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Abstract
In this paper, we first provide a brief overview of Landau-type theorems for log-p-
harmonic mappings. Next, we establish four new versions of Landau-type theorems
for certain bounded p-harmonic mappings F with JF (0) = 1. Then, as applications
of these results, the corresponding Landau-type theorems for certain log-p-harmonic
mappings f with J f (0) = 1 are provided. In particular, several sharp results of
Landau-type theorems for certain bounded p-harmonic mappings or log-p-harmonic
mappings with J f (0) = 1 are obtained. Finally, we also establish a Landau-type
theorem for a certain bounded log-p-harmonic mappings with J f (0) = 1, which
improves the corresponding results of different authors.
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1 Introduction

Suppose that F(z) = u(z)+ iv(z) is a 2p times continuously differentiable complex-
valued function in a domain D ⊆ C, where p is a positive integer. For z = x+iy ∈ D,
we denote the formal derivatives of f by

Fz = 1

2
(Fx − i Fy) and Fz = 1

2
(Fx − i Fy).

Let � denote the complex Laplacian operator

� = 4
∂2

∂z∂z
= ∂2

∂x2
+ ∂2

∂ y2
.

Then we say that F is p-harmonic in D if F satisfies the p-harmonic equation

�pF = �(�p−1)F = 0.

Evidently, when p = 1 (resp. p = 2), F is called harmonic (resp. biharmonic) map-
ping. For k ∈ {1, . . . , p}, we recall that a mapping F is p-harmonic in a simply
connected domain D ⊂ C if and only if F has the following representation:

F(z) =
p∑

k=1

|z|2(k−1)Gp−k+1(z), (1.1)

where each Gp−k+1 is harmonic in D. For details and the special case of p = 2 for
biharmonic mappings, we refer to [1, 9], and [25] where one can find characterizations
of certain p-harmonic functions.

A mapping f is said to be log-p-harmonic if log f is a p-harmonic mapping. Then
it follows from (1.1) that f is log-p-harmonic in a simply connected domain D if and
only if f can be written as

f (z) =
p∏

k=1

(gp−k+1(z))
|z|2(k−1)

, (1.2)

where gp−k+1 are log-harmonic mappings in D for each k ∈ {1, . . . , p}. Obviously,
when p = 1, f is log-harmonic; when p = 2, f is the so-called log-biharmonic (cf.
[23, 24]).

By [21], it’s known that a harmonic mapping f is locally univalent in D if and only
if the Jacobian of f satisfies J f (z) = | fz(z)|2 − | fz(z)|2 �= 0 for all z ∈ D.

For a continuously differentiable mapping f in D, we may define

� f = max
0�θ�2π

| fz + e−2iθ fz | = | fz | + | fz | and
λ f = min

0�θ�2π
| fz + e−2iθ fz | = || fz | − | fz ||.
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Then J f = λ f � f if J f � 0.
Methods of Harmonic mappings have been used to study and solve fluid flow

problems (cf. [4, 15]). For example, in 2012, Aleman and Constantin [4] established
a connection between harmonic mappings and ideal fluid flows. In fact, they have
developed ingenious technique to solve the incompressible two dimensional Euler
equations in terms of univalent harmonic mappings (cf. [15]). However, the investi-
gation of harmonic mappings in the context of geometric function theory is a recent
one (cf. [7, 8, 16, 17, 19, 27] and the references therein).

The classical Landau’s theorem [20] states that if f is an analytic function on the unit
diskD := {z ∈ C : |z| < 1}with f (0) = f ′(0)−1 = 0 and | f (z)| < M for all z ∈ D,
then f is univalent in the disk Dr0 := {z ∈ C : |z| < r0} with r0 = M − √

M2 − 1,
and f (Dr0) contains a diskDR0 with R0 = Mr20 . This result is sharp, with the extremal
function f0(z) = Mz((1 − Mz)/(M − z)). The Bloch theorem asserts the existence
of a positive constant number b such that if f is an analytic function on the unit disk
D with f ′(0) = 1, then f (D) contains a schlicht disk of radius b, that is, a disk of
radius b which is the univalent image of some region on D. The supremum of all such
constants b is called the Bloch constant (cf. [7]). For the sake of convenience, we say
that f ∈ Sz′(r , R) if f is an univalent log-p-harmonic mapping in the disk Dr and
f (Dr ) contains a schlicht disk D(z′, R) := {z ∈ C : |z − z′| < R}. In particular, we
denote S0(r , R) by S(r , R).

The study on Landau-type theorems for harmonic mappings has attracted much
attention. We may refer the interested readers to [7, 8, 10–12, 16, 17, 19, 22, 27–
29] for more discussions on harmonic mappings, and refer to [2, 3, 9, 24, 26, 31,
34] for more results of biharmonic and p-harmonic mappings. Recently, Chen et al.
generalized the results of planar harmonic mappings to several variables (cf. [6, 8]).
In 2011, Li and Wang [23] introduced the log-p-harmonic mappings and derived
two versions of Landau-type theorems. We recall the following result which actually
improves the result of [23].

Theorem A ([30]) Let f (z) = ∏p
k=1(gp−k+1(z))|z|

2(k−1)
be a log-p-harmonic map-

ping of D, where all gp−k+1 are log-harmonic on D with gp−k+1(0) = gp(0) =
J f (0) = 1, |gp−k+1| < M∗

p−k+1 for k ∈ {2, . . . , p}, and |gp| < M∗
p, where

M∗
i � 1, Mi = logM∗

i + π (i = 1, . . . , p) and λ0(M) is defined by

λ0(M) =
{ √

2√
M2−1+√

M2+1
, 1 � M � M0,

π
4M , M > M0.

(1.3)

Then f ∈ Sz2(ρ2, σ2), where ρ2 is the unique root in (0, 1) of the equation:

λ0(Mp) −
p−1∑

k=1

( 4

π(1 − r2)
+ 8k

π(1 − r)

)
Mp−kr

2k

−λ0(Mp)

√
(Mp)4 − 1 · r

√
r4 − 3r2 + 4

(1 − r2)
3
2

= 0,
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178 M.-S. Liu et al.

z2 = cosh

(
σ ′
2√
2

)
, σ2 = min

{
sinh

(
σ ′
2√
2

)
, cosh

(
σ ′
2√
2

)
sin

(
σ ′
2√
2

)}
,

and

σ ′
2 = λ0(Mp)ρ2 − λ0(Mp)

√
(Mp)4 − 1 · ρ2

2

(1 − ρ2
2 )

1
2

− 4ρ2
π(1 − ρ2)

p−1∑

k=1

Mp−kρ
2k
2 .

