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Abstract
Our aim is to find some new links between linear (circular) orderability of groups
and topological dynamics. We suggest natural analogs of the concept of algebraic
orderability for topological groups involving order-preserving actions on compact
spaces and the corresponding enveloping semigroups in the sense of R. Ellis. This
approach leads to several natural questions. Some of them might be useful also for
discrete (countable) orderable groups.
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1 Introduction

Orderability properties of groups is an active research direction since a long time. This
theory is closely related to topology. See, for example, [1–4].

Ordered dynamical systems were studied in several recent publications concerning
tame systems, Sturmian like circularly ordered symbolic systems and some dynamical
generalizations of the amenability concept.

See joint works with Eli Glasner [5–8] and also [9]. Investigation of order-
preserving compact dynamical systems provides natural framework to study orderable
groups (and the orderability itself).We hope that bringing somemore dynamical tools,
like the Ellis semigroup and Banach representations of actions, to the theory of order-
able groups can lead to new interesting lines of research. In Section 2, we give some
background about circular orders and necessary results about circular topology. Some
of these results seem to be new and hopefully have independent interest.

The following topological version of (left) linear and circular orderability of abstract
groups first was defined in [5].

Definition 1.1 Let us say that a topological group G is c-orderly (orderly) if G topo-
logically can be embedded into the topological group H+(K ) of all circular (linear)
order-preserving homeomorphisms of K , endowedwith standard compact open topol-
ogy, for some compact circularly (resp., linearly) ordered space K .

Theorems A and C below in this section show that this definition provides a natural
topological generalization.

Question 1.2 Which topological groups are orderly ? c-orderly ?

Immediate tautological examples of orderly (c-orderly) Polish groups are H+(K )

for (c)-ordered K . In particular, H+[0, 1] (and H+(S1), where S1 is the circle). The
class of orderly groups is closed under the completion (Proposition 4.1) and finite
products (Proposition 4.9). In particular, the group R

n is orderly for every n ∈ N

(Example 4.10). For a stronger result about Rn see Remark 7.4.
According to Remark 2.6.1, every linearly ordered set (X ,≤) induces a natural

circular order ◦≤ on X . Moreover, any linear order preserving transformation g ∈
H+(X ,≤) preserves the circular order ◦≤ (i.e, g ∈ H+(X , ◦≤)). So, every orderly
group is c-orderly.

An important particular case of a c-orderly (but not orderly) group is the Polish
group H+(S1). It algebraically contains any countable left c-ordered group.

By Corollary 3.7 for every linearly (circularly) ordered set (X ,≤) ((X , ◦)) the
topological group of all automorphisms Aut (X ,≤) (Aut (X , ◦)) with the pointwise
topology is orderly (c-orderly).

If a topological groupG is orderly then its discrete copy is orderly as it immediately
follows from Theorem 4.2. The converse is not true even for the precompact cyclic
group (Z, dp), where dp is the p-adic metric. The reason is that if a topological group
G is orderly then it cannot contain a topological torsion element (Proposition 4.4).
Like, the following standard fact: an abstract left orderable group is torsion-free (see.
e.g., [1]).
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Orderable groups and semigroup compactifications 905

ByProposition 4.7, another restriction for orderly groups is the absence of nontrivial
compact subgroups. Now, Montgomery-Zippin classical theorem implies that every
locally compact orderly group is a Lie group (Corollary 4.8). Note that every locally
compact subgroup of H+(S1) is a Lie group (Ghys [10, Theorem 4.7]).

Our results show that a discrete group G is orderly (c-orderly) if and only if G is
left linearly (resp., left circularly) orderable. More precisely, in Theorem 6.2 below,
we prove the following left circular orderability criterion (a version of Theorem A for
linear orders is proved in Theorem 4.2).

Theorem A Let G be an abstract group. The following are equivalent:

(1) G is left circularly orderable;
(2) (G, τdiscr ) is c-orderly.

In our proof, we use Theorem 3.2, about zero-dimensional circular order preserving
G-compactifications of circularly ordered G-sets, using canonically defined inverse
limits of finite cycles. In the reverse direction we use also a technical sufficient con-
dition of the left orderability, Lemma 6.4. Its idea was inspired by the construction of
c-ordered lexicographic products. This argument shows also, as a byproduct, that G is
left circularly orderable if and only if G admits an effective circular order-preserving
action on a circularly ordered set (X , ◦). This result is known from Zheleva [11].

Recall that the enveloping (Ellis) semigroup E(K ) of a continuous actionG×K →
K on a compact space K is the pointwise closure of all g-translations {g̃ : K →
K , x �→ gx : g ∈ G} in the compact space K K . This defines the so-called Ellis
compactification j : G → E(K ). It is an important tool in topological dynamics. See,
for example, the survey works [12, 13].

In Sections 5 and 6 , we deal with ordered enveloping semigroups. There are several
good reasons which inspired us to consider such objects. One of them is a work of
Hindmann andKopperman [14] where the authors embed any orderable discrete group
into a linearly ordered compact right topological semigroup. One of the key ideas was
to use the Nachbin’s ordered compactifications.

The second reason comes from our papers [5, 6, 8] with Eli Glasner, where we
study Sturmian like and other circularly ordered dynamical systems. In many such
cases, the enveloping semigroup is a circularly ordered semigroup. See Examples 6.8
below.

In the present work, we show that enveloping semigroups of ordered dynamical
systems, under natural additional assumptions, generate ordered right topological
semigroup compactifications of groups. See dynamical orderability of topological
groups (Definition 5.1).

Question 1.3 Which topological groups G admit proper linearly (circularly) order
compact right topological semigroup compactification? We call them: dynamically
(c-)orderable topological groups.

Results of Section 5 show that, for discrete groups, these are exactly linearly (cir-
cularly) orderable groups in the usual sense.
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906 M. Megrelishvili

Theorem B (see Theorem 5.4) Let K be a linearly ordered compact G-system and
≤ be a linear order on G such that every orbit map x̃ : G → K , g �→ gx is linear
order preserving for every x ∈ K. Then the Ellis semigroup E(K ) is a linearly
ordered semigroup and the Ellis compactification j : G → E(K ) is a linearly ordered
semigroup compactification.

I do not know if the circular analog of Theorem B remains true.
In Theorem 5.8 we show that an abstract group G is linearly orderable if and

only if G is dynamically orderable (admits a linear order semigroup compactification
γ : G ↪→ S which is a topological embedding of the discrete copy of G). This result
can be derived also from results of Hindman and Kopperman [14]. For countable
discrete G we may suppose that S is hereditarily separable and first countable. For
this topological conclusion we use results of Ostaszewski [15] (see Remark 5.6).

In the following theorem, we use a classical result of Scwierczkowski [16] which
uses lexicographic products.

Theorem C (see Theorem 6.9) Let G be an abstract group. The following are equiv-
alent:

(1) G is circularly orderable;
(2) G admits a c-order semigroup compactification γ : G → S which is a topological

embedding of the discrete group G.

Every (c-)ordered compact G-space K is tame in the sense of A. Köhler [17]
(regular, in the original terminology). If K is metrizable then it is equivalent to say that
the enveloping semigroup E(K ) is “small”; namely, a separable Rosenthal compact
space (see [5, 13]). In view of a hierarchy of tame metric dynamical systems (see [8])
induced by the Todorc̆ević’ Trichotomy for Rosenthal compact spaces, we ask the
following

Question 1.4 Which (c-)orderly topological groups G admit an effective (c-)ordered
action on a compact metrizable space K such that the Ellis compactification G ↪→
E(K ) is a topological embedding and the enveloping semigroup E(K ) is:

a) metrizable? b) hereditarily separable? c) first countable?

According to results of [5], every (c-)ordered compact G-space K is representable
on aRosenthal Banach space (not containing an isomorphic copy of l1). In contrast, the
actions of the topological groups H+[0, 1] and H+(S1) on [0, 1] and S1, respectively,
are notAsplund representable (Theorem7.3). This raises natural questions (7.2 and 7.6
) which orderly groups (in particular, countable discrete) G admit an order preserving
action on a compact metrizable ordered space K such that j : G ↪→ E(K ) is a
topological embedding and K is an Asplund representable G-space in the sense of
[13]. By results of [18] this is equivalent to the metrizability of E(K ) (cf. case (a)
in Question 1.4). For instance, this holds for the group R

n but it is not true for the
topological groups H+[0, 1] and H+(S1). It seems to be unclear if every countable
discrete ordered group G admits such semigroup compactifications.
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Orderable groups and semigroup compactifications 907

List of all questions

1.2, 1.3, 1.4, 4.11, 5.7, 5.9, 6.10, 7.2, 7.6.

2 Circular order and its topology

2.1 Linear orders

By a linear order ≤ on X we mean a reflexive, anti-symmetric, transitive relation
which is totally ordered, meaning that for distinct a, b ∈ X we have exactly one of
the alternatives: a < b or b < a. As usual, a < b means that a ≤ b ∧ a 	= b.

