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Abstract
We extend the notion of equivariant basic cohomology to singular Riemannian foli-
ations with transverse infinitesimal actions, aiming the particular case of singular
Killing foliations, which admit a natural transverse action describing the closures of
the leaves. This class of foliations includes those coming from isometric actions, as
well as orbit-like foliations on simply connectedmanifolds. This last fact follows since
we establish that the strong Molino conjecture holds for orbit-like foliations. In the
spirit of the classical localization theorem of Borel and its later generalization to reg-
ular Killing foliations, we prove that the equivariant basic cohomology of a singular
Killing foliation localizes to the set of closed leaves of the foliation, provided this
set is well behaved. As applications, we obtain that the basic Euler characteristic also
localizes to this set, and that the dimension of the basic cohomology of the localized
foliation is less than or equal to that of the whole foliation, with equality occurring
precisely in the equivariantly formal case.
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1 Introduction

Regular Riemannian foliations are relatively well known and have a robust structural
theory, duemainly toMolino [21]. This theory establishes that the leaf closures of such
a foliationF form a singular Riemannian foliationF , which moreover is described by
the action of a locally constant sheafCF of Lie algebras of germs of transverse Killing
vector fields (see Sect. 3 for more details). When this sheaf is constant we say thatF is
Killing, following [23]. One of the most elementary algebraic invariants of a foliation
is its basic cohomology H(F), which can be seen as the De Rham cohomology of its
(often quite singular) leaf space. For a regular Killing foliation one can also consider
its equivariant basic cohomology Ha(F), with respect to the transverse action of its
structural algebra a = CF (M). This invariant, introduced in [10] and further studied
in [11], will also capture information on the leaf closures, since aF = F . In those
papers the authors proved transverse generalizations of the Borel–Hsiang and Atiyah–
Bott/Berline–Vergne localization theorems, which were later extended in [18] to the
case of infinitesimal transverse actions on regular Riemannian foliations in general.
Moreover, in [7] the authors showed that the ring structure of the equivariant basic
cohomology remains constant under regular deformations (see also [6]), which linked
this object to the theory of torus actions on orbifolds.

The theory of singular Riemannian foliations also started with Molino’s work, but
is still in plain development, having seen relatively recent answers to fundamental
questions and new interesting examples (e.g., [2, 19, 20]). For instance, Molino’s
conjecture that the closures of the leaves of a singular Riemannian foliation form
another singular Riemannian foliation was established recently in [2]. These foliations
appear naturally in the theories of isometric actions and submanifolds (for example,
as the set of all parallel submanifolds of an isoparametric submanifold [26]), and
play interesting roles in many other areas of geometry, for instance in the study of the
regularity of theSharafutdinovprojection onto the soul [27]. In this paperwe aremostly
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interested in singular Killing foliations, a subclass that includes foliations given by the
orbits of isometric actions (see Example 5.1), as well as some Riemannian foliations
on simply connected manifolds. This last fact is related to an important question,
know as the strong Molino conjecture (see [21, p. 215], [1]): is the Molino sheaf of
a singular Riemannian foliation smooth? We prove that this holds for the so-called
orbit-like foliations (see Sect. 3.3 for detais):

Theorem A IfF is orbit-like, then CF is smooth. In particular, any orbit-like foliation
F of a simply connected manifold is Killing.

This is Theorem 3.4 in the text (see also Example 5.2). By analogous reasoning, if
the strong Molino conjecture holds true in general, the class of singular Killing folia-
tions will include all complete Riemannian foliations on simply connected manifolds.
Theorem A hence further motivates the study of singular Killing foliations as a rele-
vant class of Riemannian foliations, intimately connected with the study of their leaf
closures.

As in the regular case, the Molino sheaf CF of a singular Killing foliation is con-
stant, and the structural algebra a = CF (M) acts transversely on F , with aF = F
(see Sects. 3 and 5 for details). It is then relevant to investigate the equivariant basic
cohomology Ha(F), with respect to this a-action. In this matter, our results generalize
some of those in [10] to the singular setting. Moreover, when specified to the regular
case, they do not involve the hypothesis of F being transversely oriented. The main
result is a singular transverse generalization of Borel’s localization theorem [5], which
we show to hold for the subclass of neat singular Killing foliations (see Definition
5.11). This hypothesis is necessary because, in contrast with the regular case, for a
singular Killing foliation the union Ma of all closed leaves may not be a submanifold
(see Example 5.10). We denote Fa := F |Ma .

Theorem B Let (M,F) be a transversely compact, neat singular Killing foliation with
structural algebra a, and let i : Ma → M be the natural inclusion. Then the localized
map

S−1i∗ : S−1Ha(F) −→ S−1Ha(Fa)

is an isomorphism, where S = S(a∗) \ {0}.
This theorem appears below as Theorem 5.12. The technical tools to obtain this result
involve the study of the equivariancy of the Molino sheaf under the so-called homoth-
etic transformations ofF (see Proposition 5.4). This enables us to construct a suitable
covering of M by saturated open sets which equivariantly retract by deformations onto
leaf closures (see Proposition 4.3), and the proof then follows usual cohomological
techniques. This tool also covers a gap in the proof of [28] that the basic cohomol-
ogy of a singular Riemannian foliation is finite dimensional, when M is compact (see
Sect. 4). In fact, we prove this here under theweaker hypothesis ofF being transversely
compact, in Theorem 4.4:

Theorem C LetF be a transversely compact, complete singular Riemannian foliation.
Then dim H(F) < ∞.
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782 F. C. Caramello

The basic Euler characteristic χ(F), in particular, is well defined for any trans-
versely compact, complete singular Riemannian foliation. In the case of neat singular
Killing foliations, a consequence of Borel’s localization is that this invariant localizes
to the set of closed leaves:

Theorem D Let F be a transversely compact, neat singular Killing foliation with
structural algebra a. Then

χ(F) = χ(Fa).

This is Theorem 6.2, which generalizes [6, Theorem D] to the singular setting. Notice
that it is a singular transverse generalization of the localization of the classical Euler
characteristic χ(M) to the fixed point set of a torus action, since a is Abelian (see
Sect. 3). It follows that, for any transversely compact, singular Killing foliation F , if
χ(F) �= 0, then F has at least one closed leaf (see Corollary 6.3). Another direct
consequence is that, if F has isolated closed leaves, χ(F) is precisely their number
(see Corollary 6.4). The following result is also an application of the localization
theorem:

Theorem E Let F be a transversely compact, neat singular Killing foliation with
structural algebra a. Then

dim H(Fa) ≤ dim H(F),

and equality holds if, and only if, F is equivariantly formal.

This is Theorem 6.5, which generalizes [10, Theorem 1]. In analogy to the classical
case of Lie group actions, and more generally regular Killing foliations (see [11]), a
“concrete” version of Borel’s localization theorem, in terms of a localization formula
for the integral of basic equivariant forms to the set of closed leaves, is expected to
hold. We intend to investigate this in a future article.

2 Equivariant basic cohomology of singular foliations

When a Lie algebra acts infinitesimally and transversely on a (regular) foliation, one
can define its equivariant basic cohomology, which is an algebraic invariant that cap-
tures information from the action and the topology of the leaf space. This object was
first studied in [10], generalizing the ideas from classical equivariant cohomology of
Lie group actions. In this section we will see that this notion also generalizes to the
case of singular foliations. Let us begin by fixing our notation and recalling the main
notions and tools concerning smooth foliations.Wework in the smooth category, so all
objects are considered of differentiability class C∞, unless otherwise explicitly stated.

2.1 Preliminaries

Let M be an n-dimensional manifold. A singular foliation of M is a partition F of M
into connected, immersed submanifolds, called leaves, such that the module X(F) of
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smooth vector fields that are tangent to the leaves is transitive on each L ∈ F . This
means that, for each L ∈ F and each x ∈ L , any given v ∈ Tx L can be extended
to a smooth vector field V ∈ X(F). We denote the leaf containing x ∈ M by F(x).
The tangent spaces of the leaves form a distribution of varying rank, that we denote
by TF . The dimension of F is defined as

dim(F) = max
L∈F

dim(L),

and its codimension by codim(F) = dim(M) − dim(F). We say that F is closed
when all leaves of F are closed submanifolds of M . When all leaves have the same
dimensionwe say thatF is a regular foliation, or simply a foliation, ofM . The space of
leaves M/F ofF is the quotient space of M by the equivalence relation that identifies
points in the same leaf. A subset J ⊂ M is saturated when J = π−1π(J ), for
π : M → M/F the canonical projection. In other words, J is saturated if it contains
all the leaves that it intersects.

Example 2.1 An important class of singular foliations consists of those given by Lie
group actions, which are called homogeneous: if a Lie group H acts smoothly on M ,
then the partition of M by the connected components of the orbits of H is a singular
foliation FH . If all stabilizers of this action have the same dimension, in particular if
the action is locally free, then FH is a regular foliation.

If (N ,G) is another singular foliation, we say that a smooth map f : (M,F) →
(N ,G) is foliate when it maps leaves of F into leaves of G. A smooth map f :
M × [0, 1] → N is a foliate homotopy when it is foliate with respect to the product
foliation of F and the trivial foliation of [0, 1] by points. Alternatively, f is a foliate
homotopy (between f0 and f1) if ft : M 	 x 
→ f (x, t) ∈ N is foliate for each
t ∈ [0, 1]. If J ⊂ M is a saturated submanifold, then a foliate deformation retraction
f : M × [0, 1] → M of M onto J is a foliate homotopy which is also a deformation
retraction of M onto J .

