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Abstract
Andrews, Hirschhorn, and Sellers studied the partition function ped(n) which enu-
merates the number of partitions of n with even parts distinct, and obtained a number
of interesting congruences. This paper aims to introduce a partition statistic to inves-
tigate the partition function ped(n). We give combinatorial interpretations for some
properties of ped(n) including the infinite families of congruences given by Andrews
et al.
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1 Introduction

A partition λ of a positive integer n is a finite non-increasing sequence of positive
integers λ = (λ1, . . . , λl) such that |λ| = ∑l

i=1 λi = n. The Ferrers graph of a
partition λ is a set of coordinates in the bottom right quadrant of the plane where the
i-th row contains λi dots. We denote by λ′ the conjugate of λ, which is the partition
whose graph is obtained by reflecting the Ferrers graph of λ about the main diagonal.
For example, we give λ = (4, 4, 2, 2, 1) and its conjugate partition λ′ = (5, 4, 2, 2)
in Fig. 1.

Let p(n) denote the ordinary partition function. The partition statistic crank defined
by Andrews and Garvan [2, 6] can be used to provide combinatorial interpretations
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Fig. 1 Ferrers graph of partitions λ = (4, 4, 2, 2, 1) and λ′ = (5, 4, 2, 2)

for Ramanujan’s famous congruences

p(5n + 4) ≡ 0 (mod 5),

p(7n + 5) ≡ 0 (mod 7),

p(11n + 6) ≡ 0 (mod 11). (1.1)

The crank of a partition λ �= (1) is defined as follows:

c(λ) =
{

λ1, i f n1(λ) = 0,
μ(λ) − n1(λ), i f n1(λ) > 0,

where n1(λ) denotes the number of parts equal to one in λ and μ(λ) denotes the
number of parts in λ larger than n1(λ). Let M(m, n) enumerate partitions of n with
crank m. It should be pointed out that when λ = (1),

M(0, 1) = −1, M(−1, 1) = M(1, 1) = 1.

Andrews and Garvan [2, 6] established the generating function of M(m, n) as given
by

∞∑

n=0

∞∑

m=−∞
M(m, n)zmqn = (q; q)∞

(zq; q)∞(z−1q; q)∞
. (1.2)

Here and throughout this paper, (a; q)∞ stands for the q-shifted factorial

(a; q)∞ =
∞∏

n=1

(1 − aqn−1), |q| < 1,

and for any positive integer k,

fk = (qk; qk)∞.
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A partition statistic for partitions... 1107

Let M(m, t, n) denote the number of partitions of n with crank congruent to m
modulo t . In 1990, Garvan [7] presented a graceful refinement of the congruence (1.1)

M(m, 2, 5n + 4) ≡ 0 (mod 5), m = 0, 1,

together with the combinatorial interpretation

M(m + 2k, 10, 5n + 4) = M(m, 2, 5n + 4)

5
, 0 ≤ k ≤ 4,m = 0, 1.

Let ped(n) be the function that enumerates partitions of n with even parts distinct.
Obviously,

∞∑

n=0

ped(n)qn = (−q2; q2)∞
(q; q2)∞ .

The sequence ped(n)n≥0 is well known and can be seen in [11, A001935], as well
as other combinatorial interpretations. In 2010, Andrews, Hirschhorn, and Sellers [3]
proved the following congruences.

Theorem 1.1 For α, n ≥ 0,

ped

(

32α+2n + 11 · 32α+1 − 1

8

)

≡ 0 (mod 2),

ped

(

32α+2n + 19 · 32α+1 − 1

8

)

≡ 0 (mod 2).

Theorem 1.2 For n ≥ 0,

ped(9n + 4) ≡ 0 (mod 4), (1.3)

ped(9n + 7) ≡ 0 (mod 12). (1.4)

In 2017, Merca [9] provided a simple criterion for deciding the parity of ped(n).

Theorem 1.3 The number of partitions of n with distinct even parts is odd if and only
if n is a triangular number.

In this paper, we aim at introducing a partition statistic which we call ped-crank to
study the partition function ped(n). Let Mped(m, n) denote the number of partitions
of n with even parts distinct with ped-crank m, and let

Mped(m, t, n) =
∑

k≡m (mod t)

Mped(k, n). (1.5)

The main results of this paper are summarized below.
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1108 R. X. J. Hao

Theorem 1.4 For α, n ≥ 0,

Mped

(

0, 6, 32α+2n + 11 · 32α+1 − 1

8

)

= Mped

(

3, 6, 32α+2n + 11 · 32α+1 − 1

8

)

,

Mped

(

1, 6, 32α+2n + 11 · 32α+1 − 1

8

)

= Mped

(

2, 6, 32α+2n + 11 · 32α+1 − 1

8

)

,

Mped

(

0, 6, 32α+2n + 19 · 32α+1 − 1

8

)

= Mped

(

3, 6, 32α+2n + 19 · 32α+1 − 1

8

)

,

Mped

(

1, 6, 32α+2n + 19 · 32α+1 − 1

8

)

= Mped

(

2, 6, 32α+2n + 19 · 32α+1 − 1

8

)

.

