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Abstract
We investigate the classical problem of the wind in the steady atmospheric Ekman
layer. For three cases of eddy viscosities which are the related fractional and integer
powers functions with respect to height, we construct the explicit solutions, and write
the formulas for the surface deflection angle, respectively. Our results extend the
corresponding results in Roberti (Appl Anal 101:5528–5536, 2022) and Guan et al.
(Appl Anal, 2022).
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374 Y. Guan, J. Wang

1 Introduction

Researches related to geophysical fluid dynamics have attracted more and more atten-
tion from scholars in recent years, such as the recent results on the general governing
equations of geophysical fluid flows in the ocean [1–7], and in the atmosphere [8–11].
The dynamics of the atmospheric boundary-layer is very important in applications,
such as weather prediction, climate studies, air pollution, dewfall, frost formation and
so on.

The Ekman layer theory is of great significance for understanding the dynamics of
atmospheric boundary layer, and it applies to many areas, including the bottom of the
atmosphere(near the Earth’s surface and the Ocean), the bottom of the Ocean (near the
Ocean flat) and surface waters (near the air-sea interface). The classic Ekman theory
[12] requires a balance among the Coriolis force, the pressure gradient force and the
frictional force (the dominant momentum balance for steady wind-driven currents
is between the wind stress, frictional forces and the Coriolis force) [13–16]. But in
equatorial areas, theCoriolis effect vanishes, the nonlinear effects have to be accounted
for [17–20]. By assuming a constant vertical eddy viscosity and ignoring the nonlinear
effects, the Ekman spiral solution is established. It is the first explicit solution of the
Ekman model, three predictions are obtained from this solution, two of which have
been confirmed by some data in non-equatorial regions. However, the other prediction
of the three, in the aspect of the deflection angle of the surface flow from the wind
direction, there is a big difference between the forecast and the actual data [21–24].
This difference is naturally attributed to the assumption of constant vorticity. For the
past few years, there exist some results about explicit solutions for non-constant eddy
viscosity, whether in the context of atmospheric flows [8–10, 25–28] or regarding
wind-generated ocean currents [29–34].

In [10], the authors considered the atmospheric Ekman layer with height-dependent
eddy viscosities which are some quadratic or rational power functions, they obtained
the new solutions respectively. The authors in [33] constructed an explicit solution in
the case of a piecewise-constant eddy viscosity with two distinct values, and investi-
gated how variations in the ratio of the two values affect the deflection angle at the
surface, while the author in [34] considered non-equatorial steady Ocean currents with
a three-value constant eddy viscosity, an explicit solution and a formula for the sur-
face deflection angle are constructed. In [35], the authors investigated transients in the
oceanic Ekman layer, in the presence of time-varying winds, they solved the problem
by means of Laplace transforms, and gave an explicit formula for the surface current.
The authors in [36] discussed the atmospheric Ekman layer with two types of eddy
viscosities, in the case of quadratic function, an explicit solution was constructed by
using different method from [31], and in the case of piece-constant in two layers, the
solution and a formula for the surface deflection angle were obtained.

In this paper, we focus on the atmospheric Ekman flows with three cases of the
eddy coefficient which are the fractional and integer powers functions with respect
to height, we constructed the explicit solutions and gave the formulas for the surface
deflection angle, respectively. These results will be an extension of the corresponding
results in [34, 36].
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2 The governing equations

The Ekman layer is governed by the following equations in the non-equatorial region
of the Northern Hemisphere:

⎧
⎨

⎩

f (v − vg) = − ∂
∂z (k

∂u
∂z ),

f (u − ug) = ∂
∂z (k

∂v
∂z ),

(1)

which is the standard f −planeEkman-flow for variable eddy viscosity, under adequate
heat forcing [37, 38].Hereu, v are the components of thewind in the x and y directions,
ug and vg are the corresponding constant geostrophic wind components, f = 2� sin θ

is the Coriolis parameter at the fixed latitude θ (θ ∈ (0, π
2 ] denotes the angle of latitude

in right-handed rotating spherical coordinates) and k is the eddy viscosity coefficient.
We use the following boundary conditions for (1) as

u = 0, v = 0 at z = z0, (2)

u → ug, v → vg for z → ∞, (3)

where z0 is called the roughness height. Let � = (u − ug) + i(v − vg), and from (1),
we will get

k(z)
∂2�

∂z2
+ ∂k

∂z

∂�

∂z
− i · f � = 0, (4)

the boundary conditions (2) and (3) become

� = −(ug + ivg) at z = z0, (5)

and

� → 0 for z → ∞, (6)

we can write (4) as

(k(z)� ′(z))′ = i f �(z),

we integrate this equation and obtain

(k(z)� ′(z)) = i f
∫

�(z)dz, (7)

we denote

ω(z) =
∫

�(z)dz, (8)
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the Eq. (7) will become

k(z)ω′′(z) = i f ω(z), (9)

If k =constant, we have

{
u(z) = ug + eγ (z0−z)[−ug cos(γ (z0 − z)) + vg sin(γ (z0 − z))],
v(z) = vg − eγ (z0−z)[ug sin(γ (z0 − z)) + vg cos(γ (z0 − z))], (10)

where γ =
√

f
2k . However, if k �=constant, then solving (1) will be more interesting

and complex, here, we consider the following cases.