A vector field X ∈ X(M) is foliate when [X ,Y ] ∈ X(F) for any Y ∈ X(F).
These are the vector fields whose flows are foliate maps. We denote the Lie algebra
of foliate vector fields by L(F). The transverse vector fields are the elements of
l(F) := L(F)/X(F). Notice that l(F) inherits the Lie bracket fromL(F) and is, thus,
also a Lie algebra. A transverse vector field X is tangent to a saturated submanifold
J ⊂ M when it admits a representative X̃ ∈ L(F) which is tangent to J . Notice that
in this case any representative of X is tangent to J . Let f : (M,F) → (N ,G) be
foliate, X ∈ l(F) and Y ∈ l(G). We say that X and Y are f -related when they admit
f -related foliate representatives. In the case of a foliate map f : (M,F) → (M,F),
we say that X ∈ l(F) is f -invariant when it is f -related to itself.

A tensor field ξ ∈ T k(M) is called basic when it satisfies ιXξ = 0 and LXξ = 0
whenever X ∈ X(F). We can consider, in particular, basic differential forms. By
Cartan’s formula LX = ιXd + dιX , a form ω ∈ �k(M) is basic if and only if,
iXω = 0 and iX (dω) = 0, for all X ∈ X(F). The space of basic k-forms of F is
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784 F. C. Caramello

denoted by �k(F). Then

�(F) :=
q⊕

k=0

�k(F)

is the algebra of basic forms of F . It is clear that �(F) is closed under the usual
exterior derivative d, so it is a Z-graded differential algebra (by defining�k(F) = {0}
if k < 0).

The cohomology groups of the complex

· · · d−→ �k−1(F)
d−→ �k(F)

d−→ �k+1(F)
d−→ · · ·

are the basic cohomology groups of F , denoted Hi (F). We denote H(F) =⊕
Hi (F), which is a graded algebra with the usual exterior product. Notice that

when F is the trivial foliation by points, H(F) reduces to the De Rham cohomology
of M . In general, we can intuitively think of H(F) as the De Rham cohomology of
M/F . If f : (M,F) → (N ,G) is foliate, then it pulls G-basic forms back to F-basic
forms, and thus induces a linear map f ∗ : H(G) → H(F). For F-saturated open sets
U , V ⊂ M , the short exact sequence

0 −→ �(F |U∪V )
i∗U⊕i∗V−→ �(F |U ) ⊕ �(F |V )

j∗U− j∗V−→ �(F |U∩V ) −→ 0

induces a Mayer–Vietoris sequence in basic cohomology, where iU : U → U ∪ V ,
iV : V → U ∪ V , jU : U ∩ V → U and jV : U ∩ V → V are the natural inclusions.

When dim H(F) < ∞, we define the basic Euler characteristic of F as

χ(F) =
∑

i

(−1)i dim Hi (F).

Basic cohomology H(F) can in fact be infinite-dimensional, even for a regular folia-
tionF ona compactmanifold (see [9]). InTheorem4.4wewill see sufficient conditions
for it to be finite-dimensional.

2.2 Equivariant basic cohomology

Our definition of the equivariant basic cohomology of a singular foliation will be a
direct generalization of that in the regular case, which was introduced in [10] via the
concept of g�-algebras. We also refer to [14] for a thorough introduction to the topic
of equivariant cohomology. Let us begin by recalling that a g�-algebra consists of a
differential Z-graded commutative algebra (A, d) acted upon by a finite-dimensional
Lie algebra g, that is, for each X ∈ g there are derivations LX : A → A and
ιX : A → A, depending linearly on X and of degree 0 and −1 respectively, satisfying

(1) ι2X = 0,
(2) LXLY − LYLX = L[X ,Y ],
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(3) LX ιY + ιYLX = ι[X ,Y ],
(4) LX = dιX + ιXd.

If A and B are g�-algebras, an algebra morphism f : A → B is a morphism of
g�-algebras if it commutes, in the Z-graded sense, with d, LX and ιX .

Now let (M,F) be a singular foliation and g a finite-dimensional Lie algebra. An
infinitesimal transverse action of g on F is a Lie algebra homomorphism μ : g →
l(F). The isotropy gx = {X ∈ g | μ(X)x = 0} is constant for points in the same leaf,
so we define gL = gx , for x ∈ L ∈ F , which is the infinitesimal transverse analog of
the stabilizer of a point. More generally, for a saturated submanifold J ⊂ M , consider
the isotropy subalgebra

gJ = {X ∈ g | μ(X)|J = 0} =
⋂

x∈J

gx .

Notice that gL = gL , for L ∈ F . Somewhat conversely, for h < g, the h-fixed locus

Mh = {x ∈ M | μ(X)x = 0 for all X ∈ h}

is saturated (but not a submanifold in general). A saturated submanifold J ⊂ M is
h-invariant when μ(X) is tangent to J , for each X ∈ h.

Let us prove that an infinitesimal transverse action induces a g�-algebra structure
on �(F). More precisely, for X ∈ g, consider the derivations LX and ιX on �(F)

given by LXω = LX̃ω and ιXω = ιX̃ω, where X̃ ∈ L(F) is a foliate representative of
μ(X). One readily checks that they are well defined: if X̃1, X̃2 ∈ L(F) are different
representatives forμ(X), then X̃1− X̃2 ∈ X(F), thusLX̃1−X̃2

ω = 0 and ιX̃1−X̃2
ω = 0

for any ω ∈ �(F). It is clear that LX and ιX have degree 0 and −1, respectively.

Proposition 2.2 Let (M,F) be a singular foliation andμ : g → l(F) an infinitesimal
transverse action. Then, with the derivations LX and ιX defined above, (�(F), d)

becomes a g�-algebra.

Proof The algebraic properties that LX , ιX and d must satisfy all follow directly from
the same properties for the usual Lie derivative, interior multiplication and exterior
derivative. We thus only have to show thatLXω and ιXω indeed remain in�(F)when
ω ∈ �(F). In fact, for Y ∈ X(F), we have ιY ιX̃ω = −ιX̃ ιYω = 0 (because ιYω = 0)
and LY ιX̃ω = ιX̃LYω + ι[Y ,X̃ ]ω = 0 (because LYω = 0 and [Y , X̃ ] ∈ X(F)), so
ιXω ∈ �(F). Similarly, ιYLX̃ω = LX̃ ιYω − ι[X̃ ,Y ]ω = 0 and LYLX̃ω = LX̃LYω −
L[X̃ ,Y ]ω = 0, hence LXω ∈ �(F). ��

Given Proposition 2.2, we can now define the equivariant basic cohomology of F
in the usual Cartan’s model way, which we recall here for the reader’s convenience
(see also [14] or [10]). Let S(g∗) denote the symmetric algebra over the dual g∗, which
we interpret as the polynomial algebra on g∗. Consider the coadjoint action of g on g∗
given by (ad∗

Xφ)(Y ) = φ(−[X ,Y ]), for X ,Y ∈ g and φ ∈ g∗. It extends naturally to
S(g∗) by (ad∗

X f )(Y ) = f (−[X ,Y ]). For X ∈ g andω = ∑
fi ⊗ωi ∈ S(g∗)⊗�(F),
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786 F. C. Caramello

we define

Xω =
∑(

ad∗
X fi ⊗ ωi + fi ⊗ LXωi

)
.

The basic Cartan complex of (F , g) is the subspace

Cg(F) = (S(g∗) ⊗ �(F))g

of g-invariant elements ω, that is, those satisfying Xω = 0. Notice that an element
ω ∈ Cg(F) can be seen as a g-equivariant polynomial map g → �(F). Moreover,
if g is Abelian then its coadjoint action is trivial, so ω ∈ Cg(F) is just a polynomial
map g → �(F)g.

The basic Cartan complex Cg(F) is naturally an S(g∗)g-algebra, with ring multi-
plication (ωη)(X) = ω(X) ∧ η(X) and S(g∗)g-module multiplication induced by
f 
→ f ⊗ 1. Moreover, it is a cochain complex with coboundary maps dg, the
equivariant derivative, given by

(dgω)(X) = d(ω(X)) − ιX (ω(X)),

as one checks that this is a degree 1 derivation with respect to the usual grading

Cn
g(�(F)) =

⊕

2k+l=n

(Sk(g∗) ⊗ �l(F))g. (1)

We define the g-equivariant basic cohomology of F as the cohomology of its Cartan
complex:

Hg(F) = H(Cg(�(F), dg)).

It inherits an S(g∗)g-algebra structure from Cg(F). When g = 0 is the trivial Lie
algebra, Hg(F) is just the usual basic cohomology ofF . Another simple, but important
particular case, is the following.

Example 2.3 Suppose the transverse action of g on F is trivial. Then one easily sees
that Cg(F) = S(g∗)g ⊗ �(F) and (dgω)(X) = d(ω(X)), so

Hg(F) ∼= S(g∗)g ⊗ H(F),

as S(g∗)g-algebras.

