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Abstract
In this paper, we aim to derive an exact solution to a linearised version of the geo-
physical equations in the β-plane setting. The obtained explicit solution represents
a steady purely azimuthal stratified flow with a flat surface and an impermeable flat
bed that is suitable for describing the Equatorial Current. Moreover, we show that the
thermocline exhibits some monotonicity properties.

Keywords Equatorial current · Exact solution · Stratification · Eddy viscosity ·
Centripetal effects
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1 Introduction

Consideration in this paper is the study of the nature of equatorial currents generated
by the surface wind stress [16, 46], noticeable for the near-surface current, and influ-
enced by a continuous stratification and the centripetal force. Quite different from
the Ekman theory [45], investigated further recently in [4, 10, 20] etc., the equatorial
currents exhibit no deflection of the surface current with respect to the wind due to the
peculiarities of the Coriolis force at the Equator [3, 12, 17]. But based on the realistic
consideration, such as its significant influence on the climate [13, 16, 22, 44], the
investigation of the nature of equatorial wind-stress currents is quite intricate and of
great current interest. Besides, due to the importance of the depth of the thermocline
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in dynamic (c.f. El Nino phenomenon [43]), we consider in the paper the azimuthal
flows with a continuous stratification across the thermocline.

As a common feature of oceanwaves, stratification arises from salinity, temperature,
pressure, topography, oxygenation. Due to the complexity and realistic of stratified
flow, the study of flow with stratification is challenging and meaningful. Considera-
tion in this paper is an arbitrary stratification with respect to the depth and a more
complicated stratification which varies discontinuously not only with respect to the
depth but also with respect to the azimuthal direction was considered recently in [36].

To describe the nonlinear dynamic of the given complex fluid flows in detail, it is
remarkable to find an exact solution to the water wave problem. The Gerstner-type
wave solution is well known and can be modified to describe a number of different
physical and geophysical scenarios cf. [5–9, 13, 16, 23, 30, 39]. A most recent result
for geophysical water waves with wind-stress can be referred to [11]. In regard to
the research on the specifically azimuthal flows, the exact solutions have recently
been studied by Constantin and Johnson in [14] for modelling of the homogeneous
equatorial flows and the Antarctic Circumpolar Current (ACC) and subsequent studies
on stratified flows can be referred to [1, 14, 15, 25–29, 32] ect. It is notable that the
above studies are carried out in rotating spherical coordinates or in terms of cylindrical
coordinates. To make a more apparent insight into the properties of the equatorial
currents and the ACC, an alternative approach was pursued in [13, 37, 38, 41, 47] to
study homogeneous and stratified flows, where they simplified the geometry by relying
on the equatorial f -plane approximation. We would like to mention more examples
of explicit solutions as obtained recently in [33, 34], where a depth-dependent density
was also considered.

In the ocean dynamics, f -plane and β-plane approximation are two commonly
used models [19]. In the f -plane approximation, the Coriolis parameter is considered
as constant, where the latitudinal variations are ignored and for the β-plane approxi-
mation, it introduces a linear variation with latitude of the Coriolis parameter. In this
paper, we consider water waves in a moderate meridional distance from the equator,
where the Navier-Stokes equations in the β-plane are applicative. Compared with the
models investigated in [31, 38, 47], the inclusion of (partial) β-plane effects induces
an additional y-dependence of the pressure.

Inspired by the papers [13, 31, 37], we mainly obtain the exact solution of the
linearised Navier-Stokes equations for a steady-state stratified flow with centripetal
effects and under the assumption of a uniform wind stress. We would like to men-
tion that the inclusion of centripetal effects is relatively new [14, 15, 25–28] and
explicit solutions to the nonlinear geophysical water wave problem with full cen-
tripetal terms were obtained recently in [35]. In our continuous stratification setting,
the exact solution of the azimuthal velocity for the two-layer stratified fluid considered
in [31, 47] can be recovered by taking a limiting process in our main integral formula
for the azimuthal velocity field. The expression of the pressure obtained exhibits the
three-dimensionality, which reduces to the two-dimensional results for the two-layer
stratified fluid considered in [31, 47] and the continuous stratified fluid considered
in [38] without the consideration of the meridional coordinate. Besides, we confirm
three monotonicity results by virtue of an elementary analysis. Namely, the level of
thermocline and strength of current velocity at thermocline decrease with the increase
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of the strength of wind speed at 10 meters above the sea, and the strength of the flow
reversal increases with the increase of the strength of wind speed at 10 meters above
the sea.

