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Abstract
In set theory without the Axiom of Choice (AC), we investigate the open problem
of the relative strength of the proposition “Every partially ordered set such that all
of its antichains are finite and all of its chains are countable is countable”, which
was established by G. Kurepa [On two problems concerning ordered sets. Glasnik
Mat.-Fiz. Astronom. Društvo Mat. Fiz. Hrvatske Ser. II 13, 229–234 (1958)] within
ZFC (Zermelo–Fraenkel set theory plus the AC). Among various results, positive and
independence ones, we show that Kurepa’s result can be proved in an axiomatic system
which is weaker than ZFC, namely in ZF+DCℵ1 (whereDCℵ1 is Dependent Choices for
ℵ1—aweak choice principle stronger than Dependent Choices (DC)). We also address
similar open problems for certain weak forms of Kurepa’s proposition. Furthermore,
the results of the paper answer several questions left open in A. Banerjee [Maximal
independent sets, variants of chain/antichain principle and cofinal subsets withoutAC.
arXiv:2009.05368v2], as well as an open question from P. Howard and J. E. Rubin
[Consequences of the Axiom of Choice. Mathematical Surveys and Monographs 59,
Amer. Math. Soc., Providence, RI (1998)].
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646 E. Tachtsis

1 Introduction

In 1958, Kurepa [17] proved the proposition on partially ordered sets stated in the
abstract, answering the corresponding question raised by Sierpiński [19, pp. 190–
191].1 Kurepa’s result is (in our opinion) of significant interest from both a
combinatorial and an order-theoretical perspective and since its proof was conducted
in ZFC, this fact readily emerges natural and intriguing questions on its possible inter-
relation with AC and weak forms of AC.

Of course, one would first be concerned with the problem of whether Kurepa’s
result can be established without using any form of choice (that is, if ZF proves this
proposition) and, if the answer is in the negative, then it would be important to deter-
mine whether it implies AC (which is something that one may hardly expect). In case
the above proposition is not provable in ZF and is not equivalent to AC (in ZF or in
ZFA—complete definitions will be given in Sect. 2), then the open problem of its
placement in the hierarchy of weak choice principles, which are more than 300 (see
Howard and Rubin [9]), comes up.

Besides the investigation onwhich weak choice principles (or conjunctions of weak
choice principles) suffice to prove Kurepa’s result, or which principles are deduced
from this result, it is also important to address the open problem of its connection with
other order-theoretic and combinatorial statements such as the celebrated Dilworth’s
theorem or the Chain–Antichain Principle, to name a few. This would certainly shed
more light on the relative strength of Kurepa’s proposition and contribute to new
information and results in the area. For recent research on Dilworth’s theorem, the
Chain–Antichain Principle, and weak choice principles the reader is referred to Tacht-
sis [20, 21].

Now, the only source of information (known to us) on Kurepa’s result and choice
principles is a quite recent paper by Banerjee [1]. Among other results, the author
proves in that paper that the proposition of discourse is not provable in ZF and is not
equivalent to AC in ZFA.

The above paper by Banerjee has been the chief motivation for us in continuing
the research on this intriguing topic. We fill in several gaps in information about the
strength of Kurepa’s result and certain weaker and formally weaker forms of it; and
thus also answering various questions left open in [1]. For example, amongmany other
results, we establish the following:

1. The statement “Every partially ordered set such that all of its antichains are finite
and all of its chains are countable has a maximal chain” in conjunction with
the Principle of Dependent Choices (DC) implies Kurepa’s proposition (Theorem
4(7));2

2. DCℵ1 implies Kurepa’s proposition, but the implication is not reversible in ZFA
(Theorem 9[(1), (5)]);

3. The Axiom of Multiple Choice does not imply Kurepa’s proposition in ZFA, and
hence neither does “Every partially ordered set has amaximal antichain” (Theorem
5(2));

1 Kurepa [17] points out that the problem had already been solved by Dushnik and Miller, and Kurepa.
2 In [1], it was shown that ZF + DC cannot prove Kurepa’s proposition.
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On a theorem of Kurepa for partially ordered sets and weak choice 647

4. The statement “Every partially ordered set of finite width such that all of its chains
are countable is countable” is weaker than Dilworth’s theorem in ZFA (Theorems
4(8), 9(4));

5. Kurepa’s and Dilworth’s theorems are mutually independent in ZFA (Theorems
4(17), 9(4));

6. Kurepa’s proposition implies the Chain–Antichain Principle (Theorem 4[(1),
(11)]);

7. “Every set is either well orderable or has an amorphous subset” + Chain–Antichain
Principle implies Kurepa’s proposition, and the implication is not reversible in ZFA
(Theorem 8[(1), (3)]);

8. The statement “Every partially ordered set such that all of its antichains are finite
and all of its chains are countable is Dedekind-infinite” is:

(a) equivalent to the Chain–Antichain Principle (Theorem 4(11));
(b) weaker than Kurepa’s proposition in ZF (Theorem 4(13));
(c) not implied by the axiom of choice for families of non-empty, countable sets

in ZFA (Theorem 6). The latter independence result settles (in ZFA) the open
problem of Howard and Rubin [9] whether or not the above weak choice
principle implies the Chain–Antichain Principle.

2 Notation and terminology

Definition 1 1. ZF denotes the Zermelo–Fraenkel set theory without AC.
2. ZFC denotes the ZF + AC set theory.
3. ZFA denotes the ZF set theory with the Axiom of Extensionality weakened to allow

the existence of atoms.
4. As usual, ω denotes the set of natural numbers.
5. For any set X , [X ]<ω denotes the set of finite subsets of X and, for n ∈ ω, [X ]n

denotes the set of n-element subsets of X .

Definition 2 Let X and Y be sets. We write:

1. |X | ≤ |Y |, if there is an injection f : X → Y ;
2. |X | = |Y |, if there is a bijection f : X → Y ;
3. |X | < |Y |, if |X | ≤ |Y | and |X | �= |Y |.