2.3 Homotopy invariance

Let us now study the invariance of equivariant basic cohomology under homotopies, so
let (M,F) and (N ,G) be singular foliations with transverse g-actions μ : g → l(F)

and ν : g → l(G), respectively. A foliate map f : M → N is called g-equivariant if
μ(X) and ν(X) are f -related, for all X ∈ g. In this case it is easy to check that the
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pullback f ∗ : �(G) → �(F) is a degree 0morphism of g�-algebras. In fact, it is clear
that it commutes with d, and a straightforward calculation shows that it also commutes
with each ιX . The commutation with LX then follows easily using Cartan’s formula
or also by a direct computation. Hence, we obtain an induced morphism in equivariant
basic cohomology ( f ∗)∗ : Hg(G) → Hg(F), which we will often denote simply by
f ∗ when there is no risk of confusion. A foliate homotopy f : M × [0, 1] → N is
g-equivariant if ft is g-equivariant for each t ∈ [0, 1].

We recall that, for g�-algebras A and B, two morphisms f0, f1 : A → B are chain
homotopic when there is a linear map Q : A → B of degree −1 that satisfies

ιX Q + QιX = 0, LX Q − QLX = 0 and dQ + Qd = f1 − f0

for all X ∈ g. This implies that the inducedmaps on equivariant cohomology are equal,
that is ( f0)∗ = ( f1)∗ : Hg(A) → Hg(B) (see [14, Proposition 2.4.1]). The following
proposition is a generalization of [18, Lemma 2.5.1] to singular foliations, and the
proof is an adaptation of a classical proof of the homotopy invariance of equivariant
cohomology [14, p. 22].

Proposition 2.4 (Homotopy invariance of equivariant basic cohomology) Let (M,F)

and (N ,G) be singular foliations acted upon transversely by a Lie algebra g, and let
f : M × [0, 1] → N be a foliate g-equivariant homotopy. Then

f ∗
0 = f ∗

1 : Hg(G) −→ Hg(F).

Proof As we saw above, the conclusion will follow if we show that f ∗
0 : �(G) →

�(F) and f ∗
1 : �(G) → �(F) are chain homotopic. For each t ∈ [0, 1], consider

Vt : M → T N given by

Vt (x) = d

dt
f (x, s)

∣∣∣∣
s=t

,

and for ω ∈ �k+1(G), let f ∗
t (ιVtω) ∈ �k(M) denote the form

f ∗
t (ιVtω)x (v1, . . . , vk) = ω ft (x)(Vt (x), d ft (v1), . . . , d ft (vk)).

One has the identity (see [15, p. 158])

d

dt
f ∗
t ω = f ∗

t (ιVt dω) + d f ∗
t (ιVtω). (2)

We claim that f ∗
t (ιVtω) ∈ �k(F). In fact, since each ft is foliate, d ft maps TF

into TG, and then it follows easily that ιX f ∗
t (ιVtω) = 0 when X ∈ X(F). Hence, as

dω ∈ �k+2(G), we also have ιX f ∗
t (ιVt dω) = 0, and from equation (2) we have

ιXd f
∗
t (ιVtω) = ιX

d

dt
f ∗
t ω − ιX f ∗

t (ιVt dω) = 0.
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788 F. C. Caramello

Now notice that integrating Eq. (2) we obtain

f ∗
1 ω − f ∗

0 ω =
∫ 1

0

d

dt
f ∗
t ω dt =

∫ 1

0
f ∗
t (ιVt dω) dt +

∫ 1

0
d f ∗

t (ιVtω) dt,

so if we define Q : �(G) → �(F) by

Qω =
∫ 1

0
f ∗
t (ιVtω) dt,

then it is a degree −1 linear map satisfying f ∗
1 − f ∗

0 = dQ + Qd.
It remains to show that Q commutes with ιX and LX , for each X ∈ g. Choose

X̃ M ∈ L(F) and X̃ N ∈ L(G) to be ft -related foliate representatives of the transverse
fields corresponding to the action of X on F and G, respectively. Then

f ∗
t (ιVt ιXω)x (v1, ..., vk−2) = (ιXω) ft (x)(Vt (x), d( ft )xv1, . . . , d( ft )xvk−2)

= ω ft (x)(X̃
N
ft (x)

, Vt (x), d( ft )xv1, . . . , d( ft )xvk−2)

= −ω ft (x)(Vt (x), d( ft )x X̃
M
x , d( ft )xv1, . . . , d( ft )xvk−2)

= − f ∗
t (ιVtω)x (X̃

M
x , v1, . . . , vk−2)

= −ιX f ∗
t (ιVtω)x (v1, ..., vk−2).

Hence the equality

f ∗
t (ιVt ιXω) = −ιX f ∗

t (ιVtω), (3)

which integrated yields ιX Q + QιX = 0. Now from Cartan’s formula and Eqs. (2)
and (3),

LX f ∗
t (ιVtω) = ιXd f

∗
t (ιVtω) + dιX f ∗

t (ιVtω)

= ιX
d

dt
f ∗
t ω − ιX f ∗

t (ιVt dω) + dιX f ∗
t (ιVtω)

= d

dt
f ∗
t ιXω + f ∗

t (ιVt ιXdω) − d f ∗
t (ιVt ιXω)

= f ∗
t (ιVt dιXω) + f ∗

t (ιVt ιXdω)

= f ∗
t (ιVtLXω).

Integrating this equation we get LX Q − QLX = 0. ��
Two singular foliations (M,F) and (N ,G) with transverse g-actions are g-

homotopy equivalent when there exist foliate g-equivariant maps f : M → N and
g : N → M such that g ◦ f � idM and f ◦ g � idN by foliate g-equivariant
homotopies.
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Corollary 2.5 IfF andG areg-homotopy equivalent singular foliations, then Hg(F) ∼=
Hg(G) as S(g∗)g-algebras. In particular, if h : (M,F) → (M,F) is a foliate g-
equivariant deformation retraction onto a g-invariant submanifold J ⊂ M, then
Hg(F) ∼= Hg(F |J ).

3 Molino’s structural theory for Riemannian foliations

A singular foliationF is a singular Riemannian foliationwhen there exists a Rieman-
nianmetric g on (M,F)which is adapted toF , that is, such that every geodesic which
is perpendicular to a leaf ofF remains perpendicular to all leaves it intersects. We call
such geodesics transnormal. If the adapted metric g can be chosen to be complete,
then we say that F is complete. A main class of examples of singular Riemannian
foliations is that of isometric homogeneous foliations.

Example 3.1 [21, Section 6.1] Let (M, g) be a Riemannian manifold on which a Lie
group H acts by isometries. Then g is an adapted metric for FH , which is thus a
singular Riemannian foliation.

When F is regular, the adapted metric g is also called bundle-like. It induces a
transverse metric for F , that is, a symmetric, basic (2, 0)-tensor field gT on M sat-
isfying gT (v, v) > 0 whenever v is not tangent to F . This means gT projects to a
Riemannian metric on the quotient S of a submersion πi : U → S locally defining
F by its fibers. A transverse field X ∈ l(F) is a transverse Killing vector field when
LX̃g

T = 0, for a representative X̃ ∈ L(F). It is clear that such a field projects to a
Killing vector field on S.

There is a rich structural theory which describes the leaf closures of a complete
(regular) Riemannian foliation F , known as Molino theory (we refer to [21] and [1]
for details on this topic). One of its results states that the collection F = {L ⊂
M | L ∈ F} is a singular Riemannian foliation, and its leaves, the closures of leaves
in F , are determined by the orbits of a locally constant sheaf of Lie algebras of germs
of transverse Killing vector fields, the Molino sheaf CF . This means that, for each
x ∈ M , there is a small neighborhood U 	 x where

TyF(y) = TyF(y) ⊕ {Xy | X ∈ CF (U )}

for each y ∈ U . When M is connected, the typical stalk gF of the Molino sheaf is the
structural algebra of F , an important invariant of the foliation.

A complete, regular Riemannian foliation with globally constant Molino sheaf is
called a Killing foliation. The terminology, from [23], is motivated by the case of a
homogeneous foliation FH , given by the locally free, isometric action of a Lie group
H on a complete, connected Riemannian manifold M . In this case CF is the sheaf of
germs of transverse Killing fields induced by the fundamental Killing vector fields of
the action of H < Iso(M). The structural algebra of a Killing foliation is Abelian [21,
Section 5.5], and to emphasize this we will denote it by aF (also omitting F if it is
clear from the context). Since for a Killing foliation the sheaf CF is globally constant,
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we have a ∼= CF (M). That is, a acts transversely on F , and its action describes the
leaf closures. We denote this succinctly by aF = F .

3.1 Structural theory of singular Riemannian foliations

Now suppose F is a complete singular Riemannian foliation, and let �k be the union
of all k-dimensional leaves of F . We call �k the k-locus of F . One proves that each
connected component �k

α of �k is an embedded submanifold of M , called a stratum
(see [21, Section 6.2]). This gives a stratification

M =
⊔

k,α

�k
α

of M . We will often omit k in �k
α when it is not needed. The restriction Fα := F |�α ,

endowed with gα := g|�α , is a regular Riemannian foliation, for each α. Moreover, if
L ⊂ �α then L ⊂ �α [21, Lemma 6.4], and each�α is transversally totally geodesic,
meaning that a geodesic which is normal to the leaves and tangent to �α remains
within it at least for some time [21, Proposition 6.3]. We will say that a transverse field
X ∈ l(F) is a transverse Killing vector field if its restriction to each stratum �α is a
transverse Killing vector field for (Fα, gTα ).

