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Abstract
We introduce and study an extension of the Roberts orthogonality, in the setting of
C∗-algebras. More precisely, in a C∗-algebra A , for a, b ∈ A and a nonempty
subset of A , say B, a is called B-Roberts orthogonal to b, denoted by a ⊥B

R b, if
‖a + bc‖ = ‖a − bc‖ for all c ∈ B. For certain special C∗-algebras, including the
C∗-algebra of all 2×2 complexmatrices, we obtain a nontrivial subsetB such that the
B-Roberts orthogonality coincides with the usual orthogonality. We also introduce a
new concept of smoothness in normed linear spaces in terms of the additivity property
of the usual Roberts orthogonality. A complete characterization of the same is obtained
in the case of the classical �n∞ spaces.
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1 Introduction

It is interesting to extend the usual orthogonality in inner product spaces to the other
realms. Roberts [13] was one of the earliest mathematicians who generalized the
geometric concept of orthogonality to the setting of real normed linear spaces. In a
complex normed linear space (X, ‖ · ‖), a vector x ∈ X is called Roberts orthogonal
to a vector y ∈ X, written as x ⊥R y, if ‖x + λy‖ = ‖x − λy‖ for all λ ∈ C; see also
the survey article [6]. It is elementary to note that the Roberts orthogonality is both
symmetric (i.e., x ⊥R y ⇒ y ⊥R x) and homogeneous (i.e., x ⊥R y ⇒ αx ⊥R β y
for all α, β ∈ C). The notion of approximate Roberts orthogonality was introduced
and studied in [17, 18].

A vector x ∈ X is called Birkhoff–James orthogonal to a vector y ∈ X, written
as x ⊥B y, if ‖x + λy‖ ≥ ‖x‖ for each λ ∈ C; see [7, 10]. The Birkhoff–James
orthogonality is homogeneous, but in contrast to the Roberts orthogonality, it is not
symmetric.
The Roberts orthogonality implies the Birkhoff–James orthogonality through the fol-
lowing chain of (in)equalities:

2‖x‖ = ‖2x + λy − λy‖ ≤ ‖x + λy‖ + ‖x − λy‖ = 2‖x + λy‖ (λ ∈ C).

If the norm on X is induced by an inner product 〈·, ·〉, then it is easy to verify that x
and y are both Roberts and Birkhoff–James orthogonal if and only if 〈x, y〉 = 0.
By virtue of theHahn–Banach theorem, x ⊥B y if and only if there is a norm one linear
functional f on X such that f (x) = ‖x‖ and f (y) = 0. By SX = {x ∈ X : ‖x‖ = 1}
we denote the unit sphere of a normed linear space X.

Let us denote by B(H) the C∗-algebra of all bounded linear operators acting on a
Hilbert space H. The identity operator on a space is denoted by I , and an operator
A ∈ B(H) is called a similarity when A is a scalar multiple of I , that is, A = λI
for some λ ∈ C. Also, we say that A is a positive similarity when A = λI for some
λ > 0. For A ∈ B(H), the unique positive square root of A∗A is denoted by |A|.
When H is of a finite dimension n, we identify B(H) with the algebra Mn(C) of all
n × n matrices with complex entries. Let K(H) denote the collection of all compact
operators on a Hilbert space H.
Let s1(A), s2(A), . . . , sn(A) be the singular values of A ∈ Mn(C), arranged in
decreasing order and counted with their multiplicities. For p > 0, the p-Schatten
norm is defined by

‖A‖p :=
(

n∑
i=1

si (A)p

) 1
p

= (tr|A|p) 1
p .
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The norm ‖·‖1 is the trace-class norm. Several authors have explored the orthogonality
with respect to the norm ‖ · ‖p (for more details, we refer the interested reader to [8,
11, 16]).
It is known that if A ∈ M2(C), then the eigenvalues of A∗A are as follows:

λ1 = tr(A∗A) +√
tr2(A∗A) − 4|det(A)|2

2
,

λ2 = tr(A∗A) −√
tr2(A∗A) − 4|det(A)|2

2
.

Hence, ‖A‖1 = √
λ1 + √

λ2, which ensures that

‖A‖21 = tr(A∗A) + 2|det(A)|. (1.1)

In the context of C∗-algebras, the authors of [3] presented a characterization of the
Roberts orthogonality in terms of the notion of Davis-Wielandt shell. In the setting
of Hilbert C∗-modules, [2] and [9] serve as useful references for understanding the
Birkhoff–James andRoberts orthogonalities. In this paper, one of our aims is to present
a meaningful extension of the Roberts orthogonality in C∗-algebras and to derive
some interesting relations on the structure of the space, in light of a newly introduced
generalized version.

Arambašić and Rajić [1] introduced a new version of the Birkhoff–James orthog-
onality in the setting of C∗-algebras in the following way. An element a ∈ A is
called strong Birkhoff–James orthogonal to an element b ∈ A , in short a ⊥s

B b, if
‖a‖ ≤ ‖a+bc‖ for each c ∈ A . The strong Birkhoff–James orthogonality implies the
Birkhoff–James orthogonality. Furthermore, a ⊥s

B b if and only if there exists a posi-
tive linear functionalϕ of normone onA such thatϕ(a∗a) = ‖a‖2 andϕ(|a∗b|2) = 0;
see [1, Theorem 2.5].
We say that two elements a and b in a C∗-algebra A are orthogonal if a∗b = 0,
and in that case, we write a ⊥ b. Applying [4, Theorem 2], one gets the following
characterization of the orthogonality in a C∗-algebra.

Theorem 1.1 [4, Theorem 2] Let A be a C∗-algebra and let a, b ∈ A . Then the
following conditions are equivalent:

(i) ‖a + bc‖ = ‖a − bc‖ for all c ∈ A ;
(ii) a ⊥ b.

For a comprehensive study of the theory of C∗-algebras, we refer the reader to [12].
In this paper, we introduce a nontrivial subsetB in someC∗-algebra such that even

after restricting the element c to be inB, the above theorem remains valid. In Sect. 2,
we first present an extension of theRoberts orthogonality, to the setting ofC∗-algebras.
Then we describe several basic properties of such an orthogonality relation. In Sect. 3,
we obtain some characterizations of the usual orthogonality in certain C∗-algebras. In
the final section, we introduce the concept of R-smoothness in a normed linear space,
in order to essentially study the additivity property of the usual Roberts orthogonality.
We completely characterize the R-smoothness in �n∞ spaces.
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2 Roberts orthogonality with respect to a subset

Let us begin this section with a definition.