Definition 3 Let (P,≤) be a partially ordered set. (We will henceforth write ‘poset’
instead of ‘partially ordered set’.)

A set C ⊆ P is called a chain in P , if (C,≤� C) is linearly ordered.
A set A ⊆ P is called an antichain in P , if no two distinct elements of A are

comparable under ≤.
The supremum of the cardinalities of antichains in P is called the width of P .
An antichain A in P which is ⊆-maximal among the antichains in P is called a

maximal antichain in P .
A chain C in P which is ⊆-maximal among the chains in P is called a maximal

chain in P .
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648 E. Tachtsis

A set D ⊆ P is called cofinal in P if for every x ∈ P there is d ∈ D such that
x ≤ d.

An element p of P is called minimal if for all q ∈ P , (q ≤ p) → (q = p).
An element p of P is called maximal if for all q ∈ P , (p ≤ q) → (q = p).
A set W ⊆ P is called well-founded if every non-empty subset V of W has a

≤-minimal element.

Definition 4 Let X be a set.
X is called denumerable if |X | = ℵ0 (where ℵ0 is the first infinite, well-ordered

cardinal, i.e. ℵ0 = ω).
X is called countable if it is finite or denumerable.
X is called uncountable if |X | � ℵ0.
X is called Dedekind-finite if ℵ0 � |X |. Otherwise, X is called Dedekind-infinite.
If X is infinite, then X is called amorphous if it cannot be written as a disjoint union

of two infinite subsets.

Definition 5 1. TheAxiom of Choice,AC (Form 1 in [9]): Every family of non-empty
sets has a choice function.

2. AC≤ℵ0 (Form [85 A] in [9]): Every family of non-empty, countable sets has a
choice function.

3. ACℵ0
DLO,≤ℵ0

: Every denumerable familyA = {Ai : i ∈ ω} of non-empty, countable
sets for which there is a function f such that, for every i ∈ ω, f (i) is a linear
order on Ai , has a choice function.

4. van Douwen’s choice principle, vDCPℵ0 (Form 119 in [9]): Every denumerable
family A = {Ai : i ∈ ω} for which there is a function f such that, for every
i ∈ ω, f (i) is a linear order on Ai of type ω∗ + ω (the usual ordering of the
integers), has a choice function.

5. ACfin (Form62 in [9]): Every family of non-empty, finite sets has a choice function.
6. ACWO (Form 60 in [9]): Every family of non-empty, well-orderable sets has a

choice function.
7. ACLO (Form 202 in [9]): Every linearly ordered family of non-empty sets has a

choice function.
8. ACWO (Form 40 in [9]): Every well-ordered family of non-empty sets has a choice

function.
9. ACℵ0

fin (Form 10 in [9]): Every denumerable family of non-empty, finite sets has a
choice function.

10. WACℵ1
fin (where ℵ1 is the first uncountable, well-ordered cardinal): Every ℵ1-sized

family A of non-empty finite sets has an ℵ1-sized subfamily B with a choice
function.3

11. Let n ∈ ω \ {0, 1}.
ACLOn (Form 33(n) in [9]): Every linearly ordered family of n-element sets has a
choice function.
ACℵ0

n (Form 288(n) in [9]): Every denumerable family of n-element sets has a
choice function.
PACℵ0

n (Form 373(n) in [9]): For every denumerable family A of n-element sets

3 This choice principle was introduced in [1] and was denoted by PAC
ℵ1
f in therein.
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On a theorem of Kurepa for partially ordered sets and weak choice 649

there exists an infinite subfamilyB ofAwith a choice function. (A choice function
for B is called a partial choice function for A.).

12. The Axiom of Multiple Choice, MC (Form 67 in [9]): For every family A of non-
empty sets there is a function f with domain A such that, for every x ∈ A, f (x)
is a non-empty finite subset of x . ( f is called a multiple choice function for A.)

13. MCℵ0ℵ0
(Form 350 in [9]): Every denumerable family of denumerable sets has a

multiple choice function.
14. LW (Form 90 in [9]): Every linearly ordered set can be well ordered.
15. The Boolean Prime Ideal Theorem, BPI (Form 14 in [9]): Every Boolean algebra

has a prime ideal.
16. The Countable Union Theorem, CUT (Form 31 in [9]): The union of a countable

family of countable sets is countable.
17. WUT (Form 231 in [9]): The union of a well orderable family of well orderable

sets is well orderable.
18. The Principle of Dependent Choices, DC (Form 43 in [9]): Let X be a non-empty

set and let R be a binary relation on X such that (∀x ∈ X)(∃y ∈ X)(x R y).
Then there exists a sequence (xn)n∈ω of elements of X such that xn R xn+1 for
all n ∈ ω.

19. Let κ be an infinite well-ordered cardinal number. The Principle of Dependent
Choices for κ , DCκ (Form 87(κ) in [9]): Let S be a non-empty set and let R be
a binary relation such that for every α < κ and every α-sequence s = (sξ )ξ<α

of elements of S there exists y ∈ S such that s R y. Then there is a function
f : κ → S such that for every α < κ , ( f � α) R f (α).
(Note that DCℵ0 is a reformulation of DC.)

20. Wℵ1 (Form 71(1) in [9]): ∀x(|x | ≤ ℵ1 ∨ ℵ1 ≤ |x |).
21. WOAM (Form 133 in [9]): Every set is either well orderable or has an amorphous

subset.
22. DF=F (Form 9 in [9]): Every Dedekind-finite set is finite.
23. LDF=F (Form 185 in [9]): Every linearly ordered, Dedekind-finite set is finite.
24. Ramsey’s Theorem, RT (Form 17 in [9]): If A is an infinite set and [A]2 is par-

titioned into two sets X and Y , then there is an infinite subset B ⊆ A such that
either [B]2 ⊆ X or [B]2 ⊆ Y .