It will be useful to define some more terminology. The dim(F)-locus of F is an
open and dense submanifold of M , also called the regular locus of F and denoted by
�reg. Each connected component of�reg is a regular stratum ofF . All other strata are
called singular and have codimension at least 2 (in particular, when M is connected
�reg is connected, and hence a stratum). The union �sing of all singular strata is the
singular locus of F . The most singular strata, that is, those containing the leaves
of least dimension, are called minimal. Their union is the minimal locus of F , also
denoted by �min. The closed locus of F is the union of all closed leaves, denoted by
�cl.

There is an analog of Molino’s structural theorem for singular Riemannian foli-
ations. Its main part is the fact that the collection F of the closures of leaves of a
complete singular Riemannian foliation F is again a singular Riemannian foliation,
known asMolino’s conjecture. It remained open for more than three decades, and was
proven to hold recently in [2, Main Theorem].

The generalization of theMolino sheaf to the singular setting has a caveat. Although
a restriction Fα is not necessarily complete, one can still apply Molino’s theory to it.
This can be doneby the approach toMolino theory via pseudogroups [21,AppendixD],
since the holonomy pseudogroup ofFα is complete. In particular, for the case ofFreg,
it is possible to prove that the corresponding Molino sheaf Creg extends continuously
to a locally constant sheaf CF on M , called the Molino sheaf of F (see [21, Lemma
6.5]). And this is the caveat: a section of Creg admits a continuous extension through
the singular locus, but we do not know whether in general this extension is smooth.
In other words, a section of CF is a “continuous transverse Killing vector field” X : it
restricts to a transverse Killing vector field on each stratum, but it is represented by a
local vector field X̃ on M which is only continuous.
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The question of whether in generalCreg extends smoothly to a sheaf of Lie algebras
of germs of genuine transverse Killing vector fields is known as the strong Molino
conjecture (since it implies the usual one). Molino states this conjecture in [21, p.
215]. We will see that it holds for an important class of foliations in Theorem 3.4.
In general, we will say that F is a singular Riemannian foliation with smooth CF
when it satisfies the strong Molino conjecture. Another relevant class of Riemannian
foliations with this property is the following.

Example 3.2 (Molino sheaf of a homogeneous singular Riemannian foliation) Let
(M, g) be a complete Riemannian manifold with an isometric homogeneous foliation
F , given by the connected components of the orbits of H < Iso(M). The fundamen-
tal vector fields of the action of the closure H < Iso(M) are g-Killing and foliate.
The Molino sheaf CF is the sheaf of Lie algebras of germs of transverse Killing vec-
tor fields induced by them. Hence F is also homogeneous, given by the connected
components of the orbits of H .

The Molino sheaf Cα of each Fα is the quotient of the restriction of CF to �α by
the kernel of the restrictionmap on sections, that is, by the subsheaf consisting of those
sections whose restriction to �α vanish [21, Proposition 6.8]. It is clear, hence, that
the orbits of CF describe the closures of the leaves of F . In analogy with the regular
case, when M is connected we say that the typical stalk gF of CF is the structural
Lie algebra of F . It coincides with the structural algebra of Freg. From the relation
between Cα and CF , it follows that the structural algebra gα ofFα is a quotient of gF .

Example 3.3 (Structural algebra of a homogeneous singular Riemannian foliation) In
the context of Example 3.2, the structural algebra gF is isomorphic to Lie(H)/Lie(H).

3.2 Homotheties

Let (M,F) be a complete singular Riemannian foliation and let J ⊂ M be a saturated
submanifold contained in some stratum �k . Let P ⊂ J be a connected open subset
that admits a tubular neighborhood Tubr (P), for some r > 0. That is, Tubr (P) is
the diffeomorphic image of {v ∈ νP | ‖v‖ < r} under the normal exponential map
exp⊥ : ν J → M . This is the case, for instance, when P is relatively compact in
J . We denote by ρP : Tubr (P) → P the orthogonal projection. By shrinking r if
necessary, we can assume further that for any y ∈ Tubr (P) the leafF(y) is transverse
to ρ−1

P (ρP (y)). Then each connected component of F(y) ∩ Tubr (P) is a plaque of
F , and the neighborhood Tubr (P) is called a distinguished tubular neighborhood for
P .

Any closed leaf L ∈ F has a distinguished tubular neighborhood, even if it is not
compact. In fact, it is shown in [20, Proposition 16] that for a fixed x ∈ L , if r > 0 is
such that expx (tv)|t∈[0,1] is the unique minimizing geodesic between L and expx (v),
for all v ∈ νx L with ‖v‖ < r , then Tubr (L) is a tubular neighborhood for L . The same
holds for any leaf closure L ∈ F , since F is again a singular Riemannian foliation.
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For all λ ∈ (0,∞) such that Tubλr (P) is a distinguished tubular neighborhood of
P (let us call such a λ admissible), we define the homothetic transformation

hλ : Tubr (P) 	 exp⊥(v) 
−→ exp⊥(λv) ∈ Tubλr (P)

around P . We also say that P is the homothety center of hλ. Notice that each hλ is a
diffeomorphism, and hλ ◦ hμ = hλμ, when both sides of the equation make sense. We
extend the definition to λ = 0, getting h0 = ρP . One checks that in fact hλ converges
to ρP in the compact-open topology, as λ → 0 (see [16, Section 2.2]). These maps
are of particular interest in the theory of singular Riemannian foliations because of
Molino’s homothetic lemma, which asserts that they are foliate with respect to the
restrictions of F to Tubr (P) and Tubλr (P) (see [21, Lemma 6.2] for the case λ > 0;
for λ = 0 this follows easily from the properties of F). Special cases of interest are
P = L and P = �α ⊂ �min.

Let Tubr (P) be a distinguished tubular neighborhood andU ⊂ Tubr (P) a saturated
set which is preserved by hλ, for λ ∈ [0, 1]. Let us say U is P-star-shaped. Since
homothetic transformations on Tubr (P) restrict to the identity on P and are defined
for λ ∈ [0, 1], they provide a homothetic retraction

hP : U × [0, 1] −→ U

of U onto P by hP (x, t) = h1−t (x). These maps will be very useful to us, since they
are foliate strong deformation retractions.

3.3 Orbit-like foliations

In this section we prove Theorem A (as Theorem 3.4 below). We start by introducing
the class of foliations for which it is stated. Let F be a complete singular Riemannian
foliation and consider a distinguished tubular neighborhood Tubr (P) for P ⊂ L ∈ F .
A fiber Sx = ρ−1

P (x) is a slice for F at x ∈ P , and F |Sx is called the slice foliation
at x . Its pullback by exp⊥

x is a singular Riemannian foliation of Br (0) ⊂ Tx Sx =
νx L which, by Molino’s homothetic lemma, can be extended via homotheties to a
singular Riemannian foliationFx on the whole of νx L . This extension is the so-called
infinitesimal foliation at x .

Some relevant subclasses of singular Riemannian foliations are defined in terms of
infinitesimal foliations. For instance, F is called

(1) infinitesimally closed when Fx is closed for each x ∈ M ,
(2) infinitesimally homogeneous when Fx is homogeneous for each x ∈ M , and
(3) orbit-like when it is infinitesimally closed and infinitesimally homogeneous.

By Molino’s theory, the closure F of a complete regular Riemannian foliation F
is orbit-like, which led him to study this class of foliations (see, e.g., [22]). Other
examples of orbit-like foliations are given by the so-called holonomy foliations, whose
leaves are the holonomy tubes with respect to a metric connection on an Euclidean
vector bundle over a Riemannian manifold L (see, e.g., [2, Example 2.7]). Orbit-like
and infinitesimally closed foliations were also prominent in the proof of Molino’s
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conjecture in [2] (also [3]). In fact, let us now see that the machinery developed in
[3] adapt directly to conclude that the strong Molino conjecture holds for orbit-like
foliations.

Let � be the stratum containing x and let V = Tubr (P) ⊂ U be a distinguished
tubular neighborhood around an open homothety center P ⊂ � containing x . Take a
slice S ⊂ P through x forF |P . We are interested in the so called local reduction at x

N = exp({v ∈ (νP)|S | ‖v‖ < r}),

which can be thought as a generalized slice (see [3, Section 2.8]). As in the case of
slices, by shrinking V if necessary we can assume that there is a submersion p : V →
N , whose fibers are contained in the leaves of F . The connected components of the
intersections of the leaves of F with N define a singular foliation FN , which is in
general more sensible to the dynamics of F then the infinitesimal foliation Fx . We
now cite some results of [3] concerning (N ,FN ) that will be useful.

First, in [3, Proposition 2.20] the authors construct a Riemannian metric gN on
N that is adapted to FN , hence turning it into a singular Riemannian foliation. Fur-
thermore, gN preserves the transverse metric ofF , meaning that the distance between
leaves ofFN with respect to gN coincides with the distance between the corresponding
plaques ofF defining them.Wewill also use [3,Corollary 2.25],which establishes that,
when F is orbit-like, the foliation FN is a homogeneous singular foliation, given by
the orbits of a compact Lie group (notice that the assumption on [3, p. 13] that (M,F)

is locally closed, under which [3, Corollary 2.25] falls, is automatically satisfied when
F is orbit-like).

