p/q
p

)
∈ �nq ,

1
p + 1

q = 1 and ‖x̃‖p =
(∑n

i=1 |xi |p
) 1
p .

Example 2.9 Let us consider the space �np, where p ∈ (1,∞)\{2} and n ≥ 3
with {e1, e2, . . . , en} as the standard ordered basis. Suppose that Y is a hyper-
space of �np, where Y = span{̃x1, x̃2, . . . , x̃n−1}, x̃1 = (1, 1, 1, 0, . . . , 0), x̃2 =
(1, 2, 3, 0, . . . , 0), x̃3 = e4, . . . , x̃n−1 = en . Let J (̃xi ) = { f̃i }, for any 1 ≤ i ≤ n.

Clearly, f̃i ∈ JY. Applying Lemma 2.8, we obtain the following:

φ( f̃1) =
(

1

31−
1
p
, 1

31−
1
p
, 1

31−
1
p
, 0, . . . , 0

)
∈ �nq ,

φ( f̃2) =
(

1

(1+2p+3p)1−
1
p
, 2p−1

(1+2p+3p)1−
1
p
, 3p−1

(1+2p+3p)1−
1
p
, 0, . . . , 0

)
∈ �nq ,

and φ( f̃k) = ek+1 ∈ �nq , for all 3 ≤ k ≤ n − 1. Consider the element
x̃n = 3x̃1 − x̃2 ∈ Y and let J (̃xn) = { f̃n}. Again using Lemma 2.8, we get

φ( f̃n) =
(

2p−1

(2p+1)1−
1
p
, 1

(2p+1)1−
1
p
, 0, . . . , 0

)
∈ �nq . A straightforward computation

shows that { f̃1, f̃2, . . . , f̃n} is a linearly independent set. Therefore, dim(span JY) =
n. Thus from Corollary 2.7, we conclude that Y is an anti-coproximinal subspace
of �np, where p ∈ (1,∞)\{2}. By a similar computation, it can be shown that
W = Y ⊕ Y ⊕ . . . ⊕ Y︸ ︷︷ ︸

r−times

is an anti-coproximinal subspace of �rnp .

It is easy to note from Example 2.9 that for every p ∈ (1,∞)\{2} and for every
n > 2, there exists an anti-coproximinal subspace of �np. Combining with the well
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known fact that every closed subspace of a Hilbert space is coproximinal ([7, Lemma.
1]), we can characterize the Hilbert space �n2 among the �np spaces.

Theorem 2.10 Let X = �np, where 1 < p < ∞ and n ≥ 3. Then p = 2 if and only if
there does not exist any anti-coproximinal subspace in X.

The previous result can be further extended to characterize the Hilbert space among
smooth Banach spaces having dimension at least 3.

Theorem 2.11 LetX be a smooth Banach space and let dim(X) ≥ 3.ThenX is Hilbert
space if and only if there does not exist any anti-coproximinal closed hyperspace in
X.

Proof Since the necessary part follows from [7, Th. 1], we only prove the sufficient
part. Suppose that Y is a closed hyperspace of X. Since Y is not an anti-coproximinal

subspace of X, it follows from Theorem 2.6 that span JY

w∗
� X

∗. Now following
similar arguments as given in the proof of the necessary part of Theorem 2.6, we
observe that there exists an element z ∈ X\Y such that Y ⊥B z. Following [11, Th.4],
we conclude that X is a Hilbert space. ��
Remark 2.12 We recall that every one-dimensional subspace of a Banach space is
coproximinal. Therefore, it is clear that the previous result is not valid for n = 2.

Ournext goal is to separately present a necessary condition and a sufficient condition
for strongly anti-coproximinal subspaces of aBanach space. First we give the sufficient
condition.

Theorem 2.13 Let Y be a subspace of a Banach space X. Then Y is a strongly anti-
coproximinal subspace of X if for each x ∈ X \ Y, there exists a y ∈ Y such that
J (y) ⊆ J (x) ∪ J (−x).

Proof Suppose on the contrary that Y is not a strongly anti-coproximinal subspace of
X.Therefore, there exists an x ∈ X\Y such that y1 ∈ Y is an ε-best coapproximation to
x out of Y, for some ε ∈ [0, 1). Applying Proposition 2.4, we obtain that for each y ∈
Y, there exists an fy ∈ J (y) such that | fy(x−y1)| ≤ ε‖x−y1‖ < ‖x−y1‖.Therefore,
for each y ∈ Y, there exists an fy ∈ J (y), such that fy /∈ J (x − y1) ∪ J (−(x − y1)).
This contradicts the hypothesis of the theorem, thereby finishing the proof. ��

Let us now present a necessary condition for strongly anti-coproximinal subspaces
of a Banach space under some additional nice conditions.

Theorem 2.14 Let X be a reflexive Banach space and let X∗ satisfies the Kadets–Klee
Property. LetYbea closed subspaceofX. IfY is a strongly anti-coproximinal subspace
of X then for each x ∈ X, there exists an element y ∈ Y such that J (y) ∩ J (x) �= ∅.