25. The Chain–Antichain Principle, CAC (Form 217 in [9]): Every infinite poset has
either an infinite chain or an infinite antichain.

26. CWF: Every poset has a cofinal well-founded subset.
27. CS: Every poset without a maximal element has two disjoint cofinal subsets.
28. Dilworth’s Theorem, DT: If (P,≤) is a poset of width k for some k ∈ ω, then P

can be partitioned into k chains.

Definition 6 K1: Every poset such that all of its antichains are finite and all of its
chains are countable is countable. (Kurepa’s Theorem.)

K1*: Every poset of finite width such that all of its chains are countable is countable.
K2: Every poset such that all of its antichains are finite and all of its chains are

countable is well-orderable.
K2*: Every poset of finite width such that all of its chains are countable is well-

orderable.
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650 E. Tachtsis

K3: Every infinite poset such that all of its antichains are finite and all of its chains
are countable is Dedekind-infinite.

K3*: Every infinite poset of finite width such that all of its chains are countable is
Dedekind-infinite.

K4: Every poset such that all of its antichains are finite and all of its chains are
countable has a maximal chain.

K4*: Every poset of finite width such that all of its chains are countable has amaximal
chain.

The statements Ki (i = 2, 3, 4) and Ki∗ (i = 1, . . . , 4) of Definition 6 are intro-
duced in this paper.

2.1 Terminology for Fraenkel–Mostowski models

For the reader’s convenience, we provide a brief account of the construction of
Fraenkel–Mostowski models of ZFA; a detailed account can be found in Jech [13,
Chapter 4].

One starts with a model M of ZFA + AC which has A as its set of atoms. Let G be
a group of permutations of A and also let F be a filter on the lattice of subgroups of
G which satisfies the following:

(∀a ∈ A)(∃H ∈ F)(∀φ ∈ H)(φ(a) = a)

and

(∀φ ∈ G)(∀H ∈ F)(φHφ−1 ∈ F).

Such a filter F of subgroups of G is called a normal filter on G. Every permutation of
A extends uniquely to an ∈-automorphism of M by ∈-induction, and for any φ ∈ G,
we identify φ with its (unique) extension. If x ∈ M and H is a subgroup of G, then
fixH (x) denotes the (pointwise stabilizer) subgroup {φ ∈ H : ∀y ∈ x(φ(y) = y)} of
H and SymH (x) denotes the (stabilizer) subgroup {φ ∈ H : φ(x) = x} of H .

An element x of M is called F-symmetric if SymG(x) ∈ F and it is called heredi-
tarily F-symmetric if x and all elements of its transitive closure are F-symmetric.

Let N be the class which consists of all hereditarily F-symmetric elements of M .
ThenN is a model of ZFA and A ∈ N (see Jech [13, Theorem 4.1, p. 46]); it is called
the Fraenkel–Mostowski model, or the permutation model, determined by M , G and
F .

Many permutation models of ZFA are constructed via certain ideals of subsets of
the set A of atoms. Let M , A and G be as above. A family I of subsets of A is called
a normal ideal if it satisfies the following conditions:

(i) ∅ ∈ I;
(ii) if E ∈ I and F ⊆ E , then F ∈ I;
(iii) if E, F ∈ I then E ∪ F ∈ I;
(iv) if π ∈ G and E ∈ I, then π [E] ∈ I;
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On a theorem of Kurepa for partially ordered sets and weak choice 651

(v) for each a ∈ A, {a} ∈ I.
If I ⊆ P(A) is a normal ideal, then {fixG(E) : E ∈ I} is a filter base for some

normal filter F on G. Let N be the permutation model which is determined by M ,
G and F . By the above discussion, for every x ∈ N there exists E ∈ I such that
fixG(E) ⊆ SymG(x). Under these circumstances, we call E a support of x .

3 Known and preliminary results

We start by listing some known facts about certain choice principles given inDefinition
5.

Fast 1 1. In ZFA, AC is equivalent to “Every chain in a poset is contained in a
maximal chain” (the so-called Maximal Chain Theorem). This renowned result
was firstly proved by Hausdorff [5] in 1914 using transfinite induction. In 1951,
Frink [2] gave a very elegant proof of the Maximal Chain Theorem which does
not involve the notion of a well-ordering. Let us observe here that AC is (in ZFA)
also equivalent to “Every poset has a maximal chain”. ((←) Let A be a family
of non-empty sets. Let P = { f : ∃B ⊆ A( f is a choice function for B)}. Define
a partial order ≤ on P by f ≤ g ↔ f ⊆ g for all f , g ∈ P. If C is a maximal
chain in P, then

⋃ C is a choice function for A.)
2. ACℵ0

DLO,≤ℵ0
↔ PACℵ0

DLO,≤ℵ0
, where the latter principle is the partial version of the

former one. ((←) Let A = {Ai : i ∈ ω} be a denumerable family of non-empty,
countable sets, and also let, for i ∈ ω, ≤i be a linear order on Ai . For every
i ∈ ω, let Bi = ∏

j≤i A j . Since every member of A is countable, so is Bi for all
i ∈ ω. Using the linear orders ≤i (i ∈ ω), we may linearly order Bi , e.g. by the
lexicographic order. If B = {Bi : i ∈ ω} has a partial choice function, then via
an easy induction we may define a choice function for A.)

3. ACℵ0
fin ↔ PACℵ0

fin (see [9, Form 10]).)
4. ∀n ∈ ω \ {0, 1}(ACLOn ) is equivalent to “∀n ∈ ω \ {0, 1}(the union of a linearly

orderable family of n-element sets is linearly orderable), see [21].
5. ∀n ∈ ω \ {0, 1}(PACℵ0

n ) � ∀n ∈ ω \ {0, 1}(ACℵ0
n ) in ZF, see [3].