Any of the following three corollaries deduced from Theorem 1.4 provides a com-
binatorial interpretation or a refinement of Theorem 1.1. When α = 0, combining
Corollary 1.5 and Corollary 1.6 refines (1.3). Meanwhile, Corollary 1.7 combinatori-
ally interprets (1.3).

Corollary 1.5 For m = 0, 1, 2 and α, n ≥ 0,

Mped

(

m, 6, 32α+2n + 11 · 32α+1 − 1

8

)

=
Mped

(
m, 3, 32α+2n + 11·32α+1−1

8

)

2
,

Mped

(

m, 6, 32α+2n + 19 · 32α+1 − 1

8

)

=
Mped

(
m, 3, 32α+2n + 19·32α+1−1

8

)

2
.

Corollary 1.6 For α, n ≥ 0,

Mped

(

3, 12, 32α+2n + 11 · 32α+1 − 1

8

)

=
Mped

(
0, 3, 32α+2n + 11·32α+1−1

8

)

4
,

Mped

(

3, 12, 32α+2n + 19 · 32α+1 − 1

8

)

=
Mped

(
0, 3, 32α+2n + 19·32α+1−1

8

)

4
.

Corollary 1.7 For α, n ≥ 0,

Mped

(

1, 4, 32α+2n + 11 · 32α+1 − 1

8

)

=
ped

(
32α+2n + 11·32α+1−1

8

)

4
,

Mped

(

1, 4, 32α+2n + 19 · 32α+1 − 1

8

)

=
ped

(
32α+2n + 19·32α+1−1

8

)

4
.

Theorem 1.8 If n cannot be written as a sum of a triangular number and a square of
even integer, we have

Mped(0, 4, n) = Mped(2, 4, n).
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A partition statistic for partitions... 1109

Moreover, Mped(0, n) is odd if and only if n is a triangular number.

Theorem 1.9 For m = 0, 1, 2, 3, 4, 5 and n ≥ 0,

Mped(m, 6, 9n + 7) = ped(9n + 7)

6
,

Mped(3, 12, 9n + 7) = ped(9n + 7)

12
. (1.6)

It is worth mentioning that Theorem 1.8 not only combinatorially interprets but
also refines Theorem 1.3, and (1.6) provides a combinatorial interpretation for (1.4).

2 Definition of the ped-crank

In this section, we shall define the ped-crank of partitions with even parts distinct
based on Glaisher’s bijection and a modified version ϕ of the Wright map established
by Seo and Yee [10].

We first give a quick overview of Glaisher’s bijection and the Frobenius symbol.
Let Dn denote the set of distinct partitions, and let On denote the set of odd partitions
of n respectively. Glaisher’s bijection φ: On → Dn is defined as follows. Let λ =
(1m13m3 . . .) ∈ On be an odd partition. For every odd i , let φ(λ) contain part i · 2r ,
if and only if the integer mi written in binary has 1 at the r -th position. In the other
direction, let ψ : Dn → On be defined by an iterative procedure. Start with λ =
(λ1, λ2, . . .) ∈ Dn . Substitute every even part λi with two parts λi/2. Repeat until the
resulting partition has no even parts.

The Frobenius symbol of n is a two-rowed array [1, 14]

F =
(

α1 α2 · · · α�

β1 β2 · · · β�

)

,

where α1 > α2 > . . . > α� ≥ 0, β1 > β2 > . . . > β� ≥ 0 and n = |α| + |β| + �. If
we express an ordinary partition by Ferrers graph, it is easy to see that αi form rows to
the right of the diagonal and βi form columns below the diagonal. Thus the Frobenius
symbol is another representation of an ordinary partition. For instance, the Frobenius
symbol for (8, 7, 4, 3, 1) is

(
7 5 1
4 2 1

)

.

Giving a real number c, we define cλ as the partition whose parts are c times each
part of λ. For example, let λ = (4, 2, 2). We have 4λ = (16, 8, 8) and 1

2λ = (2, 1, 1).
Suppose μ and ν are two partitions. Let μ∪ ν denote the partition consisting of all the
parts ofμ and ν. The definition of ped-crank is given based on the following theorem.