3 Main results

3.1 Case (I)

We assume

k(z) = f z−
8
3 , (11)

then (9) can be written in the form

ω′′(z) = i z−
8
3 ω(z). (12)

Thus we have the following result.

Theorem 3.1 The solution of (4) with (5) and (6) can be expressed by the following
formula

�(z) =
(
1 − 3

√
i z−

1
3 + 3i z−

2
3

)
Be3

√
i z−

1
3
, (13)

here

B =
F cos

(
3√
2
z
− 1

3
0

)

+ G sin

(
3√
2
z
− 1

3
0

)

E
e
− 3√

2
z
− 1
3

0

+
G cos

(
3√
2
z
− 1

3
0

)

− F sin

(
3√
2
z
− 1

3
0

)

E
e
− 3√

2
z
− 1
3

0 i,

where

E =
(

3√
2
z
− 1

3
0 − 1

)2

+
(

3√
2
z
− 1

3
0 − 3z

− 2
3

0

)2

,
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F = ug

(
3√
2
z
− 1

3
0 − 1

)

+ vg

(
3√
2
z
− 1

3
0 − 3z

− 2
3

0

)

,

and

G = vg

(
3√
2
z
− 1

3
0 − 1

)

− ug

(
3√
2
z
− 1

3
0 − 3z

− 2
3

0

)

.

Proof We assume

ω(z) = A
(
z + 3

√
i z

2
3

)
+ B

(
z − 3

√
i z

2
3

)
e3

√
i z−

1
3
, (14)

where A and B are constants which are determined later.
From (14), we have

ω′(z) = A
(
1 + 3

√
i z−

1
3 + 3i z−

2
3

)
e−3

√
i z−

1
3 + B

(
1 − 3

√
i z−

1
3 + 3i z−

2
3

)
e3

√
i z−

1
3
,

and

ω′′(z) = A
(
i z−

5
3 + 3i

√
i z−2

)
e−3

√
i z−

1
3 + B

(
i z−

5
3 − 3i

√
i z−2

)
e3

√
i z−

1
3
,

thus ω(z) satisfied the (9), and �(z) satisfied the (4) by using the definition of ω(z).
From the conditions (5) and (6), we know that

A = 0

and

B = ug + ivg

−1 + 3
√
i z

− 1
3

0 − 3i z
− 2

3
0

e−3
√
i z

− 1
3

0 ,

by direct calculation, we complete the proof. �	
If we set

B1 =
F cos

(
3√
2
z
− 1

3
0

)

+ G sin

(
3√
2
z
− 1

3
0

)

E
e
− 3√

2
z
− 1
3

0 ,

and

B2 =
G cos

(
3√
2
z
− 1

3
0

)

− F sin

(
3√
2
z
− 1

3
0

)

E
e
− 3√

2
z
− 1
3

0 ,
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from Theorem 3.1, we have

�(z) =
(
1 − 3

√
i z−

1
3 + 3i z−

2
3

)
(B1 + B2i)e

3
√
i z−

1
3
,

using the definition of �(z), we obtain

u = ug +
[(

1 − 3√
2
z−

1
3

)

B1 +
(

3√
2
z−

1
3 − 3z−

2
3

)

B2

]

cos

(
3√
2
z−

1
3

)

−
[(

1 − 3√
2
z−

1
3

)

B2 −
(

3√
2
z−

1
3 − 3z−

2
3

)

B1

]

sin

(
3√
2
z−

1
3

)

and

v = vg +
[(

1 − 3√
2
z−

1
3

)

B2 −
(

3√
2
z−

1
3 − 3z−

2
3

)

B1

]

cos

(
3√
2
z−

1
3

)

+
[(

1 − 3√
2
z−

1
3

)

B1 +
(

3√
2
z−

1
3 − 3z−

2
3

)

B2

]

sin

(
3√
2
z−

1
3

)

.