6. Each of LW, ACLO, MC is equivalent to AC in ZF, but none of them are equivalent
to AC in ZFA, see [8] (for ACLO), [13, Theorems 9.1, 9.2]. Furthermore, ACLO ↔
LW ∧ ACWO, see [8].

7. WOAM → CUT, see [15].
8. CAC for infinite, well orderable posets is provable in ZF, see (for example) [20,

Proof of Claim 5].
9. DF = F → RT → PACfin and RT → CAC → ACℵ0

fin , see [16, 20].
10. CAC is weaker than RT in ZF, see [20].
11. In ZFA, MC → CWF → LW. The first implication has been established in [11],

while the second one in [22]. Moreover, in [11], it has been established that (in
ZFA) CWF is equivalent to “Every poset has a maximal antichain”. A proof that
the latter principle lies in strength between MC and LW can be found in [13,
Theorem 9.1].

12. In ZFA, MC → CS, but the implication is not reversible, see [10].
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13. (a) ([21]) DT for well orderable posets with finite width is provable in ZF.
(b) ([21]) BPI → DT → ∀n ∈ ω \ {0, 1}(ACLOn ). The first implication is not

reversible in ZFA.
(c) ([21]) ACWO � DT in ZFA.
(d) ([21]) RT and DT, and CAC and DT are mutually independent in ZF.

14. BPI → ACfin, but the implication is not reversible in ZF, see [9].
15. In every Fraenkel–Mostowski model, ACfin ↔ ACWO, see [7].
16. For every infinite, well-ordered cardinal κ ,DCκ → Wκ , see [13, Theorem 8.1(b)].

Furthermore, for infinite, well-ordered cardinals λ < κ , DCκ → DCλ, see [13,
Theorem 8.1(a)]. In particular, DCℵ1 → DC → CUT.

Theorem 1 ([12]) Let N be a Fraenkel–Mostowski model which is determined by a
group G of permutations of the set A of atoms, and a normal filter F of subgroups
of G which is generated by some filter baseB (of subgroups of G). If N satisfies the
following condition:

(*) for every x ∈ N and for every B ∈ Bwhichdoes not support x (i.e. B\SymG(x) �=
∅), there exists γ ∈ B \ SymG(x) of finite order,

then LW is true in N . In particular, if every element of G has finite order, or if G is a
subgroup of FSym(A) (the group of all finitary permutations of A), then N |� LW.

Theorem 2 ([12]) Assume that the set A of atoms of the groundmodel M of ZFA+AC is
a union of a disjoint, denumerable family {An : n ∈ ω}, where each An is denumerable.
For each n ∈ ω, let Gn be a group of permutations of An, and also let G be the weak
direct product of the Gn’s, i.e. (gn)n∈ω ∈ G if and only if for every n ∈ ω, gn ∈ Gn,
and gn = idAn (the identity mapping on An) for all but finitely many n ∈ ω. Let I be
the ideal which is generated by all unions

⋃{An : n ∈ E}, E ∈ [ω]<ω. LetM be the
Fraenkel–Mostowski model determined by M, G and I .

Let G be the unrestricted direct product of Gn (n ∈ ω), and also let N be the
Fraenkel–Mostowski model determined by M, G and I . Then N = M.

Theorem 3 LetN be a Fraenkel–Mostowski model which is determined by a group G
of permutations of the set A of atoms, and a normal filterF of subgroups of G. If every
element of G has finite order, or if G is a subgroup of FSym(A), and if N |� ACWO

fin ,
or if N |� WUT (and thus N |� CUT), then every poset (P,≤) ∈ N such that all
antichains in P are finite, is well orderable in N .4

Proof Assume the hypotheses on N . Let (P,≤) be a poset in N such that all of its
antichains are finite, and also let H = SymG((P,≤)). As (P,≤) ∈ N , we have
H ∈ F .

We assert that, for every p ∈ P , the H -orbit, OrbH (p), of p (i.e. the set OrbH (p) =
{φ(p) : φ ∈ H}) is an antichain in P . Indeed, fix p ∈ P and assume, by way of
contradiction, that OrbH (p) is not an antichain. Hence, for some π, ρ ∈ H , π(p) and
ρ(p) are comparable, say π(p) < ρ(p). Letting σ = ρ−1π , we have σ(p) < p and
(by our hypotheses on G) σ k = idA for some k ∈ ω. However,

p = σ k(p) < σ k−1(p) < · · · < σ 2(p) < σ(p) < p,

4 Note that, by Theorem 1, such a model N satisfies LW.
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On a theorem of Kurepa for partially ordered sets and weak choice 653

and thus p < p, which is a contradiction. Similarly, one obtains a contradiction if
ρ(p) < π(p). Hence, OrbH (p) is an antichain in P .

Now, the collection O = {OrbH (p) : p ∈ P} is a partition of P , which is well
orderable in N since H ⊆ SymG(OrbH (p)) for all p ∈ P , and thus fixG(O) ∈ F .5

Furthermore, by the observation of the previous paragraph and our hypotheses on P ,
every set in O is finite. Thus, by ACWO

fin or WUT in N , we conclude that P is well
orderable in N . This completes the proof of the theorem. ��

4 Main results

We start with a result on relationships between the order-theoretic principles of Defi-
nition 6 .

Theorem 4 The following hold:

1. K1 → P for all P ∈ {Ki : 1 ≤ i ≤ 4} ∪ {Ki∗ : 1 ≤ i ≤ 4}.
2. K2 → P for all P ∈ {Ki : 2 ≤ i ≤ 4} ∪ {Ki∗ : 2 ≤ i ≤ 4}.
3. Ki → Ki∗ for all i = 1, . . . , 4.
4. K1* → K2* → K3* + K4*.
5. K2 + CUT → K1.6

6. K2 + “ℵ1 is regular” → K1. Hence, in every Fraenkel–Mostowski model, K2 ↔
K1 (see also [1, Corollary 4.2]).7

7. K4 + DC → K1.
8. DT → K1*. Hence, by Fact 1(13)(b), BPI → K1*.
9. K1* ↔ K2*.

10. K4* + CUT → K1*.
11. K3 ↔ CAC. Hence, by (1), K1 → K2 → CAC and, by Fact 1(9), DF = F →

K3 → ACℵ0
fin .