Proof Note that whenever x ∈ Y, we have nothing to prove. Take x ∈ X \ Y. Since
Y is a strongly anti-coproximinal subspace of X, it follows that for any ε ∈ [0, 1),
Y �⊥ε

B x . Let us take a sequence {εn}n∈N ⊂ [0, 1) → 1, as n → ∞. Suppose that
for each n ∈ N, there exists yn ∈ SY such that yn �⊥εn

B x . From Theorem 2.2 we
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obtain that for any fn ∈ J (yn), | fn(x)| > εn‖x‖. Since X is reflexive, it follows that
X

∗ is reflexive and therefore without loss of generality we may and do assume that
fn is weakly convergent to f , for some f ∈ BX∗ . So, fn(x) → f (x). Taking limit
on the both sides of the above inequality, we obtain | f (x)| ≥ ‖x‖. Since f ∈ BX∗ ,
| f (x)| = ‖x‖, and therefore, ‖ f ‖ = 1. Thus either f ∈ J (x) or − f ∈ J (x). Also
‖ fn‖ → ‖ f ‖ as n → ∞. Since X

∗ satisfies the Kadets–Klee Property, it follows that
fn → f as n → ∞. As X is reflexive and Y is a closed subspace of X, then Y is also
reflexive, and therefore BY is weakly compact. So, yn weakly converges to y, for some
y ∈ BY. Now as fn → f and yn

w→ y, it is straightforward to see that f (y) = 1.
Therefore, f ∈ J (y) and consequently, either J (y)∩ J (x) �= ∅ or J (−y)∩ J (x) �= ∅.

This completes the theorem. ��
Remark 2.15 Observe that the above condition is only necessary but not sufficient, see
Example 2.28.

Applying Theorem 2.14, it is possible to give examples of Banach spaces which do
not contain any strongly anti-coproximinal closed subspaces.

Theorem 2.16 Let X be a reflexive Banach space and let X∗ satisfies the Kadets–Klee
Property. Suppose thatY is a closed subspace ofX such that there exists a rotund point
in SX \ SY. Then Y is not a strongly anti-coproximinal subspace of X. In particular,
every reflexive strictly convex Banach space, whose dual satisfies the Kadets–Klee
Property, does not contain any strongly anti-coproximinal closed subspaces.

Proof Suppose that x ∈ SX \ SY is a rotund point. It is straightforward to see that
for any y ∈ Y, J (x) ∩ J (y) = ∅. Indeed, if possible let y0 ∈ SY be such that
f ∈ J (x) ∩ J (y0). This implies that f ( x+y0

2 ) = 1 �⇒ ‖ x+y0
2 ‖ = 1. Since x is

rotund, it follows that x = y0, a contradiction. Now applying Theorem 2.14, it can be
concluded that Y is not a strongly anti-coproximinal subspace of X. This completes
the proof of the first part. The second part follows trivially from the first part. ��

Our next result shows that the condition of strict convexity in the previous theorem
can be replaced by the condition of smoothness.

Theorem 2.17 Let X be a reflexive smooth Banach space and let X
∗ satisfies the

Kadets–Klee Property. Suppose that Y is a closed subspace of X. Then Y is not a
strongly anti-coproximinal subspace of X.

Proof Suppose that Y is a closed subspace of X. Let us consider g ∈ Y
⊥ such that

‖g‖ = 1. Since X is reflexive, there exists a z ∈ SX such that |g(z)| = 1. Therefore,
J (z) = {g} or J (z) = {−g}, as X is smooth. We claim that for any y ∈ Y, J (y) ∩
J (z) = ∅. Otherwise, take a non-zero element y1 ∈ Y such that J (y1) ∩ J (z) �= ∅.

SinceX is smooth, it follows that either J (y1) = {g} or J (y1) = {−g}.Then |g(y1)| =
‖y1‖, which contradicts the fact that g ∈ Y

⊥. Therefore, applying Theorem 2.14, we
conclude that Y is not a strongly anti-coproximinal subspace of X. This completes the
theorem. ��

We end this section with the following result, which is an immediate corollary of
Theorem 2.14.
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Corollary 2.18 Let Y be a closed subspace of a Banach space X. Suppose that X

satisfies either of the following properties:

(i) X is a finite-dimensional smooth Banach space
(ii) X is a finite-dimensional strictly convex Banach space
(iii) X is a uniformly smooth Banach space.

Then Y is not a strongly anti-coproximinal subspace of X.

Section-II

In this section we study the anti-coproximinal and the strongly anti-coproximinal
subspaces in finite-dimensional polyhedral Banach spaces. In particular, we obtain
characterizations of the said subspaces in �n∞ and �n1, which are computationally
effective. We begin with the following characterization of the anti-coproximinal sub-
spaces of a finite-dimensional polyhedral Banach space, provided that Sm(X) ∩ Y is
dense in Y.

Theorem 2.19 Let Y be a subspace of an n-dimensional polyhedral Banach space X

such that Sm(X) ∩ Y is dense in Y. Then Y is an anti-coproximinal subspace of X if
and only if there are n-linearly independent elements in JY.