For every linearly ordered set (X ,≤) and a, b ∈ X , define the rays

(a,→) := {x ∈ X : a < x}, (←, b) := {x ∈ X : x < b}.

The set of all such rays form a subbase for the standard interval topology τ≤ on X .
A map f : X1 → X2 between two linearly ordered sets (X1,≤1), (X2,≤2) is said

to be linearly ordered preserving (in short: LOP) if a ≤1 b implies f (a) ≤2 f (b).
Let α : G × X → X be a left action of an abstract group G on X . Consider the

associated group homomorphism hα : G → S(X), where S(X) is the symmetric group
of all bijections X → X . If hα is injective then this action is said to be effective. Let
(X ,≤) be a linearly ordered set. Denote by Aut (X ,≤) its automorphism group. So,

Aut (X) := {g ∈ S(X) : x ≤ y ⇔ gx ≤ gy ∀x, y ∈ X},

Clearly, Aut (X) is a subgroup of S(X). The action α preserves the order ≤ if and
only if h(G) ⊂ Aut (X).

If K is a linearly ordered topological space, then by H+(K ) we denote the group
of all order-preserving homeomorphisms. If K is compact, then H+(K ) with the
compact open topology is a topological group. A linearly ordered dynamical G-system
K means that K is a compact G-space with respect to a given continuous action of
G on a compact space (K , τ ), where the topology τ is the interval topology of some
G-invariant linear order on K . Equivalently, this means that we have a continuous
homomorphism h : G → H+(K ).

Lemma 2.1 Let (K ,≤) be a compact linearly ordered G-space. Assume that K is
minimal (that is, every G-orbit is dense in K ). Then K is trivial.

Proof Since (K ,≤) is a compact linearly ordered space, it has the greatest element
m ∈ K . Its G-orbit is dense in K . On the other hand, m is G-fixed because G is a
subgroup of H+(K ,≤). Therefore, K = {m} is the singleton. ��

In the following lemma the first assertion is well known (see, for example, Nachbin
[19]) and easy to prove directly.
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908 M. Megrelishvili

Lemma 2.2

(1) Every linear order≤ on a set X is closed in the topological square X × X, where
X carries the interval topology.

(2) H+(K ) is a closed subgroup of H(K ) for every compact linearly ordered space
K .

Proof (1) Let the pair (a, b) does not belong to the relation ≤ (which is a subset
of X × X ). Let b < a (the case of a < b is similar). Then there are two cases. If
there exists c ∈ X such that b < c < a then the open set (←, a) × (b,→) contains
the point (a, b) and is disjoint from the relation ≤. If there is no such c then take
(b,→)× (←, a).

(2) By (1) the subgroup H+(K ) is pointwise closed in H(K ). ��
Lemma 2.3 Let X be a topological space and R ⊂ X × X be a closed partial order
on X. Suppose that Y is a dense subset of X such that the restricted partial order RY

on Y is a linear order. Then R is a linear order on X.

Proof The union R ∪ R−1 is closed in X × X . The subset Y × Y is dense in X × X
and is contained in R ∪ R−1. Hence, R ∪ R−1 = X × X . ��

2.2 Circular orders

Now we recall some definitions about circular orders. In contrast to the interval topol-
ogy of linear orders, the topology of circular orders, as far we know, hardly is found in
the literature. An exception is a book of Kok [20], where such a topology is mentioned
episodically. For more information and properties we refer to [5, 7].

Definition 2.4 [20–22] Let X be a set. A ternary relation R ⊂ X3 (sometimes denoted
also by ◦) on X is said to be a circular (or, cyclic) order if the following four conditions
are satisfied. It is convenient sometimes to write shortly [a, b, c] instead of (a, b, c) ∈
R.

(1) Cyclicity: [a, b, c] ⇒ [b, c, a];
(2) Asymmetry: [a, b, c] ⇒ (b, a, c) /∈ R;

(3) Transitivity:

{
[a, b, c]
[a, c, d] ⇒ [a, b, d];

(4) Totality: if a, b, c ∈ X are distinct, then [a, b, c] or [a, c, b].
Observe that under this definition [a, b, c] implies that a, b, c are distinct.
For a, b ∈ X , define the (oriented) intervals:

(a, b)◦ := {x ∈ X : [a, x, b]}, [a, b]◦ := (a, b) ∪ {a, b}, [a, b)◦
:= (a, b) ∪ {a}, (a, b]◦ := (a, b) ∪ {b}.

Sometimes we drop the subscript, or write (a, b)o when the context is clear. Similarly
can be defined [a, b) and (a, b]. Clearly, [a, a] = {a} for every a ∈ X .

123



Orderable groups and semigroup compactifications 909

Proposition 2.5

(1) For every c-order ◦ on X, the family of subsets

B1 := {X \ [a, b]◦ : a, b ∈ X} ∪ {X}

forms a base for a topology τ◦ on X which we call the circular topology (or, the
interval topology) of ◦.

(2) If X contains at least three elements, then the (smaller) family of intervals

B2 := {(a, b)◦ : a, b ∈ X , a 	= b}

forms a base for the same topology τ◦ on X.
(3) The circular topology τ◦ of every circular order ◦ is Hausdorff.

The family B2 and the corresponding topology was mentioned in [20, p. 6] without
any assumptions on X . However, if X contains only one or two elements then every
(a, b)◦ is empty. In this case B2 is not a topological base at all. As we have seen in
Proposition 2.5, B2 generates a topology on X under a (minor) assumption that X
contains at least 3 elements. So, the first assertion of Proposition 2.5 is an accurate
form of the definition from [20].

Note that in every circularly ordered set (X , ◦) we have X \ [a, b]◦ = (b, a)◦ and
X \ (a, b)◦ = [b, a]◦ for every distinct a 	= b. So the “closed interval” [b, a]◦ is
always closed in the interval topology for all, not necessarily distinct, a, b.

Remark 2.6 E. Čech [21, p. 35]

(1) Every linear order ≤ on X defines a standard circular order ◦≤ on X as follows:
[x, y, z] iff one of the following conditions is satisfied:

x < y < z, y < z < x, z < x < y.

(2) (standard cuts) Let (X , R) be a c-ordered set and z ∈ X . The relation

z ≤z x, a <z b⇔ [z, a, b] ∀a 	= b 	= z 	= a

is a linear order on X and z is the least element. This linear order restores the
original circular order, meaning that R≤z = R.

Lemma 2.7 [5] If (X ,≤) is a linearly ordered set such that its circular topology is
compact, then the corresponding circular order generates the same topology (the
compactness is essential).

If X1 → X2 is linear order preserving, then it is also c-order preserving in the sense
of Definition 2.9. On the set {0, 1, · · · , n − 1} consider the standard c-order modulo
n. Denote this c-ordered set, as well as its order, simply by Cn . Every finite c-ordered
set with n elements is isomorphic (Definition 2.9) to Cn .
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910 M. Megrelishvili

Definition 2.8 Let (X , R) be a c-ordered set. We say that a vector (x1, x2, · · · , xn) ∈
Xn is a cycle in X if it satisfies the following two conditions:

(1) for every [i, j, k] in Cn and distinct xi , x j , xk we have [xi , x j , xk];
(2) xi = xk ⇒ (xi = xi+1 = · · · = xk−1 = xk) ∨ (xk = xk+1 = · · · = xi−1 = xi ).

Injective cycle means that all xi are distinct.

Using cycles (chains) one may define bounded variation functions on a c-ordered
set (X , ◦) (resp. on a linearly ordered set (X ,≤)). This concept helps to study the tame-
ness, Banach representations and other properties of (c-)ordered dynamical systems.
As well as getting a generalized Helly theorem (see [5, 8, 23]).

Definition 2.9 Let (X1, R1) and (X2, R2) be c-ordered sets. A function f : X1 → X2
is said to be c-order preserving, orCOP, if f moves every cycle to a cycle. Equivalently,
if it satisfies the following two conditions:

(1) for every [a, b, c] in X and distinct f (a), f (b), f (c)we have [ f (a), f (b), f (c)];
(2) if f (a) = f (c) then f is constant on one of the closed intervals [a, c], [c, a].

In general, condition (1) does not imply condition (2). Indeed, consider a 4-element
cycle X = Y = {1, 2, 3, 4} and a selfmap p : X → X , p(1) = p(3) = 1, p(2) =
p(4) = 2. Then (1) is trivially satisfied because f (X) < 3 but not (2).

Remark 2.10 One may show that if |p(X)| ≥ 3 then condition (1) in Definition 2.9
implies (2). We omit the details.

Acompositionof c-order-preservingmaps is c-order preserving.We letM+(X1, X2)

be the collection of c-order-preserving maps from X1 into X2. f is an isomorphism
if, in addition, f is a bijection (in this case, of course, only (1) is enough). Denote
by Aut (X) the group of all COP automorphisms X → X which is a subgroup of the
symmetric group S(X) of all bijections X → X .