12. K1 → K2 → WACℵ1
fin + ACℵ0

DLO,≤ℵ0
. Hence, K1 → K2 → vDCPℵ0 . Also, K4 →

WACℵ1
fin .

13. ([1, Corollary 4.6]) DC � WACℵ1
fin in ZF. Hence, by (1) and (12), DC � Ki

(i = 1, 2, 4) in ZF. Furthermore, by (11), DC → K3 and K3 � K2 in ZF.
14. K4 → ACℵ0

fin .
15. For all i ∈ {1, . . . , 4}, Ki∗ → ∀n ∈ ω \ {0, 1}(PACℵ0

n ).
16. K3 � K4* in ZFA (and thus CAC � K4* in ZFA). Hence, K3 (and thus CAC)

implies none of Ki and Ki* (i = 1, 2, 4) in ZFA.
17. DT � Ki (i = 1, . . . , 4) in ZFA. Hence, by (4) and (8), Ki∗ � Kj for all i, j =

1, . . . , 4 in ZFA.

5 If V is a Fraenkel–Mostowski model determined by A (a set of atoms), G (a group of permutations of A)
and F (a normal filter on G), then an element x of V is well orderable in V if and only if fixG (x) ∈ F ,
see [13, Eq. (4.2), p.47].
6 This part, as well as the first assertion of (6), were communicated by us to [1] where they appear as
Lemma 4.1.
7 Recall (by Sect. 2.1) that a Fraenkel–Mostowski model N is built within a ground model M which
satisfies AC. So ℵ1 is regular in M and, as ℵ1 is a pure set (i.e. neither ℵ1 nor its transitive closure contain
atoms), it follows that ℵ1 is in N and is regular in N .
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654 E. Tachtsis

Proof (1)–(4) These are straightforward.
(5) Assume K2 + CUT. Let (P,≤) be a poset satisfying the hypotheses of K1.

By K2, let � be a well-ordering on P. By way of contradiction, assume that P is
uncountable. We will construct an infinite antichain in P (and thus contradicting P’s
having only finite antichains). Since P is well-ordered by �, we may effectively (i.e.
without using any choice form) construct via transfinite induction a maximal chain
in P , V0 say. As V0 is countable, P \ V0 is uncountable and (since V0 is a maximal
chain) every element of P \ V0 is ≤-incomparable to some element of V0. Thus,
P \ V0 = ⋃{Wp : p ∈ V0}, where Wp = {q ∈ P \ V0 : q is incomparable to p}.
Since P \ V0 is uncountable and CUT is true,Wp is uncountable for some p ∈ V0. Let
p0 = � − min{p ∈ V0 : Wp is uncountable}.

Using � again, construct a maximal chain in Wp0 , V1 say, and let (similarly to the
above argument) p1 = � − min{p ∈ V1 : Wp is uncountable}, where Wp = {q ∈
Wp0 \ V1 : q is incomparable to p}.

Continuing in this fashion by mathematical induction (and noting that the process
cannot stop at a finite stage), we obtain a denumerable antichain {pn : n ∈ ω} in P ,
which is a contradiction. Hence, P is countable, as required.

(6) This can be proved similarly to (5).
(7) Assume that K4+DC is true. Let (P,≤) be a poset such that all of its antichains

are finite and all of its chains are countable. By way of contradiction, we assume that
P is uncountable. Let U be the set of all finite sequences,

(C0, p0,Up0 ,C1, p1,Up1 , . . . ,Cn, pn,Upn )

such that:
(i)C0 is amaximal chain in P , p0 ∈ C0, andUp0 = {p ∈ P\C0 : p is incomparable

with p0} is uncountable;
(ii) for i ∈ {1, 2, . . . , n}, Ci is a maximal chain inUpi−1 , pi ∈ Ci , andUpi = {p ∈

Upi−1 \ Ci : p is incomparable with pi } is uncountable.
Since P is uncountable and DC (and hence CUT) holds, we may follow the first

part of the proof of (5) in order to show that there exists a triple (C0, p0,Up0) which
satisfies (i). Hence, U �= ∅.

We define a binary relation R on U by: for every u, v ∈ U ,

u R v ⇔ u � v.

Again, as in the proof of (5), we may show that for every u ∈ U there exists v ∈ U
such that u R v. By DC, applied to (U , R), we obtain a sequence (Ci , pi ,Upi )i∈ω

such that (C0, p0,Up0) satisfies (i) and, for i ∈ ω \ {0}, (Ci , pi ,Upi ) satisfies (ii).
But then, {pi : i ∈ ω} is a denumerable antichain in P , contradicting P’s having only
finite antichains. Hence, P is countable, as required.

(8) Assume DT. Let (P,≤) be a poset satisfying the hypotheses of K1*. Let k ∈ ω

be the width of P . By DT, P can be partitioned into k many chains. Since all chains
in P are countable, P is countable as a union of finitely many countable sets. Thus,
K1* is true.
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(9) Assume K2*. Let (P,≤) be a poset satisfying the hypotheses of K1*. By K2*,
P is well-orderable and, by Fact 1(13)(a), DT is true for P . Hence, by the proof of (8),
P is countable. Therefore, K1* is true.

(10)Working similarly to (5), one shows that, under K4*+ CUT, every uncountable
poset, in which all chains are countable, has arbitrarily large, finite antichains. Hence,
K1* is true.