Proof We first prove the sufficient part. Suppose on the contrary that Y is not an anti-
coproximinal subspace of X. Then there exists an element x ∈ X \ Y and a y0 ∈ Y

such that y0 ∈ RY(x). Therefore, from Theorem 2.1, it follows that x − y0 ∈ ker f ,
for all f ∈ JY. Since JY contains n linearly independent elements and dim(X∗) = n,
it follows that ∩ f ∈JY

ker f = {0}. Therefore, x − y0 = 0, i.e., x = y0, which is a
contradiction. This completes the proof of the sufficient part.

To prove the necessary part, we first show that for any y ∈ SY, JY ∩ J (y) �= ∅.

Since Sm(X) ∩ Y is dense in Y, it is immediate that Sm(X) ∩ SY is dense in SY,

and therefore, for any y ∈ SY, there exists a sequence {yn}n∈N ⊂ Sm(X) ∩ SY such
that yn → y. Suppose that J (yn) = { fn} ⊂ JY, for each n ∈ N. Therefore, it is
easy to see that fn(y) → 1. Since X is polyhedral and JY ⊂ Ext(BX∗), it follows
that JY is finite. Moreover, since for each n ∈ N, fn ∈ JY and JY is finite, we get
that for some f ∈ JY, f (y) = 1. Thus f ∈ JY ∩ J (y). If possible, suppose that
JY contains exactly k linearly independent elements such that k < n. Let us assume
that ( �= 0)x ∈ ∩ f ∈JY

ker f . Clearly, x /∈ Y. Otherwise, from the above arguments
f (x) = 1, for some f ∈ JY. Since for each y ∈ SY, JY ∩ J (y) �= ∅, it follows that
there exists an f ∈ J (y) such that f (x) = 0. It is immediate from Theorem 2.1 that
0 is a best coapproximation to x out of Y, which is not possible since Y is an anti-
coproximinal subspace of X. This completes the proof of the necessary part. Hence
the theorem. ��

We note that the sufficient part of the above theorem holds true for any finite-
dimensional Banach space X without any additional assumptions. In particular, this
implies that if Y is a subspace of an n-dimensional Banach space X such that there
are n-linearly independent elements in JY, then Y is an anti-coproximinal subspace
of X.
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Wenext characterize the strongly anti-coproximinal subspaces infinite-dimensional
polyhedral Banach spaces.

Theorem 2.20 Let Y be a subspace of a finite-dimensional polyhedral Banach space
X. Then the following statements are equivalent:

(i) Y is a strongly anti-coproximinal subspace of X

(ii) Y intersects the interior of every facet of BX

(iii) JY = Ext(BX∗).

Proof Suppose that ±F1,±F2, . . . ,±Fr are the facets of BX. Following from [19,
Lemma 2.1], assume that ± f1,± f2, . . . ,± fr are the corresponding extreme points
of BX∗ , respectively. Clearly, Ext(BX∗) = {± f1,± f2, . . . ,± fr }. We complete the
proof in the following three steps:

(i) �⇒ (ii): Suppose on the contrary that Y does not intersect the interior of the
facet Fi , for some i ∈ {1, 2, . . . , r}.Take x ∈ int(Fi ).Clearly, x /∈ Y.Moreover,
x is smooth and J (x) = { fi }. Since Y does not intersect the interior of Fi , it is
easy to observe that for any y ∈ Y, J (y) ∩ (Ext(BX∗)\{± fi }) �= ∅, otherwise,
J (y) = { fi }. Take ε0 = max{| f (x)| : f ∈ Ext(BX∗)\{± fi }}. As J (x) = { fi },
it is clear that ε0 < 1. Since for any y ∈ Y, J (y) ∩ (Ext(BX∗)\{± fi }) �= ∅, it
is easy to see that for any y ∈ Y there exists an f ∈ J (y) such that | f (x)| ≤ ε0.

Following Theorem 2.2, y ⊥ε0
B x, for any y ∈ Y. In other words, 0 is an

ε0-best coapproximation to x out of Y. This contradicts that Y is a strongly
anti-coproximinal subspace of X.

(ii) �⇒ (iii): Suppose that yi ∈ int(Fi ) ∩ Y, for each i ∈ {1, 2, . . . , r}. Clearly,
yi is smooth and J (yi ) = { fi }. Therefore, fi ∈ JY, for each i ∈ {1, 2, . . . , r},
this implies that Ext(BX∗) ⊂ JY. So, Ext(BX∗) = JY.

(iii) �⇒ (i): Let x ∈ X. Without loss of generality we assume that x ∈ Fi , for
some i ∈ {1, 2, . . . , r}. Clearly, fi ∈ J (x). Since JY = Ext(BX∗), there exists
a y ∈ Sm(X) ∩ Y such that J (y) = { fi }. Therefore, J (y) = { fi } ⊆ J (x).
By applying Theorem 2.13, we obtain that Y is a strongly anti-coproximinal
subspace of X.

��
In the following example we explicitly show the applicability of the previous two

theorems.