Definition 2.1 LetB be a nonempty subset of aC∗-algebraA and let a, b ∈ A . Then
a is said to be B-Roberts orthogonal to b, denoted by a ⊥B

R b, if

‖a + bc‖ = ‖a − bc‖ forall c ∈ B.

The following proposition presents some useful properties of this relationship.

Proposition 2.2 Let A be a C∗-algebra and let B ⊆ A . For every a, b ∈ A , the
following properties hold:

(i) a ⊥B
R a if and only if a = 0, where B is a nonzero C∗-subalgebra of A and

a ∈ B;
(ii) The B-Roberts orthogonality is homogeneous, whereB is a subalgebra of A ;
(iii) a ⊥B

R b if and only if a ⊥B
R bc for each c ∈ B, whereB is a C∗-subalgebra of

A ;
(iv) If a ⊥A

R b, then a ⊥s
B b;

(v) If B and C are nonempty subsets of A such that B ⊆ C , then a ⊥C
R b implies

a ⊥B
R b.

Proof (i) Let B be a nonzero C∗-subalgebra of A . Then it has an approximate unit
(ui ). Hence,

2‖a‖ = lim
i

‖a + aui‖ = lim
i

‖a − aui‖ = 0.

The other proofs are straightforward and so we omit them. ��
It should be noted that the case (i) of Proposition 2.2 no longer holds true in general,

for elements of A . The following easy example illustrates this fact.

Example 2.3 Let p and q be nonzero projections in B(H) such that the range of q is a
subset of the kernel of p. LetB = Cq. Then it is immediate that p ⊥B

R p but p �= 0.

The converse of the case (iv) of Proposition 2.2 also does not hold in general, as we
will show in the next example.

Example 2.4 Consider the C∗-algebra M2(C). If B =
[
0 0
0 1

]
, then for each C =[

c1 c2
c3 c4

]
, we have

‖I + BC‖ = sup
|x |2+|y|2=1

∥∥∥∥
[

x
c3x + (1 + c4)y

]∥∥∥∥
= sup

|x |2+|y|2=1

√
|x |2 + |c3x + (1 + c4)y|2 ≥ ‖I‖,
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where the last inequality is obtained by considering x = 1 and y = 0. Therefore,
I ⊥s

B B. If we take C = B, then ‖I + BC‖ = 2 �= 1 = ‖I − BC‖, that is,
I �⊥M2(C)

R B.

Remark 2.5 If B is a nonzero subset of a C∗-algebra A , then clearly ⊥ ⊆ ⊥B
R .

Moreover, if B is a C∗-subalgebra of A and if a, b ∈ B, then by employing the
approximate unit (ui ) of B, we obtain

‖a + λb‖ = lim
i

‖a + λbui‖ = lim
i

‖a − λbui‖ = ‖a − λb‖

for each λ ∈ C, ensuring that a ⊥R b.

The next example shows that a ⊥R b does not imply a ⊥B
R b, in general. Let us fix

our notation. Let Cb(X) be the normed linear space of all continuous bounded scalar-
valued functions on a metric space X, endowed with the usual supremum norm. For
f ∈ Cb(X), the support supp( f ) of f is the closure of the set {x ∈ X : f (x) �= 0}.
The diameter of a setS ⊆ X is denoted by diam(S ).

Example 2.6 Let C = { f ∈ C ([−1, 1]) : f = 0 on [−1, 0]}. It is easy to see that C
is an ideal of the C∗-algebra C ([−1, 1]).
Suppose f , g ∈ C ([−1, 1]) with f (x) = x and g(x) = |x |. Then

‖ f + λg‖∞ = sup
({|x − λx | : −1 ≤ x ≤ 0} ∪ {|x + λx | : 0 ≤ x ≤ 1})

= sup
({|x + λx | : −1 ≤ x ≤ 0} ∪ {|x − λx | : 0 ≤ x ≤ 1})

=‖ f − λg‖∞.

Hence, f ⊥R g.

Now, if h(x) =
{
x, 0 ≤ x ≤ 1,

0, −1 ≤ x ≤ 0,
then h ∈ C , and we have

‖ f + gh‖∞ = sup
({|x | : −1 ≤ x ≤ 0} ∪ {|x + x2| : 0 ≤ x ≤ 1}) = 2

and

‖ f − gh‖∞ = sup
({|x | : −1 ≤ x ≤ 0} ∪ {|x − x2| : 0 ≤ x ≤ 1}) = 1.

Thus, f �⊥C
R g.

Furthermore, for some C∗-subalgebrasB, the inclusion ⊥B
R ⊆⊥ is generally not true.

The next example illustrates this fact.

Example 2.7 Let A =

⎡
⎢⎢⎣
1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ and let B =

⎡
⎢⎢⎣
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎦.
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Let B be the unital C∗-subalgebra of M4(C) generated by A and B. Now, let X =⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤
⎥⎥⎦. Obviously, I �⊥ X . However, for each C ∈ B, we have

‖I + XC‖ =

∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣
1 + λ 0 0 0
0 1 + μ 0 0
0 0 1 − λ 0
0 0 0 1 − μ

⎤
⎥⎥⎦
∥∥∥∥∥∥∥∥

= max
{|1 + λ|, |1 − λ|, |1 + μ|, |1 − μ|}

=

∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣
1 − λ 0 0 0
0 1 − μ 0 0
0 0 1 + λ 0
0 0 0 1 + μ

⎤
⎥⎥⎦
∥∥∥∥∥∥∥∥

= ‖I − XC‖.

Therefore, I ⊥B
R X .

3 Characterization of the usual orthogonality in some C∗-algebras

In this section, we present some characterizations of the usual orthogonality in certain
special C∗-algebras. Let X be a metric space. For each positive integer n, we define
the subset Bn of Cb(X) as follows:

Bn =
{
f ∈ Cb(X) : diam (supp( f )) ≤ 1

n

}
.