(11) Assume K3. Let (P,≤) be an infinite poset. If all chains and all antichains in
P are finite, then by K3, P has a denumerable subset, Q say. By Fact 1(8), (Q,≤�Q)

has either an infinite chain or an infinite antichain, contradicting our hypothesis on P .
Assume CAC. Let (P,≤) be a poset satisfying the hypotheses of K3. If P is finite,

then there is nothing to show. So, assume P is infinite. Since all antichains in P are
finite, CAC yields that P has an infinite chain, Q say. As all chains in P are countable,
Q is denumerable, and hence P is Dedekind-infinite. Thus, K3 is true.

(12) “Ki → WACℵ1
fin (i = 1, 2, 4)” can be proved similarly to [1, Theorem 4.5: K1

→ WACℵ1
fin], and thus we refer the reader to [1] for the details.

K2 → ACℵ0
DLO,≤ℵ0

: Assume K2. By Fact 1(2), it suffices to show that PACℵ0
DLO,≤ℵ0

is true. Let A = {Ai : i ∈ ω} be a denumerable family of non-empty, countable sets
and, for each i ∈ ω, let ≤i be a linear order on Ai . By way of contradiction, assume
that A has no partial choice function.

Let A = ⋃A and also let � be a binary relation on A defined by: for x, y ∈ A,

x � y ⇔ ∃i ∈ ω(x, y ∈ Ai ∧ x ≤i y).

It is easy to see that � is a partial order on A such that all antichains in A are finite
(since any two elements of A are�-incomparable if and only if they belong to distinct
Ai ’s and A has no partial choice function) and all chains in A are countable (since if
C ⊂ A is a chain in A, then C ⊆ Ai for some i ∈ ω and Ai is countable).

By K2, A is well orderable, contradicting A’s having no partial choice function.
Thus, ACℵ0

DLO,≤ℵ0
is true, as required.

(14) Assume K4. By Fact 1(3), it suffices to show that every denumerable family of
non-empty, finite sets has a partial choice function. By way of contradiction, assume
that there exists a denumerable family A = {Ai : i ∈ ω} of non-empty, finite sets
without a partial choice function. Let A = ⋃A. Define a binary relation ≺ on A by:
for x, y ∈ A,

x ≺ y ⇔ ∃i, j ∈ ω(i < j ∧ x ∈ Ai ∧ y ∈ A j ).

Then, �=≺ ∪{(x, x) : x ∈ A} is easily seen to be a partial order on A such that all
chains and all antichains are finite. Indeed, a subset D of A is an antichain if and only
if D ⊆ Ai for some i ∈ ω, and hence every antichain is finite. On the other hand, since
A has no partial choice function, the definition of � yields that the chains in (A,�)

are exactly the finite choice functions ofA. Thus, by K4, (A,�) has a maximal chain,
which is impossible. Hence, ACℵ0

fin is true, as required.
(15) This can be proved similarly to (14), and thus we leave it to the interested

reader.
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(16) For our independence result, we will use a Fraenkel–Mostowski model con-
structed by Tachtsis [21]. Let us recall the description of the model. Fix n ∈ ω \{0, 1}.
We start with a model M of ZFA + AC with a set of atoms, A = ⋃{Aq : q ∈ Q}
(where Q is the set of rational numbers), which is a disjoint union of the n-element
sets Aq = {aq1, aq2, . . . , aqn} (q ∈ Q). Let G be the group of all permutations π of
A with the following two properties:

1. for all q ∈ Q there exists r ∈ Q such that π(Aq) = Ar ;
2. for all q, q ′ ∈ Q, q < q ′, if and only if, Ar = π(Aq), Ar ′ = π(Aq ′) and r < r ′

(where < is the usual dense linear order on Q).

Hence, the elements of G permute the copies Aq (q ∈ Q) of the natural number n
preserving the linear ordering≤ onQ, and then permute each Aq independently. LetF
be the (normal) filter of subgroups ofG which is generated by the pointwise stabilizers
fixG(E), where E = ⋃{Aq : q ∈ S} for some bounded set S ⊂ Q. (Note that the
set of all those E ⊂ A is a normal ideal.) Let V be the Fraenkel–Mostowski model
determined by M , G and F .

In [21], it was shown that ACWO is true in V (and that DT is false in V). Since ACWO

implies CAC (in fact, ACWO → DC → DF=F → CAC—see [9, 13]), it follows (by
part (11) of this theorem) that K3 is true in V .

We show that K4* is false in V . Firstly, we define a binary relation ≺ on A by: for
x, y ∈ A,

x ≺ y ⇔ ∃q, r ∈ Q(q < r ∧ x ∈ Aq ∧ y ∈ Ar ).

Let �=≺ ∪{(x, x) : x ∈ A}. Then � is a partial order on A, which is in V since
SymG(�) = G ∈ F . Similarly to the proof of (14), all antichains in A are finite.
Moreover, the width of A is n.

We assert that all chains in A are countable in V . Fix a chain C ⊂ A which is
in V . Let E = ⋃{Aq : q ∈ S}, for some bounded S ⊂ Q, be a support of C .
We assert that C ⊆ E . If not, then there is a q ∈ Q \ S such that C ∩ Aq �= ∅
(and note that Aq ∩ E = ∅). Since C is a chain, |C ∩ Aq | = 1. Consider the n-cycle
φ = (aq1, aq2, . . . , aqn); hence,φ fixes all atoms outside of Aq , and thusφ ∈ fixG(E).
As E is a support of C and φ ∈ fixG(E), we have φ(C) = C . However, φ � Aq has
no fixed points and since |C ∩ Aq | = 1, we conclude that φ(C) �= C , which is a
contradiction.

Therefore, C ⊆ E , and since E is countable in V (E is a support of each of its
elements, so E is well orderable in V , and since it is countable in the ground model
M , it is also countable in V), it follows that C is countable in V , as required.

Finally, in view of the previous argument and the fact that A = ⋃{Aq : q ∈ Q},
it readily follows that (A,�) has no maximal chains. Thus, K4* is false in the model
V , finishing the proof.