The idea of the proof of Theorem A is to smoothly lift the local isometric flow ϕ on
M/F induced by a section ofCF . For that, as noted in [3], one can apply G. Schwarz’s
fundamental result on the isotopy lifting conjecture: a smooth flow on the orbit space
M/G of a proper action G × M → M is the projection of a smooth G-equivariant
flow on M [24, Corollary 2.4]. Finally, to guarantee that ϕ is smooth in order to apply
Schwarz’s theorem, we will use [3, Theorem 3.1]: if (M,F) is a singular Riemannian
foliation whose leaves are spanned by a proper smooth action G × M → M and ϕ is
a continuous local flow of isometries on the orbit space, then ϕ is smooth.

Theorem 3.4 (Strong Molino conjecture for orbit-like foliations) If F is orbit-like,
then CF is smooth.

Proof Let X ∈ CF (U ) be a local section and let x ∈ U . We must prove that X admits
a smooth representative X̃ in some neighborhood V 	 x , which we will take to be a
distinguished tubular neighborhood defining a local reduction N at x . Let gN be the
aforementioned FN -adapted metric on N [3, Proposition 2.20]. Since gN preserves
the transverse metric of F , it follows that the restriction X |N defines a continuous
isometric flow ϕ on N/FN , as it restricts to a transverse Killing vector field on the
dense open subset �reg ∩ N .

Now, as we saw above, FN is homogeneous, given by the orbits of a compact Lie
group [3, Corollary 2.25]. Hence, by [3, Theorem 3.1], the local flow ϕ is smooth. By
Schwarz’s theorem, it hence follows that ϕ lifts to an equivariant smooth flow ϕ̃ on N .
The infinitesimal generator X̃ N of ϕ̃ is then a smooth representative for X |N . Having
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that, we can now just choose any smooth field X̃ on V that is p-related to X̃ N , where
p : V → N is the submersion of V onto N . Since X is F-invariant and the fibers of
p are contained in the leaves of F , it follows that X̃ is a local representative of X . ��

4 Good covers and the dimension of basic cohomology

We say that a locally finite cover U = {Ui } of M by saturated open sets is a good
cover for (M,F)when any non-empty intersectionU of elements of the cover admits
a foliate deformation retraction onto the closure of some leaf LU ⊂ U . We will
prove here that singular Riemannian foliations of compact manifolds admit finite
good covers, whose retractions are furthermore homothetic (we will actually obtain
this more generally for transversely compact foliations, see Sect. 4.2). This result were
previously stated in [28] for a singular Riemannian foliation of a compact manifold
M , but we will provide an alternative proof here, because the original one relies on
[28, Lemma 2], which does not hold as stated. It claims that there exists r > 0 which
works as the radius of a tubular neighborhood Tubr (L) for any L ∈ F . This can fail
because regular leaves near a singular leaf L must lie inside distance tubes ∂Tubr (L),
and so their focal radii tend to zero as they get closer to L . The claim also fails for a
regular foliation if it has at least one leaf L with non-trivial holonomy: the recurrence
of generic nearby leaves makes their normal injectivity radii also tend to zero as they
get closer to L .

4.1 Holonomy types and transverse convexity

Guided by the discussion above, we will define a finer stratification of M that dis-
criminate leaves based not only on their dimension but also on their holonomy. Let
F be a complete closed singular Riemannian foliation of M . The restriction Fα to
each stratum �α is a closed regular Riemannian foliation. Each �α/Fα is then a Rie-
mannian orbifold, whose local groups are the holonomy groups of the leaves, and the
projection πα : �α → �α/Fα is an orbifoldmap (see [21, Proposition 3.7]; it is stated
for F with compact leaves, but notice the proof there works when F is only closed
and complete). Let �α(�) be the inverse image under πα of the locus of points in
�α/Fα with local group � (defined up to action isomorphism). It is a totally geodesic
manifold (see [8, Lemma 4.5.3 and Theorem 4.5.4]), thus �α(�) is a transversely
totally geodesic submanifold. We say that a leaf L ⊂ �α(�) has holonomy type �.
This furnishes the stratification

M =
⊔

�k
α(�)

by holonomy type. For simplicity, we will denote a generic holonomy type stratum by
S, and the one containing L ∈ F by SL .

Wewill need a type of uniformly normal saturated neighborhood. As already noted,
one cannot expect to find r > 0 that works as the radius of a tubular neighborhood
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Tubr (L) for any leaf in some saturated neighborhood. Instead, we will use the follow-
ing weaker notion: for S a holonomy type stratum of F , we say that a saturated open
set W ⊂ M is uniformly S-normal if there exists r > 0 such that W ⊂ Tubr (L) for
every leaf L ⊂ W ∩ S.

Lemma 4.1 Let F be a closed, complete singular Riemannian foliation. Given a leaf
L ∈ F and any saturated neighborhood U ⊃ L, there exists a uniformly SL-normal
open set W ⊂ U containing L.

Proof SinceF |SL is a simple Riemannian foliation, hence a locally trivial fiber bundle,
we can find a local reduction N ⊂ U for F such that N ∩ SL is a trivializing slice for
F |SL . Recall there is a metric gN on N that preserves the transverse metric of F (see
[3, Proposition 2.20]). Then, if Br (x) ⊂ N is a geodesic ball at x ∈ N ∩ SL , we have
that Tubr (F(x)) is a tubular neighborhood for F(x). Therefore it is sufficient to take
W as the saturation of a uniformly normal neighborhood of (the singleton) L ∩ N in
N . ��

We say thatW ⊃ L , given by Lemma 4.1, is a uniformly SL -normal neighborhood
of L . We will also need tubular neighborhoods with a type of transverse convexity.
A saturated open set U ⊂ M is strongly transversely convex when for any two leaf
closures in U there is a transversely unique minimal geodesic segment γ that lies
completely inU connecting them. By transversely uniquewemean that if σ is another
minimal geodesic between those leaf closures, with γ (0) = σ(0) and γ (1) = σ(1),
then σ = γ .

Lemma 4.2 Let F be a closed, complete singular Riemannian foliation. For each
L ∈ F there exists c > 0 such that Tubr (L) is strongly transversely geodesic, for any
0 < r < c.

Proof The proof of [25, Lemma A.3] for the homogeneous case adapts directly to the
above setting since it does not use the homogeneity. ��

4.2 Existence of good covers

We say that a singular foliation F is transversely compact when M/F is compact.
Of course, if M is compact then any singular foliation of M is transversely compact.
Recall that, ifF is a complete singular Riemannian foliation, thenF is again a singular
Riemannian foliation [2, Main Theorem]. In this case F is transversely compact if,
and only if,F is transversely compact, becauseF andF have the same saturated open
sets in M . In fact, it is clear that F-saturated sets are F-saturated. For the converse,
let U be open and F-saturated, containing L ∈ F , and suppose L �⊂ U . Then there
is some x ∈ L with x /∈ U , hence F(x) ∩ U = ∅, thus F(x) ∩ U = ∅, which is a
contradiction since F(x) = L .

Proposition 4.3 A transversely compact, complete singular Riemannian foliation F
admits a finite good coverU with the additional property that each foliate deformation
retraction of a non-empty intersection of its elements onto a leaf closure in it is a
homothetic retraction.
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Proof We begin by noticing that we can assume F is closed: a cover for F with the
desired properties will work for F as well, by what we just saw above.

Let L ∈ F . By combining Lemmas 4.1 and 4.2, we can choose cL > 0 such that
Tubr (L) is strongly transversely geodesic and uniformly SL -normal, for all 0 < r <

cL . Notice also that, since M/F is compact, there are finitely many holonomy type
strata S(i) = �

k(i)
α(i)(�(i)), and we can assume they are ordered so that i < j implies

that k(i) ≤ k( j), and if moreover α(i) = α( j), that �( j) is conjugate to a subgroup
of �(i).

We now cover M inductively as follows. Let S(1), . . . ,S(�1) be the closed holon-
omy type strata. They are all disjoint, so we can choose tubular neighborhoods
TubrL (L) so that

�1⊔

i=1

S(i) ⊂
�1⊔

i=1

⎛

⎝
⋃

L∈S(i)

TubrL (L)

⎞

⎠ =: V (1).

Notice that in fact we can suppose the unions
⋃

L∈S(i) UL are pairwise disjoint by
choosing rL < cL appropriately. For the generic k-th step,we select the strataS(�k−1+
1), . . . ,S(�k) for which S ′(i) := S(i) \ ⋃k−1

j=1 V ( j) is closed and non-empty. Then
similarly, we take the cover

�k⊔

i=�k−1+1

S ′(i) ⊂
�k⊔

i=�k−1+1

⎛

⎝
⋃

L∈S ′(i)
TubrL (L)

⎞

⎠ =: V (k),

choosing rL so that furthermore V (k) ∩ ⊔�k−1
i=1 S(i) = ∅.