Example 2.21 LetX be the 3-dimensional Banach space, where BX is a hexagonal right
prismwithvertices±(1, 0, 1),±(−1, 0, 1),±( 12 , 1

2 , 1),±(− 1
2 ,

1
2 , 1),±(− 1

2 ,− 1
2 , 1),

±( 12 ,− 1
2 , 1). Let f1(x, y, z) = x + y, f2(x, y, z) = x − y, f3(x, y, z) =

y, f4(x, y, z) = z, for any (x, y, z) ∈ X. It is easy to observe that Ext(BX∗) =
{± f1,± f2,± f3,± f4}. Let us assume that ±F1,±F2,±F3 and ±F4 are the corre-
sponding facets of BX of the extreme functionals ± f1,± f2,± f3,± f4, respectively
[19, Lemma 2.1]. Clearly, ±F1,±F2,±F3 are the rectangular facets and ±F4 are the
hexagonal facets of BX.

Coproximinal subspace: Let Y = span{(1, 0, 0), (0, 1, 0)}. It is now easy to observe
that for any y ∈ Y, the elements of J (y) can be written as a convex combination
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of ± f1,± f2,± f3. Otherwise, there exists an element z ∈ Y such that f4 ∈ J (z),
which is clearly not possible. Let x̃ = (a, b, c) ∈ X. It is straightforward to observe
that fi ((a, b, c) − (a, b, 0)) = 0, for any i ∈ {1, 2, 3}. Therefore for any y ∈ Y,
there exists fy ∈ J (y) such that fy((a, b, c) − (a, b, 0)) = 0, and consequently,
Y ⊥B (a, b, c)−(a, b, 0). This implies (a, b, 0) is a best coapproximation to (a, b, c)
out of Y. Therefore, Y is a coproximinal subspace of X.

Anti-coproximinal subspace: Let us now take Y = span{( 34 ,− 1
4 , 1), (− 3

4 ,− 1
4 , 1)}.

It is easy to observe that Sm(X) ∩ SY is dense in SY and Y intersects four rectangular
facets, ±F1,±F2 and two hexagonal facets, ±F4 of BX. It is evident that f1, f2, f4 ∈
JY. As f1, f2, f4 are linearly independent, by applying Theorem 2.19 we get that Y

is an anti-coproximinal subspace of X.

Strongly anti-coproximinal subspace: Let Y = span{( 78 , 1
8 , 1), (

7
8 ,− 1

8 , 1)}. By a
straightforward computation we obtain that ( 1116 ,

5
16 ,

11
14 ) ∈ int(F1), (

11
16 ,− 5

16 ,
11
14 ) ∈

int(F2), (0, 1
2 , 0) ∈ int(F3) and ( 78 , 0, 1) ∈ int(F4). Therefore, it is easy to see that

the subspace Y intersects the interior of each facet of BX. Applying Theorem 2.20,
we conclude that Y is a strongly anti-coproximinal subspace of X.

We now study the anti-coproximinal and the strongly anti-coproximinal subspaces of
�n∞. The best coapproximation problem in �n∞ was studied in [20] using the concept
of the ∗-Property which plays a crucial role in the whole scheme of things. For the
convenience of the readers, let us recall the definition of the ∗-Property.
Definition 2.22 [20] Let A = {̃a1, ã2, . . . , ãm} be a set of linearly independent ele-
ments in �n∞, where 1 ≤ m ≤ n and ãk = (ak1, a

k
2, . . . , a

k
n), for each 1 ≤ k ≤ m.

(i) For each i ∈ {1, 2, . . . , n}, the i-th component ofA is defined as (a1i , a
2
i , . . . , a

m
i ).

(ii) The positively associative set P+
i (A) of the i-th component is defined as:

P+
i (A) := { j ∈ {1, 2, . . . , n} : (a1i , a

2
i , . . . , a

m
i ) = (a1j , a

2
j , . . . , a

m
j )}.

Similarly, the negatively associated set P−
i (A) is defined as:

P−
i (A) := { j ∈ {1, 2, . . . , n} : (a1i , a

2
i , . . . , a

m
i ) = −(a1j , a

2
j , . . . , a

m
j )}.

We write P+
i (A) = P+

i and P−
i (A) = P−

i .

(iii) The i-th component of A is said to satisfy the ∗-Property if there exist
β1, β2, . . . , βm ∈ R such that the following holds true:

∣∣∣∣
m∑

k=1

βka
k
i

∣∣∣∣ > max

{∣∣∣∣
m∑

k=1

βka
k
j

∣∣∣∣ : j ∈ {1, 2, . . . , n} \ P+
i ∪ P−

i

}
.

We next recall the characterization of smooth points of the unit sphere of �n∞ and the
extreme points of the unit ball of (�n∞)∗.

Proposition 2.23 x̃ = (x1, x2, . . . , xn) ∈ S�n∞ is a smooth point if and only if
there exists i0 ∈ {1, 2, . . . , n} such that |xi0 | = 1 and |x j | < 1, for each
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j ∈ {1, 2, . . . , n}\{i0}. Moreover, f ∈ (�n∞)∗ is an extreme point of B(�n∞)∗ if and
only if there exists i0 ∈ {1, 2, . . . , n} such that f (x1, x2, . . . , xn) = xi0 , for any
(x1, x2, . . . , xn) ∈ �n∞.