Theorem 2.1 For integer k1 ≥ −1, k2 ≥ 1, there is a bijection 
 between the set of
partitions of n with even parts distinct and the set of vector partitions (α, β, γ ) with
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1110 R. X. J. Hao

|α| + |β| + |γ | equal to n. Here α is an even partition, β is a partition of the form
(4k1 + 1, . . . , 9, 5, 1) or (4k2 − 1, . . . , 11, 7, 3) and γ is a distinct even partition.

Proof The bijection 
 can be decomposed into six weight preserving steps.

Step 1. λ → (ω, γ ): Start with a partition λ of n with even parts distinct. Split λ into
a pair of partitions (ω, γ ) according to the parts odd or even. It is clear that ω
is an odd partition and γ is a distinct even partition.

Step 2. (ω, γ ) → (ξ, γ ): By Glaisher’s bijection, let φ(ω) = ξ . One can see that ξ is
a distinct partition.

Step 3. (ξ, γ ) → (μ1, μ2, π, γ ): Divide ξ into a triple of partitions (μ1, μ2, π)

according to the remainder of the parts mod 4. Here μ1 (μ2) consist of all
the parts congruent to 1(3) mod 4 and π consists of all the even parts of ξ .

Step 4. (μ1, μ2, π, γ ) → (μ1, μ2, ζ, γ ): Let ζ = 2ψ( 12π) by applying Glaisher’s
bijection. Since 1

2π is a distinct partition, we can say that ζ is a partition with
all parts congruent to 2 mod 4.

Step 5. (μ1, μ2, ζ, γ ) → (η, β, ζ, γ ): Write μ1 and μ2 as

μ1 = (4a1 + 1, 4a2 + 1, . . . , 4as+m + 1),

μ2 = (4b1 + 3, 4b2 + 3, . . . , 4bs + 3),

where a1 > a2 > · · · > as+m ≥ 0 and b1 > b2 > · · · > bs ≥ 0.

Case 1. m ≥ 0. Using the bijection ϕ established by Seo and Yee [10], a Frobenius
symbol

μ =
(
a1+m a2+m · · · as+m

b1 b2 · · · bs
)

and a partition ν = (a1 − m + 1, a2 − m + 2, . . . , am) can be constructed.
Let ϕ(μ1, μ2) = (η, β), where η = 4(μ∪ ν) and β = (4(m−1)+1, 4(m−
2) + 1, . . . , 5, 1).

Case 2. m < 0. Correspondingly, a Frobenius symbol

μ =
(
b1−m b2−m · · · bs
a1 a2 · · · as+m

)

and a partition ν = (b1 +m + 1, b2 +m + 2, . . . , b−m) can be constructed.
Let ϕ(μ1, μ2) = (η, β), where η = 4(μ ∪ ν)′ and β = (4(−m − 1) +
3, 4(−m − 2) + 3, . . . , 7, 3).

Step 6. (η, β, ζ, γ ) → (α, β, γ ): Ultimately, let α = η ∪ ζ and define 
(λ) =
(α, β, γ ).

Furthermore, one sees that the above construction can be reversed. This completes
the proof. ��

An example of the bijection 
 is given below.
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Example 2.2

λ = (30, 25, 18, 13, 11, 9, 6,5, 5, 5, 5, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1)


Step 1.

(ω, γ ) = (
(25, 13, 11, 9, 5, 5, 5, 5,3, 3, 3, 3, 3, 3, 3, 1, 1, 1), (30, 18, 6)

)


Step 2.

(ξ, γ ) = (
(25, 20, 13, 12,11, 9, 6, 3, 2, 1), (30, 18, 6)

)


Step 3.

(μ1, μ2, π, γ ) = (
(25, 13, 9, 1),(11, 3), (20, 12, 6, 2), (30, 18, 6)

)


Step 4.

(μ1, μ2, ζ, γ ) = (
(25, 13, 9, 1), (11, 3), (10, 10, 6, 6, 6, 2), (30, 18, 6)

)


Step 5.

(η, β, ζ, γ ) = (
(20, 12, 12, 8, 4), (5, 1), (10, 10, 6, 6, 6, 2), (30, 18, 6)

)


Step 6.

(α, β, γ ) = (
(20, 12, 12, 10, 10,8, 6, 6, 6, 4, 2), (5, 1), (30, 18, 6)

)

Now we are ready to give the definition of the ped-crank of a partition with even
parts distinct under the bijection 
.