The process will end since there are finitely many holonomy type strata, furnishing
us a cover {UL := TubrL (L)}L∈F . Since F is transversely compact and this cover
is by saturated open sets, we can choose a finite subcover U . Now notice that if
U = U1 ∩ · · · ∩ Ul with Ui ∈ U , then by construction F |U has a unique holonomy
type stratumwhich is closed. In fact, it isS(iU )∩U , where iU = min{i |S(i)∩U �= ∅}.
Then for any leaf L ∈ S(iU ) ∩ U , the set U is contained in a tubular neighborhood
Tubr (L), since at least one of the setsU1, . . . ,Ul is uniformly SL -normal. Moreover,
U is strongly transversely geodesic since eachU1, . . . ,Ul has this property. Therefore
U retracts by homothety to L . ��

4.3 Basic cohomology is finite dimensional

We can now apply the classical Mayer–Vietoris argument to conclude that H(F) is
finite dimensional.

Theorem 4.4 Let F be a transversely compact, complete singular Riemannian
foliation. Then dim H(F) < ∞.

Proof Let us prove this, more generally, for any (M,F) which admits a finite good
cover and whose leaf closures are complete and transversely compact. We proceed
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by induction on the number n of elements in a finite good cover U . If n = 1 then M
itself admits a foliate deformation retraction to a leaf closure J = L . By Corollary
2.5 (taking g = 0) we have H(F) ∼= H(F |J ). Since F |J is a regular complete
Riemannian foliation of the transversely compact manifold J , its basic cohomology
is finite dimensional (see [10, Proposition 3.11], also [17, Theorem 0]).

For the induction step, let U = {U1, . . . ,Un} be a good cover. Defining U =⋃n
i=2Ui , we easily see that bothF |U andF |U1∩U are Riemannian foliations admitting

good covers with n− 1 elements. Thus, by the induction hypothesis, both extremes in
the exact sequence

Hk−1(F |U1∩U ) −→ Hk(F) −→ Hk(F |U1) ⊕ Hk(F |U ),

are finite dimensional, for each k. Hence dim H(F) < ∞. ��

5 The natural transverse action on a singular Killing foliation

In analogy with the regular case, we define a singular Killing foliation as a complete
singular Riemannian foliation F whose Molino sheaf CF is a globally constant sheaf
of Lie algebras of germs of transverse Killing vector fields. In other words, F is a
complete singular Riemannian foliation with a globally constant, smooth CF . An
important class of Killing foliations is that of isometric homogeneous foliations.

Example 5.1 [Homogeneous Riemannian foliations are Killing] Let (M,F) be a com-
plete homogeneous Riemannian foliation, given by the orbits of an isometric action.
Then F is Killing, as it is clear from Example 3.2 that CF is a globally constant sheaf
of Lie algebras of germs of transverse Killing vector fields.

Another important class of examples is the following.

Example 5.2 [Orbit-like Riemannian foliations on simply connected manifolds are
Killing] As we saw in Theorem 3.4, if F is an orbit-like foliation then CF is smooth.
Hence F is Killing when M is simply connected, since in this case CF has trivial
monodromy and is thus globally constant.

Let F be a singular Killing foliation. As we saw in Sect. 3, the Molino sheaf Cα

of the restriction Fα of F to a stratum �α is a quotient of CF , hence constant. We
already mentioned in Sect. 3.1 that Fα is not complete in general, but its holonomy
pseudogroup is, so we can say that each Fα is a regular Killing foliation in this
generalized sense (i.e., with completeness of the metric changed to completeness of
the pseudogroup). In particular, the structural algebra a of F is Abelian (notice that
a is well defined even if M is not connected, since CF is a constant sheaf). It acts
transversely onF via the isomorphism a ∼= CF (M), and aF = F . Fromwhat we saw
in Sect. 2.2, with this natural transverse a-action, �(F) becomes an a�-algebra and
we can consider the equivariant cohomology Ha(F). It is then expected that Ha(F)

carries information on the closed leaves of F , since

Ma = �cl.
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Before we investigate that, let us establish some basic tools, the first one being the fact
that the a-action behaves well under homothetic transformations.

5.1 Homothetic invariance of theMolino sheaf

Let Tubr (P) be a distinguished tubular neighborhood and X be a smooth vector field
on Tubr (P)which is tangent to P . The linearization of X around P is the vector field
X� given by

X� = lim
λ→0

dh−1
λ (X ◦ hλ).

By choosing adequate coordinates one verifies that X� is in fact well defined, smooth,
hλ-invariant for all admissibleλ (includingλ = 0) andmoreover X�|P = X |P (see [20,
Proposition 13]). Furthermore, X� is foliate when X is foliate (see [16, Proposition
2.14]). The next lemma will help us prove that sections of CF are invariant under
certain homothetic transformations.

Lemma 5.3 Let (M,F) be a complete singular Riemannian foliation with smooth
Molino sheaf, J ⊂ M an F-saturated homothety center, and hλ : Tubr (J ) →
Tubλr (J ) a homothetic transformation, with λ > 0. If X̃ is a foliate representative of
a section X ∈ CF (Tubr (P)), for P ⊂ J an open subset, then d(hλ)x X̃x − X̃hλ(x) ∈
Thλ(x)F , for all x ∈ Tubr (P).

Proof It suffices to show this for λ ∈ (0, 1]. In fact, assuming this holds, the result for
an admissible λ > 1 follows by the chain rule (as hλ ◦ h1/λ = idTubr (J )), and the fact
that homothetic transformations are foliate.

Since ht ◦hs = hts , we have that het (x) defines a (local) flow on Tubr (J ). Consider
the infinitesimal generator R̃ of this flow, that is

R̃(x) = d

dt
het (x)

∣∣∣∣
t=0

.

It is the foliate radial vector field around J , and in particular it is tangent to each stratum
of F that it intersects. For a fixed x ∈ Tubr (P), take r ′ < r with x ∈ Tubr ′(J ) and
extend R̃ to a global foliate field by multiplying it with a basic bump function for
Tubr ′(J ) with support in Tubr (J ) and defining R̃ = 0 outside that set. We will denote
the flow of R̃ by θ : R × M → M .

Now since X is a section of CF , its restriction X |� to the stratum� 	 x commutes
with each global transverse vector field in l(F |�) (see [21, p. 160]), in particular with
the transverse field induced by the restriction R̃|� . This means [X̃ |�, R̃|�] is tangent
to F on U = � ∩ Tubr (P). Define Z̃(t) = d(θ−t )θt (x)(X̃θt (x)). Then

d

dt
Z̃(t)

∣∣∣∣
t=s

= d(θ−s)[X̃ |�, R̃|�]θs (x) ∈ TxF ,
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since θ−s is foliate. Moreover, Z̃(0) = X̃x , therefore

Z̃(t) − X̃x =
∫ t

0
d(θ−s)[X̃ |�, R̃|�]θs (x) ds ∈ TxF

for each t . Thus

d(θt )x (X̃x − Z̃(t)) = d(θt )x X̃x − X̃θt (x) ∈ Tθt (x)F .

By construction, for t ≤ 0 the flow θt is given by het on Tubr ′(J ), hence

d(hλ)x X̃x − X̃hλ(x) ∈ Thλ(x)F ,

for λ ∈ (0, 1]. ��
We can now prove that sections of CF admit linearized representatives.

Proposition 5.4 (Homothetic invariance of the Molino sheaf) Let (M,F) be a com-
plete singular Riemannian foliationwith smoothMolino sheaf, J ⊂ M anF-saturated
homothety center, hλ : Tubr (J ) → Tubλr (J ) a homothetic transformation, and P ⊂
J an open subset. Then any X ∈ CF (Tubr (P)) admits a linearized representative,
and hence is hλ-invariant (in particular ρP-invariant).

Proof Let X̃ be any representative for X on Tubr (P). By Lemma 5.3, d(hλ)X̃− X̃ ◦hλ

is tangent to F , hence d(h1/λ)d(hλ)X̃ − d(hλ)X̃ ◦ hλ is tangent to F as well. Then

X̃ − lim
λ→0

d(hλ)X̃ ◦ hλ = X̃ − X̃�

must also be tangent to F , and thus X̃� is a representative for X . We already know
that X̃� is hλ-invariant for any admissible λ. ��

An F-saturated homothety center J ⊂ M is a-invariant, since aF = F . Notice
that an F-saturated open set is also a-invariant, since it must be F-saturated. By
Proposition 5.4, a homothetic retraction

hJ : U × [0, 1] → U

is a-equivariant, for U ⊂ Tubr (J ) any J -star-shaped open set (in particular, for
U = Tubr (J )). Let us sum this up in the following corollary.

Corollary 5.5 Let (M,F) be a singular Killing foliation. A homothetic retraction h J :
U × [0, 1] → U onto an F-saturated homothety center J ⊂ M is a foliate, a-
equivariant deformation retraction of U onto J .

It follows that the good cover U constructed in Proposition 4.3 is equivariant: any
non-empty intersection U of its elements admits a foliate, a-equivariant, deformation
retraction onto the closure of some leaf LU ⊂ U .
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5.2 Calculating tools

Combining Corollary 5.5 and Corollary 2.5, we obtain the following property, which
is crucial.

Proposition 5.6 (Poincaré lemma for equivariant basic cohomology) Let (M,F) be
a singular Killing foliation and suppose J ⊂ M is an F-saturated homothety center.
Then for any r > 0 such thatTubr (J ) is a distinguished tubular neighborhood and any
J -star-shaped open set U ⊂ Tubr (J ), the inclusion J → U induces an isomorphism

Ha(F |U ) ∼= Ha(F |J )

of S(a∗)-algebras.