If we assume the geostrophic wind is purely zonal, that is vg = 0, then we have

B1 =
ug

(
3√
2
z
− 1

3
0 − 1

)

cos

(
3√
2
z
− 1

3
0

)

− ug

(
3√
2
z
− 1

3
0 − 3z

− 2
3

0

)

sin

(
3√
2
z
− 1

3
0

)

E
e
− 3√

2
z
− 1
3

0 ,

and

B2 =
−ug

(
3√
2
z
− 1

3
0 − 1

)

sin

(
3√
2
z
− 1

3
0

)

− ug

(
3√
2
z
− 1

3
0 − 3z

− 2
3

0

)

cos

(
3√
2
z
− 1

3
0

)

E
e
− 3√

2
z
− 1
3

0 .

Now we set

B ′
1 =

[(
3√
2
z
− 1

3
0 − 1

)

cos

(
3√
2
z
− 1

3
0

)

−
(

3√
2
z
− 1

3
0 − 3z

− 2
3

0

)

sin

(
3√
2
z
− 1

3
0

)]

e
− 3√

2
z
− 1

3
0 ,

and

B ′
2 =

[

−
(

3√
2
z
− 1

3
0 − 1

)

sin

(
3√
2
z
− 1

3
0

)

−
(

3√
2
z
− 1

3
0 − 3z

− 2
3

0

)

cos

(
3√
2
z
− 1

3
0

)]

e
− 3√

2
z
− 1

3
0 .

We denote the angle between the wind vector at any height and the geostrophic vector
by β(z), then we have

β(z) = arg
u + iv

ug + ivg
= arctan

v

u

= arctan
P cos

(
3√
2
z− 1

3

)
+ Q sin

(
3√
2
z− 1

3

)

E + Q cos
(

3√
2
z− 1

3

)
− P sin

(
3√
2
z− 1

3

) ,
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Fig. 1 The graph of arctan(v/u), z0 = 0.1 m

where

P =
[(

1 − 3√
2
z−

1
3

)

B ′
2 −

(
3√
2
z−

1
3 − 3z−

2
3

)

B ′
1

]

and

Q =
[(

1 − 3√
2
z−

1
3

)

B ′
1 +

(
3√
2
z−

1
3 − 3z−

2
3

)

B ′
2

]

.

One can draw the graphs of β(z) for z0 = 0.1 m and z0 = 0.2 m, respectively, we find
that β(z) decrease for all z > z0, which demonstrated on Figs. 1 and 2.

3.2 Case (II)

We consider an eddy viscosity k(z) given by

k(z) = f z
12
7 . (15)

then the Eq. (9) will become

ω′′(z) = i z−
12
7 ω(z), (16)

By following, the example 2.14, for the exponent α = − 12
7 , and the constant c = i ,

we denote by q = 1
2α + 1, then we have q = 1

7 , so
1
q = 7 is an odd number, the

general solution of (16) is the Cayley solution given by
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Fig. 2 The graph of arctan(v/u), z0 = 0.2 m

ω(z) = A

(

1 − 7
√
i z

1
7 + 98

5
i z

2
7 − 686

15
i
√
i z

3
7

)

e7
√
i z

1
7 (17)

+ B

(

1 + 7
√
i z

1
7 + 98

5
i z

2
7 + 686

15
i
√
i z

3
7

)

e−7
√
i z

1
7
,

so we have

�(z) = A

(

−7

5
i z−

7
5 + 686

15
z−

3
7

)

e7
√
i z

1
7 + B

(

−7

5
i z−

7
5 + 686

15
z−

3
7

)

e−7
√
i z

1
7
.

(18)

The conditions (6) and (5) lead to

A = 0

and

B = ug + ivg

7
5 i z

− 7
5

0 − 686
15 z

− 3
7

0

e7
√
i z

1
7
0

=
−F cos

(
7z

1
7
0√
2

)

− G sin

(
7z

1
7
0√
2

)

E
+

G cos

(
7z

1
7
0√
2

)

− F sin

(
7z

1
7
0√
2

)

E
i

= B1 + B2i,
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where

E =
(
686

15
z
− 3

7
0

)2

+
(
7

5
z
− 7

5
0

)2

,

F =
(

ug
686

15
z
− 3

7
0 + vg

5

7
z
− 5

7
0

)

e
7z

1
7
0√
2 ,

and

G =
(

ug
7

5
z
− 7

5
0 − vg

686

15
z
− 3

7
0

)

e
7z

1
7
0√
2 .

Thus from (18), we have

�(z) = (B1 + B2i)

(

−7

5
i z−

7
5 + 686

15
z−

3
7

)

e−7
√
i z

1
7

=
[(

B1
686

15
z−

3
7 + B2

7

5
z−

7
5

)

e
− 7√

2
z
1
7 − i

(
7

5
B1z

− 7
5 + 686

15
z−

3
7 B2

)

e
− 7√

2
z
1
7

]

e
− 7√

2
z
1
7 i

.