Definition 2.3 Let λ be a partition with even parts distinct and 
(λ) = (α, β, γ ). The
ped-crank of λ, denoted by cped(λ), is defined as the crank of 1

2α.

3 Generating function ofMped(m,n)

This section focuses on the generating function of Mped(m, n).
According to the bijection 
, the generating function of β can be derived by using

Jacobi’s triple product identity.

∞∑

n=0

q4(
n
2)+n +

−1∑

n=−∞
q4(

n
2)+n = (−q; q4)∞(−q3; q4)∞(q4; q4)∞.

Moreover, it is trivial that the generating function of γ is

(−q2; q2)∞.

Since the ped-crank only relies on the even partition α, by (1.2), the generating
function of Mped(m, n) can be given as
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1112 R. X. J. Hao

∞∑

n=0

∞∑

m=−∞
Mped(m, n)zmqn

= (q2; q2)∞
(zq2; q2)∞(z−1q2; q2)∞ · (−q; q4)∞(−q3; q4)∞(q4; q4)∞ · (−q2; q2)∞

= (q2; q2)∞
(zq2; q2)∞(z−1q2; q2)∞

(q4; q4)∞
(q; q2)∞

.

(3.1)

By considering the transformation that interchanges z and z−1 in (3.1), we have

Mped(m, n) = Mped(−m, n).

Thus, for any positive integer t ,

Mped(m, t, n) = Mped(−m, t, n).

In other words,

Mped(m, t, n) = Mped(t − m, t, n). (3.2)

4 Preliminaries

In this section we present some results that will be used in Section 5.

Lemma 4.1

(−q;−q)∞ = f 32
f1 f4

.

Proof Replacing q by −q in (q; q)∞, we have

(−q;−q)∞ = (−q; q2)∞(q2; q2)∞
= (−q; q)∞(q2; q2)∞

(−q2; q2)∞
= (q; q)∞(−q; q)∞(q2; q2)2∞

(q; q)∞(−q2; q2)∞(q2; q2)∞
= (q2; q2)3∞

(q; q)∞(q4; q4)∞ .

��
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A partition statistic for partitions... 1113

Lemma 4.2 ([4, Entry 22, p. 36])

φ(q) =
∞∑

n=−∞
qn

2 = f 52
f 21 f 24

.

Replacing q by −q in the above equation, we get

φ(−q) = 2
∞∑

n=0

(−1)nqn
2 − 1 = f 21

f2
.

Lemma 4.3 ([4, p. 49])

ψ(q) =
∞∑

n=0

q(n+1
2 ) = f 22

f1
= f6 f 29

f3 f18
+ q

f 218
f9

.

Theorem 4.4 ([5, Lemma 2.2])

1

ϕ(−q)
= ϕ3(−q9)

ϕ4(−q3)

(
1 + 2qω(q3) + 4q2ω2(q3)

)
,

1

ψ(q)
= ψ3(q9)

ψ4(q3)

(
1

ω2(q3)
− q

1

ω(q3)
+ q2

)

,

where

ω(q) = f1 f 36
f2 f 33

.

Lemma 4.5 ([13, Lemma 2.5])

f1
f 33

= f2 f 24 f 212
f 76

− q
f 32 f 612
f 24 f 96

.

Lemma 4.6 ([8, p. 5])

f1 f2 = f6 f 49
f3 f 218

− q f9 f18 − 2q2
f3 f 418
f6 f 29

.

Lemma 4.7 ([3, Theorem 3.1])

f4
f1

= f12 f 418
f 33 f 236

+ q
f 26 f 39 f36
f 43 f 218

+ 2q2
f6 f18 f36

f 33
.

The following two theorems are crucial for establishing combinatorial interpreta-
tions.
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1114 R. X. J. Hao

Theorem 4.8 For any fixed n, if

Mped(0, 2, n) = Mped(1, 2, n), (4.1)

Mped(0, 3, n) = Mped(1, 3, n), (4.2)

Mped(0, 6, n) + Mped(1, 6, n) = Mped(2, 6, n) + Mped(3, 6, n), (4.3)

then

Mped(m, 6, n) = ped(n)

6
, m = 0, 1, 2, 3, 4, 5, and Mped(3, 12, n) = ped(n)

12
.