For every circularly ordered set X and every subgroup G ⊂ Aut (X), the corre-
sponding action G × X → X defines a circularly ordered G-set X . The definitions
of the group H+(K , ◦) and circularly ordered compact dynamical G-system are also
understood for every compact K .

Lemma 2.11 [5] Let ◦ be a circular order on X and τ◦ the induced circular (Haus-
dorff) topology. Then for every [a, b, c] there exist neighborhoodsU1,U2,U3 of a, b, c
respectively such that [a′, b′, c′] for every (a′, b′, c′) ∈ U1 ×U2 ×U3.

Corollary 2.12

(1) Let K be a circularly ordered compact space. Then H+(K ) is a closed subgroup
of the homeomorphism group H(K ).

(2) The completion of a c-orderly topological group (G, τ ) is c-orderly.

Proof Straightforward using Lemma 2.11. ��
Definition 2.13 Let (X , R) be a circularly ordered set. Let us say that a subset Y in
X is convex in X if for every a, b ∈ Y at least one of the intervals [a, b], [b, a] is a
subset of Y .
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Fig. 1 c-ordered lexicographic product (from Wikipedia - Cyclic order)

According to Definition 2.13 exactly the following subsets of (X , ◦) are convex:

{∅, X , (u, v)◦, [u, v]◦, (u, v]◦, [u, v)◦ : u, v ∈ X}.

Now the second condition in Definition 2.9 can be reformulated as follows: the
preimage f −1(c) of a singleton {c} is convex.

Similar to the well known case of generalized ordered (GO) spaces (see, for exam-
ple, [24, p. 457]), one may define generalized circularly ordered (GCO) spaces as
topological subspaces of circularly ordered spaces. Then for (GCO), convex topolog-
ically open subsets and lexicographic products play the similar roles as for (GO).

2.3 Lexicographic order

For every c-ordered set C and a linearly ordered set L , one may define the so-called
c-ordered lexicographic product C ⊗ L . See, for example, [25] and also Fig. 1.

Definition 2.14 More formally, let (a, x), (b, y), (c, z) be distinct points of C × L .
Then [(a, x), (b, y), (c, z)] in C ⊗ L will mean that one of the following conditions
is satisfied:

(1) [a, b, c].
(2) a = b 	= c and x < y.
(3) b = c 	= a and y < z.
(4) c = a 	= b and z < x .
(5) a = b = c and [x, y, z] (in the cyclic order on L induced by the linear order).

2.4 Compactness of the circular topology

Our aim is to obtain a natural circular version of the following classical result.
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Fact 2.15 The interval topology on X of a linear order ≤ is compact if and only if
every subset of X has a supremum (including that sup(∅) = min(X) must exist).

The following result is a particular case of [26, Lemma 2.1] proved by N. Kemoto.
It can be obtained also directly using Fact 2.15.

Fact 2.16 [26] A lexicographic linearly ordered product Y ⊗l L of a compact linearly
ordered space Y and a compact linearly ordered space L is compact in the interval
topology.

Following Novak [27], we define cuts and gaps in c-ordered sets. Let (X , ◦) be a
c-ordered set. A linear order ≤ on X is said to be a cut if

a < b < c in (X ,≤) implies that [a, b, c] in (X , ◦).

A gap on (X , ◦) is a cut (X ,≤) such that it has neither the least nor the greatest
element. This continues the idea of classical Dedekind cuts for linear orders.

Lemma 2.17 Let ≤ be a cut on (X , ◦).
(1) [27, Lemma 2.2] If [a, b, c] then either a < b < c or b < c < a or c < a < b.
(2) [27, Theorem 2.5] Every linear order ≤z (Remark 2.6) is a (standard) cut on

(X , ◦) for every z ∈ X.

Lemma 2.18 Let ≤ be a cut on (X , ◦).
(1) (a, b)≤ = (a, b)◦, [a, b]≤ = [a, b]◦, [a, b)≤ = [a, b)◦, (a, b]≤ = (a, b]◦, for

every a < b.
(2) For every interval [a, b]◦ the subspace topology inherited from τ◦ is the same

as the interval topology τ≤a of ≤a. The same is true for other convex intervals
[a, b)◦, (a, b)◦, (a, b]◦.

Proof (1) It is enough to show that (a, b)≤ = (a, b)◦.
Let x ∈ (a, b)≤. Then by definition of cut we have [a, x, b]. Hence, x ∈ (a, b)◦.
Conversely, let x ∈ (a, b)◦. Then by Lemma 2.17.1, either a < x < b or x < b < a

or b < a < x . By our assumption a < b. So, we necessarily have a < x < b. Hence,
x ∈ (a, b)≤.

(2) First note that

∀x ∈ [a, b]◦ (−∞, x)≤a = [a, x)≤a = (b, x)◦ ∩ [a, b]◦.

This shows that the circular topology contains the interval topology. In order to see
the converse inclusion note that

(c, d)◦ ∩ [a, b]◦ = (c, d)≤a ∩ [a, b]◦ if [a, c, d]

and

(c, d)◦ ∩ [a, b]◦ = (c, b]≤a ∪ [a, d)≤a if [a, d, c].

For other convex subsets the proof is similar. ��
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Theorem 2.19 Let τ◦ be the circular topology of a circular order on a set X. The
following conditions are equivalent:

(1) τ◦ is a compact topology.
(2) (X , ◦) is complete in the sense of Novak [27] (no gaps in (X , ◦)).
(3) [a, b]◦ is compact in the subspace topology of (X , τ◦) for every a, b ∈ X.

Proof (1) ⇒ (2) Let (X ,≤) be a gap. Then ∪{(a, b)≤ : a < b} = X has no finite
subcovering. This cover is open in the circular topology because (a, b)≤ = (a, b)◦
for every a < b by Lemma 2.18.2.

(2) ⇒ (3) Assume that [a, b]◦ is not compact in its subspace topology. Then
([a, b]≤a ,≤a) has a subset A such that sup(A) does not exist (use Fact 2.15). Then
([a, b]≤a ,≤a) has a “linear gap”, a subset A ⊂ [a, b]≤a without supremum. Then A
does not have supremum also as a subset of (X≤a ,≤a). Let X1 := {x ∈ X : ∀a ∈
A a < x}, X2 := X \ X1. Define now a linear order ≤A by the following rule
x1 <A x2 for every x1 ∈ X1, x2 ∈ X2 keeping the old relation for other possible pairs
(x, y) ∈ X = X1 ∪ X2. Then ≤A is a cut on X which is a gap for (X , ◦).

(3)⇒ (1) For every a 	= b we have X = [a, b]◦ ∪ [b, a]◦. Hence, X is compact
being a union of two compact subsets. ��

Note that every circularly ordered set admits a completion [27].

Proposition 2.20 A lexicographic c-ordered product K ⊗c L of compact c-ordered
space K and a compact linearly ordered space L is a compact c-ordered space.

Proof Let u ≤ v in L and a, b ∈ K . By Theorem 2.19, we have to show that the
interval [(a, u), (b, v)]◦ of K ⊗c L is compact.

Consider the linearly ordered set [a, b]≤a . It is compact by Theorem 2.19 (since
K is compact) in its circular or linear topologies. Observe that [(a, u), (b, v)]◦ =
[(a, u), (b, v)]≤, where ≤ is the linear order inherited from the lexicographic lin-
early ordered product Y := ([a, b]≤a ⊗l L . The latter is compact by Fact 2.16. Then
[(a, u), (b, v)]◦ is also compact (being a closed subset in Y ). ��

3 Ordered compactifications via inverse limits

A compactification of a topological space X is a continuous dense map j : X → Y
such that Y is compact and Hausdorff. Proper compactification will mean that j is
a topological embedding. We say an order compactification if X and Y are linearly
ordered topological spaces and j is order preserving. Proper order compactification
will mean that the compactification j : X → Y is both topological and order embed-
ding.

Lemma 3.1 [7] Let X∞ := lim←−(Xi , I ) be the inverse limit of the inverse system

{ fi j : Xi → X j , i < j, i, j ∈ I }

where (I ,<) is a directed partially ordered set. Suppose that every Xi is a c-ordered
set with the c-order Ri ⊂ X3

i and each bonding map fi j is c-order preserving. On the
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inverse limit X∞, define a ternary relation R as follows. An ordered triple (a, b, c) ∈
X3∞ belongs to R iff [pi (a), pi (b), pi (c)] is in Ri for some i ∈ I .

(1) Then R is a c-order on X∞ and each projection map pi : X∞ → Xi is c-order
preserving.

(2) Assume in addition that every Xi is a compact c-ordered space and each bonding
map fi j is continuous. Then the topological inverse limit X∞ is also a c-ordered
(nonempty) compact space.

A particular case of the following construction and its proof (with minor changes)
can be found in [7].