It is rather easy to observe that Bn is closed in Cb(X) for each n. Indeed, assume
that { fm} ⊂ Bn with fm −→ f0 ∈ Cb(X). We claim that f0 ∈ Bn . Consider any
x, y ∈ X such that f0(x), f0(y) �= 0. It is easy to deduce that there exists a sufficiently
large m0 ∈ N such that fm(x), fm(y) �= 0 for all m ≥ m0. In particular, we obtain

that | fm(x) − fm(y)| ≤ 1

n
, whenever m ≥ m0. Since the diameter of a set equals the

diameter of its closure, it is now clear that f0 ∈ Bn establishes our claim.
It is also elementary to note thatBn is not dense inCb(X), in general. For example,

let X = R with its usual metric. If f ∈ Bn , then clearly R \ supp( f ) �= ∅. We claim
that the constant function 1 is not in Bn . Suppose on the contrary that there exists a
sequence { fm} in Bn such that fm −→ 1. Thus, for any x ∈ R and for sufficiently
large m, we have

| fm(x) − 1| ≤ ‖ fm − 1‖∞ <
1

2
.
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In particular, for x ∈ R\supp( fm), we have | fm(x) − 1| <
1

2
, which is an obvious

contradiction. Therefore, Bn � Cb(R).

The next theorem shows that ⊥Bn
R and ⊥ may coincide in a commutative C∗-

algebra.

Theorem 3.1 Let X be a metric space and let f , g ∈ Cb(X). Then f ⊥Bn
R g for some

positive integer n if and only if f ⊥ g.

Proof Let f ⊥ g. Combining Theorem 1.1 and the case (v) of Proposition 2.2, we
conclude that f ⊥Bn

R g for all n.

Conversely, suppose that f ⊥Bn0
R g for some positive integer n0. We show that

f (x)g(x) = 0 for every x ∈ X.
Let x0 ∈ X. Without loss of generality, we can assume that g(x0) �= 0. We prove that
f (x0) = 0. Suppose that Re ( f (x0)) ≥ 0 (if Re ( f (x0)) ≤ 0, then we replace f by
− f ).
Let Nx0 be the set of all open neighborhoods U of x0. Let 0 < ε <

|g(x0)|
2 . Then for

each 0 < ε0 ≤ min

{
ε,

4‖ f ‖∞∣∣ f (x0) + 4‖ f ‖∞
∣∣ε
}

, there exist n ≥ n0 andU ∈ Nx0 of the

radius
1

2n
such that | f (x) − f (x0)| < ε0 and |g(x) − g(x0)| < ε0, for every x ∈ U .

Selection 0 < ε <
|g(x0)|

2 requires that g(x) �= 0 for each x ∈ U .
By the Uryshon’s lemma, there exists 0 ≤ h′

U ≤ 1 such that h′
U (x0) = 1 and

h′
U (x) = 0 for all x ∈ X \U . Define hU as follows:

hU (x) =
⎧⎨
⎩
4‖ f ‖∞
g(x)

h′
U (x), x ∈ U ,

0, x ∈ X \U .

Then

supp(hU ) = {
x : h′

U (x) �= 0
} ⊆ U .

Hence, diam(supp(hU )) ≤ 1

n
, that is, hU ∈ Bn .

Moreover, for every x ∈ X \U , we have

| f (x) + g(x)hU (x)| = | f (x)|
≤ ‖ f ‖∞
≤ ∣∣ f (x0) + 4‖ f ‖∞

∣∣
= ∣∣ f (x0) + 4‖ f ‖∞h′

U (x0)
∣∣

= ∣∣ f (x0) + g(x0)hU (x0)
∣∣, (3.1)
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and for every x ∈ U , we get

∣∣ f (x) + g(x)hU (x)
∣∣ ≤ ∣∣ f (x0) + g(x)hU (x)

∣∣+ ∣∣ f (x) − f (x0)
∣∣

≤ ∣∣ f (x0) + 4‖ f ‖∞h′
U (x)

∣∣+ ε0

=
√(

Re ( f (x0)) + 4‖ f ‖∞h′
U (x)

)2 + (Im ( f (x0)))2 + ε0

≤
√

(Re ( f (x0)) + 4‖ f ‖∞)2 + (Im ( f (x0)))2 + ε0

= ∣∣ f (x0) + g(x0)hU (x0)
∣∣+ ε0. (3.2)

Using (3.1) and (3.2), we obtain ‖ f + ghU‖∞ ≤ ∣∣ f (x0) + g(x0)hU (x0)
∣∣ + ε0.

Therefore,

∣∣∣‖ f + ghU‖∞ − ∣∣ f (x0) + g(x0)hU (x0)
∣∣∣∣∣ ≤ ε0. (3.3)

In the next step, we have

| f (x) − g(x)hU (x)| = | f (x)|
≤ ‖ f ‖∞

<

√
(3‖ f ‖∞)2 + (Im ( f (x0)))2

≤
√

(4‖ f ‖∞ − Re ( f (x0)))2 + (Im ( f (x0)))2

= ∣∣ f (x0) − 4‖ f ‖∞
∣∣

= ∣∣ f (x0) − 4‖ f ‖∞h′
U (x0)

∣∣
= ∣∣ f (x0) − g(x0)hU (x0)

∣∣ (3.4)

for every x ∈ X \U . On the other hand, if x ∈ U , then

∣∣ f (x) − g(x)hU (x)
∣∣ ≤ ∣∣ f (x0) − g(x)hU (x)

∣∣+ ∣∣ f (x) − f (x0)
∣∣

≤ ∣∣ f (x0) − 4‖ f ‖∞h′
U (x)

∣∣+ ε0

=
√(

Re ( f (x0)) − 4‖ f ‖∞h′
U (x)

)2 + (Im ( f (x0)))2 + ε0

≤
√

(Re ( f (x0)) − 4‖ f ‖∞)2 + (Im ( f (x0)))2 + ε0

= ∣∣ f (x0) − g(x0)hU (x0)
∣∣+ ε0. (3.5)

Thus, using (3.4) and (3.5), we conclude that ‖ f −ghU‖∞ ≤ ∣∣ f (x0)−g(x0)hU (x0)
∣∣+

ε0. Hence,

∣∣∣‖ f − ghU‖∞ − ∣∣ f (x0) − g(x0)hU (x0)
∣∣∣∣∣ ≤ ε0. (3.6)
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Now, (3.3), (3.6), and the assumption ‖ f + ghU‖∞ = ‖ f − ghU‖∞ ensure that

8‖ f ‖∞∣∣ f (x0) + 4‖ f ‖∞
∣∣ ∣∣Re ( f (x0))