(17) In Tachtsis [21], it was shown that DT is true in Lévy’s permutation modelN6
in [9]. Since ACℵ0

fin is false inN6 (see [9]),8 it follows (by (1), (2), (11), and (14)) that
Ki is false in N6 for all i = 1, . . . , 4. ��
8 InN6, for every n ∈ ω \ {0, 1}, the axiom of choice for families of n-element sets is true.
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Theorem 5 The following hold:

1. For every i ∈ {1, 2, 4}, ACWO � (Ki ∨ Ki*) in ZFA.
2. For every i ∈ {1, 2, 3, 4}, MC � (Ki ∨ Ki*) in ZFA.
3. In ZFA, MC + ACℵ0

fin → DF = F → CAC. Hence, by Theorem 4(10), in ZFA,

MC + ACℵ0
fin → K3.9

4. LW + DF=F + ACWO
fin + K1 � MCℵ0ℵ0

in ZFA. Hence, the previous conjunction (and
thus Ki and Ki∗ for all i = 1, . . . , 4) neither implies CUT in ZFA.

Proof (1) This follows from the proof of Theorem 4(16).
(2) In the Second Fraenkel Model—Model N2 in [9]—MC + ¬PACℵ0

2 is true (see
[9]). Hence, by Theorem 4, it follows that Ki ∨Ki∗ is false inN2 for all i = 1, . . . , 4.

(3) Assume MC + ACℵ0
fin. Fix an infinite set X . By Lévy’s characterization of MC

[18] (MC is equivalent to “Every set has a well orderable partition into finite sets”),
X has a partition P = {Pξ : ξ < κ}, κ an infinite, well-ordered cardinal, such that
0 < |Pξ | < ℵ0 for all ξ < κ .

By ACℵ0
fin, Y = ⋃{Pn : n < ω} is a denumerable subset of X . Thus, X is Dedekind-

infinite.
The implication “DF=F → CAC” follows from Fact 1(9).
(4) We will use a Fraenkel–Mostowski model constructed by Howard and Tachtsis

[12]. Let us recall the description of the model. We start with a model M of ZFA+AC
with a denumerable set A of atoms, which is written as a union of a denumerable,
disjoint family of denumerable sets,

A =
⋃

{Bn : n ∈ ω}, where Bn = {ai,n : i ∈ ω}.

For every n ∈ ω, let Gn be the group of even permutations of Bn , i.e. Gn consists of
all elements γ of FSym(Bn) which are an even permutation of their (finite) support
{a ∈ Bn : γ (a) �= a}. Let G be the unrestricted direct product of the Gn’s. Let I be the
(normal) ideal of subsets of A which is generated by all finite unions of Bn (n ∈ ω).
Let U be the Fraenkel–Mostowski model determined by A, G and the normal filter
F on G generated by the subgroups fixG(E), E ∈ I .

In [12, Sect. 6], the following was shown:

U |� LW + DF=F + ACWO
fin + ¬MCℵ0ℵ0

.

By Theorem 2, we have that U is equal to the model determined by A and F , but
using the weak direct product, G say, of the Gn’s as the group of permutations of A.
Call this model byN . Since G ⊆ FSym(A), andN |� ACWO

fin , it follows, by Theorem
3, that every poset inN such that all of its antichains are finite inN , is well orderable
in N . Hence, K2 is true in N , and thus, by Theorem 4(6), K1 is also true in N . This
completes the proof. ��
Remark 1 We would like to point out here that with regard to the model U of the
proof of Theorem 5, a stronger result than ‘U |� DF=F’ was established in [23]. In

9 We note that there is no known Fraenkel–Mostowski model in which MC + ACℵ0
fin is true.
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particular, in [23], it was shown that Form 214 in [9]: “For every family A of infinite
sets, there is a function f with domain A such that, for every x ∈ A, f (x) is a
denumerable subset of x” is true in U . It is known that DF=F is weaker than Form
214 in ZF, see [9, Model M2, p. 148] for a ZF-model of ACWO + ¬ Form 214 (and
thus of DF=F + ¬ Form 214).

Corollary 1 The following hold:

1. For every i ∈ {1, 2, 3, 4}, “Every poset has a maximal antichain” � (Ki ∨ Ki*)
in ZFA. Hence, CWF � (Ki ∨ Ki*), LW � (Ki ∨ Ki*) in ZFA, for all i = 1, . . . , 4.

2. For every i ∈ {1, 2, 3, 4}, CS � (Ki ∨ Ki*) in ZFA.

Proof The results follow from Theorem 5(2) and Fact 1[(11), (12)]. ��
Remark 2 In order to provide further insight and ideas on models of ZFA lacking the
principles Ki , let us present another Fraenkel–Mostowski model in which MC (and
thus LW) is true, but Ki is false for all i = 1, . . . , 4. The model was introduced (to the
best of our knowledge) by Herrlich, Howard and Tachtsis [6, proof of Theorem 12]
and, as the reader will soon realize, it is a natural setting for the failure of the Ki’s
due to the description of the atoms, the group and the normal filter of supports which
determine the model. Let us also note that the status of eitherMC and LW in this model
was undetermined until now, and thus we contribute to new information about this
interesting model.

We start with a model M of ZFA+AC, whose atoms are identified with the elements
of 2<ω (in order to simplify the definition of the group G), i.e. with finite, non-empty
sequences of 0’s and 1’s. Let A be the set of the atoms. We may view A as two infinite
binary trees, the one having 〈0〉 as its root and the other having 〈1〉 as its root. The set
A is partially ordered by the extension of sequences, i.e., for t, s ∈ A, t ≤ s if and
only if t is an initial segment of s. Let G be the group of all order automorphisms of
(A,≤), that is, if t ∈ A and φ ∈ G, then t and φ(t) have the same length and if s ∈ A
and t ≤ s, then φ(t) ≤ φ(s). The normal ideal of supports is [A]<ω. Let N be the
Fraenkel–Mostowski model determined by M , G and the normal filter F generated
by the subgroups fixG(E), E ∈ [A]<ω.