The following lemma is essential to characterize the anti-coproximinal and the
strongly anti-coproximinal subspaces in �n∞.

Lemma 2.24 Let A = {̃a1, ã2, . . . , ãm} be a set of linearly independent elements
in �n∞, where 1 < m < n and ãk = (ak1, a

k
2 , . . . , a

k
n), for each 1 ≤ k ≤ m. Let

Y = span A. If every component of A satisfies the ∗-Property and |P+
i ∪ P−

i | = 1,
for all 1 ≤ i ≤ n then for every f ∈ Ext(B(�n∞)∗), there exists a ỹ ∈ Sm(X) ∩ SY
such that J (ỹ) = { f }.
Proof Let fi ∈ (�n∞)∗ be such that fi (x1, x2, . . . , xn) = xi . Clearly, Ext(B(�n∞)∗) =
{± f1,± f2, . . . ,± fn}. Since the i-th component satisfies the ∗-Property and |P+

i ∪
P−
i | = 1 then there exist β1, β2, . . . , βm ∈ R such that

∣∣∣∣∣
m∑

k=1

βka
k
i

∣∣∣∣∣ > max

{ ∣∣∣∣∣
m∑

k=1

βka
k
j

∣∣∣∣∣ : j ∈ {1, 2, . . . , n} \ {i}
}
.

Clearly, ‖∑m
k=1 βk ãk‖ = | ∑m

k=1 βkaki |. Take ỹ =
∑m

k=1 βk ãk
‖∑m

k=1 βk ãk‖ . Clearly, | fi (ỹ)| = 1.

It is easy to observe from Proposition 2.23 that ỹ ∈ Sm(X) ∩ SY. Thus either J (ỹ) =
{ fi } or J (−ỹ) = { fi }. ��

We are now ready to present the desired characterization.

Theorem 2.25 Let A = {̃a1, ã2, . . . , ãm} be a set of linearly independent elements
in �n∞, where 1 < m < n and ãk = (ak1, a

k
2 , . . . , a

k
n), for each 1 ≤ k ≤ m. Let

Y = span A. Then the following statements are equivalent:

(i) Y is a strongly anti-coproximinal subspace of �n∞.

(ii) Y is an anti-coproximinal subspace of �n∞.

(iii) Every component of A satisfies the ∗-Property and |P+
i ∪ P−

i | = 1, for all
1 ≤ i ≤ n.

Proof We begin the proof by noting that (i) �⇒ (ii) follows trivially.
Next we prove that (ii) �⇒ (iii). Let Ext(B(�n∞)∗) = {± f1,± f2, . . . ,± fn}, where
fi (x1, x2, . . . , xn) = xi , for any (x1, x2, . . . , xn) ∈ �n∞. Suppose on the contrary that
for some j ∈ {1, 2, . . . , n}, the j-th component does not satisfy the ∗-Property. It
is easy to observe that there does not exist any y ∈ Y such that J (y) = { f j }. Oth-
erwise, considering y = ∑m

k=1 βk ãk, for some β1, β2, . . . , βm ∈ R, we obtain that
| ∑m

k=1 βkakj | = | f j (y)| > | ft (y)| = |∑m
k=1 βkakt |, for any t ∈ {1, 2, . . . , n}\{ j},

which contradicts that the j-th component does not satisfy the ∗-Property. Let us con-
sider b̃ = (b1, b2, . . . , bn) ∈ �n∞, where b j = 1 and bk = 0, for all k �= j . Clearly,
b̃ /∈ Y. Since J (y) is a face of B(�n∞)∗ and there does not exist any y ∈ Y such that
J (y) = { f j },we conclude that for any y ∈ Y, there exists an f ∈ Ext(B(�n∞)∗)\{± f j }
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such that f ∈ J (y). As f (̃b) = 0, for any f ∈ Ext(B�n∞∗)\{± f j }, by using Theo-
rem 2.1 we obtain that 0 is a best coapproximation to b̃ out of Y. This contradicts that
Y is an anti-coproximinal subspace of �n∞.

To obtain (iii), we now need to show that |P+
i ∪ P−

i | = 1, for all 1 ≤ i ≤ n.

Clearly, i ∈ P+
i ∪ P−

i . Suppose on the contrary that l ∈ P+
i ∪ P−

i , for some l ∈
{1, 2, . . . , n}\{i}.Consider the element b̃ = (b1, b2, . . . , bn) ∈ �n∞, where bl = 1 and
bk = 0, for all k �= l. Clearly, b̃ /∈ Y and fk (̃b) = 0, for any k ∈ {1, 2, . . . , n} \ {l}.
As, l ∈ P+

i ∪ P−
i , for any y ∈ Y, | fl(y)| = | fi (y)|. Therefore, if fl ∈ J (y),

for some y ∈ Y, then either fi ∈ J (y) or − fi ∈ J (y). We conclude that for any
y ∈ Y, there exists f ∈ Ext(B�n∞∗)\{± fl} such that f ∈ J (y). As, f (̃b) = 0,
for any f ∈ Ext(B�n∞∗)\{± fl}, by using Theorem 2.1 we obtain that 0 is a best
coapproximation to b̃ out of Y. This again contradicts our hypothesis that Y is an
anti-coproximinal subspace of �n∞. This completes the proof.