Theorem B ([30]) Let f (z) = g(z)|z|2(p−1)
be a log-p-harmonic of D, where p > 1,

g is log-harmonic, g(0) = Jg(0) = 1, |g(z)| � M∗ for some M∗ � 1, and M =
logM∗+π . Then f ∈ Sz3(ρ3, σ3), where ρ3 is the unique root in (0, 1) of the following
equation:

1 − 2
√
M4 − 1 · r

(1 − r2)
1
2

−
√
M4 − 1 · r

√
r4 − 3r2 + 4

(1 − r2)
3
2

= 0,

z3 = cosh

(
σ ′
3√
2

)
, σ3 = min

{
sinh

(
σ ′
3√
2

)
, cosh

(
σ ′
3√
2

)
sin

(
σ ′
3√
2

)}
,

and

σ ′
3 = ρ

2(p−1)
3 λ0(M)

(
ρ3 −

√
M4 − 1 · ρ2

3

(1 − ρ2
3 )

1
2

)
.

In 2019, Bai and Liu established two new versions of Landau-type theorems as
follows:

Theorem C ([5]) Let f (z) = ∏p
k=1(gp−k+1(z))|z|

2(k−1)
be a log-p-harmonic mapping

inD satisfying f (0) = gp(0) = λ f (0) = 1. Suppose that for each k ∈ {1, . . . , p}, we
have

(i) gp−k+1(z) is log-harmonic in D, and G p(z) := log gp(z);
(ii) |gp−k+1(z)| � M∗

p−k+1, and �Gp (z) � �p for all z ∈ D, where M∗
p−k+1 � 1,

�p � 1.
Then f ∈ Sz4(ρ4, σ4), where ρ4 ∈ (0, 1) satisfies the following equation:

1 − 4

π(1 − r2)

p−1∑

k=1

r2kMp−k − 8

π(1 − r)

p−1∑

k=1

kMp−kr
2k − �p − 1

�p

r

1 − r
= 0,

(1.4)

where Mp−k+1 = log M∗
p−k+1 + π , k = 2, 3, . . . , p,

z4 = cosh(
σ ′
4√
2
), σ4 = min {sinh( σ ′

4√
2
), cosh(

σ ′
4√
2
) sin(

σ ′
4√
2
)}, (1.5)
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and

σ ′
4 = ρ4 + �2

p − 1

�p
[ρ4 + ln(1 − ρ4)] −

p−1∑

k=1

4Mp−kρ
2k+1
4

π(1 − ρ4)
. (1.6)

In 2021, Liu and Luo obtained the following sharp forms of [5, Theorem 2.9].

Theorem D ([32]) Suppose that p is a positive integer, �1, �2, . . . , �p−1 �
0, �p > 1. Let f (z) = ∏p

k=1(gp−k+1(z))|z|
2(k−1)

be a log-p-harmonic mapping
of D, satisfying f (0) = λ f (0) = 1. Suppose that for each k ∈ {1, . . . , p} we have
that

(i) gp−k+1(z) is log-harmonic in D, gp−k+1(0) = 1, and G p−k+1 := log gp−k+1;
(ii) for each k ∈ {2, . . . , p},�Gp−k+1(z) � �p−k+1, and�Gp (z) < �p for all z ∈ D.

Then f ∈ Sz6(ρ6, σ6), where ρ6 is the unique root in (0, 1) of the equation

�p
1 − �pr

�p − r
−

p−1∑

k=1

(2k + 1)�p−kr
2k = 0,

and z6 = cosh σ ′
6, σ6 = sinh σ ′

6, and σ ′
6 = �2

pρ6 − ∑p−1
k=1 �p−kρ

2k+1
6 +(

�3
p − �p

)
ln

(
1 − ρ6

�p

)
. Both of the radii, ρ6 and σ6 = sinh σ ′

6 are sharp.

Theorem E ([32]) Suppose that p is a positive integer, p � 2, �1, �2, . . . , �p−1 �
0. Let f (z) = ∏p

k=1(gp−k+1(z))|z|
2(k−1)

be a log-p-harmonic mapping inD satisfying
f (0) = λ f (0) = 1. Suppose that for each k ∈ {1, . . . , p}, we have that
(i) gp−k+1(z) is log-harmonic in D, gp−k+1(0) = 1, and G p−k+1 := log gp−k+1;
(ii) for each k ∈ {2, . . . , p}, �Gp−k+1(z) � �p−k+1, and �Gp (z) � 1 for all z ∈ D.

Then (1) F(z) := log f (z) = ∑p
k=1 |z|2(k−1)Gp−k+1(z) is a p-harmonic map-

ping in D, and F(z) ∈ S(ρ7, σ
′
7), where σ ′

7 = ρ7 − ∑p−1
k=1 �p−kρ

2k+1
7 ,

ρ7 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if
p−1∑
k=1

(2k + 1)�p−k � 1,

ρ′
7, if

p−1∑
k=1

(2k + 1)�p−k > 1 ,

and ρ′
7 is the unique root in (0, 1) of the equation: 1−∑p−1

k=1 (2k+1)�p−kr2k = 0.
Both of the radii, ρ7 and σ ′

7£¬ are sharp, with an extremal function given by

F1(z) = z −
p−1∑

k=1

�p−k |z|2k z, z ∈ U . (1.7)

(2) f ∈ Sz7(ρ7, σ7), where z7 = cosh σ ′
7, σ7 = sinh σ ′

7. Both of the radii, ρ7 and
σ7, are sharp.
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Remark F The number σ6 = sinh σ ′
6 is the accurate value of the Bloch constant of

the subclass of log-p-harmonic mappings in the unit disk D satisfying the hypotheses
of Theorem D, and σ7 = sinh σ ′

7 is the accurate value of the Bloch constant of the
subclass of log-p-harmonic mappings in the unit disk D satisfying the hypotheses of
Theorem E.

It is natural to raise the following problems.

Problem 1: If the condition λF (0) = 1 is replaced by JF (0) = 1 in Theorems D
or E, can we obtain the sharp versions of Landau-type theorems for such bounded and
normalized log-p-harmonic mappings?

Problem 2: Can we improve the radii in Theorem A?
The paper is organized as follows. In Sect. 2, we recall several lemmas, and

prove five new lemmas which play crucial role in the proofs of our Theorems, where
Lemma 2.6 is sharp. In Sect. 3, we establish four new versions of Landau-type the-
orems for certain bounded p-harmonic mappings with J f (0) = 1. In Sect. 4, using
these estimates, we present four versions of Landau-type theorems for log-p-harmonic
mappings (see Theorems 4.1, 4.3, 4.4 and 4.5), which are the analogues versions of
Theorems D, C and B respectively. We also establish a sharp version of Landau-type
theorem for a certain log-p-harmonicmappings (see Theorems 4.2), which gives a part
of answer to Problem 1. Finally, we improve TheoremA by establishing Theorem 4.6,
which gives an affirmative answer to Problem 2.

2 Preliminaries

In order to establish our main results, we need the following key lemmas.

Lemma 2.1 ([14]) Suppose that f (z) is a harmonic mapping of the unit disk D such
that | f (z)| � M for all D. Then

� f (z) � 4M

π(1 − |z|2) , z ∈ D.