Theorem 3.2 Let (X , R) be a c-ordered set and G is a subgroup of Aut (X) with the
pointwise topology. Then there exist: a c-ordered compact zero-dimensional space
X∞ such that

(1) X∞ = lim←−(XF , I ) is the inverse limit of finite c-ordered sets XF , where F ∈ I =
Pf in(X).

(2) X∞ is a compact c-ordered G-space and ν : X → X∞ is a dense topological
G-embedding of the discrete set X such that ν is a c-order-preserving map.

(3) If X is countable then X∞ is a metrizable compact space.

Proof Let F := {t1, t2, · · · , tm} be an m-cycle on X . That is, a c-order-preserving
injective map F : Cm → X , where ti = F(i) and Cm := {1, 2, · · · ,m} with the
natural circular order. We have a natural equivalence “modulo-m” between m-cycles
(with the same support).

For every given cycle F := {t1, t2, · · · , tm}, define the corresponding finite disjoint
covering covF of X , by adding to the list: all points ti and nonempty intervals (ti , ti+1)o
between the cycle points. More precisely, we consider the following disjoint cover
which can be thought of as an equivalence relation on X

covF := {t1, (t1, t2)o, t2, (t2, t3)o, · · · , tm, (tm, t1)o}.

Moreover, covF naturally defines also a finite c-ordered set XF by “gluing the points”
of the nonempty interval (ti , ti+1)o for each i . So, the c-ordered set XF is the factor-set
of the equivalence relation covF and it contains at most 2m elements. In the extremal
case of m = 1 (that is, for F = {t1}), we define covF := {t1, X \ {t1}}.

We have the following canonical c-order preserving onto map

πF : X → XF , πF (x) =
{
ti for x = ti
(ti , ti+1)o for x ∈ (ti , ti+1)o.

(3.1)

��
Lemma 3.3 The family {covF } where F runs over all finite injective cycles

F : {1, 2, · · · ,m} → X

on X is a basis of a natural precompact uniformity μX of X.

123



Orderable groups and semigroup compactifications 915

Proof Let Cycl(X) be the set of all finite injective cycles. Every finite m-element
subset A ⊂ X defines a cycle FA : {1, · · · ,m} → X (perhaps after some reordering)
which is uniquely defined up to the natural cyclic equivalence and the image of FA is
A.

Cycl(X) is a poset if we define F1 ≤ F2 whenever F1 : Cm1 → X is a sub-cycle
of F2 : Cm2 → X . This means that m1 ≤ m2 and F1(Cm1) ⊆ F2(Cm2). This partial
order is directed. Indeed, for F1, F2, we can consider F3 = F1

⊔
F2 whose support

is the union of the supports of F1 and F2.
For every F ∈ Cycl(X), we have the disjoint finite μX -uniform covering covF

of X . As before, we can look at covF as a c-ordered (finite) set XF . Also, as in
equation 3.1, we have a c-order-preserving natural map πF : X → XF which is
uniformly continuous into thefinite (discrete) uniform space XF .Moreover, if F1 ≤ F2
then covF1 ⊆ covF2 . This implies that the equivalence relation covF2 is sharper than
covF1 . We have a c-order-preserving (continuous) onto bonding map fF2,F1 : XF2 →
XF1 between finite c-ordered sets. Moreover, fF2,F1 ◦ πF2 = πF2 .

In this way, we get an inverse system

fF2,F1 : XF2 → XF1 , F1 ≤ F2

where (I ,≤) = Cycl(X) is the directed poset defined above. It is easy to see that
fF,F = id and fF3,F1 = fF2,F1 ◦ FF3,F2 .
Denote by

X∞ := lim←−(XF , I ) ⊂
∏
F∈I

XF

the corresponding inverse limit. Its typical element is {(xF ) : F ∈ Cycl(X)} ∈ X∞,
where xF ∈ XF . The set X∞ carries a circular order as in Lemma 3.1.

Definition of the action G × X∞ → X∞.
For every given g ∈ G (it is c-order preserving on X ), we have the induced isomor-
phism XF → XgF of c-ordered sets, where ti �→ gti and (ti , ti+1)o �→ (gti , gti+1)o
for every ti ∈ covF . For every F1 ≤ F2, we have fF1,F2(xF2) = xF1 . This implies that
fgF1,gF2(xgF2) = xgF1 . So, (gxF ) = (xgF ) ∈ X∞.
Therefore, g : X → X can be extended canonically to a map

g∞ : X∞ → X∞, g∞(xF ) := (xgF ).

This map is a c-order automorphism. Indeed, if [x, y, z] in X∞ then there exists F ∈ I
such that [xF , yF , zF ] in XF . Since g : X → X is a c-order automorphism, we obtain
that [gxF , gyF , gzF ] in XgF .

For every cycle F in X and the stabilizer subgroup St(F) ⊂ G we have gx and
x are in the same element of the basic disjoint covering covF . It follows easily from
this fact that the action G × X∞ → X∞ is continuous. Here X∞ carries the compact
topology of the inverse limit as a closed subset of the topological product

∏
F∈I XF

of finite discrete spaces XF . ��
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916 M. Megrelishvili

Lemma 3.4 X∞ is a compact c-ordered G-space and i : X → X∞ is a dense c-order-
preserving embedding with discrete i(X). Furthermore, if X is countable then X∞ is
a metrizable compact.

Proof (X , μX ) can be treated as the weak uniformity with respect to the family of
maps {πF : X → XF : F ∈ Cycl(X)} (into the finite uniform spaces XF ). The
corresponding topology of i(X) is discrete.

Observe that fF2,F1 ◦ πF2 = πF1 for every F1 ≤ F2. By the universal property of
the inverse limit, we have the canonical uniformly continuous map π∞ : X → X∞.
It is easy to see that it is an embedding of uniform spaces and that π∞(X) is dense in
X∞. Since X is a precompact uniform space, we obtain that its uniform completion is
a compact space and can be identified with X∞. The uniform embedding X → X∞
is a G-map. It follows that the uniform isomorphism X̂ → X∞ is also a G-map.

On the other hand, this inverse limit X∞ is c-ordered as follows from Lemmas 3.1
and 2. Furthermore, as we have already mentioned the action of G on X∞ is c-order
preserving. Therefore, X∞ is a compact c-ordered G-system.

This proves (1) and (2). In order to prove (3), observe that if X is countable then
we have countable many cycles F . Therefore, X∞ is metrizable. ��

This completes the proof of Theorem 3.2. ��
Remark 3.5 Theorem 3.2 was used recently in [7] to prove that for cyclically ultra-
homogeneous G-spaces X the c-ordered compact G-space X∞ \ X is the universal
minimal G-system M(G). In particular, for X = (Q, ◦), rationals on the circle (in
fact, for Q/Z) and the group G = Aut (Q, ◦) with its pointwise topology, the corre-
sponding c-ordered compactum M(G) = X∞ \ X looks as the circle after splitting
all rational points.

Theorem 3.6 Let (X ,≤) be a linearly ordered set andG be a subgroup ofAut (X)with
the pointwise topology. Then there exists a linearly ordered compact zero-dimensional
space X∞ such that

(1) X∞ = lim←−(XF , I ) is the inverse limit of finite linearly ordered sets XF , where
F ∈ I = Pf in(X).

(2) X∞ is a compact linearly ordered G-space and ν : X ↪→ X∞ is a dense topolog-
ical G-embedding of the discrete set X such that ν is a LOP map.

(3) If, in addition,≤G is a linear order on G such that orbit maps x̃ : G → X (x ∈ X)
are LOP then all orbit maps ã : G → X∞ (a ∈ X∞) are LOP.

(4) If X is countable then X∞ is a metrizable compact space.

Proof The assertions (1) and (2) can be proved similar to Theorem 3.2. We consider
finite chains F := {t1, t2, · · · , tm} (instead of cycles). The corresponding covering
covF has the form

covF := {(−∞, t1), t1, (t1, t2), t2, (t2, t3), · · · , (tm−1, tm), , tm, (tm,∞)},

where we remove all possible empty intervals.
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Orderable groups and semigroup compactifications 917

(3) Since ν(X) is dense in X∞, there exists a net xγ , γ ∈ � in X = ν(X) ⊂ X∞
such that a = lim xγ in X∞. If g1 ≤G g2 in G then g1xγ ≤ g2xγ in X . Hence,
also in ν(X) and X∞. The linear order in every linearly ordered space (in particular,
in X∞) is closed (see Lemma 2.2.1). Therefore, if g1 ≤G g2 in G then we obtain
g1a = lim g1xγ ≤ lim g2xγ = g2a.

(4) Similar to Theorem 3.2, we have countably many chains F for countable X . ��
Corollary 3.7 Let (X ,≤) ((X , ◦)) be a linearly (circularly) ordered set and G be a
subgroup ofAut (X ,≤) (Aut (X , ◦)) with the pointwise topology. ThenG is an orderly
(c-orderly) topological group.