∣∣

=
∣∣∣∣∣ f (x0) + 4‖ f ‖∞

∣∣2 − ∣∣ f (x0) − 4‖ f ‖∞
∣∣2∣∣∣

2
∣∣ f (x0) + 4‖ f ‖∞

∣∣
≤
∣∣∣∣∣ f (x0) + g(x0)hU (x0)

∣∣2 − ∣∣ f (x0) − g(x0)hU (x0)
∣∣2∣∣∣∣∣ f (x0) + g(x0)hU (x0)

∣∣+ ∣∣ f (x0) − g(x0)hU (x0)
∣∣ (since Re ( f (x0)) ≥ 0)

=
∣∣∣∣∣ f (x0) + g(x0)hU (x0)

∣∣− ∣∣ f (x0) − g(x0)hU (x0)
∣∣∣∣∣

=
∣∣∣∣∣ f (x0) + g(x0)hU (x0)

∣∣− ∣∣ f (x0) − g(x0)hU (x0)
∣∣− ‖ f + ghU ‖∞ + ‖ f − ghU ‖∞

∣∣∣
≤
∣∣∣∣∣ f (x0) + g(x0)hU (x0)

∣∣− ‖ f + ghU ‖∞
∣∣∣+ ∣∣∣∣∣ f (x0) − g(x0)hU (x0)

∣∣− ‖ f − ghU ‖∞
∣∣∣

≤ 2ε0

≤ 8‖ f ‖∞∣∣ f (x0) + 4‖ f ‖∞
∣∣ε.

Letting ε tend to zero, we obtain that Re ( f (x0)) = 0. Using analogous techniques
and using the function ihU , we can prove that Im ( f (x0)) = 0. ��

In the following, we obtain similar results for 2 × 2 complex matrices. More pre-
cisely, we introduce a nontrivial subset C of M2(C) such that ⊥C

R and ⊥ coincide
with respect to both the operator norm and the trace-class norm.
The following relation is a famous equality for an element A of theC∗-algebraM2(C) :

‖A∗A‖ = 1

2

(
tr(A∗A) +

√
tr2(A∗A) − 4det(A∗A)

)
. (3.7)

Recently, Arambašić and Rajić [5] proved that for any A, B ∈ M2(C),

A ⊥R B �⇒ tr(A∗B) = 0. (3.8)

Moreover, the following characterization of the Roberts orthogonality for matrices A
and B in M2(C) was established in [5].

Theorem 3.2 [5, Theorem 2.2] Let A, B ∈ M2(C), A, B �= 0. Then A ⊥R B if and
only if one of the following conditions holds:

(i) A = αU1

[
1 0
0 a

]
U2 and B = βU1

[
0 b
c 0

]
U2 for some unitary matrices U1,U2 ∈

M2(C), 0 ≤ a ≤ 1, and α, β, b, c ∈ C.

(ii) A = αU1

[
1 0
0 0

]
U2 and B = βU1

[
0 b
0 1

]
U2 for some unitary matrices U1,U2 ∈

M2(C) and α, β, b ∈ C.

(iii) A = αU1

[
1 0
0 0

]
U2 and B = βU1

[
0 0
b 1

]
U2 for some unitary matrices U1,U2 ∈

M2(C) and α, β, b ∈ C.
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Let C ⊆ M2(C) be the set of all those elements T ∈ M2(C) whose anticommutator
T T ∗ + T ∗T is a positive similarity, that is,

C = {
T ∈ M2(C) : T T ∗ + T ∗T = λI , forsome λ ≥ 0

}
.

In the next theorem, we show that ⊥C
R and ⊥ coincide.

Theorem 3.3 Let A, B ∈ M2(C), let B be the subalgebra of M2(C) generated by
B∗A, and let C ⊆ M2(C) be as above. Then the following properties are equivalent:

(i) A∗B = 0,
(ii) A ⊥M2(C)

R B,
(iii) A ⊥B

R B,
(iv) A ⊥C

R B.
(v) ‖A + BC‖1 = ‖A − BC‖1 for all C ∈ M2(C).

Proof (i) ⇔ (ii) follows from Theorem 1.1. The implications (ii) ⇒ (iii) and (ii) ⇒
(iv) can be deduced directly from the case (v) of Proposition 2.2.
To prove the implication (iii) ⇒ (i), suppose that A ⊥B

R B. Then for all λ ∈ C, we
have

‖A + λBC‖ = ‖A − λBC‖,

where C ∈ B. Therefore, ‖A + λBB∗A‖ = ‖A − λBB∗A‖, that is, A ⊥R BB∗A.
Using (3.8), we obtain that

∥∥∥∣∣B∗A
∣∣2∥∥∥

1
= tr

(∣∣B∗A
∣∣2) = tr

(
A∗BB∗A

) = 0.

Thus, |B∗A|2 = 0, whence A∗B = 0. Hence, A is orthogonal to B.
Next, we show that (iv) ⇒ (i). Suppose that A ⊥C

R B. Since λI ∈ C for each
λ ∈ C, thus, A ⊥R B. Therefore, one of the conditions in Theorem 3.2 holds. We
show that A∗B = 0, for each of the conditions mentioned in Theorem 3.2.

Let us assume that the case (i) of Theorem 3.2 holds true. Then, A = αU1

[
1 0
0 a

]
U2

and B = βU1

[
0 b
c 0

]
U2, for some unitary matricesU1,U2 ∈ M2(C), 0 ≤ a ≤ 1, and

α, β, b, c ∈ C. Thus A∗B = αβU∗
2

[
0 b
ac 0

]
U2. If α = 0 or β = 0, then obviously

A∗B = 0. Hence, assume that α, β �= 0. We will now show that b = ac = 0.