The inequality is sharp.

Lemma 2.2 ([18]) Suppose that f (z) is a harmonic mapping of the unit disk D with
f (0) = 0 and f (D) ⊂ D. Then

| f (z)| � 4

π
arctan|z| ≤ 4

π
|z| for z ∈ D.

Lemma 2.3 ([13]) Suppose � > 1. Let f (z) be a harmonic mapping of the unit disk
D with J f (0) = 1 and � f (z) < � for all z ∈ D. Then:

(1) for all z1, z2 ∈ Dr (0 < r < 1, z1 �= z2), we have

| f (z2) − f (z1)| =
∣∣∣∣
∫

z1z2
fz(z)dz + fz̄(z)dz̄

∣∣∣∣ � �
λ f (0) − �r

� − λ f (0)r
|z1 − z2| .
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(2) Set γ = f −1(ow′) with w′ ∈ f (∂Dr )(0 < r � 1) and ow′ denotes the closed
line segment joining the origin and w′, then

∣∣∣∣
∫

γ

fζ (ζ )dζ + fζ̄ (ζ )d ζ̄

∣∣∣∣ � �

∫ r

0

λ f (0) − �t

� − λ f (0)t
dt .

Lemma 2.4 Suppose f (z) is a harmonic mapping of the unit diskD. If J f (0) = 1 and
� f (z) < � (� > 1) for all z ∈ D, then

(i) for all z1, z2 ∈ Dr (0 < r < 1, z1 �= z2), we have

| f (z1) − f (z2)| ≥ �(1 − �2r)

�2 − r
|z1 − z2|.

(ii) for w ∈ ∂ f (Dr ) (0 < r � 1), γ = f −1(ow) and ow denotes the closed line
segment joining the origin and w, we have

∣∣∣∣
∫

γ

fξ (ξ)dξ + fξ (ξ)dξ

∣∣∣∣ � �3r + (�5 − �) ln (1 − r

�2 ).

Proof For any z1, z2 ∈ Dr with z1 �= z2, by Lemma 2.3, we have

| f (z1) − f (z2)| ≥ �
λ f (0) − �r

� − λ f (0)r
|z1 − z2|,

∣∣∣∣
∫

γ

fξ (ξ)dξ + fξ (ξ)dξ

∣∣∣∣ � �

∫ r

0

λ f (0) − �t

� − λ f (0)t
dt .

Since J f (0) = � f (0)λ f (0) = 1, it follows that

λ f (0) = 1

� f (0)
>

1

�
.

As � x−�r
�−xr is an increasing function of x , we obtain that

| f (z1) − f (z2)| ≥ �(1 − �2r)

�2 − r
|z1 − z2|,

and for w ∈ ∂ f (Dr )(0 < r � 1) and γ = f −1(ow),

∣∣∣∣
∫

γ

fξ (ξ)dξ + fξ (ξ)dξ

∣∣∣∣ � �

∫ r

0

λ f (0) − �t

� − λ f (0)t
dt ≥ �

∫ r

0

1 − �2t

�2 − t
dt

= �3r + (�5 − �)ln(1 − r

�2 ).

��
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Lemma 2.5 ([13]) Suppose that f (z) = h(z)+ g(z) is a harmonic mapping inD with
h(z) = ∑∞

n=1 anz
n, g(z) = ∑∞

n=1 bnz
n and f (0) = J f (0) − 1 = 0. Then | f (z)| � 1

for all z ∈ D if and only if � f (z) � 1 for all z ∈ D.
Moreover, if � f (z) � � for all z ∈ D, then � ≥ 1, |a1| + |b1| � �, and

|an| + |bn| � �4 − 1

n�3 , n = 2, 3, . . . ,
1

�
� λ f (0) � 1. (2.1)

When � = 1, then f (z) = a1z with |a1| = 1, and λ f (0) = 1.
Nowwe establish several sharp coefficient inequalities for harmonic mappings with

bounded dilation and J f (0) = 1, which has independent interest.

Lemma 2.6 Suppose that f (z) = h(z) + g(z) is a harmonic mapping in D with
h(z) = ∑∞

n=1 anz
n, g(z) = ∑∞

n=1 bnz
n, f (0) = J f (0) − 1 = 0 and � f (0) � � for

some � > 1. Then we have the following sharp inequalities:

|a1| � 1

2

(
� + 1

�

)
, |b1| � 1

2

(
� − 1

�

)
, |a1| + |b1| � � and λ f (0) � 1

�
.

(2.2)

Proof By the assumption, the proofs of the inequalities for |a1| and |b1| follow trivially
by solving x + y � � and x2 − y2 = 1, where x = |a1| and y = |b1|. The sharpness
follow from the affine mapping

f0(z) = az + bz, a = 1

2

(
� + 1

�

)
, b = 1

2

(
� − 1

�

)
.

��
Remark 2.1 It is natural to raise an open problem: under the assumptions ofLemma2.6,
and � f (z) � � for all z ∈ D, what is the sharp upper bound of |an| + |bn| for each
n � 2?

Lemma 2.7 ([26]) Suppose that f (z) = h(z)+ g(z) is a harmonic mapping inD such
that | f (z)| � M for all z ∈ D with h(z) = ∑∞

n=0 anz
n and g(z) = ∑∞

n=1 bnz
n. If

J f (0) = 1, then λ f (0) � λ0(M), where λ0(M) is defined by (1.3).

Lemma 2.8 Suppose that F(z) = |z|2kG(z) is p-harmonic in D, where k � 0 is an
integer, and G(z) is harmonic in D with G(0) = 0.

(1) If �G(z) � � for all z ∈ D. Then for z1, z2 ∈ Dr (0 < r < 1), we have

|F(z1) − F(z2)| � |z1 − z2|(2k + 1)�r2k . (2.3)

(2) If |G(z)| � M for all z ∈ D. Then for z1, z2 ∈ Dr (0 < r < 1), we have

|F(z1) − F(z2)| � |z1 − z2|
(

4

π(1 − r2)
+ 8k

π

)
M r2k . (2.4)
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Proof The case k = 0 is trivial. For k � 1, we choose two distinct points z1, z2 ∈ Dr ,
and let 
 = {(z2 − z1)t + z1 : t ∈ [0, 1]}. Elementary calculations show that

|F(z1) − F(z2)| �
∫




|z|2k[|Gz(z)||dz| + |Gz(z)||dz|]

+
∫




k|G(z)|[|zk zk−1||dz| + |zk−1zk ||dz|]

�
∫




�G(z)|z|2k |dz| +
∫




2k|G(z)||z|2k−1|dz|, (2.5)

and

|G(z)| �
∣∣∣∣
∫

[0,z]
Gzdz + Gzdz

∣∣∣∣ �
∫

[0,z]
�G(z)|dz|. (2.6)

(1) Since �G(z) � � for all z ∈ D, by (2.5) and (2.6), we have

|F(z1) − F(z2)| �
∫




�G(z)|z|2k |dz| +
∫




2k�|z| · |z|2k−1|dz|
� |z1 − z2|(2k + 1)�r2k .