Remark 3.8 Let X = (Q,≤) be the rationals with the usual order but equipped with
the discrete topology. Consider the automorphism group G := Aut (Q,≤) with the
pointwise topology. One may apply Theorem 3.6 getting the linearly ordered G-
compactification ν : X ↪→ X∞ (where X∞ is metrizable and zero-dimensional). This
compactification, in this case, has a remarkable property (as we show in [28]). Namely,
ν is the maximal G-compactification for the G-space Q (where Q is discrete). The
same is true for every dense subgroup G of Aut (Q,≤) (e.g., for Thompson’s group
F).

Similar result is valid for the circular version. Namely, the rationals on the circle
with its circular order X = (Q/Z, ◦), the automorphism group Aut (Q/Z, ◦) and its
dense subgroups G (for instance, Thompson’s circular group T ).

4 Linearly ordered groups

Linear left orderability is an important property of groups and was extensively studied
in many publications; see for example [1, 2, 10] and references there.

Let G be a group and ≤ be a linear order on the set G. We say that this order is left
invariant if the left action of G on itself preserves≤. Meaning that x ≤ y iff gx ≤ gy
for all g, x, y ∈ G. A right invariant and bi-invariant order can be defined similarly.

A group G is left linearly orderable iff there exists a linear order ≤ on G such that
the standard left action of G on itself preserves the order. For simplicity we shortly
say G is L-Ord. In the case that left and right action both are order preserving with
respect to the same order on G, we say that G is orderable; abbreviation: Ord.

L-Ord groups are torsion free. This condition is necessary but not sufficient. The
classes L-Ord and Ord are surprisingly large, [1, 2]. Among others, all free groups and
all free abelian groups are Ord.

A topological group G is said to be (Raikov) complete if it is complete with respect
to its two-sided uniform structure ULR. Recall (see, e.g., [29, Theorem 3.6.10]) that
the completion r : G ↪→ Ĝ of every topological groupG with respect toULR naturally
admits a structure of a topological group.

Orderly topological groups were defined in Definition 1.1 as topological subgroups
of H+(K ) for some compact linearly ordered space.

For every linearly ordered set (X ,≤) the topological group Aut (X ,≤) with its
pointwise topology with respect to the discrete set X is orderly (Corollary 3.7).
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Proposition 4.1 The completion of an orderly topological group (G, τ ) is orderly.

Proof Let (G, τ ) be an orderly topological group. Then there exists a compact linearly
ordered space (K ,≤) such thatG is a topological subgroup of H+(K ). It is well known
that the topological group H(K ) (of all homeomorphisms) in its standard compact
open topology is complete for every compact space K . By Lemma 2.2.2, H+(K ) is a
closed subgroup of H(K ). Therefore, H+(K ) is complete, too. Then the closure of G
in H+(K ) (which is its completion) is also complete. ��

The equivalence of (1) and (3) in Theorem 4.2 is well known. As well as, the fact
that a countable group G is L-Ord iff it faithfully acts on R by order-preserving
homeomorphisms (that is, G algebraically is embedded into H+(R)), [2].

Theorem 4.2 Let G be an abstract group. The following are equivalent:

(1) G is L-Ord;
(2) (G, τdiscr ) is orderly

(i.e., a discrete copy of G topologically is embedded into the topological group
H+(K ) for some compact linearly ordered topological space (K ,≤));

(3) G algebraically is embedded into the groupAut (X ,≤) for some linearly ordered
set (X ,≤).

In (2) we can suppose, in addition, that dim K = 0.

Proof (1)⇒ (2) One may use the compactification ν : X ↪→ X∞ from Theorem 3.6,
where G = X , K = X∞ and dim X∞ = 0.

(2)⇒ (3) Trivial.
(3)⇒ (1) The well-known proof (see, for example, [1, 2]) is to use a dynamically

lexicographic order on G. ��
Recall that an element g ∈ G is said to be torsion if there exists n ∈ N = {1, 2, · · · }

such that gn = e. It is well known and easy to prove that in a left orderable group G
only the neutral element e is torsion (see, for example, [1, Prop. 1.3]). One may give
a topological analog of this observation for orderly groups.

Definition 4.3 Let G be a topological group. We say g ∈ G is weakly topologically
torsion (abbr.: wtt) if e belongs to the topological closure cl({gn : n ∈ N}) of the set
{gn : n ∈ N} in G.

This definition is close to several forms of topological torsion elements known in
the literature. See, for example, the survey paper by D. Dikranjan [30] and the book
of Dikranjan–Prodanov–Stoyanov [31, Section 4.4].

Proposition 4.4 Let G be an orderly topological group. Then the neutral element is
the only weakly topologically torsion element in G.

Proof Assuming the contrary, let g ∈ G, g 	= e such that e ∈ cl({gn : n ∈ N}).
Since G is orderly, there exists a compact ordered G-space (K ,≤) such that G is a
topological subgroup of H+(K ). Since g 	= e and the action is effective, there exists

123



Orderable groups and semigroup compactifications 919

a ∈ K such that a 	= ga. Let, a < ga (the second case of ga < a is, of course,
similar). Since the action is order preserving, we obtain

min(K ) < a < ga < g2a < · · · < gna < · · ·

where min(K ) is the minimal element in K (which always exists in every compact
linearly ordered space and is necessarily H+(K )-fixed). By the (pointwise) continuity
of the action, there exists a neighborhood U of e in G such that min(K ) < ua < ga
for every u ∈ U . There exists n0 ∈ N, n0 > 1 such that gn0 ∈ U . Then min(K ) <

gn0a < ga. This contradicts the condition ga < gn0a. ��

Corollary 4.5 The topological groupG = (Z, dp) of all integers with the p-adicmetric
is not orderly.

Proof In the additive topological group (Z, dp) every element a ∈ Z is weakly topo-
logically torsion because lim pna = 0. ��

Remark 4.6

(1) D. Dikranjan informed us that Definition 4.3 can be reformulated as follows:
an element g ∈ G is wtt if and only if the cyclic subgroup 〈g〉 of G is either
finite or infinite and non-discrete. This immediately implies that in every orderly
topological group G all cyclic subgroups are necessarily discrete and infinite
(essentially strengthens Corollary 4.5). It seems that the concept of wtt elements
in topological groups has its own interest and deserves to be investigated in more
details.

(2) Every orderly topological group (G, τ ) is orderly as an abstract discrete group.
Hence, G is L-Ord. The converse, as expected, is not true, as it follows from
Corollary 4.5.

The following result was suggested by the referee with a different proof.

Proposition 4.7 Let G be an orderly topological group. Then every compact subgroup
of G is trivial.

Proof G is a subgroup of H+(K ,≤) for some compact linearly ordered space K . Let
G1 be a compact subgroup of G. Then for every x ∈ K the orbit G1x is a minimal
G1-space. By Lemma 2.1, we get G1x = {x}. Therefore, G1 is trivial (because the
action is effective). ��

Corollary 4.8 Every locally compact orderly group is a Lie group.

Proof By Montgomery-Zippin classical theorem [32], a locally compact group is a
Lie group if and only if there is a neighbourhood of the identity which does not contain
a non trivial compact subgroup. So, we can apply Proposition 4.7. ��
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Proposition 4.9 Finite product of orderly groups is orderly.

Proof Let G1,G2 be orderly topological groups. We have to show that G1 × G2 is
orderly. LetGi be a topological subgroupof H+(Ki ,≤i ),where Ki is a linearly ordered
compact space. It is enough to show thatG := G1×G2 is topologically embedded into
H+(K ,≤), where K := K1 ∪ K2 is lexicographically ordered (x1 < x2 ∀xi ∈ Ki ).
Clearly, K is a compact linearly ordered space. Define the following action

G × K → K , (g1, g2)(x) =
{
g1(x) x ∈ K1

g2(x) x ∈ K2

Then this action is continuous and effective. Now it is enough to check that the induced
injective continuous homomorphism h : G → H+(K ) is a topological embedding.

Let U = U1 × U2 be a neighborhood of e in G. We claim that there exist finitely
many points α := {x1, · · · , xn} in K and their neighborhoods γ := {V1, · · · , Vn} in
K such that

{g ∈ G : g(xk) ∈ Vk} ⊂ U .

Note that for every linearly ordered compact space (Y ,≤) the pointwise and
compact-open topologies coincide on H+(Y ,≤) (see Sorin [33]). Therefore, there
exist α1 := {a1, · · · , as} ⊂ K1 with nbds γ1 := {W1, · · · ,Ws} in K1 and
α2 := {b1, · · · , bm} ⊂ K2 with neighborhoods γ2 := {P1, · · · , Pm} in K2 such
that

{g ∈ G1 : g(ai ) ∈ Wi } ⊂ U1, {g ∈ G2 : g(bi ) ∈ Pi } ⊂ U2.