Let us now establish that Ha(F) can be calculated via Mayer–Vietoris sequences.
We will adapt the arguments from [10] for the regular case.

Lemma 5.7 Let F be a singular Killing foliation of M with structural algebra a and
let U ⊂ M be an open saturated subset. Then �(F |U )a = �(F |U ), and hence
�a(F |U ) = S(a∗) ⊗ �(F |U ).

Proof Since the regular locus�reg ofF is open and dense in M , it is sufficient to show
that �(F |U∩�reg)

a = �(F |U∩�reg). On �reg, the transverse a-action is nothing but
the natural transverse action of the structural algebra of the regular foliation Freg, so
the result follows from [10, Lemma 3.15]. ��

The proof of [10, Proposition 3.16] now adapts directly to the singular setting: for
saturated open sets U , V ⊂ M ,

0 −→ �(F |U∪V )
i∗U⊕i∗V−→ �(F |U ) ⊕ �(F |V )

j∗U− j∗V−→ �(F |U∩V ) −→ 0

is a short exact sequence of a�-modules. Since tensoring with S(a∗) preserves
exactness, we obtain, by Lemma 5.7, the short exact sequence

0 −→ �a(F |U∪V ) −→ �a(F |U ) ⊕ �a(F |V ) −→ �a(F |U∩V ) −→ 0

that induces an exact Mayer–Vietoris sequence in equivariant basic cohomology. Let
us state this below.

Proposition 5.8 (Mayer–Vietoris sequence for equivariant basic cohomology) Let F
be a singular Killing foliation of M with structural algebra a andU , V ⊂ M saturated
open sets. Then the sequence of S(a∗)-modules

· · · β−→ Ha(F |U∪V )
i∗U⊕i∗V−→ Ha(F |U ) ⊕ Ha(F |V )

j∗U− j∗V−→ Ha(F |U∩V )
β−→ · · ·

is exact.
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5.3 Borel type localization

A remarkable feature of the equivariant cohomology of the action of a torus T on a
manifold M is that, modulo torsion, HT (M) can be recovered from the fixed point
set MT . This property became know as Borel’s localization, as he observed close
relations between HT (M) and HT (MT ) (see [5, Chapter XII]) which later led to the
formalization of the localization theorem. Our objective in this section is to obtain a
version of this result for equivariant basic cohomology of singular Killing foliations.
The case of regular Killing foliations, with the canonical action by the structural
algebra, was treated in [10]. It was later generalized for arbitrary transverse actions
on (regular) Riemannian foliations in [18].

This topic is better formulated with the notion of localization of modules, for which
we refer to [4, Chapter 3]. In fact wewill be interested in the localization S−1Ha(F) of
Ha(F)with respect to S = S(a∗)\{0}.We view an element of S−1Ha(F) as a fraction
[ω]/ f , for [ω] ∈ Ha(F) and f ∈ S. The usual fraction operations turn S−1Ha(F) into
a vector space over the field Q(a∗) of fractions of S(a∗), whose dimension is the rank
of Ha(F). Recall that [ω] ∈ Ha(F) is a torsion element if there exists f ∈ S such that
f [ω] = 0. The submodule Tor(Ha(F)) of torsion elements is the torsion submodule
of Ha(F). A module is a torsion module when it is equal to its torsion submodule. In
particular, Ha(F) is torsion if, and only if, S−1Ha(F) = 0. The following fact will
be useful.

Proposition 5.9 Let F be a singular Killing foliation. Then Ha(F |L) = S(a∗
L) for

every L ∈ F . In particular, if L is not closed, then Ha(F |L) is a torsion module.

Proof The restriction F |L is a (regular) Killing foliation of the manifold L , hence it
follows from [10, Corollary 3.21] that Ha(F |L) = S(a∗

L), which is torsion when L is
not closed: if f ∈ S(a∗) is any non-zero form that vanishes on a∗

L , then multiplication
by f is the zero map on S(a∗

L). ��
The regular version of Borel’s localization theorem states that S−1Ha(F) ∼=

S−1Ha(F |Ma). In the singular setting there is a particular phenomenon that, in prin-
ciple, prevents us from obtaining the same result for all Killing foliations: unlike the
regular case, for some singular Killing foliations the closed locus Ma is singular, that
is, its connected components may not be submanifolds of M .

Example 5.10 Fix λ ∈ R \ {0} and consider the isometricR-action onC×C given by

t(z1, z2) = (e2π it z1, e
2π iλt z2).

Denote by H < SO(4) the corresponding one-parameter subgroup. As we saw in
Example 5.1, the homogeneous foliationF given by its orbits is Killing. Notice that its
only singular leaf is the origin {0}. SinceF is invariant by homotheties with respect to
it, it is completely determined by its restriction toS3 ⊂ C×C, which is a regularKilling
foliation with one dimensional leaves known as a generalized Hopf fibration. We are
interested in the case of an irrational λ, but it is instructive to first analyze rational
cases in order to get a better grasp. If λ = 1 one gets the usual Hopf fibration on S

3,
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whereas if λ = p/q ∈ Q, one gets its orbifold version, whose quotient is the weighted
projective space CP(p, q) (also known as the (p, q)-football orbifold): a sphere with
cone singularities of order p and q at the poles, corresponding to the exceptional orbits
R(1, 0) andR(0, 1). In either caseF is closed, so let us now assume that λ is irrational.
The exceptional orbitsR(1, 0) andR(0, 1) remain closed (two linked circles), but now
have infinite holonomy. As we saw in Example 3.2, the closureF is given by the orbits
of H < SO(4), which is a maximal torus. A regular H -orbit is a torus in S3, on which
F restricts to an irrational Kronecker foliation. By the homothetic invariance ofF , the
closed locus Ma is a double cone with vertex {0} and with each nappe “homothetically
spanned” by an exceptional orbit.

More generally, this phenomenon happenswhenever there is a closed l-dimensional
leaf L near a stratum �k

α , with k < l: since CF is invariant by homothetic transforma-
tions (Proposition 5.4), L “propagates” towards �k

α , leading to singularities in Ma.
This observation motivates the following definition.

Definition 5.11 A singular Killing foliation (M,F) is neat when each connected
component C of Ma is contained in a single stratum of F .

Notice that if F is neat then a connected component C ⊂ Ma is a stratum of F .
Also, if �α is the F-stratum containing C , then C is a minimal stratum of F |�α .
It follows that each C ⊂ Ma is a closed, saturated, horizontally totally geodesic
submanifold of M . An important particular case is that of a singular Killing foliation
F with Ma ⊂ �min, in which case Ma, if not empty, is precisely the minimal locus of
F . Another subclass is that of singular Killing foliations with isolated closed leaves.
Notice also that, of course, if Ma = ∅ or if F is regular, then F is automatically neat.

Let us nowproveBorel’s localization property for the equivariant basic cohomology
of neat singular Killing foliations. We denote Fa = F |Ma .

Theorem 5.12 (Borel localization for equivariant basic cohomology) Let (M,F) be
a transversely compact, neat singular Killing foliation with structural algebra a, and
let i : Ma → M be the natural inclusion. Then ker i∗ = Tor(Ha(F)) and coker i∗ is
a torsion module. Hence, the localized map

S−1i∗ : S−1Ha(F) −→ S−1Ha(Fa)

is an isomorphism, where S = S(a∗) \ {0}.
Proof Let Ma = C1 � · · · � Ck be the decomposition into connected components,
which are finitely many sinceF is transversely compact, and choose pairwise disjoint
distinguished tubular neighborhoods Tubr j (C j ). Take U = {Ui } a finite equivariant
good cover for (M,F) as in Proposition 4.3 (see also Corollary 5.5). Since each C j

is a stratum of F , we have that if Ui ∩ C j �= ∅, then Ui is a tubular neighborhood
around some leaf in C j . Moreover we can suppose that in this case Ui ⊂ Tubr j (C j ),
as we could have imposed this condition during the construction of U . Define

U =
⋃

Ui∩Ma �=∅
Ui .
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Then the connected component of U containing C j retracts by homotheties to it, so
the inclusion i |U : Ma → U induces an isomorphism Ha(F |U ) ∼= Ha(Fa), by
Proposition 5.6. Define V = ⋃

Ui∩Ma=∅ Ui , so that {U , V } is a cover of M with the
property that U restricts to finite equivariant good covers for both F |V and F |U∩V .