If b �= 0, then put T = α

β
U∗
2

[
0 0
1

b
0

]
U2. Thus

T T ∗ =
∣∣∣∣αβ
∣∣∣∣
2

U∗
2

[
0 0
1

b
0

]
U2U

∗
2

⎡
⎣0 1

b
0 0

⎤
⎦U2 =

∣∣∣∣αβ
∣∣∣∣
2

U∗
2

⎡
⎣0 0

0
1

|b|2

⎤
⎦U2,
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and similarly, T ∗T =
∣∣∣∣αβ
∣∣∣∣
2

U∗
2

⎡
⎣ 1

|b|2 0

0 0

⎤
⎦U2. Therefore, T T ∗+T ∗T =

∣∣∣∣αβ
∣∣∣∣
2 1

|b|2 I ,

whence T ∈ C . Furthermore,

A + BT = αU1

[
1 0
0 a

]
U2 +

(
βU1

[
0 b
c 0

]
U2

)(
α

β
U∗
2

[
0 0
1

b
0

]
U2

)
= αU1

[
2 0
0 a

]
U2,

and similarly, A − BT = αU1

[
0 0
0 a

]
U2. By the assumption A ⊥C

R B and in light

of the relation (3.7), we have

‖A + BT ‖2 = ‖A − BT ‖2
⇒ tr

(
(A + BT )∗(A + BT )

)
+
√
tr2
(
(A + BT )∗(A + BT )

)− 4det
(
(A + BT )∗(A + BT )

)
= tr

(
(A − BT )∗(A − BT )

)
+
√
tr2
(
(A − BT )∗(A − BT )

)− 4det
(
(A − BT )∗(A − BT )

)
⇒ |α|2

(
4 + a2

)
+
√

|α|4 (4 + a2
)2 − 16|α|4a2 = |α|2a2 +

√
|α|4a4.

Hence, a2 = 4, which contradicts with the structure of the matrix A, as 0 ≤ a ≤ 1.
Therefore, b = 0. Now, we are going to prove that ac = 0. Suppose on the contrary

that ac �= 0. Then by choosing T = α

β
U∗
2

[
0

1

c
0 0

]
U2, we have T ∈ C , A + BT =

αU1

[
1 0
0 a + 1

]
U2, and A− BT = αU1

[
1 0
0 a − 1

]
U2. Again, from A ⊥C

R B and

(3.7), a straightforward computation shows that

1 + (a + 1)2 +
√(

1 + (a + 1)2
)2 − 4(a + 1)2

= 1 + (a − 1)2 +
√(

1 + (a − 1)2
)2 − 4(a − 1)2

⇒ 1 + (a + 1)2 +
√

((a + 1)2 − 1)2 = 1 + (a − 1)2 +
√

(1 − (a − 1)2)2

⇒ (a + 1)2 = 1

⇒ a = 0,−2.

Since 0 ≤ a ≤ 1, it follows that a = 0, and therefore, A∗B = 0.

Now, assume that the case (ii) of Theorem 3.2 occurs. Then A = αU1

[
1 0
0 0

]
U2

and B = βU1

[
0 b
0 1

]
U2, for some unitary matrices U1,U2 ∈ M2(C) and α, β, b ∈
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C. Thus, A∗B = αβU2

[
0 b
0 0

]
U2. When α = 0 or β = 0, obviously, A∗B = 0.

Hence, assume that α, β �= 0. We show that b = 0.

Consider T = α

β
U∗
2

[
0 0
1 0

]
U2. Then T ∈ C , A + BT = αU1

[
1 + b 0
1 0

]
U2 and

A − BT = αU1

[
1 − b 0
−1 0

]
U2. From the assumption ‖A + BT ‖2 = ‖A − BT ‖2,

we conclude that |1 + b|2 = |1 − b|2, which ensures that Re(b) = 0. Similarly,

by choosing T = α

β
U∗
2

[
0 0
i 0

]
U2, we arrive at Im(b) = 0. Hence, b = 0 and so

A∗B = 0.
As a result,weget A∗B = 0 in a straightforwardway from the case (iii) ofTheorem3.2.
Next, for the implication (i) ⇒ (v), assume that A∗B = 0 and C ∈ M2(C). Then

‖A + BC‖21 = tr
(
A∗A + C∗B∗BC + 2Re(A∗BC)

)
+ 2

√
det (A∗A + C∗B∗BC + 2Re(A∗BC))

= tr
(
A∗A + C∗B∗BC − 2Re(A∗BC)

)
+ 2

√
det (A∗A + C∗B∗BC − 2Re(A∗BC))

= ‖A − BC‖21.

Finally, we prove the implication (v) ⇒ (i). Let ‖A + BC‖1 = ‖A − BC‖1 for all
C ∈ M2(C). In view of the continuity of the determinant, we can choose r ∈ R

+ such
that det

(
I − 1

r BB
∗) and det

(
I + 1

r BB
∗) are positive.

Suppose that B =
[
x y
z w

]
, and consider C = B∗A. Then assumption (v) entails that

tr
(
A∗A + ∣∣BB∗A

∣∣2 + 2Re
∣∣B∗A

∣∣2)+ 2
∣∣det(A + BB∗A)

∣∣
= tr

(
A∗A + ∣∣BB∗A

∣∣2 − 2Re
∣∣B∗A

∣∣2)+ 2
∣∣det(A − BB∗A)

∣∣.
Therefore,

0 ≤ 2tr
(
(B∗A)∗(B∗A)

)
= 2tr

(
Re
∣∣B∗A

∣∣2)
= ∣∣det(A − BB∗A)

∣∣− ∣∣det(A + BB∗A)
∣∣

= ∣∣det(A)
∣∣(det(I − BB∗) − det(I + BB∗)

)
= −2

∣∣det(A)
∣∣(|x |2 + |y|2 + |z|2 + |w|2) ≤ 0,

which establishes the theorem completely. ��
The following result gives a sufficient condition for theB(H)-Roberts orthogonality

of A, B ∈ B(H). For A ∈ B(H), the image of A is denoted by A(H), that is, A(H) =
{A(x) : x ∈ H}. Let A and B be two subsets of H. We write A ⊥R B if x ⊥R y for
all x ∈ A and y ∈ B.
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Lemma 3.4 Let H be a Hilbert space and let A, B ∈ B(H). Then the following are
equivalent:

(i) A(H) ⊥R B(H),
(ii) A∗B = 0,
(iii) A ⊥B(H)

R B.

Proof (i) ⇐⇒ (ii) follows by using the fact that x ⊥R y if and only if 〈x, y〉 = 0 for
x, y ∈ H. (ii) ⇐⇒ (iii) follows from Theorem 1.1. ��

For rank one operators in B(H), B(H)-Roberts orthogonality can be characterized
in the following way.

Theorem 3.5 Let H be a Hilbert space and let A ∈ B(H) be rank one. Suppose
B ∈ B(H). Then the following properties are equivalent:

(i) A(H) ⊥R B(H),
(ii) A∗B = 0,
(iii) A ⊥B(H)

R B,

(iv) A ⊥K(H)
R B.