Proof By (3.2), we have

Mped(0, 2, n) = Mped(0, 6, n) + 2Mped(2, 6, n), (4.4)

Mped(1, 2, n) = 2Mped(1, 6, n) + Mped(3, 6, n), (4.5)

Mped(0, 3, n) = Mped(0, 6, n) + Mped(3, 6, n), (4.6)

Mped(1, 3, n) = Mped(1, 6, n) + Mped(2, 6, n). (4.7)

Substituting (4.4)–(4.7) into (4.1)–(4.2), we have

Mped(0, 6, n) − 2Mped(1, 6, n)+2Mped(2, 6, n) − Mped(3, 6, n) = 0, (4.8)

Mped(0, 6, n) − Mped(1, 6, n)−Mped(2, 6, n) + Mped(3, 6, n) = 0. (4.9)

Solving system of linear homogeneous equations (4.3), (4.8) and (4.9), we get

Mped(m, 6, n) = ped(n)

6
, m = 0, 1, 2, 3, 4, 5.

Moreover,

Mped(3, 6, n) = Mped(3, 12, n) + Mped(9, 12, n) = 2Mped(3, 12, n), (4.10)

which implies

Mped(3, 12, n) = Mped(3, 6, n)

2
= ped(n)

12
.

This completes the proof. ��
The following theorem can be checked similarly.

Theorem 4.9 For any fixed n, if

Mped(0, 2, n) = Mped(1, 2, n),

Mped(0, 6, n) + Mped(1, 6, n) = Mped(2, 6, n) + Mped(3, 6, n),
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then

Mped(0, 6, n) = Mped(3, 6, n),

Mped(1, 6, n) = Mped(2, 6, n).

5 Proofs of main results

In this section,wegive proofs of ourmain results.Hereafterwe always assumeα, n ≥ 0
unless specified otherwise.

Proof of Theorem 1.4. Setting z = eπ i = −1 in (3.1), we get

∞∑

n=0

∞∑

m=−∞
Mped(m, n)(−1)mqn =

∞∑

n=0

(
Mped(0, 2, n) − Mped(1, 2, n)

)
qn = f 42

f1 f4
.

(5.1)

Let g(q) be a polynomial of q, observing that the coefficient of qn in g(q) is zero
implies the coefficient of qn in g(−q) is zero and vice versa. Hence we consider the
following equation. By Lemma 4.1, replacing q by −q in (5.1), we have

∞∑

n=0

(
Mped(0, 2, n) − Mped(1, 2, n)

)
(−q)n = f1 f2. (5.2)

According to Lemma 4.6, we find that

∞∑

n=0

(
Mped(0, 2, n) − Mped(1, 2, n)

)
(−q)n = f6 f 49

f3 f 218
− q f9 f18 − 2q2

f3 f 418
f6 f 29

.

(5.3)

Extracting those terms associated with powers q3n+1 on both sides of (5.3), then
dividing by q and replacing q3 by q, we arrive at

∞∑

n=0

(
Mped(0, 2, 3n + 1) − Mped(1, 2, 3n + 1)

)
(−1)3n+1qn = − f3 f6. (5.4)

Since the coefficients of q3n+1 and q3n+2 in (5.4) are both zero, we can conclude that
the coefficients of q9n+4 and q9n+7 in (5.2) are both zero. This yields

Mped(0, 2, 9n + 4) = Mped(1, 2, 9n + 4), (5.5)

Mped(0, 2, 9n + 7) = Mped(1, 2, 9n + 7). (5.6)
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1116 R. X. J. Hao

Extracting the terms involving q3n in (5.4) and substituting q3 by q gives

∞∑

n=0

(
Mped(0, 2, 9n + 1) − Mped(1, 2, 9n + 1)

)
(−1)9n+1qn = − f1 f2. (5.7)

Since 9n has the same parity as n, (5.7) becomes

∞∑

n=0

(
Mped(0, 2, 9n + 1) − Mped(1, 2, 9n + 1)

)
(−q)n = f1 f2. (5.8)

From (5.2), (5.8) and mathematical induction, it follows that

∞∑

n=0

(

Mped

(

0, 2, 32αn + 32α − 1

8

)

− Mped

(

1, 2, 32αn + 32α − 1

8

))

(−q)n = f1 f2.

(5.9)

Comparing (5.9) with (5.2), the following equations can be proved by similar argu-
ments for (5.5)–(5.6), and hence the proof is omitted.

Mped

(

0, 2, 32α+2n + 11 · 32α+1 − 1

8

)

= Mped

(

1, 2, 32α+2n + 11 · 32α+1 − 1

8

)

,

(5.10)

Mped

(

0, 2, 32α+2n + 19 · 32α+1 − 1

8

)

= Mped

(

1, 2, 32α+2n + 19 · 32α+1 − 1

8

)

.