Now define α := α1 ∪ α2 and γ := γ1 ∪ γ2. ��
We do not know if the c-orderly analog of Proposition 4.9 is also true.

Example 4.10 R
n is orderly for every n ∈ N. Indeed, R is a topological subgroup of

H+[0, 1] (treat [0, 1] as the 2-point compactification ofR).Now, apply Proposition 4.9.

The following question was proposed by the referee and also by V. Pestov.

Question 4.11 Which locally compact group is: orderly ? c-orderly ?

At least for orderly case, “locally compact group” can be replaced by “Lie group”
(Corollary 4.8). Note also that every locally compact subgroup of H+(S1) is a Lie
group (see Ghys [10, Theorem 4.7]).

5 Ordered enveloping semigroup compactifications

A semigroup S with a topology τ is said to be right topological if every right trans-
lation ρs : S → S, x �→ xs is continuous. As in [34], a right topological semigroup
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compactification (in short: rts-compactification) of a groupG is a pair (γ, S) such that
S is a compact right topological semigroup, and γ is a continuous semigroup homo-
morphism from G into S, where γ (G) is dense in S and the natural action G× S → S
is continuous.

The most important example comes from topological dynamics. For every compact
G-system K the pointwise closure in K K of the set of all g-translations K → K
(where g ∈ G) is a compact right topological semigroup which is said to be an
(Ellis) enveloping semigroup of K ; notation E(K ). See [12] for more details. We get a
compactification map j : G → E(K ), the so-called Ellis compactification. This map
is an injection if the action is effective but j is not in general proper even if G is
embedded into the homeomorphism group H(K ) with respect to the compact open
topology.

In our opinion, the following topological version of orderability deserves special
interest. It was inspired by Hindmann and Kopperman [14] (who dealt with discrete
G).

Definition 5.1 Let S be a compact right topological (in short: crt) semigroup. We say
that S is a linearly ordered crt-semigroup if there exists a bi-invariant linear order on
S such that the interval topology is just the given topology.

(1) A crt-semigroup compactification γ : G ↪→ S of a topological group G with a bi-
invariant order is an ordered semigroup compactification if S is a linearly ordered
crt-semigroup such that γ is an order compactification.

(2) We say that G is dynamically orderable if it admits a proper order semigroup
compactification (i.e., γ : G ↪→ S is a topological embedding and order embed-
ding).

Every dynamically orderable groupG is orderly as a topological group (G is embed-
ded into H+(S)) and orderable as an abstract group (because the linear order on S is
bi-invariant).

Example 5.2

(1) The standard two-point compactification S = {−∞} ∪ R ∪ {∞} of the reals R
(with the usual topology) is an ordered rts-compactification. Here, the semigroup
operation in S (keeping the additive symbol) requires s+∞ =∞ and s+(−∞) =
−∞ for every s ∈ S. Hence, S is not commutative.

(2) (N. Hindman and R.D. Kopperman [14]) For every linearly ordered group
(G,≤) with the discrete topology, there exist proper linearly ordered rts-
compactifications.Moreover, between them there exists the greatest compactifica-
tionG ↪→ μG, which, in fact, is the Nachbin’s compactification of (G, τdiscr ,≤).
For example, if Q is the naturally ordered group of all rationals with the discrete
topology thenQ ↪→ μQ iswell defined. The correspondingμQ is a nonmetrizable
compact right topological semigroup. For an intuitive picture about the semigroup
μQ we need: a) to replace any point q ∈ Q by the ordered triple (q−, q, q+);
b) to add the ordered pair (r−, r+) for every irrational r ∈ R \ Q; c) to add the
end-elements −∞,+∞ (more formally, we consider

{−∞,+∞} × {0} × {−1.0.1} × (R \Q)× {−1.1|}
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ordered lexicographically).

Definition 5.3 Let (G,≤G) be a group with a linear order≤G and (K ,≤) be a linearly
ordered compact effectiveG-system.We say that the given action is stronglymonotone
if the maps x̃ : G → X , g �→ gx are order preserving for every x ∈ X .

Theorem 5.4

(1) For every strongly monotone action of (G,≤G) on (K ,≤) the corresponding Ellis
semigroup E(K ) is a linearly ordered semigroup and the Ellis compactification
j : G → E(K ) is an injective linearly ordered semigroup compactification.

(2) If, in addition, G is separable then E(K ) is hereditarily separable and first count-
able.

Proof (1) Denote byC+(K , [0, 1]) the set of all order-preserving continuous functions
K → [0, 1]. The Ellis compactification j : G → E(K ) is equivalent to the diagonal
compactification j∗ : G → cl( j∗(G)) ⊂ [0, 1]F , where

F = {m( f , a) : G → [0, 1], g �→ f (ga) f ∈ C+(K , [0, 1]), a ∈ K }.

In order to see this, first note that every m( f , a) can be extended to a continuous
function E(K ) → [0, 1]. Now it is enough to show that such extensions separate
the points of E(K ). For every distinct p, q ∈ E(K ) there exists a ∈ K such that
pa 	= qa. In order to complete this part of the proof, recall that by Nachbin’s theorem
C+(K , [0, 1]) separates the points of K , [19].

The desired linear order � on E(K ) is defined as follows:

s1 � s2 iff s1a ≤ s2a ∀a ∈ K .

It is equivalent to

f (s1a) ≤ f (s2a) ∀ f ∈ C+(K , [0, 1]), a ∈ K

(because K is linearly ordered andC+(K , [0, 1]) separates the points). Clearly, we get
a partial order on the set E(K ). Moreover, this partial order extends the linear order
on G = j(G) (use that every orbit map ã : G → X , g �→ ga is order preserving.). In
Claim, 5 we show that this partial order � on E(K ) is linear.

Claim 1: s1 p � s2 p for every s1 � s2 and p in E(K ).

Proof s1 � s2 means that s1a ≤ s2a for every a ∈ K . Then

(s1 p)a = s1(pa) ≤ s2(pa) = (s2 p)a

for every p ∈ E(K ). ��
Claim 2: This partial order � is closed on E(K ).
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Proof Let lim pi = p, lim qi = q are convergent nets and pi � qi in E(K ). Then
pia ≤ qia for all a ∈ K . At the same time, by definition of the pointwise topology
on E , we have lim pia = pa, lim qia = qa. Since the linear order is closed in K
(Lemma 2.2.1), we get pa ≤ qa. ��

Claim 3: The semigroup E(K ) is (left and right) ordered.

Proof After Claim 1, now it is enough to show that ps1 � ps2 for every s1 � s2
and p ∈ E(K ). Since j(G) is dense in E(K ), for a given p ∈ E(K ), there exists a
net gi ∈ G such that lim gi = p. Then lim gi s1 = ps1, lim gi s2 = ps2 because E
is right topological. Since s1 � s2 and the action of G on K is by order-preserving
transformations, we have gi s1a ≤ gi s2a for every a ∈ K and every gi . Therefore,
gi s1 � gi s2. Now, by Claim 2 we have ps1 ≤ ps2, as desired. ��

Claim 4: j : G → E(K ) is an order embedding.

Proof Let g1, g2 be distinct elements in G. If g1 ≤G g2 then g1x ≤ g2x for every
x ∈ K . Hence, j(g1) � j(g2). Conversely, let g1x ≤ g2x for every x ∈ K . Since
the action of G on K is effective, there exists x0 ∈ K such that g1x0 	= g2x0. So,
g1x0 < g2x0. Then, necessarily, g1 < g2 (otherwise, the orbit map x̃0 : G → K is
not order preserving). ��

Claim 5: � is a linear order on E(K ).

Proof Since the partial order � is closed in E(K ) (Claim 2) and j(G) is a dense
linearly ordered subset (Claim 4), we can apply Lemma 2.3. ��

(2) Use Remark 5.6 below. ��
Remark 5.5 If in Theorem 5.4 G carries the pointwise topology with respect to the
action on K , then j is a topological embedding.

Remark 5.6 For separable (e.g., countable) G, the space E(K ) from Theorem 5.4
is separable. Moreover, then E(K ) is hereditarily separable and first countable. It is
important to take into account that, in general, every compact linearly ordered separable
space S comes from a double arrow type construction. Namely, S is homeomorphic
to a special linearly ordered space XA which can be obtained using a splitting points
construction. By a result of Ostaszewski (see [15] and its reformulation [35, Result
1.1]) for S there exist: a closed subset X ⊂ [0, 1] and a subset A ⊂ K such that
XA = (X × {0} ∪ (A× {1})) is endowed with the corresponding lexicographic order
inherited from X ×{0, 1}. Note that such XA always is hereditarily separable and first
countable. XA is metrizable if and only if A is countable. It would be interesting to
know when E(K ) is metrizable. (cf. Question 5.9).

Question 5.7 Does the circular version of Theorem 5.4 remains true ?

Theorem 5.8 Let G be an abstract group.