Proof Equivalence of (i), (ii) and (iii) follows from Lemma 3.4. The implication (iii)
⇒ (iv) is obvious. To complete the proof, we now prove (iv) ⇒ (i). Suppose that (iv)
holds. Let x0 ∈ H and y0 ∈ SH such that A(x) = 〈x, x0〉y0 for x ∈ H. Let z ∈ H, and
define T : H −→ H by T (x) = 〈x, x0〉z for x ∈ H. Then, (ii) implies ‖A+λBT ‖ =
‖A−λBT ‖ for all λ ∈ C. Let λ ∈ C such that ‖A+λBT ‖ = ‖A−λBT ‖ �= 0. Also
let (xn) ⊂ SH such that ‖A + λBT ‖ = limn ‖(A + λBT )(xn)‖. Then,

lim
n

|〈xn, x0〉|‖y0 − λB(z)‖ = lim
n

‖(A − λBT )(xn)‖
≤ ‖A − λBT ‖
= ‖A + λBT ‖
= lim

n
‖(A + λBT )(xn)‖

= lim
n

|〈xn, x0〉|‖y0 + λB(z)‖.

Our assumption on λ implies that ‖y0 − λB(z)‖ ≤ ‖y0 + λB(z)‖. Using similar
arguments, we can also show that ‖y0 + λB(z)‖ ≤ ‖y0 − λB(z)‖. Thus, y0 ⊥R B(z)
for all z ∈ H. Now, the homogeneity property of Roberts orthogonality implies that
A(H) ⊥R B(H), and thus the implication (i) follows. ��

4 Additivity of the Roberts orthogonality in �n∞

Having generalized the notion of theRoberts orthogonality to the realmofC∗-algebras,
we would like to end the present paper with a study of the additivity property of
the original Roberts orthogonality in the real Banach spaces �n∞. To put things into
perspective, we start with the following general discussion.
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For a normed linear space X, let X
∗ denote the topological dual of X . Given a

nonzero x ∈ X, let J (x) = {x∗ ∈ SX∗ : x∗(x) = ‖x‖} denote the collection of all
supporting functionals at x . We say that X is smooth (in the classical sense) at x if
J (x) is singleton. It is well known that the local smoothness at x ∈ X is equivalent
to the Gateaux differentiability of the norm at x . The study of smoothness in normed
linear spaces is intimately connected to the concept of Birkhoff–James orthogonality
[7, 10]. We recall that smoothness in a normed linear space is equivalent to the right-
additivity of the Birkhoff–James orthogonality. In other words, x ∈ X is smooth if
and only if, given any y, z ∈ X, x ⊥B y and x ⊥B z imply that x ⊥B (y + z). We
further note that unlike the Birkhoff–James orthogonality, the existence of (nontrivial)
Roberts orthogonal elements to a given vector is not a priory guaranteed, in a general
normed linear space.Motivated by these basic observations, wewould like to introduce
the following notion of smoothness in normed linear spaces, induced by the Roberts
orthogonality. In this context, let us also mention that the study of smoothness in
normed linear spaces is a vast area of research in the normed geometry, and we refer
to the recent works [14, 15] for two different notions of smoothness in normed linear
spaces and in spaces of operators.

Definition 4.1 Let X be a normed linear space and let 0 �= x ∈ X. We say that x is
R-smooth if the following conditions are satisfied:

(a) There exists 0 �= y ∈ X such that x ⊥R y.
(b) If 0 �= y1, y2 ∈ X with x ⊥R y1 and x ⊥R y2, then x ⊥R (y1 + y2).

We completely characterize the R-smooth points in �n∞(R), which we simply write
as �n∞. For our purpose, let us first fix a few notations. For x = (x1, x2, . . . , xn) ∈ �n∞,
we follow the usual convention to write supp(x) = {i : xi �= 0}, and |supp(x)| denotes
the cardinality of supp(x). We recall the sign function on R by

sgn(t) = t

|t | and sgn(0) = 0.

We now prove the following result, which will be used throughout this section. We
also recall that a unit vector x = (x1, x2, . . . , xn) ∈ �n∞ is a smooth point if and only
if x has precisely one unimodular coordinate.

Lemma 4.2 (i) If x, y ∈ �n∞ and supp(x) ∩ supp(y) = ∅, then x ⊥R y.
(ii) Let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ S�n∞ such that x is a smooth

point with |xi | = 1 and x ⊥R y. Then yi = 0.

Proof (i) The proof follows directly from the definition of R-orthogonality.
(ii) Let x = (x1, x2, . . . , xn) ∈ S�n∞ be a smooth point. Then |xi | = 1 for some

1 ≤ i ≤ n and |x j | < 1 for all j �= i . In this case, the unique norming functional for x
is x∗ = (x∗

1 , x
∗
2 , . . . , x

∗
n ) ∈ S�n1

, where x∗
i = sgn(xi ) and x∗

j = 0 for all j �= i . Now,
if y = (y1, y2, . . . , yn) ∈ S�n∞ with x ⊥R y, then x ⊥B y and thus x∗(y) = 0. This
shows that yi = 0. ��
The following result provides a characterization of R-smoothness among the smooth
points of �n∞.
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Theorem 4.3 Let x = (x1, x2, . . . , xn) ∈ S�n∞ be a smooth point.

(a) If |supp(x)| = 1, then x is R-smooth.
(b) If 1 < |supp(x)| < n, then x is not R-smooth.
(c) If |supp(x)| = n and |xi | �= |x j | for all 1 ≤ i �= j ≤ n, then there is no

0 �= y ∈ �n∞ such that x ⊥R y.
(d) If n = 3, |supp(x)| = n, and |xi | = |x j | for some 1 ≤ i �= j ≤ n, then x is

R-smooth.
(e) If n ≥ 4, |supp(x)| = n, and |xi | = |x j | for some 1 ≤ i �= j ≤ n, then x is not

R-smooth.

Proof (a) Let 1 ≤ i ≤ n such that |xi | = 1 and x j = 0 for all j �= i . If we consider
y = (y1, y2, . . . , yn) ∈ �n∞, where yi = 0, then the case (i) of Lemma 4.2 implies that
x ⊥R y. Now, if we assume that y ∈ �n∞ with x ⊥R y, then the case (ii) of Lemma 4.2
implies that yi = 0. This shows that {y ∈ �n∞ : x ⊥R y} = {y = (y1, y2, . . . , yn) ∈
�n∞ : yi = 0}. Thus it follows that x is R-smooth.