(5.11)

Substituting z = e
π i
3 into (3.1), by (3.2) and e

π i
3 + e

5π i
3 = −(e

2π i
3 + e

4π i
3 ) =

−eπ i = 1, we see that

∞∑

n=0

5∑

m=0

Mped (m, 6, n)e
mπ i
3 qn

=
∞∑

n=0

(
Mped (0, 6, n)n + (e

π i
3 + e

5π i
3 )Mped (1, 6, n)n

+(e
2π i
3 + e

4π i
3 )Mped (2, 6, n) + eπ i Mped (3, 6, n)

)
qnn

=
∞∑

n=0

(
Mped (0, 6, n) + Mped (1, 6, n)n −Mped (2, 6, n) − Mped (3, 6, n)

)
qnn

= f 22 f4
f1

∞∏

n=0

1

1 − q2n + q4n
n
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= f 22 f4
f1

∞∏

n=0

1 + q2n

1 + q6n
n

= f 22
f1

f 24
f2

f6
f12

.

By Lemma 4.3, we have

∞∑

n=0

(
Mped(0, 6, n) + Mped(1, 6, n) − Mped(2, 6, n) − Mped(3, 6, n)

)
qn

=
(

f6 f 29
f3 f18

+ q
f 218
f9

) (
f12 f 218
f6 f36

+ q2
f 236
f18

)
f6
f12

. (5.12)

Extracting the terms involving q3n+1 in (5.12), then dividing by q and replacing q3

by q, we find that

∞∑

n=0

(
Mped(0, 6, 3n + 1) + Mped(1, 6, 3n + 1) − Mped(2, 6, 3n + 1)

−Mped(3, 6, 3n + 1)
)
qn = f 46

f3 f12
. (5.13)

Obviously, the coefficients of q3n+1 and q3n+2 in (5.13) are both zero, which gives

Mped (0, 6, 9n + 4) + Mped (1, 6, 9n + 4) = Mped (2, 6, 9n + 4) + Mped (3, 6, 9n + 4), (5.14)

Mped (0, 6, 9n + 7) + Mped (1, 6, 9n + 7) = Mped (2, 6, 9n + 7) + Mped (3, 6, 9n + 7). (5.15)

Considering the terms involving q3n in (5.13), after simplification, we get

∞∑

n=0

(
Mped(0, 6, 9n + 1) + Mped(1, 6, 9n + 1) − Mped(2, 6, 9n + 1)

−Mped(3, 6, 9n + 1)
)
qn = f 42

f1 f4
. (5.16)

Comparing (5.16) with (5.1), according to (5.14)–(5.15) and the proofs of (5.10)–
(5.11), a simple deduction shows that

Mped

(

0, 6, 32α+2n + 11 · 32α+1 − 1

8

)

+ Mped

(

1, 6, 32α+2n + 11 · 32α+1 − 1

8

)

= Mped

(

2, 6, 32α+2n + 11 · 32α+1 − 1

8

)

+ Mped

(

3, 6, 32α+2n + 11 · 32α+1 − 1

8

)

,

(5.17)
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Mped

(

0, 6, 32α+2n + 19 · 32α+1 − 1

8

)

+ Mped

(

1, 6, 32α+2n + 19 · 32α+1 − 1

8

)

= Mped

(

2, 6, 32α+2n + 19 · 32α+1 − 1

8

)

+ Mped

(

3, 6, 32α+2n + 19 · 32α+1 − 1

8

)

.

(5.18)

Combining (5.10)–(5.11), (5.17)–(5.18) and Theorem 4.9, Theorem 1.4 follows
immediately. ��
Proof of Corollary 1.5. Corollary 1.5 can be checked easily by (4.6)–(4.7) and Theo-
rem 1.4, hence we omitted the details. ��
Proof of Corollary 1.6 By (4.6), (4.10) and Theorem 1.4, one can see that

Mped

(

3, 12, 32α+2n + 11 · 32α+1 − 1

8

)

=
Mped

(
3, 6, 32α+2n + 11·32α+1−1

8

)

2

=
Mped

(
0, 3, 32α+2n + 11·32α+1−1

8

)

4
,

Mped

(

3, 12, 32α+2n + 19 · 32α+1 − 1

8

)

=
Mped

(
3, 6, 32α+2n + 19·32α+1−1

8

)

2

=
Mped

(
0, 3, 32α+2n + 19·32α+1−1

8

)

4
.

Hence Corollary 1.6 holds.