Let us now prove (iii) �⇒ (i). Suppose on the contrary that y0 is an ε-best
coapproximation to b̃ ∈ �n∞\Y out of Y. Following Proposition 2.4(iii), we note that
for each y ∈ Y there exists an f ∈ J (y) such that | f (̃b− y0)| ≤ ε‖b̃− y0‖, for some
ε ∈ [0, 1). Since each component ofA satisfying the ∗-Property and |P+

i ∪ P−
i | = 1,

it follows from Lemma 2.24 that for every f ∈ Ext(B(�n∞)∗) there exists a ỹ ∈
Sm(X) ∩ SY such that J (ỹ) = { f }. Therefore, | f (̃b − y0)| ≤ ε‖b̃ − y0‖, for any
f ∈ Ext(B(�n∞)∗).This implies that | f (̃b−y0)| < ‖b̃−y0‖, for any f ∈ Ext(B(�n∞)∗).
Therefore, it is easy to observe that

‖b̃ − y0‖ = sup
‖ f ‖≤1

{| f (̃b − y0)|
} = max

f ∈Ext(B(�n∞)∗ )

{| f (̃b − y0)|
}

< ‖b̃ − y0‖,

a contradiction. Hence (iii) �⇒ (i). ��
The following example illustrates the computational effectiveness of Theorem 2.25

in verifying the strong anti-coproximinality of a given subspace of �n∞.

Example 2.26 Let ã1 = (−4, 2, 3, 1, 3), ã2 = (1,−5, 4, 2,−3), ã3 = (1, 3,−7, 4, 6)
∈ �5∞ and let Y = span{̃a1, ã2, ã3}. The 1st, 2nd, 3rd, 4th and the 5th components are
(−4, 1, 1), (2,−5, 3), (3, 4,−7), (1, 2, 4) and (3,−3, 6), respectively. It is immedi-
ate that |P+

i ∪ P−
i | = 1, for all 1 ≤ i ≤ 5. It is straightforward to verify that

every component satisfies the ∗-Property. Therefore, following Theorem 2.25, Y is a
strongly anti-coproximinal subspace of �5∞.

In light of the above example, we make the following remark that emphasizes the
importance of the mother space in deciding whether a given subspace is strongly
anti-coproximinal or not.

Remark 2.27 Let X = �6∞ and let {e1, e2, . . . , e6} be the standard ordered basis of X.

Suppose that Z = span{e1, e2, . . . , e5} is a subspace of X. Let us now define ψ :
�5∞ → Z, as ψ(x1, x2, . . . , x5) = (x1, x2, . . . , x5, 0), for any (x1, x2, . . . , x5) ∈ �5∞.

Clearly, ψ is an isometric isomorphism. Let Y be the same subspace given in Exam-
ple 2.26. As Y is strongly anti-coproximinal in �5∞, clearly we observe that ψ(Y) is
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also strongly anti-coproximinal in Z.However,ψ(Y) is not an anti-coproximinal sub-
space of X, as ψ(̃a1) = (−4, 2, 3, 1, 3, 0), ψ(̃a2) = (1,−5, 4, 2,−3, 0), ψ(̃a3) =
(1, 3,−7, 4, 6, 0) and the 6th component does not satisfy the ∗-Property (see Theo-
rem 2.25).

As promised earlier, here we present an example of a subspace which is not strongly
anti-coproximinal but satisfies the necessary condition of Theorem 2.14.

Example 2.28 Let ã1 = (1, 1, 2), ã2 = (2, 2, 1) ∈ �3∞ and let Y = span{̃a1, ã2}.
The 1st, 2nd, 3rd components are (1, 2), (1, 2), (2, 1), respectively. It is immediate
that |P+

1 ∪ P−
1 | = 2. Therefore, following Theorem 2.25, Y is not a strongly anti-

coproximinal subspace of �3∞. However, by a straightforward observation we can
verify that for any x ∈ �3∞, there exists a y ∈ Y such that J (y) ∩ J (x) �= ∅.

In [21], the authors introduced the notions ‘the zero set(ZA)’ and ‘the minimal
norming set(N )’ to study the best coapproximation problem in �n1 .Using these notions,
we study the anti-coproximinal subspaces and the strongly anti-coproximinal sub-
spaces in �n1 . Let us now recall the definitions of the zero set and the minimal norming
set.

Definition 2.29 [21] Let A = {̃a1, ã2, . . . , ãm} be a set of linearly independent ele-
ments in �n1, where 1 ≤ m ≤ n and ãk = (ak1, a

k
2, . . . , a

k
n), for each 1 ≤ k ≤ m. The

zero set ZA of A is defined as

ZA =
{
i ∈ {1, 2, . . . , n} :

(
a1i , a

2
i , . . . , a

m
i

)
= (0, 0, . . . , 0)

}
.