(b) Let 1 ≤ i, j, k ≤ n such that |xi | = 1, x j �= 0, and xk = 0. Let y1 =
(y11 , y

1
2 , . . . , y

1
n), y2 = (y21 , y

2
2 , . . . , y

2
n ) ∈ �n∞ be defined by

y1� =

⎧⎪⎨
⎪⎩
1 − |x j | if � = j,

1 if � = k,

0 otherwise,

and

y2� =

⎧⎪⎨
⎪⎩
1 − |x j | if � = j,

−1 if � = k,

0 otherwise.

Then for λ ∈ R, we have

‖x + λy1‖ = max{1, |x j + λ(1 − |x j |), |x�|, |λ| : � �= i, j, k}
= max{1, |x j + λ(1 − |x j |), |λ|}

and

‖x − λy1‖ = max{1, |x j − λ(1 − |x j |), |λ|}.

If |λ| ≤ 1, then

|x j ± λ(1 − |x j |)| ≤ |x j | + |λ|(1 − |x j |) ≤ 1

and if |λ| > 1, then

|x j ± λ(1 − |x j |)| ≤ |x j | + |λ|(1 − |x j |) < |x j ||λ| + |λ|(1 − |x j |) ≤ |λ|.
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Thus,

‖x + λy1‖ = max{1, |λ|} = ‖x − λy1‖.

By using similar arguments, we can show that ‖x+λy2‖ = ‖x−λy2‖ for all λ ∈ R.
Thus x ⊥R y1 and x ⊥R y2. If we assume that x is R-smooth, then x ⊥R (y1 + y2).
Now, using supp(y1 + y2) = { j} and the case (ii) of Lemma 4.2, we get x j = 0. This
leads to a contradiction, and thus x is not R-smooth.

(c) Suppose on the contrary that there exists 0 �= y = (y1, y2, . . . , yn) ∈ �n∞ such
that x ⊥R y. Let 1 ≤ i ≤ n such that |xi | = 1. Now, the case (ii) of Lemma 4.2
implies that yi = 0.

If n = 2, then using |supp(x)| = n, y ⊥R x , and the case (ii) of Lemma 4.2, we
get y = 0. This leads to a contradiction.

If n > 2, then the case (ii) of Lemma 4.2 implies that there exist 1 ≤ i0 �= j0 ≤ n
such that |yi0 | = |y j0 | = ‖y‖. By our assumption, ‖x+λy‖ = ‖x−λy‖ for all λ ∈ R.
Thus,

max{1, |x j + λy j | : j �= i} = max{1, |x j − λy j | : j �= i}

for all λ ∈ R. Using x j �= 0 for all 1 ≤ j ≤ n and |yi0 | = |y j0 | �= 0, we can choose
infinitely many values of λ (sufficiently large) such that ‖x + λy‖ > 1.

For each such λ, we can find 1 ≤ iλ �= jλ ≤ n such that

|xiλ + λyiλ | = |x jλ − λy jλ |.

Thus, one of the following equalities is true:

xiλ + λyiλ = x jλ − λy jλ (4.1)

or

xiλ + λyiλ = −x jλ + λy jλ . (4.2)

Now, using x j �= 0 and x j �= xk for all 1 ≤ j �= k ≤ n, from (4.1) and (4.2), we get

that either λ = x jλ−xiλ
y jλ+yiλ

or λ = xiλ+x jλ
y jλ−yiλ

.

This shows that ‖x +λy‖ > 1 is possible only for finitely many values of λ, which
is a contradiction. Therefore, there is no 0 �= y ∈ �n∞ such that x ⊥R y.

(d) Without loss of generality, we assume that |x1| = 1 and that |x2| = |x3| = α >

0. If y = (y1, y2, y3) ∈ S�3∞ with x ⊥R y, then the case (ii) of Lemma 4.2 implies
that y1 = 0 and that |y2| = |y3| = 1.

We now claim that either (i) sgn(y2) = sgn(x2) and sgn(y3) = −sgn(x3) or (i i)
sgn(y2) = −sgn(x2) and sgn(y3) = sgn(x3).

If sgn(y2) = sgn(x2) and sgn(y3) = sgn(x3), then x ⊥R y implies that

max{1, |α + λ|} = max{1, |α − λ|}
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for all λ ∈ R. This leads to a contradiction.
Similar arguments show that sgn(y2) = −sgn(x2) and sgn(y3) = −sgn(x3) are

also impossible.
Thus,

{y ∈ �3∞ : x ⊥R y} =
{
y = (y1, y2, y3) ∈ �3∞ : y1 = 0, |y2| = |y3|, sgn(y2)

= sgn(x2)and sgn(y3) = −sgn(x3)
}

∪
{
y = (y1, y2, y3) ∈ �3∞ : y1 = 0, |y2| = |y3|, sgn(y2) = −sgn(x2)

and sgn(y3) = sgn(x3)
}
.

This shows that x is R-smooth.
(e) We break the proof in the following three subcases.
(i) Let |xi | = 1 for 1 ≤ i ≤ n, and suppose that there exist 1 ≤ i1 �=

i2 �= i3 ≤ n such that |xi1 | = |xi2 | = |xi3 | = α. Let y1 = (y11 , y
1
2 , . . . , y

1
n),

y2 = (y21 , y
2
2 , . . . , y

2
n ) ∈ �n∞ be defined by

y1� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
sgn(xi1) if � = i1,

−sgn(xi2) if � = i2,

sgn(xi3) if � = i3,

0 otherwise,

and

y2� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
sgn(xi1) if � = i1,

sgn(xi2) if � = i2,

−sgn(xi3) if � = i3,

0 otherwise.

Then,
‖x + λy1‖ = max{1, |α + λ|, |α − λ|, |xk | : k �= i, i1, i2, i3} = ‖x − λy1‖
and
‖x + λy2‖ = max{1, |α + λ|, |α − λ|, |xk | : k �= i, i1, i2, i3} = ‖x − λy2‖
for all λ ∈ R.
Thus x ⊥R y1 and x ⊥R y2. Now, if we assume that x is R-smooth, then we get

x ⊥R z, where z = (z1, z2, . . . , zn) is given by

zk =
{
2 sgn(xi1) if k = i1,

0 otherwise.