This implies that the inequality (2.3) holds.
(2) Since |G(z)| � M for all z ∈ D, by Lemmas 2.1, 2.2, (2.5) and (2.6), we have

that

|F(z1) − F(z2)| �
∫




�G(z)|z|2k |dz| +
∫




2k · 4M |z|
π

· |z|2k−1|dz|

� |z1 − z2|
(

4

π(1 − r2)
+ 8k

π

)
M r2k .

This implies the inequalities (2.4) hold. The proof of Lemma 2.8 is complete.

��
Lemma 2.9 ([34]) Suppose that f (z) = h(z) + g(z) is a harmonic mapping in D

with h(z) = ∑∞
n=0 anz

n and g(z) = ∑∞
n=1 bnz

n. If | f (z)| � M for all z ∈ D and
|J f (0)| = 1, then

( ∞∑

n=2

(|an| + |bn|)2
) 1

2

�
√
M4 − 1 · λ f (0).

Lemma 2.10 Suppose 0 < t < 1, then min{sinh t, cosh t · sin t} = sinh t .

Proof Set g(t) = cosh t ·sin t−sinh t , then g(0) = 0, and a direct computation yields

g′(t) = sinh t · sin t + cosh t (cos t − 1), g′(0) = 0,
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and

g′′(t) = sinh t · (2 cos t − 1) � sinh t · (2 cos 1 − 1) � 0, t ∈ [0, 1].

We conclude that g′(t) is an increasing function of t in [0, 1] and therefore, g′(t) �
g′(0) = 0 for t ∈ [0, 1], which shows that g(t) is an increasing function of t in [0, 1].
Hence we obtain that g(t) � g(0) = 0 for t ∈ [0, 1], which completes the proof. ��

By means of Lemma 2.10, using arguments similar to those in the proof of [32,
Lemma 2.4], we may prove the following lemma, and so we omit the details.

Lemma 2.11 Suppose that p is a positive integer, 0 < t < 1 and 0 < ρ � 1. Let
f (z) be a log-p-harmonic mapping in D with f (0) = J f (0) = 1. Suppose that f (z)
is univalent in Dρ and F(Dρ) ⊃ Dt , where F(z) = log f (z). Then the range f (Dρ)

contains a schlicht disk D(w1, r1) = {w ∈ C||w − w1| < r1}, where

w1 = cosh t, r1 = sinh t . (2.7)

Moreover, if ρ is the biggest univalent radius of f (z) and t is the biggest radius of the
schlicht disk of F(z), then the radius r1 = sinh t is sharp.

Remark 2.2 In Sect. 4, we mainly focus on Landau-type theorems for log-p-harmonic
mappings when p ≥ 2. As for the case of p = 1, we may recall [33, Theorem 3.2] as
follows:

Suppose F = HG is a logharmonic mapping in D. If F(0) = JF (0) = 1
and M1 ≤ |F(z)| ≤ M2, where M1 and M2 are positive constants, M∗ =
max{− logM1, logM2} + π and

m = min
r∈(0,1)

2 − r2

r(1 − r2)
≈ 4.20.

Then F is univalent in the disk Dξ0 and F(Dξ0) contains a schlicht disk D(z0, r0),
where

ξ0 = π3

64mM∗2 , z0 = cosh(η0/
√
2), η0 = π

8M∗ ξ0,

and

r0 = min
{
sinh(η0/

√
2), cosh(η0/

√
2) sin(η0/

√
2)

}
.

It is worthmentioning that the radius r0 in this theorem is not sharp, while Lemma 2.11
provides a new way to obtain the accurate value of the Bloch constant for log-p-
harmonic mappings.
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Lemma 2.12 ([30]) Let p be a positive integer. Then for any z1 �= z2 inDr (0 < r < 1),
we have

∫ 1

0
|t z1 + (1 − t)z2|2(p−1)dt ≥ 1

2p − 1
· |z1|2p−1 + |z2|2p−1

|z1| + |z2| > 0.

3 Landau-type theorems of certain bounded p-harmonic mappings

We establish four new versions of Landau-type theorems for bounded p-harmonic
mappings.

Theorem 3.1 Let F(z) = ∑p
k=1 |z|2(k−1)Gp−k+1(z) be a p-harmonic mapping in D

with F(0) = JF (0) − 1 = 0. Suppose that for each k ∈ {2, . . . , p}, �p−k+1 � 0,
�p > 1 and

(i) for each k ∈ {1, . . . , p}, G p−k+1(z) is harmonic in D and G p−k+1(0) = 0;
(ii) for each k ∈ {2, . . . , p}, �Gp−k+1(z) � �p−k+1 and�Gp (z) < �p for all z ∈ D.

Then F(z) ∈ S(r1, R1), where r1 is the unique root in (0, 1) of the equation

�p(1 − �2
pr)

�2
p − r

−
p−1∑

k=1

(2k + 1)�p−kr
2k = 0, (3.1)

and

R1 = �3
pr1 + (�5

p − �p)ln(1 − r1
�2

p
) −

p−1∑

k=1

�p−kr
2k+1
1 . (3.2)

Proof We first observe that

JF (0) = |Fz(0)|2 − |Fz(0)|2 = |(Gp)z(0)|2 − |(Gp)z(0)|2 = JGp (0) = 1.

Next, to prove that F is univalent in Dr1 , we choose two distinct points z1, z2 ∈
Dr (0 < r < r1), and let 
 = {z1 + t (z2 − z1) : t ∈ [0, 1]}. By Lemmas 2.4 and
2.8(1), we find that

|F(z1) − F(z2)| �
∣∣Gp(z1) − Gp(z2)

∣∣ −
p−1∑

k=1

∣∣∣Gp−k(z1)|z1|2k − Gp−k(z2)|z2|2k
∣∣∣

�
[
�p(1 − �2

pr)

�2
p − r

−
p−1∑

k=1

(2k + 1)�p−kr
2k

]
|z1 − z2|.

Moreover, an easy calculation shows that the function

μ(r) = �p(1 − �2
pr)

�2
p − r

−
p−1∑

k=1

(2k + 1)�p−kr
2k
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Table 1 For the case p = 2. The values of r1, R1 are in Theorem 3.1

(�1,�2) (1, 1.1) (1.2, 1) (1.5, 2.1) (3, 4) (4, 5)

r1 0.420000 0.394382 0.166761 0.055546 0.036755

R1 0.254210 0.238504 0.043843 0.007210 0.003769

is continuous and strictly decreasing on [0, 1], and

μ(0) = 1

�p
> 0, μ(1) = −

p−1∑

k=0

(2k + 1)�p−k < 0.