Definition 2.30 [21] A set S in a Banach space X is said to be symmetric if x ∈ S
implies−x ∈ S. Let Y be a subspace of �n1 .A symmetric setN is said to be a norming
set of Y if

(
Mg ∩ Ext(B�n∞)

)∩N �= ∅, for each g ∈ ψ(Y), where ψ is the canonical
isometric isomorphism between �n1 and (�n∞)∗.Anorming setN is said to be aminimal
norming set of Y if for any norming set M of Y, M ⊂ N implies that M = N .

In the following theorem we completely characterize the anti-coproximinal sub-
spaces in �n1 in terms of the minimal norming set. As we will observe, this
characterization turns out to be particularly helpful for explicitly describing the anti-
coproximinal subspaces in �n1 .

Theorem 2.31 Let Y be a subspace of �n1 and let A = {̃a1, ã2, . . . , ãm} be a basis of
Y, where 1 < m < n and ãk = (ak1, a

k
2 , . . . , a

k
n), for each 1 ≤ k ≤ m. Then the

following statements hold true:

(i) If ZA �= ∅, then Y is not an anti-coproximinal subspace of �n1 .
(ii) If ZA = ∅, then Y is an anti-coproximinal subspace of �n1 if and only if

dim(span N ) = n, where N is the minimal norming set.

Proof (i) Suppose that j ∈ ZA, i.e., akj = 0, for all k ∈ {1, 2, . . . , n}. Let b̃ =
(b1, b2, . . . , bn) ∈ �n1, where b j = 1 and bi = 0, for any i ∈ {1, 2, . . . , n}\{ j}.
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Clearly, b̃ /∈ Y. For any β1, β2, . . . , βn ∈ R, it is easy to see that

‖b̃ −
m∑
i=1

βi ãi‖ = ‖
m∑
i=1

βi ãi‖ + 1 > ‖
m∑
i=1

βi ãi − 0‖.

Therefore, 0 is a best coapproximation to b̃ out of Y and consequently Y is not an
anti-coproximinal subspace of �n1.
(ii) Since ZA = ∅, it follows from [21, Th 2.2] that the minimal norming set N
is unique. Suppose that N = {±x̃1,±x̃2, . . . ,±x̃q}, where x̃k = (xk1 , x

k
2 , . . . , x

k
n ).

Without loss of generality we assume that {̃x1, x̃2, . . . , x̃q} is linearly independent.
Let us first prove the necessary part. Suppose on the contrary that q < n. It is straight-
forward to see that there exists a non-zero element b̃ = (b1, b2, . . . , bn) ∈ �n1 such
that

∑n
i=1 bi x

p
i = 0, for any 1 ≤ p ≤ q. Observe that b̃ /∈ Y. Otherwise, there exists

an x̃k ∈ N such that x̃k ∈ Mψ(̃b), for some 1 ≤ k ≤ q, i.e.,

ψ(̃b)(̃xk) =
n∑

i=1

bi x
k
i �= 0,

where ψ : �n1 → (�n∞)∗ is the canonical isometric isomorphism. Therefore, for α1 =
α2 = . . . = αm = 0, the following system of linear equations holds true:

α1

n∑
i=1

a1i x
p
i + α2

n∑
i=1

a2i x
p
i + . . . + αm

n∑
i=1

ami x p
i = 0 =

n∑
i=1

bi x
p
i ,

where p ∈ {1, 2, . . . , q}. Now applying Theorem [21, Th. 2.4], it is easy to observe
that 0 is a best coapproximation to b̃ out of Y. This contradicts the fact that Y is an
anti-coproximinal subspace of �n1. Thus we obtain q = n. This proves the necessary
part.
We now prove the sufficient part. LetN be the minimal norming set and let |N | = q.

Suppose on the contrary that Y is not an anti-coproximinal subspace of �n1. Then
there exists b̃ = (b1, b2, . . . , bn) ∈ �n1\Y such that y0 is a best coapproximation
to b̃ out of Y. It follows that 0 is a best coapproximation to b̃ − y0 out of Y.

Assume that b̃ − y0 = d̃ = (d1, d2, . . . , dn). Clearly, d̃ ∈ �n1\Y. Applying The-
orem [21, Th. 2.4], we obtain that

∑n
i=1 di x

p
i = 0, for each 1 ≤ p ≤ q. Since

dim(span N ) = dim(span{(x p
1 , x p

2 , . . . , x p
n ) : 1 ≤ p ≤ q}) = n, it follows that

d̃ = (d1, d2, . . . , dn) = 0. This contradicts that d̃ ∈ �n1\Y. This completes the proof.
��

Next we give an example of an anti-coproximinal subspace of �31 by applying
Theorem 2.31.

Example 2.32 Let A = {(0, 1, 1), (−1, 0, 1)} ⊂ �31 and let Y = span A. It is
easy to observe that ZA = ∅. Then following the same technique as given in
the proof of [21, Th. 2.2], we obtain that the minimal norming set N of Y as
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{±(1, 1, 1),±(−1, 1, 1),±(−1,−1, 1)}. Thus we get dim(span N ) = 3. Apply-
ing Theorem 2.31(ii) we conclude that Y is an anti-coproximinal subspace of �n1.

Using Theorem 2.20 we show that there does not exist any strongly anti-
coproximinal subspace in �n1 . Before proving the result, we note the following lemma.