Proof of Corollary 1.7 By (3.2), we have

Mped(1, 2, n) = Mped(1, 4, n) + Mped(3, 4, n) = 2Mped(1, 4, n). (5.19)

Then Corollary 1.7 follows immediately according to (5.10)–(5.11) and the fact that
ped(n) = Mped(0, 2, n) + Mped(1, 2, n). ��

Proof of Theorem 1.8 Substituting z = e
π i
2 = i into (3.1), by (3.2) and Lemmas 4.2–

4.3, we find that

∞∑

n=0

∞∑

m=−∞
Mped(m, n)imqn =

∞∑

n=0

3∑

m=0

Mped(m, 4, n)imqn

=
∞∑

n=0

(
Mped(0, 4, n) + (i + i3)Mped(1, 4, n)

+i2Mped(2, 4, n)
)
qn
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=
∞∑

n=0

(
Mped(0, 4, n) − Mped(2, 4, n)

)
qn

= f 22
f1

f 24
f8

=
∞∑

n=0

q(n+1
2 )

(

2
∞∑

n=0

(−1)nq4n
2 − 1

)

. (5.20)

By (3.2), one can see that

ped(n) =
3∑

m=0

Mped(m, 4, n) = Mped(0, 4, n) + 2Mped(1, 4, n) + 2Mped(2, 8, n).

In light of (5.20) and the fact that Mped(0, n) has the same parity as Mped(0, 4, n),
Theorem 1.8 holds. ��

We next aim to prove Theorem 1.9.

Proof of Theorem 1.9 Substituting z = e
2π i
3 into (3.1), we obtain

∞∑

n=0

2∑

m=0

Mped(m, 3, n)e
2mπ i
3 qn = (q2; q2)∞

(ζq2; q2)∞(ζ−1q2; q2)∞
(q4; q4)∞
(q; q2)∞ = f 22

f1

f2 f4
f6

.

(5.21)

Using Lemmas 4.3, 4.6, by (3.2) and the fact that 1 + e
2π i
3 + e

4π i
3 = 0, we get

∞∑

n=0

(Mped(0, 3, n) − Mped(1, 3, n))qn =
(

f6 f 29
f3 f18

+ q
f 218
f9

)

(
f12 f 418
f6 f 236

− q2 f18 f36 − 2q4
f6 f 436
f12 f 218

)
1

f6
.

Extracting those terms associated with powers q3n+1 on both sides of the above equa-
tion, then dividing by q and replacing q3 by q, one can see that

∞∑

n=0

(Mped(0, 3, 3n + 1) − Mped(1, 3, 3n + 1))qn = f4
f 22

f 66
f3 f 212

− 2q
f2
f1 f4

f 23 f 412
f 36

.

(5.22)

Since
f2
f1 f4

= 1

ψ(−q)
,
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using Lemma 4.4,

∞∑

n=0

(Mped(0, 3, 3n + 1) − Mped(1, 3, 3n + 1))qn

= f 212 f
6
18

f3 f 26 f 336
− 2q3

f6 f 39 f 336
f 23 f 318

− 2q
f 212 f

9
18

f 36 f 39 f 336
+ 4q4

f 336
f3

(5.23)

after simplification.
Clearly, the coefficient of q3n+2 in (5.23) is zero. We can conclude that

Mped(0, 3, 9n + 7) = Mped(1, 3, 9n + 7). (5.24)

Combining (5.11), (5.18), (5.24) and Theorem 4.8, we complete the proof of Theo-
rem 1.9. ��
Remark 1 Andrews,Hirschhorn, andSellers [3] presented an interesting infinite family
of congruences modulo 3 as given by

ped

(

32α+1n + 17 · 32α − 1

8

)

≡ 0 (mod 3), α ≥ 1, (5.25)

and deduced that

ped

(

32α+1n + 17 · 32α − 1

8

)

≡ 0 (mod 6), α ≥ 1. (5.26)

Actually, based on a substantial amount of numerical evidence, we conjecture that the
ped-crank can be used to provide a combinatorial interpretation of (5.25), namely

Mped

(

0, 3, 32α+1n + 17 · 32α − 1

8

)

= Mped

(

1, 3, 32α+1n + 17 · 32α − 1

8

)

,

α ≥ 1.

Here, we only prove the case for α = 1, and for any α > 1, we are not able to provide
an elementary proof of this conjecture.

Proof Extracting the terms involving q3n in (5.23) and substituting q3 by q, we obtain

∞∑

n=0

(Mped(0, 3, 9n + 1) − Mped(1, 3, 9n + 1))qn = f4
f1

f4
f 22

f 66
f 312

− 2q
f2 f 33 f 312
f 21 f 36

.