(1) The following are equivalent:
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(a) G is orderable;
(b) G is dynamically orderable

(i.e., G admits an order semigroup compactification γ : G → S which is a
topological embedding of the discrete group G).

(2) If G is countable then one may choose S such that, in addition, S is first countable
and hereditarily separable.

Proof (1) (b)⇒ (a) The order inherited from the ordered semigroup S on its subgroup
G = j(G) is bi-invariant.

(a) ⇒ (b) Take a bi-invariant order ≤ on G and consider the order G-
compactification X → X∞, where X = (G,≤); see Theorem 3.6. Now apply
Theorem 5.4 to the compact G-system K := X∞. Observe that in this case
j : G → S = E(K ) necessarily is a topological embedding because discrete X := G
is embedded into K and the orbit map

ã : E(K ) → K , p �→ pa

is continuous for the unit element a := e ∈ X ⊂ K .
(2) Apply Theorem 5.4.2 or Remark 5.6. ��
The first assertion (1) of Theorem 5.8 can be derived also from [14, Theorem 2.1].
Taking into account Remark 5.6, the following question seems to be attractive.

Question 5.9 Which countable ordered discrete groups G admit a proper order crt-
semigroup compactification G ↪→ S with metrizable S. What about the free group
F2?

6 Circularly ordered groups

The notion of cyclically ordered group is due to L. Rieger [36]. This concept was
studied in several directions. See, for example, [3, 4, 11, 37]).

Recall that a c-order-preserving action of G on a circularly ordered set (X , ◦) is
defined as follows

[x, y, z] ⇔ [gx, gy, gz] ∀ g ∈ G, x, y, z ∈ X .

That is, if g-translations X → X , x �→ gx are COP maps for every g ∈ G. In
particular, one may define left circularly orderable (in short: left c-orderable) and
circularly orderable (in short: c-orderable) groups. Precisely, thismeans thatG admits
a circular order ◦ such that the left action (resp., left and right actions) of G on itself
is c-order-preserving. Abbreviation: L-COrd and COrd, respectively.

Every L-Ord group is L-COrd (see Remark 2.6.1) and every Ord group is COrd. A
finite group is L-COrd iff it is a cyclic group iff it is COrd. The circle group T is COrd
but not Ord. A countable group G is L-COrd iff it acts faithfully on T by orientation
(circular order) preserving homeomorphisms (see, for example, [3, 4]). That is, iff G
algebraically can be embedded into H+(T).
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Note that the world of circular orders is much larger than the world of linear orders.
For example,Z admits only two linear orders.However,Zhas continuummany circular
orders. This contrast is very sharp also in dynamical systems. One of themost dramatic
differences is for compact minimal G-systems. Every minimal linearly ordered G-
system is trivial (Lemma 2.1). In contrast, we have many nontrivial circularly ordered
G-systems in symbolic dynamics. See [5] for further discussion and also Remark 3.5.

A representation theorem for cyclically ordered groups was proved by S. Swier-
czkowski [16]. This theorem asserts that every cyclically ordered group can be
embedded into a lexicographic product T⊗ L of the circle group T and an appropriate
linearly ordered group L .

In Definition 1.1 c-orderly (meaning, circular orderly) topological groups were
defined as topological subgroups of H+(K ) for some compact circularly ordered space
(K , ◦). For every circularly ordered set (X , ◦) the topological group Aut (X ,≤) with
its pointwise topology with respect to the discrete set X is c-orderly (Corollary 3.7).

Proposition 6.1 Every orderly group is c-orderly.

Proof Use Lemma 2.7. ��
The equivalence of (1) and (3) in Theorem 6.2 is known (Zheleva [11]). We present

below a direct proof of Theorem 6.2which strengthens results of Zheleva and probably
has intrinsic interest.

Theorem 6.2 Let G be an abstract group. The following are equivalent:

(1) G is left-c-orderable;
(2) (G, τdiscr ) is c-orderly

(i.e., a discrete copy of G topologically is embedded into the topological group
H+(K , ◦) for some compact circularly ordered space K );

(3) G algebraically is embedded into the groupAut (X , ◦) for some circularly ordered
set (X , ◦).

In the assertion (2), in addition, we can suppose that dim K = 0.

Proof (1) ⇒ (2) Let (G, R) be a c-ordered group. By Theorem 3.2, the c-
compactificationν : G → K = G∞ is a c-order-preservingproperG-compactification
which induces a topological embedding of (discrete) G into H+(K ).

(2)⇒ (3) Trivial.
(3)⇒ (1) Apply Corollary 6.5 below. ��
The idea of the following definition comes from c-ordered lexicographic products.

In order to compare with Definition 2.14), consider the projection C ⊗ L → C as a
particular case of Definition 6.3. This construction can be found in [38, Def. II.27, p.
72].

Definition 6.3 Let (Y , RY ) be a circularly ordered set and q : X → Y be an onto map
such that for every fiber Xy := q−1(y) we have a linear order Ly =≤y . Then we have
a canonical circular order RX on X (as we show below) defined as follows: [x1, x2, x3]
if one of the following conditions is satisfied:
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(1) [q(x1), q(x2), q(x3)];
(2) q(x1) = q(x2) 	= q(x3), x1 < x2;
(3) q(x2) = q(x3) 	= q(x1), x2 < x3;
(4) q(x1) = q(x3) 	= q(x2), x3 < x1;
(5) q(x1) = q(x2) = q(x3), [x1, x2, x3]Ly .

Lemma 6.4 For RX defined in Definition 6.3 we have:

(a) RX is a circular order on X.
(b) RX is compatible with L y on every Xy, y ∈ Y .
(c) q : X → Y is c-order preserving.
(d) Let G act on X and Y such that q : X → Y is a G-map, G × Y → Y is c-order

preserving and gx1 < gx2 for every x1 < x2 in Xy, every y ∈ Y and g ∈ G. Then
the action G × X → X is c-order preserving.

Proof (a) The Cyclicity, Asymmetry and Totality axioms are trivial to verify. Transi-
tivity is straightforward though nontrivial because there are many cases to check.

(b) Directly follows from the definitions.
(c) Let [x1, x2, x3] and q(x1), q(x2), q(x3) be distinct. Then [q(x1), q(x2), q(x3)]

by Definition 6.3.
If q(x1) = q(x2), then x1, x2 both are elements of the linearly ordered subset Xy ,

where y = q(x1). Let x1 < x2. Then the interval [x1, x2]R is just the usual interval
{x ∈ X : x1 < x < x2} in Xy . Then q is constant on this interval, q([x1, x2]R)) = y.
So, q is c-order preserving (by Definition 2.9).

(d) It is straightforward. ��
Corollary 6.5 (Zheleva [11]) Let (X , ◦) be a c-ordered set and G × X → X is an
effective c-order preserving action. Then the group G (e.g., Aut (X , ◦)) admits a left
invariant c-order.

Proof Take any a ∈ X and define the linearly ordered set (X ,≤a) (as in Remark 2.6).
Let H := St(a) ⊂ G be the stabilizer subgroup of a. Then we have the restricted
action H × X → X . Which, clearly, is also effective. This action preserves the order
≤a . Indeed, if [a, x, y] then [ga, gx, gy] for every g ∈ G. In addition for every h ∈ H
we have ha = a. Therefore, [a, hx, hy]. This means that hx <a hy for every x <a y.
By Theorem 4.2, H admits a natural left invariant linear order ≺H .

Now consider the orbit G-map

q : G → Ga = G/H , g �→ ga.

The action of G on Ga is c-order preserving and it is G-equivalent to the usual left
action of G on G/H . On every coset gH define the induced linear order

gh1 ≺ gh2 ≡ h1 ≺H h2.

Since the linear order on H is left invariant, it is easy to see that this binary relation is
well defined and does not depend on the choice of a ∈ G with gH = aH . Clearly, it
defines a linear order on gH which coincideswith≺H on H . Note thatq−1(ga) = gH .
Now we can apply Lemma 6.4 to the onto orbit map q : G → Ga. ��
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The proof of Corollary 6.5 can be easily adopted in order to prove the following
sufficient condition of c-orderability.

Corollary 6.6 (H. Baik and E. Samperton [4, Lemma 4.4]) Let X be a set which admits
a G-invariant circular order with respect to a given action G× X → X of a group G.
Suppose that the stabilizer subgroup St(a) of a point a ∈ X is left linearly ordered.
Then G has a left invariant circular order such that G → X , g �→ ga is c-order
preserving.

This result, in turn, implies another sufficient condition (in terms of short exact
sequences) due to D. Calegari [3, Lemma 2.2.12].

Circularly ordered enveloping semigroup compactifications

Definition 6.7 Let S be a crt semigroup. We say that S is a c-ordered crt-semigroup if
there exists a bi-invariant c-order on S such that the circular topology is just the given
topology. A crt-semigroup compactification γ : G → S of a topological group G with
a bi-invariant c-order is an c-ordered semigroup compactification if S is a c-ordered
crt-semigroup such that γ is a c-order compactification.