Lemma 2.33 LetY be a strongly anti-coproximinal subspace of �n1 .Thenφ(JY) = N ,

where N is the minimal norming set and φ is the canonical isometric isomorphism
between (�n1)

∗ and �n∞.

Proof Since Y is a strongly anti-coproximinal subspace of �n1, it follows from Theo-
rem 2.31 that ZA = ∅. Suppose that ψ : �n1 → (�n∞)∗ is the canonical isometric
isomorphism. Let us first assume that f ∈ JY. This implies that there exists a
y ∈ Sm(�n1)∩ SY such that f (y) = 1.Now observe thatψ(y)(φ( f )) = f (y) = 1.As
ψ(y) is a smooth point in (�n∞)∗, we haveMψ(y) = {±φ( f )}.Therefore,φ(JY) ⊂ N .

On the other hand, since Y is a strongly anti-coproximinal subspace of �n1, it follows
from Theorem 2.20 that N ⊂ Ext(B�n∞) = φ(Ext(B(�n1)

∗)) = φ(JY). This proves
our lemma. ��

Let us now present the desired result.

Theorem 2.34 There is no strongly anti-coproximinal subspace in �n1 .

Proof Suppose on the contrary we assume that Y is a strongly anti-coproximinal
subspace in �n1 . Clearly, Y is a proper subspace of �n1 . Let A = {ã1, ã2, . . . , ãm}
be a basis of Y, where ãk = (ak1, a

k
2, . . . , a

k
n), for all k ∈ {1, 2, . . . ,m}, where

1 < m < n. It follows from Theorem 2.31 that ZA = ∅. Also from Theorem 2.20,
we have |JY| = |Ext(B(�n1)

∗)| = 2n . By virtue of Lemma 2.33, we note that the
cardinality of the minimal norming set of Y is equal to the cardinality of the set JY.

Let us now consider the following hyperspaces in R
m

Hi =
{
(β1, β2, . . . , βm) ∈ R

m :
m∑

k=1

βka
k
i = 0

}
,

where i ∈ {1, 2, . . . , n}. Now it is easy to observe from [21, Th. 2.2] that there is an
one-one correspondence between the minimal norming set of Y and the set of regions
R
m formed by Hi ’s for all i ∈ {1, 2, . . . , n}. Applying [9, Th.1], we obtain that these

hyperspaces divide R
m into at most 2[(n−1

0

)+ (n−1
1

)+ . . .+ (n−1
m−1

)] regions. Therefore
the cardinality of theminimal norming set ofY is atmost 2[(n−1

0

)+(n−1
1

)+. . .+(n−1
m−1

)].
Since m < n, it is immediate that

2

[(
n − 1

0

)
+

(
n − 1

1

)
+ . . . +

(
n − 1

m − 1

)]
< 2n .

This contradicts that the cardinality of the minimal norming set of Y is 2n . This
completes the proof of the theorem. ��
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We would like to end this article with the following remarks regarding the anti-
coproximinal subspaces and the strongly anti-coproximinal subspaces.

Remark 2.35 (i) Wehave already shown that there exists a strongly anti-coproximinal
subspace in �n∞(n ≥ 3), whereas there does not exist any strongly anti-
coproximinal subspace in �n1(n ≥ 3). Using Theorem 2.20, it is possible to give
a geometric interpretation of this phenomenon in a visually appealing manner.
Indeed, we observe that there is a subspace in �n∞ which intersects the interior of
each of the facet of B�n∞, whereas �n1 does not contain any such subspaces (see
Theorem 2.34).

(ii) We note that the anti-coproximinal subspaces are the least favorable subspaces
from the perspective of best coapproximation. In this study we have observed
that in general there may be many subspaces in a polyhedral Banach spaces
which are anti-coproximinal. This further illustrates the non-triviality and the
computational difficulty associated with the best coapproximation problem, even
infinite-dimensionalBanach spaces.Wenote from [11, Th. 4] that aBanach space
X having three or more dimension is an inner product space if and only if for
each hyperspace H ofX, there exists an x ∈ X such that H ⊥B x . In any Banach
space, it is easy to verify that the anti-coproximinal hyperspaces are precisely
those which are not orthogonal to any element of X. Moreover, a strongly anti-
coproximinal hyperspace H is precisely those for which there does not exist any
element x ∈ X such that that H ⊥ε

B x, for some ε ∈ [0, 1). From Theorem 2.34,
for any hyperspace H of �n1, we note that there exists an ε ∈ [0, 1) and an x ∈ �n1
such that H ⊥ε

B x .
(iii) It is known [13, 16] that given a subspace Y of a Banach space X and an element

x /∈ Y, y0 is a best coapproximation to x out ofY if and only if there exists a norm
one projection from span{x, Y} to Y. It is clear that Y is an anti-coproximinal
subspace in X if and only if given any x /∈ Y, there does not exist any norm
one projection from span{x, Y} to Y. In other words, Y is an anti-coproximinal
subspace in X if and only if for any subspace Z which properly contains Y, there
does not exist any norm one projection from Z to Y.

Data availability Data sharing is not applicable to this article as no new data were created or analyzed in
this study.
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