The remainder of this paper is organized as follows. In Sect. 2, we present the
governing equations for the equatorial wind-induced flow influenced by the centripetal
force in the β-plane approximation. In Sect.on 3, we derive the exact solution and give
an analysis on the exact solution to obtain some monotonicity results.

2 The governing equations in theˇ-plane setting with the centripetal
terms

Consideration in this paper is the effect of a uniform wind stress on the equatorial
stratifiedwater flows in a region ofwidth of about 100km, symmetric about the equator.
In a reference frame with the origin located at a point fixed on Earth’s surface and
rotatingwith theEarth,we consider the zonal coordinate x pointing east, themeridional
coordinate y pointing north and the vertical coordinate z pointing up. Our aim is to
derive purely azimuthal flow solutions, which means a steady flow moving in the
azimuthal direction with vanishing meridional and vertical fluid velocity components.
To this end, we consider the linearised Navier-Stokes in the β-plane approximation
with the centripetal terms [7, 24],

⎧
⎪⎨

⎪⎩

0 = − 1
ρ
Px + (νuz)z,

β yu + �2y = − 1
ρ
Py,

−2�u − �2R = − 1
ρ
Pz − g,

(2.1)

and the mass conservation equation

ux = 0, (2.2)

where u is the horizontal fluid velocity component, P = P(x, y, z, t) is the pressure
field, g ≈ 9.8 ms−2 is the gravitational acceleration at the Earth’s surface, ρ = ρ(z) is
a depth-depended density, ν = ν(z) > 0 is the vertical eddy viscosity parameter [18],
� ≈ 7.29× 10−5 rad s −1 is the constant rotational speed of the Earth about the polar
axis, R = 6371 km is the radius of the Earth and β = 2�/R = 2.28×10−11 m−1 s−1

(cf. [19]).
Associated with the system (2.1)–(2.2) are the boundary conditions

u = 0 on z = −d, (2.3)

with z = −d denoting the flat impermeable bottom, and

uz = 0 on z = −h, (2.4)

which denotes the shear vanishing at the thermocline z = −h (cf. [18]). On the flat
surface z = 0, a discussion in [13] and an assumption that the shear does not depend

123



1096 L. Fan, R. Liu

on the wind speed show that

uz = −α on z = 0, (2.5)

where α is a constant and is positive as the trade winds blow from east to west in the
equatorial Pacific.

3 Main results

3.1 Explicit solution for azimuthal velocity and pressure

We argue along the lines of Martin and Quirchmayr [37] to derive the solution to
(2.1)–(2.5).

Theorem 3.1 The solution of the purely azimuthal flow system (2.1)–(2.5) is given by

u(z) = −αν(0)
∫ z

−d

⎛

⎝
1

ν(s)

∫ s
−h

1
ρ(r)dr

∫ 0
−h

1
ρ(r)dr

⎞

⎠ds, (3.1)

and

P(x, y, z) = − αν(0)
∫ 0
−h

1
ρ(s)ds

x − 2�
∫ 0

z
ρ(s)u(s)ds − (�2R − g)

∫ 0

z
ρ(s)ds

− ρ(z)

[
β y2

2
u(z) + �2

2
y2

]

+ Patm, (3.2)

where (x, y, z) ∈ R
2 × [−d, 0] and Patm is the constant atmospheric pressure.

Proof Differentiating Eq. (2.1) with respect to x and utilizing (2.2), we obtain that

(Pxx , Pxy, Pxz) = ∇Px = 0,

which shows that there is some constant a such that

Px = a within the fluid domain. (3.3)

Plugging (3.3) into the first equation of (2.1), we get that

(νuz)z = a

ρ(z)
,

which implies that there exists some function b(y) such that

νuz = a
∫ z

−h

1

ρ(s)
ds + b(y) for − d ≤ z ≤ 0. (3.4)
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On the other hand, an employment of the boundary conditions (2.4) and (2.5) yields
that

−αν(0) = a
∫ 0

−h

1

ρ(s)
ds + b(y), and ν(−h) · 0 = 0 + b(y),

i.e.,

a = − αν(0)
∫ 0
−h

1
ρ(s)ds

, b(y) = 0.