From the definition of the �(z), we obtain

u = ug + P cos

(
7√
2
z
1
7

)

− Q sin

(
7√
2
z
1
7

)

and

v = vg − P sin

(
7√
2
z
1
7

)

− Q cos

(
7√
2
z
1
7

)

,

where

P =
(

B1
686

15
z−

3
7 + B2

7

5
z−

7
5

)

e
− 7√

2
z
1
7
,

and

Q =
(
7

5
B1z

− 7
5 + 686

15
z−

3
7 B2

)

e
− 7√

2
z
1
7
.

We denote the angle between the wind vector at any height and the geostrophic
vector by β(z), that is

β(z) = arg
u + iv

ug + ivg
= arg

ugu + vvg + i(vug − uvg)

u2g + v2g
= arctan

vug − uvg

uug + vvg
.
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If we assume the geostrophic wind is purely zonal, that is vg = 0, then we have

β(z) = arg
u + iv

ug + ivg
= arctan

v

u
.

Now we set

P0 =
cos

(
7√
2
z
1
7
0

)
686
15 z

− 3
7

0 − 7
5 z

− 7
5

0 sin

(
7√
2
z
1
7
0

)

E
e

7√
2
z
1
7
0
686

15
z−

3
7

+
cos

(
7√
2
z
1
7
0

)
7
5 z

− 7
5

0 − 686
15 z

− 3
7

0 sin

(
7√
2
z
1
7
0

)

E
e

7√
2
z
1
7
0
7

5
z−

7
5

and

Q0 =
cos

(
7√
2
z
1
7
0

)
686
15 z

− 3
7

0 − 7
5 z

− 7
5

0 sin

(
7√
2
z
1
7
0

)

E
e

7√
2
z
1
7
0
7

5
z−

7
5

+
cos

(
7√
2
z
1
7
0

)
7
5 z

− 7
5

0 − 686
15 z

− 3
7

0 sin

(
7√
2
z
1
7
0

)

E
e

7√
2
z
1
7
0
686

15
z−

3
7 ,

we will get

β(z) = arctan
v

u
= arctan

P0 sin
(

7√
2
z
1
7

)
+ Q0 cos

(
7√
2
z
1
7

)

e
7√
2
z
1
7 + P0 cos

(
7√
2
z
1
7

)
− Q0 sin

(
7√
2
z
1
7

) .

The graphs of β(z) for z0 = 0.2 m and z0 = 0.3 m will be shown on Figs. 3 and 4,
respectively, we find that β(z) decrease for all z > z0.

3.3 Case (III)

We consider an eddy viscosity k(z) given by

k(z) = f z4,

then the Eq. (9) will become

ω′′(z) = i z−4ω(z), (19)

Let

ω = zμ(z), (20)
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Fig. 3 The graph of arctan(v/u), z0 = 0.2 m

Fig. 4 The graph of arctan(v/u), z0 = 0.3 m

and

z = 1

s
,
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using the chain rule, we have

ω′(z) = u − 1

z

dμ

ds

and

ω′′(z) = − 1

z3
d2μ

ds2
.

By the direct calculation, (19) is reduced to

d2μ

ds2
+ iμ = 0,

the general solution

μ = c1e
1+i√
2
s + c2e

− 1+i√
2
s

is obtained for two arbitrary constants c1 and c2. Using the definition ofω(z) and (20),
we obtain

�(z) = c1e
1−i√
2z − c1

1 − i√
2z

e
1−i√
2z + c2e

− 1−i√
2z + c2

1 − i√
2z

e
− 1−i√

2z .

The conditions (6) and (5) lead to

c1 + c2 = 0

and

c1e
1−i√
2z0 − c1

1 − i√
2z0

e
1−i√
2z0 + c2e

− 1−i√
2z0 + c2

1 − i√
2z0

e
− 1−i√

2z0 = −(ug + ivg).

So we have

c1 = −c2

and

c2 = ug + ivg

e
1−i√
2z0 − 1−i√

2z0
e

1−i√
2z0 − e

− 1−i√
2z0 − 1−i√

2z0
e
− 1−i√

2z0

If we assume the geostrophic wind is purely zonal, that is vg = 0, similar to the
procedure discussed in Sect. 3.2, then we can obtain the formula for the angle between
the wind vector at any height and the geostrophic vector by β(z).
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3. Wang, J., Fečkan, M., Zhang, W.: On the nonlocal boundary value problem of geophysical fluid flows.
Z. Angew. Math. Phys. 72, 1–18 (2021)
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25. Guan, Y., Wang, J., Fečkan, M.: Explicit solution and dynamical properties of atmospheric Ekman
flows with boundary conditions. Electron. J. Qual. Theory Differ. Equ. 30, 1–19 (2021)
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