Then it follows from the intermediate value theorem that the equation μ(r) = 0 has a
unique root r1 in (0, 1). Hence

|F(z1) − F(z2)| �
(

�p(1 − �2
pr)

�2
p − r

−
p−1∑

k=1

(2k + 1)�p−kr
2k

)
|z1 − z2|

> |z1 − z2|μ(r1) = 0,

which shows that F(z) is univalent in Dr1 .
Finally, for any z ∈ ∂Dr1 , by Lemmas 2.4, 2.8 and (2.6), we have

|F(z) − F(0)| =
∣∣∣∣∣∣
Gp(z) +

p−1∑

k=1

Gp−k(z)|z|2k
∣∣∣∣∣∣
�

∣∣Gp(z)
∣∣ −

p−1∑

k=1

|Gp−k(z)||z|2k

≥ �3
pr1 + (�5

p − �p) ln (1 − r1
�2

p
) −

p−1∑

k=1

�p−kr
2k+1
1 = R1.

This completes the proof of Theorem 3.1. ��
Using Computer Algebra System, we list some numerical solutions in Table 1 to

Eqs. (3.1)–(3.2).

Remark 3.1 Note that for harmonic mapping Gp(z) ofDwith Gp(0) = JGp (0)−1 =
0, and �Gp (z) � 1 or |Gp(z)| � 1 for all z ∈ D, it follows from Lemma 2.5 that
Gp(z) = a1z with |a1| = 1 and λGp (0) = 1, then by Theorem E(1), we have the
following theorem.

Theorem 3.2 Let F(z) = ∑p
k=1 |z|2(k−1)Gp−k+1(z) be a p-harmonic mapping in D

with F(0) = JF (0) − 1 = 0. Suppose that for each k ∈ {2, . . . , p}, �p−k+1 � 0 and

(i) for each k ∈ {1, . . . , p}, G p−k+1(z) is harmonic in D and G p−k+1(0) = 0;
(ii) for each k ∈ {2, . . . , p}, �Gp−k+1(z) � �p−k+1, and�Gp (z) � 1or |Gp(z)| � 1

for all z ∈ D.
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Then F(z) ∈ S(r2, R2), where

r2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if
p−1∑
k=1

(2k + 1)�p−k � 1,

r ′
2, if

p−1∑
k=1

(2k + 1)�p−k > 1 ,

(3.3)

and r ′
2 is the unique root in (0, 1) of the equation

1 −
p−1∑

k=1

(2k + 1)�p−kr
2k = 0, (3.4)

and R2 = r2 − ∑p−1
k=1 �p−kr

2k+1
2 . Moreover, both of radii, r2 and R2 are sharp,

with an extremal function given by (1.7).

Theorem 3.3 Let F(z) = ∑p
k=1 |z|2(k−1)Gp−k+1(z) be a p-harmonic mapping in D

with F(0) = JF (0) − 1 = 0. Suppose that for each k ∈ {2, . . . , p}, Mp−k+1 � 0,
�p > 1 and

(i) for each k ∈ {1, . . . , p}, G p−k+1(z) is harmonic in D and G p−k+1(0) = 0;
(ii) for each k ∈ {2, . . . , p}, |Gp−k+1(z)| � Mp−k+1 and �Gp (z) < �p for all

z ∈ D.
Then F(z) ∈ S(r3, R3), where r3 is the unique root in (0, 1) of the equation

�p(1 − �2
pr)

�2
p − r

−
p−1∑

k=1

(
4

π(1 − r2)
+ 8k

π

)
Mp−kr

2k = 0, (3.5)

and

R3 = �3
pr3 + (�5

p − �p) ln (1 − r3
�2

p
) −

p−1∑

k=1

4Mp−k

π
r2k+1
3 . (3.6)

Proof We first prove that F(z) is univalent in Dr3 . In fact, for any two distinct points
z1, z2 ∈ Dr (0 < r < r3), let 
 = {z1 + t (z2 − z1) : t ∈ [0, 1]}. Then we have

|F(z1) − F(z2)| �
∣∣Gp(z1) − Gp(z2)

∣∣ −
p−1∑

k=1

∣∣∣Gp−k(z1)|z1|2k − Gp−k(z2)|z2|2k
∣∣∣ .

Note that JF (0) = 1 implies JGp (0) = 1, and thus, by using Lemma 2.4(i), we
obtain

|Gp(z1) − Gp(z2)| ≥ �p(1 − �2
pr)

�2
p − r

|z1 − z2|.
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Table 2 For the case p = 2. The values of r3, R3 are in Theorem 3.3

(M1, �2) (1, 1.1) (1.2, 1) (1.5, 2.1) (3, 4) (4, 5)

r3 0.379287 0.365639 0.157884 0.054096 0.036029

R3 0.233366 0.218269 0.042042 0.007074 0.003724

Consequently, by the hypotheses of Theorem 3.3 and Lemma 2.8(2), we have

|F(z1) − F(z2)| ≥
(

�p (1 − �2
pr)

�2
p − r

−
p−1∑

k=1

(
4

π(1 − r2)
+ 8k

π

)
Mp−kr

2k
)

|z1 − z2|

> 0,

which shows that F(z) is univalent in Dr3 .
Next, we denote any z ∈ ∂Dr3 by r3e

iθ . By Lemmas 2.2 and 2.4(ii), we have

|F(z) − F(0)| = |F(z)| =
∣∣∣∣∣∣
Gp(z) +

p−1∑

k=1

Gp−k(z)|z|2k
∣∣∣∣∣∣
�

∣∣Gp(z)
∣∣ −

p−1∑

k=1

|Gp−k(z)||z|2k

� �3
pr3 + (�5

p − �p) ln (1 − r3
�2

p
) −

p−1∑

k=1

4Mp−k

π
r2k+1
3 = R3.

This completes the proof. ��
Using Computer Algebra System, we list some numerical solutions in Table 2 to

Eqs. (3.5)–(3.6).
By means of Remark 3.1, using the same method as in our proof of Theorem 3.3,

we have the following theorem.

Theorem 3.4 Let F(z) = ∑p
k=1 |z|2(k−1)Gp−k+1(z) be a p-harmonic mapping of D

satisfying F(0) = JF (0)−1 = 0. Suppose that for each k ∈ {2, . . . , p}, Mp−k+1 � 0,
and

(i) for each k ∈ {1, . . . , p}, G p−k+1(z) is harmonic in D and G p−k+1(0) = 0;
(ii) for each k ∈ {2, . . . , p}, |Gp−k+1(z)| � Mp−k+1, and�Gp (z) � 1 or |Gp(z)| �

1 for all z ∈ D.
Then F(z) ∈ S(r4, R4), where r4 = 1 for Mp−k+1 = 0 (k = 2, · · · , p) and r ′

4,
otherwise. Here r ′

4 is the unique root in (0, 1) of the equation

1 −
p−1∑

k=1

(
4

π(1 − r2)
+ 8k

π

)
Mp−kr

2k = 0, (3.7)

R4 = r4 −
p−1∑

k=1

4Mp−k

π
r2k+1
4 . (3.8)

When Mp−k+1 = 0 (k = 2, · · · , p), R4 = r4 = 1, which is sharp.
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4 Landau-type theorems for log-p-harmonic mappings

By means of Theorem 3.1 and Lemma 2.11, we may establish the following Landau-
type theorem of log-p-harmonicmappings, which is the analogues version of Theorem
D.