(5.27)

From Lemmas 4.4, 4.5, 4.7, considering the terms involving q3n+2 in (5.27) leads to

∞∑

n=0

(Mped(0, 3, 27n + 19) − Mped(1, 3, 27n + 19))qn
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= f4 f 76
f 31 f2 f 212

− f 33 f 34
f 41

+ q
f 22 f 33 f 412
f 41 f4 f 26

= f 33
f 41

(
f1
f 33

f4 f 76
f2 f 212

− f 34 + q
f 22 f 412
f4 f 26

)

= f 33
f 41

((
f2 f 24 f 212

f 76
− q

f 32 f 612
f 24 f 96

)
f4 f 76
f2 f 212

− f 34 + q
f 22 f 412
f4 f 26

)

= 0.

That means

Mped(0, 3, 27n + 19) = Mped(1, 3, 27n + 19).

��
Unfortunately, the ped-crank cannot be employed to interpret (5.26) even forα = 1.

Hence, it will be interesting to introduce another partition statistic that could combi-
natorially interpret (5.26).

Remark 2 For ordinary partitions, recall that we define M(0, 1) = −1, M(−1, 1) =
M(1, 1) = 1. From the definition of ped-crank, one can see that a similar problemwill
arise when
(λ) = ((2), β, γ ). So we make the following adjustment to the definition
of ped-crank. Let

γ = (γ1, γ2, · · · , γk),

An = {λ|
(λ) = ((2), β, γ ), |λ| = n},
Bn = {λ|
(λ) = ((0), β, γ ), |λ| = n, γ = (2) or γ1 − γ2 ≥ 4}.

Definition 5.1 Let λ be a partition of n with even parts distinct. The cmped(λ) is given
by

cmped(λ) =
⎧
⎨

⎩

1 i f λ ∈ An,

−1 i f λ ∈ Bn,

cped(λ) otherwise,

where cped(λ) is the ped-crank of λ.

When λ ∈ An , an injection from An to Bn can be constructed by changing α to ∅ and
adding 2 to the largest part of γ . Another direction is obvious. Hence for any non-
negative integer n, there is a bijection between An and Bn . Let Mmped(m, n) denote
the number of partitions of n with even parts distinct with cmped(λ) = m. By the
definition of cmped(λ), one can check Mmped(m, n) = Mped(m, n) for any integer m
and non-negative integer n.

For example, if λ = (6, 5, 4, 1, 1, 1),
(λ) = ((2), (5, 1), (6, 4)), then cmped(λ) =
1 and if λ = (8, 5, 4, 1),
(λ) = ((0), (5, 1), (8, 4)), then cmped(λ) = −1.
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Table 1 The case for n = 7

λ 
(λ) = (α, β, γ ) 1
2α cmped (λ)

(7) ((4), (3), ∅) (2) 2

(6, 1) ∈ B (∅, (1), (6)) ∅ −1

(5, 2) ((4), (1), (2)) (2) 2

(5, 1, 1) ((4, 2), (1), ∅) (2,1) 0

(4, 3) ∈ B (∅, (3), (4)) ∅ −1

(4, 2, 1) (∅, (1), (4, 2)) ∅ 0

(4, 1, 1, 1) ∈ A ((2), (1), (4)) (1) 1

(3, 3, 1) ((6), (1), ∅) (3) 3

(3, 2, 1, 1) ∈ A ((2), (3), (2)) (1) 1

(3, 1, 1, 1, 1) ((2, 2), (3), ∅) (1, 1) −2

(2, 1, 1, 1, 1, 1) ((2, 2), (1), (2)) (1, 1) −2

(1, 1, 1, 1, 1, 1, 1) ((2, 2, 2), (1), ∅) (1, 1, 1) −3

Table 1 gives the 12 partitions of 7 with even parts distinct. It is easy to check that
these partitions are divided into six equinumerous subsets by ped-crank. Moreover,

Mped(1, 4, 7) = 3 = ped(7)

4
,

Mped(3, 12, 7) = 1 = ped(7)

12
.

6 Closing remarks

In 2014, Xia [12] proved the following congruence modulo 4 for ped(n).

Theorem 6.1 [12, Equation (9), Theorem 1] For α, n ≥ 0,

ped

(

32αn + 32α − 1

8

)

≡ ped(n) (mod 4).

Note that comparing (5.4) with (5.13), a simple deduction gives

Mped(1, 6, 3n + 1) = Mped(2, 6, 3n + 1).

Thus

ped(3n + 1) = Mped(0, 3, 3n + 1) + 4Mped(1, 6, 3n + 1).
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Since for all α > 0, n ≥ 0, 32αn + 32α−1
8 ≡ 1 (mod 3), a refinement of Theorem 6.1

can be given as

Mped

(

0, 3, 32αn + 32α − 1

8

)

≡ ped(n) (mod 4).
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