We say that G is dynamically c-orderable if it admits a proper c-order semigroup
compactification (i.e., γ is a topological embedding and c-order embedding).

Example 6.8

(1) [5, Cor. 6.5] (Sturmian-like systems)
For every irrational α ∈ R and every Rα-invariant subset A ⊂ T, one may define
a circularly ordered cascade (Z-system) TA which we get from the circle T by
replacing any pointa ∈ A by the ordered pair (a−, a+). In this case, the enveloping
semigroup of TA is the circularly ordered cascade TT ∪Z. It contains the double-
circleTT (c-ordered lexicographic product T×{−,+}) as its unique minimal left
ideal; or equivalently as its unique minimal subset.

(2) [39, Example 14.10] Consider in more detail a special case of (1), when A is a
subgroup of Z, generated by an irrational α ∈ T. For convenience we will use the
notation β± (β ∈ T) for points of K := TA, where β− = β+ for every β ∈ T\ A.
We have a homeomorphism

σ : TA → TA, σ (β±) = (β + α)±

which defines a circularly ordered Z-system TA.
Then the corresponding enveloping semigroup E = E(TA) can be identified with
the disjoint union

TT ∪ {σ n : n ∈ Z},

where (TT, σ ) is theEllis’double circle cascade:TT = {β± : β ∈ T = [0, 1)} and
σ ◦β± = (β+α)±. Onemay show that E becomes a circularly ordered semigroup,
where E = TT ∪ Z is a c-ordered subset of the c-ordered lexicographic order
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T × {−, 0,+}. Under this definition for every n ∈ Z we have [nα−, σ n, nα+].
Since the interval (nα+, nα−) ⊂ E contains only the single element σ n for every
nα ∈ G = Z, we get that every element of G = j(G) is isolated in E . So, in this
case E = TT ∪ Z, where each point of Z is isolated in E .
For every γ ∈ T, define the following self-maps:

p+γ : TA → TA, p+γ (β±) = (β + γ )+,

p−γ : TA → TA, p−γ (β±) = (β + γ )−.

Then E(TA) = {p±γ : γ ∈ T} ∪ Z. It is straightforward to show that E(TA) is
an ordered semigroup. In particular, observe that the left and right translations on
E(TA) are circular order-preserving maps (in the sense of Definition 2.9).

Theorem 6.9 Let (G, τ ) be an abstract discrete group. The following are equivalent:

(1) G is circularly orderable;
(2) G is dynamically c-orderable

(i.e., G admits a c-order proper semigroup compactification γ : G ↪→ S).

Proof (1) ⇒ (2) Let R be a bi-invariant circular order on G. By a classical result
of Scwierczkowski [16], there exists a group embedding i : G ↪→ T ⊗c L , into the
lexicographic c-product of groups, where T is the usual c-ordered circle group and L
is an ordered group. By Theorem 5.8, there exists a linear order semigroup compact-
ification γ : L ↪→ P . Consider the lexicographic product on the semigroup T⊗c P .
Now observe:

(a) T⊗c P is compact in the circular topology of the lexicographic c-order by Propo-
sition 2.20.

(b) For every u = (t, p) ∈ T ⊗c P , the left and right translations λu : T ⊗c P →
T ⊗c P and ρu : T ⊗c P → T ⊗c P are c-order preserving. The verification is
straightforward using Definition 2.14.

(c) For every g ∈ G, the left translations λi(g) (and its inverse) λi(g−1) are both circular
order-preserving self-maps of T ⊗c P . Hence, such translations are homeomor-
phisms because T⊗c P carries the circular topology. Therefore, i(G) is a subset
of the topological centre of T⊗c P .

(d) T⊗c P is a right topological semigroup. Again, we use Definition 2.14 in order to
show that the preimage of every interval under any given right translation ρ(t0,p0)

is open.

Finally, define S as the closure of i(G) inT⊗c P . Then S is a compact right topological
semigroup, and the subspace (compact) topology coincides with the circular topology
under the inherited circular order (indeed, the Hausdorff circular topology is weaker
than the compact subspace topology). Moreover, the induced embedding γ : G ↪→
S = cl(i(G)) is a c-order semigroup compactification.

(2)⇒ (1) is trivial. ��
Every (c-)ordered compact G-space K is tame in the sense of A. Köhler [17]

(regular, in the original terminology). If K is metrizable then it is equivalent to say
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that the enveloping semigroup E(K ) is a separable Rosenthal compact space (see [5,
13]).

Deep results of Todorc̆ević [40] and Argyros–Dodos–Kanellopoulos [41, Section
4.3.7]) about separable Rosenthal compacta, lead to a hierarchy of tamemetric dynam-
ical systems (see [8]) according to topological properties of corresponding enveloping
semigroups. In view of this hierarchy we ask the following

Question 6.10 Which (c-)orderly topological groups G admit an effective (c-)ordered
continuous action on a compact metrizable space K such that the Ellis compactifica-
tion G ↪→ E(K ) is a topological embedding and the enveloping semigroup E(K ) is:
a) metrizable? b) hereditarily separable? c) first countable?

7 Representations on Banach spaces

Banach representations of dynamical systems probably can provide an interesting
direction for estimating the complexity of orderable groups. Recall that according to
results of [5], every (c-)ordered compact G-space K is representable on a Rosenthal
Banach space (not containing an isomorphic copy of l1). It follows that every c-
orderly topological group G (e.g., every H+(K )) is Rosenthal representable. That is,
G is embedded as a topological subgroup into the linear isometry group Iso l(V ) (with
the strong operator topology) for some Rosenthal Banach space V . However, it is not
always true if V is an Asplund space. In contrast, the actions of topological groups
H+[0, 1] and H+(S1) on [0, 1] and S1, respectively, are not Asplund representable
(Theorem 7.3).

Recall that a Banach space V is said to beAsplund if the dualW ∗ of every separable
Banach subspace W ⊂ V is separable. Every Asplund space is Rosenthal.

Definition 7.1 Let us say that a topological group G is Asplund orderly if G topolog-
ically can be embedded into H+(K ), where K is a linearly ordered compact space
such that the G-space K is Asplund representable. Similarly can be defined Asplund
c-orderly groups.

Question 7.2 Which (c-)orderly topological groups are Asplund (c-)orderly?

Remark 7.3

(1) If, in Definition 7.1, in addition, K is metrizable, then K , as aG-space, is Asplund
representable iff the enveloping semigroup E(K ) is metrizable (this follows from
[18]). This gives an important link between Questions 6.10 and 7.2 .

(2) The orderly topological group H+[0, 1] and the c-orderly topological group
H+(S1) are not Asplund orderly and Asplund c-orderly, respectively. Indeed,
according to [6, 42], any representation of the groups H+[0, 1] and H+(S1) on an
Asplund Banach space is trivial.

(3) However by [5], the actions of the Polish groups H+[0, 1] and H+(S1) on [0, 1]
and S1, respectively, admit a proper representation on a Rosenthal Banach space.

123



930 M. Megrelishvili

Remark 7.4 The standard two-point compactification of R is an ordered rts-
compactificationwhich is anAsplund representableR-system (see [39]) but not reflex-
ive representable. Hence, R is Asplund orderly. Proposition 7.5 implies, in particular,
that Rn is Asplund-orderly.

Proposition 7.5 Finite product of Asplund-orderly topological groups is Asplund-
orderly.

Proof This can be done similarly to the proof of Proposition 4.9 taking into account
that if a compact Gi -space Ki (i ∈ {1, 2}) is Asplund representable, then

the G-space K is also Asplund representable, where G := G1 × G2 and K is the
disjoint sum K1∪K2. In order to check this,weuse a criterion (see [43,Theorem3.11.2]
or [9]) of Asplund representability. This criterion asserts that a compact G-space X is
Asplund representable iff there exists a G-invariant point-separating bounded family
F of real functions on X which is a fragmented family (in the sense of [39]) on X .
Using this result let Fi be a such a family for the Gi -space Ki . For every f : K1 → R

from F1 define f1 : K → R, where K := K1 ∪ K2 with f1(y) = 0 for every y ∈ K2.
Set F1 := { f : f ∈ F1}. Similarly can be defined F2. Finally, observe that the family
F := F1 ∪ F2 is a G-invariant, bounded, fragmented family of functions on K which
separates the points of K . For simplicity we omit other details. ��
Question 7.6 Is it true that every countable discrete (c-)ordered group is Asplund (c-)
orderly?

As we know (Theorem 5.8.2) for every discrete countable orderly group G there
exists an order preserving action of G on a compact metrizable linearly ordered space
K which induces a topological embedding (G, τdiscr ) ↪→ H+(K ). In order, to ensure
that such G-space K is Asplund representable, it is enough to show (by [18]) that the
enveloping semigroup E(K ) is metrizable (cf. Questions 6.10(a) and 5.9 ).
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