Theorem 4.1 Suppose that p is a positive integer, p � 2, �1, �2, . . . , �p−1 � 0

and �p > 1. Let f (z) = ∏p
k=1(gp−k+1(z))|z|

2(k−1)
be a log-p-harmonic mapping of

D with J f (0) = 1. Assume that for each k ∈ {1, . . . , p}, we have
(i) gk(z) is log-harmonic in D and gk(0) = 1, and Gk(z) := log gk(z);
(ii) for each k ∈ {1, . . . , p − 1}, �Gk (z) � �k and �Gp (z) < �p for all z ∈ D.

Then f (z) ∈ Sw1(r1, R
′
1), where r1 is the unique root in (0, 1) of Eq. (3.1), R1 is

defined by (3.2), w1 = cosh R1 and R′
1 = sinh R1.

Proof Since Gk(z) = log gk(z) for each k ∈ {1, · · · , p}, we obtain that

F(z) = log f (z) =
p∑

k=1

|z|2(k−1)Gp−k+1(z)

is p-harmonic in D. A direct computation yields

J f (0) = | fz(0)|2 − | fz(0)|2 = | f (0)|2(|Fz(0)|2 − |Fz(0)|2) = JF (0).

Thus the condition gp(0) = J f (0) = 1 leads toGp(0) = JF (0)−1 = J f (0)−1 =
0.

Therefore, for z1 �= z2 in Dr (0 < r < r1), by Theorem 3.1, we have

| log f (z1) − log f (z2)| = |F(z1) − F(z2)|

� |z1 − z2|
(

�p(1 − �2
pr)

�2
p − r

−
p−1∑

k=1

(2k + 1)�p−kr
2k

)
> 0.

This implies that f is univalent in Dr1 .
For any z ∈ ∂Dr1 , it also follows from Theorem 3.1 that

| log f (z)| = |F(z)| � �3
pr1 + (�5

p − �p) ln (1 − r1
�2

p
) −

p−1∑

k=1

�p−kr
2k+1
1 = R1.

Hence, by Lemma 2.11, we get that the range f (Dr1) contains a schlicht disk
D(w1, R′

1) = {w ∈ C||w − w1| < R′
1}, where w1 = cosh R1, R′

1 = sinh R1.

This completes the proof. ��
Remark 4.1 Note that for harmonic mapping Gp(z) of D with Gp(0) = JGp (0) −
1 = 0, and �Gp (z) � �p for all z ∈ D, it follows from Lemma 2.5 that �p �
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1. Theorem 4.1 provides a version of the Landau-type theorem of certain log-p-
harmonic mappings with J f (0) = 1 for the cases �1, . . . , �p−1 � 0 and �p > 1.
If �1, . . . , �p−1 � 0, and �p = 1, then we will prove the following precise form of
the Landau-type theorem of certain log-p-harmonic mappings by using Lemma 2.5
and Theorem E(2).

Theorem 4.2 Suppose that p is a positive integer, p � 2, �1, �2, . . . , �p−1 � 0.

Let f (z) = ∏p
k=1(gp−k+1(z))|z|

2(k−1)
be a log-p-harmonic mapping of D satisfying

f (0) = J f (0) = 1. Suppose that for each k ∈ {1, . . . , p}, we have that
(i) gp−k+1(z) is log-harmonic in D, gp−k+1(0) = 1, and G p−k+1 := log gp−k+1;
(ii) for each k ∈ {2, . . . , p},�Gp−k+1(z) � �p−k+1, and�Gp (z) � 1 or |Gp(z)| � 1

for all z ∈ D.
Then f (z) ∈ Sw2(r2, R

′
2), where r2 is defined by (3.3), R1 is defined by (3.4) and

w2 = cosh R2, R′
2 = sinh R2, (4.1)

Both of the radii, r2 and R′
2 = sinh R2, are sharp.

Proof Since f (0) = J f (0) = 1, it is easy to verify that JGp (0) = J f (0) = 1.
Since Gp(0) = 0, and �Gp (z) � 1 or |Gp(z)| � 1 for all z ∈ D, it follows from

Lemma 2.5 that λGp (0) = 1. Hence λ f (0) = λGp (0) = 1, and the conclusion of
Theorem 4.2 follows from Theorem E(2). ��

Bymeans of Theorem3.3 andLemma2.11,wemay establish the followingLandau-
type theorem of log-p-harmonicmappings, which is the analogues version of Theorem
C.

Theorem 4.3 Suppose that p is a positive integer, p � 2, M∗
1 , M∗

2 , . . . , M∗
p−1 � 1

and �p > 1. Let f (z) = ∏p
k=1(gp−k+1(z))|z|

2(k−1)
be a log-p-harmonic mapping of

D such that J f (0) = 1. Suppose that for each k ∈ {1, . . . , p}, we have
(i) gp−k+1(z) is log-harmonic in D and gp−k+1(0) = 1, G p(z) = log gp(z);
(ii) for each k ∈ {2, . . . , p}, |gp−k+1(z)| � M∗

p−k+1 and�Gp (z) < �p for all z ∈ D.
Then f (z) ∈ Sw3(r3, R

′
3), where Mi = logM∗

i + π (i = 1, . . . , p − 1), and r3
is the unique root in (0, 1) of Eq.(3.5), R3 is defined by (3.6), w3 = cosh R3 and
R′
3 = sinh R3.

Proof Since Gk(z) = log gk(z) for each k ∈ {1, . . . , p}, we obtain that

F(z) = log f (z) =
p∑

k=1

|z|2(k−1)Gp−k+1(z)

is p-harmonic in D. Also, it is easy to see that

J f (0) = | fz(0)|2 − | fz(0)|2 = | f (0)|2(|Fz(0)|2 − |Fz(0)|2) = JF (0).
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Thus the condition gp(0) = J f (0) = 1 leads to Gp(0) = JF (0) − 1 = 0. For
k ∈ {1, . . . , p − 1}, we have arg gp−k+1 ∈ (−π, π ] and

|Gp−k+1| = | log gp−k−1| = | log |gp−k−1| + i arg gp−k−1| � | log |gp−k−1|| + π.

This implies that |Gp−k+1| � logM∗
p−k+1 + π := Mp−k+1, k ∈ {1, . . . , p − 1}.