Then we get from (3.4) that

uz = −αν(0)

ν(z)

∫ z
−h

1
ρ(s)ds

∫ 0
−h

1
ρ(s)ds

. (3.5)

An integration of (3.5) with respect to z leads to

u(z) = −αν(0)
∫ z

−d

⎛

⎝
1

ν(s)

∫ s
−h

1
ρ(r)dr

∫ 0
−h

1
ρ(r)dr

⎞

⎠ ds, (3.6)

where the boundary condition (2.3) is used.
To get the expression of P , we integrate the first equation of (2.1) with respect to

x and the third equation of (2.1) with respect to z to reach that

P(x, y, z) = − αν(0)
∫ 0
−h

1
ρ(s)ds

x − 2�
∫ 0

z
ρ(s)u(s)ds − (�2R − g)

∫ 0

z
ρ(s)ds + p̃(y),

(3.7)

for some function p̃(y). Substituting (3.7) into the second equation of (2.1), we deduce
that

d p̃(y)

dy
= −ρ(z)[β yu(z) + �2y]. (3.8)

Letting Patm be the constant atmospheric pressure at the point (x, y, z) = (0, 0, 0),
we get that

p̃(y) = −ρ(z)

[
β y2

2
u(z) + �2

2
y2

]

+ Patm, (3.9)

which gives the expression of P as in (3.2). ��
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Fig. 1 Typical vertical profile of the current field in the equatorial Pacific region. The horizontal axis points
from West to East, along the Equator

The expression of uz in (3.5) illustrates that the current speed increases strictly
from flat surface to the level of thermocline and decreases strictly from the level of
thermocline to the flat bottom, as shown in Fig. 1.

Remark 3.1 The results in Theorem 3.1 are the three-dimensional generalizations of
the ones in [38, 47]. In fact, taking

ρ(z) =
{

ρ0, −h < z ≤ 0,

ρ1, −d ≤ z < −h,

where ρ0 and ρ1 are constant densities with ρ0 < ρ1, the equation (3.1) is reduced to

u(z) =
⎧
⎨

⎩

−αν(0)ρ0
ρ1

∫ z
−d

1+ s
h

ν(s) ds for − d ≤ z ≤ −h,

−αν(0)
∫ z
−h

1+ s
h

ν(s) ds − αν(0)ρ0
ρ1

∫ −h
−d

1+ s
h

ν(s) ds for − h ≤ z ≤ 0,
(3.10)

and the Eq. (3.2) is reduced to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(x, y, z) = − αν(0)
h ρ0x − 2�ρ0

∫ 0
−h u(s)ds − 2�ρ1

∫ −h
z u(s)ds + ρ0(g − �2R)h

−ρ1(g − �2R)(z + h) − ρ1

(
βy2

2 u(z) + �2 y2

2

)
+ Patm for − d ≤ z ≤ −h,

P(x, y, z) = − αν(0)
h ρ0x − 2�ρ0

∫ 0
z u(s)ds − ρ0(g − �2R)z

−ρ0

(
βy2

2 u(z) + �2 y2

2

)
+ Patm for − h ≤ z ≤ 0.

(3.11)

The expressions (3.10) and (3.11) coincide with the two-dimensional case considered
in [47] for y = 0 and α = 1

ρ0σ
.
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Taking no account of the effect of the centripetal force, the expression of P is given
by

P(x, y, z) = − αν(0)
∫ 0
−h

1
ρ(s)ds

x − 2�
∫ 0

z
ρ(s)u(s)ds + g

∫ 0

z
ρ(s)ds − β y2

2
ρ(z)u(z) + Patm .

This coincides with the two-dimensional case considered in [38] for y = 0.

3.2 Monotonicity

In this subsection, themethod in [31] is adapted our analysis on themonotonicity of the
level of the subsurface and the strength of the current at the subsurface in connection
with the strength of the wind speed near the ocean’s surface.

Employing the arguments in [13, 18, 40, 42], we make the assumption that the
viscosity has the form

ν(z) = ν(0) f
( z

d

)
, −d ≤ z ≤ 0, (3.12)

where a suitably chosen f : [−1, 0] → (0,∞) is a decreasing function with depth
in the layer above the thermocline. On the other hand, the discussions in [2, 21, 31]
lead us to grasp the relation between the wind speed Uwind at z meters above the sea
and the velocity of the free surface u(0) := u0 as follows

Uwind = 1

κ
u0 ln

(
zg

au20
+ 1

)

, (3.13)

where κ is known as the Kárman constant and a is a positive constant. It is usually
typical to consider the wind speed at 10 meters above the sea, denoted as U10. On
account of the wind blowing from the east to the west, we have Uwind < 0, resulting
in u0 < 0.