However, the case (ii) of Lemma 4.2 implies that this is impossible, and therefore, x
is not R-smooth.
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(ii) Let 1 ≤ i, j, k ≤ n such that |xi | = |x j | = α, |xk | = 1, and α �= min1≤�≤n |x�|.
We now choose 1 ≤ m ≤ n such that |xm | = min1≤�≤n |x�| and define y1 =
(y11 , y

1
2 , . . . , y

1
n), y2 = (y21 , y

2
2 , . . . , y

2
n ) in the following way:

y1� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
sgn(xi ) if � = i,

−sgn(x j ) if � = j,

1 if � = m,

0 otherwise,

y2� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−sgn(xi ) if � = i,

sgn(x j ) if � = j,

1 if � = m,

0 otherwise.

From our choice of m, we have |xm ± λ| ≤ |xm | + |λ| < α + |λ| for any λ ∈ R.
This shows that

‖x + λy1‖ = max{1, |x�|, |α + λ|, |α − λ|, |xm + λ| : � �= i, j, k,m}
= max{1, α + |λ|}
= ‖x − λy1‖.

Thus, x ⊥R y1. Similar arguments can be applied to show that x ⊥R y2. Now, if x
is R-smooth, then x ⊥R (y1 + y2). However, the case (ii) of Lemma 4.2 implies that
this is impossible, and therefore, x is not R-smooth.

(iii) We are left with the case where 1 ≤ i, j, k ≤ n with |xi | = |x j | = α, |xk | = 1
and α = min1≤�≤n |x�|. We now choose 1 ≤ m ≤ n such that m �= i, j, k. Without
loss of generality, we assume that xm > 0. We define

β = max

{
2,

xm − α

1 − xm
+ 1

}

and y1 = (y11 , y
1
2 , . . . , y

1
n) ∈ �n∞, where

y1� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β sgn(xi ) if � = i,

−β sgn(x j ) if � = j,

1 if � = m,

0 otherwise.

We claim that x ⊥R y1. For any scalar λ, we have

‖x + λy1‖ = max{1, |x�|, |α + λβ|, |α − λβ|, |xm + λ| : � �= i, j, k,m}
= max{1, |α + λβ|, |α − λβ|, |xm + λ|}.
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Let λ ≥ 0.
(i) If 0 ≤ λ ≤ 1 − xm , then xm + λ ≤ 1.
(ii) If λ > 1 − xm , then we claim that xm + λ ≤ α + λβ. If we assume that

xm + λ > α + λβ, then

β < 1 + xm − α

λ
< 1 + xm − α

1 − xm
.

Thus, if λ > 1 − xm , then xm + λ ≤ α + λβ.
Let λ < 0.
(i) If −1 − xm ≤ λ < 0, then |xm + λ| ≤ 1.
(ii) If −1 − xm > λ, then we claim that −xm − λ ≤ α − λβ. If we assume that

−xm − λ > α − λβ, then

β < 1 + xm + α

λ
< 1.

Thus, if −1 − xm > λ, then −xm − λ ≤ α − λβ. This shows that

‖x + λy1‖ = max{1, |α + λβ|, |α − λβ|}.

Using similar arguments, it can be shown that ‖x − λy1‖ = max{1, |α + λβ|, |α −
λβ|}. Thus, x ⊥R y1.

If we define y2 = (y21 , y
2
2 , . . . , y

2
n ) ∈ �n∞, where

y2� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−β sgn(xi ) if � = i,

β sgn(x j ) if � = j,

1 if � = m,

0 otherwise,

then similar arguments as above can show that x ⊥R y2. Now, if x is R-smooth, then
x ⊥R (y1 + y2). However, the case (ii) of Lemma 4.2 implies that this is impossible,
and therefore, x is not R-smooth. ��

Our next result shows that among the nonsmooth points of �n∞, the only R-smooth
points are the elements with exactly two nonzero entries.

Theorem 4.4 Let x ∈ S�n∞ be a nonsmooth point.

(a) If |supp(x)| = 2, then x is R-smooth.
(b) If |supp(x)| > 2, then x is not R-smooth.

Proof (a) Let x = (x1, x2, . . . , xn) ∈ S�n∞ be a nonsmooth point with |supp(x)| = 2.
Let 1 ≤ i, j ≤ n such that |xi | = |x j | = 1 and xk = 0 for all k �= i, j . Let
y = (y1, y2, . . . , yn) ∈ S�n∞ such that x ⊥R y. Then arguments similar to the proof
of the case (d) of Theorem 4.3 entail that one of the following conditions is true.

(i) yi = y j = 0,
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(ii) |yi | = |y j | �= 0, sgn(xi ) = sgn(yi ), and sgn(x j ) = −sgn(y j ),
(iii) |yi | = |y j | �= 0, sgn(xi ) = −sgn(yi ), and sgn(x j ) = sgn(y j ).

This shows that x is R-smooth.
(b) Let x = (x1, x2, . . . , xn) ∈ S�n∞ be a nonsmooth point with |supp(x)| > 2. Let

1 ≤ i, j, k ≤ n such that |xi | = |x j | = 1 and 0 < |xk | ≤ 1.
We now define y1 = (y11 , y

1
2 , . . . , y

1
n), y2 = (y21 , y

2
2 , . . . , y

2
n ) ∈ S�n∞ in the follow-

ing way:

y1� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
sgn(xi ) if � = i,

−sgn(x j ) if � = j,

1 if � = k,

0 otherwise,

y2� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−sgn(xi ) if � = i,

sgn(x j ) if � = j,

1 if � = k,

0 otherwise.

Then for any λ ∈ R, we have

‖x + λy1‖ = max{|1 + λ|, |1 − λ|, |xk + λ|, |x�| : � �= i, j, k}
= max{1 + |λ|, |xk + λ|}

and

‖x − λy1‖ = max{1 + |λ|, |xk − λ|}.

Indeed |xk ± λ| ≤ |xk | + |λ| ≤ 1 + |λ|. Thus, x ⊥R y1. Similar arguments will
show that x ⊥R y2.

Now, if we assume that x is R-smooth, then x ⊥R (y1 + y2). Using the case (ii) of
Lemma 4.2, we can conclude that this is impossible, and hence, x is not R-smooth. ��

We end this section with the following remarks.

Remark 4.5 (i) The cases (b) and (e) of Theorem 4.3 show that, in general, a smooth
point in a normed linear space need not be R-smooth.

(ii) The case (a) of Theorem 4.4 shows that a nonsmooth point in a normed linear
space can be R-smooth.
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