Therefore, for z1 �= z2 in Dr (0 < r < r3), by Theorem 3.3, we have

| log f (z1) − log f (z2)| = |F(z1) − F(z2)| =
∣∣∣
∫




Fz(z)dz + Fz(z)dz
∣∣∣

� |z1 − z2|
(

�p(1 − �2
pr)

�2
p − r

−
p−1∑

k=1

(
4

π(1 − r2)
+ 8k

π

)
Mp−kr

2k
)

> 0.

This implies that f is univalent in Dr3 .
For any z ∈ ∂Dr3 , it also follows from Theorem 3.3 that

| log f (z)| = |F(z)| � �3
pr3 + (�5

p − �p)ln(1 − r3
�2

p
) −

p−1∑

k=1

4Mp−k

π
r2k+1
3 = R3.

Hence, by Lemma 2.11, we get that the range f (Dr3) contains a schlicht disk
D(w3, R3) = {w ∈ C||w − w3| < R3}, where

w3 = cosh R3, R′
3 = sinh R3.

This completes the proof of Theorem 4.3. ��
By means of Theorem 3.4 and Lemma 2.11, using the same method as in our proof

of Theorem 4.3, we have the following theorem.

Theorem 4.4 Suppose that p is a positive integer, p � 2, M∗
1 , M∗

2 , . . . , M∗
p−1 � 1.

Let f (z) = ∏p
k=1(gp−k+1(z))|z|

2(k−1)
be a log-p-harmonic mapping of D such that

J f (0) = 1. Suppose that for each k ∈ {1, . . . , p}, we have
(i) gp−k+1(z) is log-harmonic in D and gp−k+1(0) = 1, G p(z) = log gp(z);
(ii) for each k ∈ {2, . . . , p}, |gp−k+1(z)| � M∗

p−k+1, and �Gp (z) � 1 or |Gp(z)| �
1 for all z ∈ D.
Then f (z) ∈ Sw4(r4, R

′
4), where Mi = logM∗

i + π (i = 1, . . . , p − 1), and r4
is the unique root in (0, 1) of Eq. (3.7), R4 is defined by (3.8), w4 = cosh R4 and
R′
4 = sinh R4.

Next, we establish the following result, which is the analogues version of Theorem
B.

Theorem 4.5 Suppose that f (z) = g(z)|z|2(p−1)
is a log-p-harmonic of D, where p >

1, g is log-harmonic and g(0) = Jg(0) = 1. Let G(z) = log g(z), and �G ≤ �.
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Then f (z) ∈ Sz5(r5, R
′
5), where r5 = 1 for � = 1 and r ′

5, otherwise, and r ′
5 is the

unique root in (0, 1) of the equation

1

�
+ 2

�4 − 1

�3

[ ln(1 − r)

r
+ 1

]
− �4 − 1

�3

r

1 − r
= 0, (4.2)

z5 = cosh (R5) , R′
5 = sinh (R5) and

R5 = r2p−1
5

{
1

�
+ �4 − 1

�3

[ ln(1 − r5)

r5
+ 1

]}
.

When � = 1, the radii r5 = 1 and R′
5 = sinh 1 are sharp.

Proof Let

F(z) := log f (z) = |z|2(p−1) log g(z) = |z|2(p−1)G(z).

Then F is p-harmonic in D, G(z) = log g(z) is harmonic in D, and it has the series
expansion:

G(z) =
∞∑

n=1

anz
n +

∞∑

n=1

bnz
n .

Note that

g(0) = Jg(0) = |gz(0)|2 − |gz(0)|2 = |g(0)|2(|Gz(0)|2 − |Gz(0)|2) = JG(0) = 1.

So, when � > 1, for z1 �= z2 in Dr (0 < r < r ′
5), we adopt the same method as in [9].

By Lemmas 2.5 and 2.11, we have

| log f (z1) − log f (z2)| = |F(z1) − F(z2)|
� |z1 − z2|

( ∫ 1

0
|t z1 + (1 − t)z2|2(p−1)dt

)

×
[
||a1| − |b1|| − 2

∞∑

n=2

(|an| + |bn|)rn−1 −
∞∑

n=2

n(|an| + |bn|)rn−1
]

� |z1 − z2|
(∫ 1

0
|t z1 + (1 − t)z2|2(p−1)dt

)

×
(
λG(0) − 2

∞∑

n=2

�4 − 1

n�3 rn−1 −
∞∑

n=2

�4 − 1

�3 rn−1
)

� |z1 − z2|
( ∫ 1

0
|t z1 + (1 − t)z2|2(p−1)dt

)

×
{
1

�
+ 2

�4 − 1

�3

[ ln(1 − r)

r
+ 1

]
− �4 − 1

�3

r

1 − r

}
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Table 3 For the case p = 2. The values of r5, R
′
5 are in Theorem 4.5

� 1.1 1.5 2 2.5 3

r5 0.605505 0.224286 0.119898 0.076818 0.053722

R′
5 5.8812e−2 2.8795e−4 9.3588e−6 8.0610e−7 1.1222e−7

> |z1 − z2|
( ∫ 1

0
|t z1 + (1 − t)z2|2(p−1)dt

)

×
{
1

�
+ 2

�4 − 1

�3

[ ln(1 − r ′
5)

r ′
5

+ 1
]

− �4 − 1

�3

r ′
5

1 − r ′
5

}
= 0.

This implies f is univalent in Dr ′
5
.

When � = 1, it follows from Lemmas 2.5 that G(z) = a1z with |a1| = 1. Thus,
F(z) = a1|z|2(p−1)z, and for z1 �= z2 in D, by Lemma 2.12, we have that

| log f (z1) − log f (z2)| = |F(z1) − F(z2)| =
∣∣∣
∫

z1z2
Fz(z)dz + Fz̄(z)dz̄

∣∣∣

=
∣∣∣
∫

[z1,z2]
p|z|2(p−1)dz + (p − 1)|z|2(p−2)z2dz

∣∣∣

� |z1 − z2|
( ∫ 1

0
|t z1 + (1 − t)z2|2(p−1)dt

)
> 0.

This implies f is univalent in D, and the radius r5 = 1 is sharp.
Finally, for any z ∈ ∂Dr5 , by Lemma 2.5, we obtain

| log f (z)| = |F(z)| � r2(p−1)
5

(
|a1z + b1z| − |

∞∑

n=2

(anz
n + bnz

n)|
)

� r2p−1
5

{
1

�
+ �4 − 1

�3

[ ln(1 − r5)

r5
+ 1

]}
= R5.

Thus it follows from Lemma 2.11 that f (Dr5) contains a schlicht disk D(z5, R′
5),

where Table 3

z5 = cosh (R5) and R′
5 = sinh (R5) .

In particular, when � = 1, it follows from Lemma 2.11 and the sharpness
of r5 = 1 that the radius R′

5 = sinh 1 is sharp. This completes the proof of
Theorem 4.5. ��

Finally, we establish the following result, which improves Theorem A.