Now, we are in the position to introduce the monotonicity between the strength of
wind speed at 10 meters above the sea, |U10|, and the level of the thermocline −h.

Proposition 3.1 We assume the eddy viscosity function is given by (3.12). Then the
level of the thermocline −h decreases as the strength of wind speed |U10| increases.

Proof Combining (3.1) with (3.12), we infer that

u0 = −α

∫ 0

−d

⎛

⎝
1

f
( s
d

)

∫ s
−h

1
ρ(r)dr

∫ 0
−h

1
ρ(r)dr

⎞

⎠ds < 0,
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where the sign of u0 is due to the reality that the trade wind blows westwords in the
equatorial Pacific. By a calculation

d|u0|
dh

= α

∫ 0

−d

1

f
( s
d

)
∂

∂h

⎛

⎝

∫ s
−h

1
ρ(r)dr

∫ 0
−h

1
ρ(r)dr

⎞

⎠ds

= α

∫ 0

−d

1

f
( s
d

)

1
ρ(−h)

(∫ 0
−h

1
ρ(r)dr − ∫ s

−h
1

ρ(r)dr
)

(∫ 0
−h

1
ρ(r)dr

)2 ds

= α

∫ 0

−d

1

f
( s
d

)

1
ρ(−h)

∫ 0
s

1
ρ(r)dr

(∫ 0
−h

1
ρ(r)dr

)2 ds > 0, (3.14)

we conclude that |u0| exists invertible function about h, thus

dh

d|u0| =
(
d|u0|
dh

)−1

> 0. (3.15)

By (3.13),

|U10| = 1

κ
|u0| ln

(
10g

au20
+ 1

)

. (3.16)

Then we get that

d|U10|
d|u0| = 1

κ

[

ln

(
10g

au20
+ 1

)

− 20g

10g + au20

]

. (3.17)

Our next step is to determine the sign of (3.17). Noting that 0 <
20g

10g+au20
< 2, i.e.,

e
20g

10g+au20 < e2 for all |u0| > 0, we obtain 10g
au20

+ 1 > e2 for |u0| <
[

10g
a(e2−1)

] 1
2
, which

implies the right side of (3.17) is strictly positive for |u0| ∈
(

0,
[

10g
a(e2−1)

] 1
2
)

. Then,

we infer that |U10| exists invertible function about |u0| for all |u0| ∈
(

0,
[

10g
a(e2−1)

] 1
2
)

,

i.e.,

d|u0|
d|U10| =

(
d|U10|
d|u0

)−1

> 0. (3.18)

Due to (3.15) and (3.18), it is obvious that
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dh

d|U10| = dh

d|u0|
d|u0|
d|U10| > 0. (3.19)

Therefore, the conclusion is confirmed. ��

The monotonicity between the current at the thermocline u(−h) and the strength
of the wind speed |U10| is presented as follows.

Proposition 3.2 The strength of the current at the thermocline u(−h) decays as the
strength of the wind speed |U10| increases. Besides, the difference u(−h) − u(0),
measuring the strength of the flow reversal, increases as |U10| increases.

Proof By (3.1), we have

d(u(−h))

dh
= − α

ρ(−h)
(∫ 0

−h
1

ρ(r)dr
)2

∫ −h

−d

∫ 0
s

1
ρ(r)dr

f
( s
d

) ds < 0, (3.20)

and due to the relation

u(−h) − u(0) = α

∫ 0

−h

1

f
( s
d

)

∫ s
−h

1
ρ(r)dr

∫ 0
−h

1
ρ(r)dr

ds,

we have

d[u(−h) − u(0)]
dh

= α

ρ(−h)
(∫ 0

−h
1

ρ(r)dr
)2

∫ 0

−h

∫ 0
s

1
ρ(r)dr

f
( s
d

) ds > 0. (3.21)

Then we obtain from (3.19) that

du(−h)

d|U10| = du(−h)

dh

dh

d|U10| < 0, (3.22)

and

d[u(−h) − u0]
d|U10| = d[u(−h) − u0]

dh

dh

d|u10| > 0. (3.23)

This completes the proof of Proposition 3.2. ��
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