We can now follow the standard proofs of the classical Borel localization for torus
actions (see, for instance, [13, TheoremC.21], [14, Theorem 11.4.4] and [12, Theorem
8.1]),whichwe include here for the sake of completeness. First,we claim that Ha(F |V )

and Ha(F |U∩V ) are torsion modules. In fact, let us prove that if W ⊂ M\Ma is any
saturated open set admitting a finite equivariant good coverW = W1 ∪ · · · ∪Wk , then
Ha(F |W ) is torsion. If k = 1 then W retracts equivariantly to the closure of a non-
closed leaf L ⊂ V , therefore Ha(F |V ) ∼= Ha(F |L) is torsion, by Proposition 5.9 (and
Corollary 2.5). For the induction step, defineW ′ = W1∪· · ·∪Wk−1, soW = W ′∪Wk .
Then, by the induction hypothesis, both extremes of the exact sequence

Ha(F |W ′∩Wk ) −→ Ha(F |W ) −→ Ha(F |′W ) ⊕ Ha(F |Wk )

are torsion modules.
Wehave i∗(Tor(Ha(F))) ⊂ Tor(Ha(Fa)) = 0, the last equality following from the

fact that Ha(Fa) = S(a∗) ⊗ H(Fa) is free (see Example 2.3). Thus, Tor(Ha(F)) ⊂
ker i∗. Conversely, since i = iU ◦ i |U , from theMayer–Vietoris sequence for the cover
{U , V } we obtain the exact sequence

· · · −→ Ha(F)
i∗⊕i∗V−→ Ha(Fa) ⊕ Ha(F |V )

j∗− j∗V−→ Ha(F |U∩V ) −→ · · · . (4)

One has ker(i∗ ⊕ i∗V ) = ker i∗ ∩ ker i∗V , so the sequence

Ha(F |U∩V ) −→ ker i∗
i∗V−→ Ha(F |V )

of S(a∗)-modules is also exact. As the extremes of this sequence are torsion modules,
it follows that ker i∗ ⊂ Tor(Ha(F)).

The exactness of (4) also implies that

coker(i∗ ⊕ i∗V ) =Ha(Fa) ⊕ Ha(F |V )

im(i∗ ⊕ i∗V )
= Ha(Fa) ⊕ Ha(F |V )

ker( j∗ − j∗V )

∼= im( j∗ − j∗V ) ⊂ Ha(F |U∩V ),

so coker(i∗⊕i∗V ) is a torsionmodule. The projection Ha(Fa)⊕Ha(F |V ) → Ha(Fa)

induces a surjective map coker(i∗ ⊕ i∗V ) → coker i∗, so coker i∗ is torsion as well.
Finally, since localization preserves exactness [4, Proposition 3.3] and kills torsion,

from the exact sequence

0 −→ ker i∗ −→ Ha(F)
i∗−→ Ha(Fa) −→ coker i∗ −→ 0

it follows that S−1i∗ : S−1Ha(F) → S−1Ha(Fa) is an isomorphism. ��
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The following can be seen as a transverse version of [10, Corollary 5.4] (notice,
although, that we cannot obtain a complete characterization of the presence of closed
leaves in terms of Ha(F), because of the neatness hypothesis).

Corollary 5.13 Let (M,F) be a transversely compact, singular Killing foliation.

(1) If Ha(F) is a torsion module, then either F has no closed leaves or it is not neat.
(2) If F has no closed leaves, then Ha(F) is a torsion module.

Proof Suppose there is a closed leaf L ∈ F and F is neat. Then i∗(1) = 1 ∈ Ha(Fa)

and, since Ha(Fa) ∼= S(a∗) ⊗ H(Fa) is torsion-free, 1 ∈ Ha(F) must have no
torsion.

For the second item, if there are no closed leaves, that is,Ma = ∅, then Ha(Fa) = 0.
Moreover, in this case F is neat, so Theorem 5.12 applies, giving us that Ha(F) is
torsion. ��

6 Applications of the localization theorem

In this section we will see that there is a spectral sequence that converges to Ha(F).
This can then be used in association with Theorem 5.12 to show that χ(F) = χ(Fa),
in analogy with the localization of the Euler characteristic of a manifold to the fixed
point set of a torus action. In fact, all constructions will be direct adaptations of the
classical case of torus actions on manifolds, as presented in [12] (see also [14, Chapter
6]), so we will not delve into too much details of the proofs. These results are also
already established for the case or regular Killing foliations in [10].

6.1 A spectral sequence for equivariant basic cohomology

Let F be a singular Killing foliation of M . Endow Ca(F) with the bigrading

Ck,l
a (F) =

{
(Sk/2(a∗) ⊗ �l(F))a, if k is even,

0, if k is odd,

so that Cn
a(F) = ⊕

k+l=n C
k,l
a (F) recovers the grading (1). The differential da splits

as 1 ⊗ d + δ, where (δω)(X) = −ιX (ω(X)). The filtration

FkCa(F) =
⊕

j≥k
l≥0

C j,l
a (F),

is canonically bounded, hence the associated spectral sequence (Er ) is first quadrant
and converges, that is,

E∞ ∼= Ha(F)
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as vector spaces. By Lemma 5.7 we have �a(F) = S(a∗) ⊗ �(F), which leads to

E1 ∼= S(a∗) ⊗ H(F).

Each page Er = H(Er−1, dr−1) inherits a S(a∗)-module structure recursively from
Er−1. On E1 ∼= S(a∗)⊗H(F) it is given by the usual product on the first factor. IfF is
transversely compact, by Theorem 4.4 we have dim H(F) < ∞, hence E1 is finitely
generated as an S(a∗)-module. Since S(a∗) is Noetherian, submodules and quotients
of finitely generated S(a∗)-modules are finitely generated, thus each Er is finitely
generated. In particular, let {xi } ⊂ E∞ be a finite set of homogeneous generators for
E∞. Then one proves that representatives yi ∈ Ha(F) chosen via

Ek,l∞ ∼= FkHk+l
a (F)

Fk+1Hk+l
a (F)

generate Ha(F) (see [12, Lemma A.17]). Summing up (cf. [12, Lemma A.18]):

Proposition 6.1 Let F be a transversely compact singular Killing foliation. Then
Ha(F) is finitely generated as an S(a∗)-module.

As a corollary, it follows that rank H even
a (F) = rank Eeven∞ and rank Hodd

a (F) =
rank Eodd∞ , with respect to the Z2-graded decompositions in even and odd degree
elements of Ha(F) and E∞ (see [12, Corollary A.19]). This is proved by comparing
the respective Poincaré series, and using that E∞ ∼= Ha(F) as vector spaces.

6.2 Localization of the basic Euler characteristic

We can now directly adapt [12, Theorem 9.3] to our transverse setting.

Theorem 6.2 [Localization of the basic Euler characteristic] Let F be a transversely
compact, neat singular Killing foliation with structural algebra a. Then

χ(F) = χ(Fa).

Proof We have

χ(F) = dim H even(F) − dim Hodd(F)

= dimQ(a∗) Q(a∗) ⊗ H even(F) − dimQ(a∗) Q(a∗) ⊗ Hodd(F).

Using that E1 ∼= S(a∗) ⊗ H(F), this leads to

χ(F) = rank Eeven
1 − rank Eodd

1 .

Localizing each page of the spectral sequence (Er ), we obtain Z2-graded vector
spaces with odd differentials dr : Er → Er , so that Er+1 = H(Er , dr ). It follows
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that rank Eeven
i − rank Eodd

i = rank Eeven
i+1 − rank Eodd

i+1, since the Euler characteristic
is preserved under taking cohomology (see [12, Lemma 9.2]). Therefore

χ(F) = rank Eeven∞ − rank Eodd∞
= rank H even

a (F) − rank Hodd
a (F).

Using Theorem 5.12 and the fact that Ha(Fa) = S(a∗) ⊗ H(Fa), we then have

χ(F) = rank H even
a (Fa) − rank Hodd

a (Fa)

= dimQ(a∗) Q(a∗) ⊗ H even(Fa) − dimQ(a∗) Q(a∗) ⊗ Hodd(Fa)

= dim H even(Fa) − Hodd(Fa)

= χ(Fa),

which finishes the proof. ��

The following are obvious consequences.

Corollary 6.3 LetF be a transversely compact, singularKilling foliation. Ifχ(F) �= 0,
then F has at least one closed leaf.

Proof If F has no closed leaves (and hence is neat), then χ(F) = χ(Fa) = 0. ��

Corollary 6.4 LetF be a transversely compact, singular Killing foliation whose closed
leaves are isolated. Then

#Fa = χ(F),

that is, the basic Euler characteristic is precisely the number of closed leaves.

6.3 The equivariantly formal case

As in the classical case of Lie group actions, one can consider the equivariantly formal
case, which includes the equivariant cohomology of compact symplectic manifolds
with Hamiltonian torus actions. In our case, we will say that singular Killing foliation
F is equivariantly formal if its equivariant basic cohomology is equivariantly formal,
that is,

Ha(F) ∼= S(a∗) ⊗ H(F)

as S(a∗)-modules (cf. [10, Section 6.3]). Equivalently,F is equivariantly formal when
(Er ) collapses at the first page (see [12, Theorem 7.3]). This is the case, for instance, if
Hodd(F) = 0 (see [12, Corollary A.10]). The following theorem is a singular version
of [10, Theorem 1].
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Theorem 6.5 Let F be a transversely compact, neat singular Killing foliation with
structural algebra a. Then

dim H(Fa) ≤ dim H(F),

and equality holds if, and only if, F is equivariantly formal.

Proof The proof of the classical case of torus actions in [12, Proposition 9.6] adapts
directly. One has

H(Fa) = rank(S(a∗) ⊗ H(Fa))

= rank Ha(Fa)

= rank Ha(F)

≤ dim H(F),

The last inequality comes from E1 ∼= S(a∗) ⊗ H(F). It is clear that equality holds if
F is equivariantly formal. Conversely, localizing each page of (Er ) one sees that, if
some dr is not zero, there must be a drop in the dimension at the corresponding pages.
So if dim H(Fa) = dim H(F) (hence rank Ha(F) = rank E1), then dr = 0 for all
r ≥ 1, and the sequence collapses at the first page. ��
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