Theorem 4.6 Let f (z) = ∏p
k=1(gp−k+1(z))|z|

2(k−1)
be a log-p-harmonic mapping of

D such that J f (0) = 1. Suppose that for each k ∈ {1, . . . , p}, we have that
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(i) gk(z) is log-harmonic in D, gk(0) = 1, and Gk(z) := log gk(z);
(ii) |gk(z)| � M∗

k for all z ∈ D, where M∗
k > 1 and Mk := logM∗

k + π .
Then f (z) ∈ Sz6(r6, R

′
6), where r6 is the unique root in (0, 1) of the equation

λ0(Mp) −
p−1∑

k=1

( 4

π(1 − r2)
+ 8k

π

)
Mp−kr

2k

−λ0(Mp)

√
M4

p − 1 · r
√
r4 − 3r2 + 4

(1 − r2)
3
2

= 0, (4.3)

z6 = cosh (R6) , R′
6 = sinh (R6) , (4.4)

and

R6 = λ0(Mp)r6 − λ0(Mp)

√
M4

p − 1 · r26

(1 − r26 )
1
2

− 4

π

p−1∑

k=1

Mp−kr
2k+1
6 .

(4.5)

Proof For all k ∈ {1, . . . , p}, assume Gk = log gk have the following series expan-
sions:

Gk(z) =
∞∑

n=1

an,k z
n +

∞∑

n=1

bn,k z
n .

Then F(z) = log f (z) = ∑p
k=1 |z|2(k−1)Gp−k+1(z) is p-harmonic inD. By the proof

of Theorem 4.1, we can prove that Gp(0) = JF (0)− 1 = J f (0)− 1 = 0, and for any
k ∈ {1, . . . , p}, we have

|Gp−k+1| � | log |gp−k−1|| + π.

This implies |Gp−k+1| � logM∗
p−k+1 + π = Mp−k+1 for k ∈ {1, . . . , p}.

Now, we prove that f is univalent in Dr6 . To this end, for any z1 �= z2 in Dr (0 <

r < r6), let

I1 =
∣∣∣Gp(z1) − Gp(z2)

∣∣∣ and I2 =
∣∣∣∣∣∣

p−1∑

k=1

Gp−k(z1)|z1|2k −
p−1∑

k=1

Gp−k(z2)|z2|2k
∣∣∣∣∣∣
.

By Lemmas 2.2, 2.9 and 2.8(2), simple calculation yields

I1 �
∣∣∣
∫

[z1,z2]
(Gp)z(0)dz + (Gp)z(0)dz

∣∣∣

−
∫

[z1,z2]

(
|(Gp)z(z) − (Gp)z(0)||dz| + |(Gp)z(z) − (Gp)z(0)||dz|

)
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�
∫

[z1,z2]
λGp (0)|dz| − |z1 − z2|

∞∑

n=2

n(|an,p| + |bn,p|)rn−1

� |z1 − z2|
(

λGp (0) −
( ∞∑

n=2

(|an,p| + |bn,p|)2
) 1

2

·
( ∞∑

n=2

n2r2(n−1)

) 1
2 )

� |z1 − z2|λGp (0)

(
1 −

√
M4

p − 1 · r
√
r4 − 3r2 + 4

(1 − r2)
3
2

)

� |z1 − z2|λ0(Mp)

(
1 −

√
M4

p − 1 · r
√
r4 − 3r2 + 4

(1 − r2)
3
2

)
,

I2 �
p−1∑

k=1

∣∣∣Gp−k(z1)|z1|2k − Gp−k(z2)|z2|2k
∣∣∣

� |z1 − z2|
p−1∑

k=1

(
4

π(1 − r2)
+ 8k

π

)
Mp−k r

2k .

Thus, we have

| log f (z1) − log f (z2)| = |F(z1) − F(z2)| � I1 − I2

> |z1 − z2|
[
λ0(Mp) −

p−1∑

k=1

( 4

π(1 − r26 )
+ 8k

π

)
Mp−kr

2k
6

−λ0(Mp)

√
M4

p − 1 ·
r6

√
r46 − 3r26 + 4

(1 − r26 )
3
2

]
= 0.

This implies that f is univalent in Dr6 .
For any z ∈ ∂Dr6 , again by Lemmas 2.2 and 2.9, we obtain

| log f (z)| = |F(z)| =
∣∣∣

∞∑

n=1

(an,pz
n + bn,pz

n) +
p−1∑

k=1

|z|2kG p−k(z)
∣∣∣

� |a1,pz + b1,pz| −
∣∣∣

∞∑

n=2

(an,pz
n + bn,pz

n)

∣∣∣ −
∣∣∣
p−1∑

k=1

|z|2kG p−k(z)
∣∣∣

� λGp (0)r6 −
( ∞∑

n=2

(|an,p| + |bn,p|)2
) 1

2 ·
( ∞∑

n=2

r2n6

) 1
2 − 4r6

π

p−1∑

k=1

Mp−kr
2k
6

� λGp (0)

(
r6 −

√
M4

p − 1 · r26

(1 − r26 )
1
2

)
− 4r6

π

p−1∑

k=1

Mp−kr
2k
6

� λ0(Mp)r6 − λ0(Mp)

√
M4

p − 1 · r26

(1 − r26 )
1
2

− 4

π

p−1∑

k=1

Mp−kr
2k+1
6 = R6.
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Table 4 For the case p = 2. The values of r6, R6 are in Theorem 4.6 and the values of ρ2, σ2 are in
Theorem A

(M1, M2) (1.2, 1) (1.5, 1) (2, 1.5) (3, 2.5) (4, 3.5)

ρ2 0.050352 0.050324 0.039588 0.030300 0.025854

r6 0.050366 0.050339 0.039593 0.030302 0.025855

σ2 0.071575 0.071548 0.063423 0.055462 0.051221

R6 0.101337 0.101301 0.089767 0.078480 0.072472

Also, this together with Lemma 2.11 imply that f (Dr6) contains a schlicht disk
D(z6, R′

6), where

z6 = cosh R6 and R′
6 = sinh R6.

This completes the proof of Theorem 4.6. ��

Remark 4.2 Note that for r = r6, we have

p−1∑

k=1

( 4

π(1 − r2)
+ 8k

π

)
Mp−kr

2k <

p−1∑

k=1

( 4

π(1 − r2)
+ 8k

π(1 − r)

)
Mp−kr

2k and

4

π

p−1∑

k=1

Mp−kr
2k+1 <

4

π(1 − r)

p−1∑

k=1

Mp−kr
2k+1.

It is easy to verify that r6 > ρ2 and R6 > σ2, where ρ2, σ2 are given in Theorem A.
Using Computer Algebra System, we list some numerical solutions to Eqs. (4.3)–

(4.4). By Table 4, we know that the results of Theorem 4.6 are better than that of
Theorem A.
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