Note that ≤∈ N since SymG(≤) = G ∈ F . For each t ∈ A, we denote the length
of (the sequence indexing the atom) t by ln(t). For each n ∈ ω \ {0}, let

Ln = {t ∈ A : ln(t) = n},

and also let L = {Ln : n ∈ ω}. Using standard Fraenkel–Mostowski techniques, one
may easily verify that L is a denumerable partition of A inN (comprising non-empty,
finite sets) and that L has no partial choice function inN . Hence, ACℵ0

fin is false inN ,
and consequently (by Theorem 4[(10), (13)]) Ki is false in N for all i = 1, . . . , 4.

Of course, one may directly show that in the infinite poset (A,≤) all chains and all
antichains are finite, so CAC is false for (A,≤) (and thus K1, K2, K3 are also false
for (A,≤)) and A has no maximal chains, so K4 is also false for (A,≤). Since G
comprises all order automorphisms of (A,≤) and supports are the finite subsets of A,
it is easy to verify that all chains in A are finite. On the other hand, assume, by way of
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contradiction, that A has an infinite antichain inN , D say. Let E ∈ [A]<ω be a support
of D. Since D is infinite, there exists d ∈ D such that, for all e ∈ E , ln(e) < ln(d).
Furthermore, as D is an antichain, there exists a ∈ A \ D with ln(a) = ln(d), and
note that if x ∈ D and ln(e) < ln(x) for all e ∈ E , then x ′ ∈ D, where x ′ satisfies
x ′ �= x , ln(x ′) = ln(x) and x ′, x differ only in their last coordinates (so d ′ ∈ D and
a′ /∈ D).

By the above observation, it follows that every element of {x ∈ A \ D : ln(x) =
ln(d)} is extended by some element of D. But then, as D is infinite, there must exist at
least two elements of D which are comparable, contradicting D’s being an antichain.
Hence, D is finite.

That MC is true in the model N , can be proved in much the same way as the fact
that MC is true in the Second Fraenkel Model (Model N2 in [9]), see [13, Theo-
rem 9.2(i), p.134]. In particular, one shows that the G-orbit of every element of N is
finite, and hence every x ∈ N is a disjoint union of a well orderable family of finite
sets (since x ∈ N is the union of the fixG(E)-orbits of its elements, where E ∈ [A]<ω

is a support of x). We take the liberty to leave the details as an easy exercise for the
reader.

SinceMC is true inN , so is LW (see Fact 1(11)). However, we consider it interesting
in its own right to elucidate on the modelN and give a self-contained proof of ‘N |�
LW’. To achieve this goal, the plan is to use Theorem 1, but due to the definition of
the group G, a direct argument within the modelN which verifies condition (*) stated
in the above theorem is not easy. (And note that there are infinitely many elements of
G which do not have finite order—in contrast to the Second Fraenkel Model where
all elements of the corresponding group G have order 2.) So in order to simplify the
argument, we will first modify the definition of G, but we will keep the ideal of finite
supports, and then prove that the resulting Fraenkel–Mostowski model satisfies LW
and is equal to N ; thus obtaining that N |� LW.

Recalling that, for every n ∈ ω \ {0}, Ln = {t ∈ A : ln(t) = n}, we let G be the set
of all φ ∈ G which have the following property:

(#) There exists m ∈ ω \ {0} such that, for every s ∈ Lm and every n > m, if
t = (t1, t2, . . . , tn) ∈ Ln is any extension of s, then

φ(t) = φ(s)�(tm+1, . . . , tn),

soφ(t)has the samem+1, . . . , n coordinates as t . For example, assumeφ ∈ G satisfies
(#) form = 2. Suppose that, for s = (0, 0), φ(s) = (1, 1). If t is any proper extension
of s, e.g. t = (t1, t2, t3, t4) = (0, 0, 1, 0), then φ(t) = (1, 1, 1, 0) = φ(s)�(t3, t4).
Also, note that if, for s ∈ Lm , φ(s) = s, then for every n > m and every t ∈ Ln

extending s, we have φ(t) = t .
It is not hard to verify that G is a (proper) subgroup of G such that each of its

elements has finite order. To see the second assertion, fix a non-identity element φ of
G . There exists m ∈ ω \ {0} satisfying (#) for φ, and for which φ∗ = φ � Lm �= idLm .
Since Lm is finite (in particular, |Lm | = 2m) and φ∗ is a permutation of Lm , it follows
that φ∗ has finite order, k say, for some k ∈ ω \ {0}. This, together with the fact that
m satisfies (#) for φ, easily yields φ has order k.
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LetV be the Fraenkel–Mostowskimodel determined byM (the same groundmodel
as with N ), G and F (the finite support normal filter on G ).

Since every element of G has finite order, the second part of Theorem 1 yields
V |� LW. To complete the proof, we need to show that V = N .

We will prove by ∈-induction that, for every x ∈ M , Φ(x) is true, where

Φ(x) : x ∈ V ⇔ x ∈ N .

ClearlyΦ(x) is true, if x = ∅, or if x ∈ A. Assume y ∈ M and that for all x ∈ y,Φ(x)
is true. We will show that Φ(y) is true. Assume y ∈ V . Then the following hold:

(1) y has a support E ∈ [A]<ω relative to the group G (i.e., for every ψ ∈ fixG (E),
ψ(y) = y);

(2) for every x ∈ y, x ∈ V (V is a transitive class);
(3) for every x ∈ y, x ∈ N (by (2) and the induction hypothesis).

We assert that E is a support of y relative to the group G. It suffices to show that,
for all φ ∈ fixG(E) and for all x ∈ y, φ(x) ∈ y (since then φ(y) = y follows from
“φ(y) ⊆ y and φ−1(y) ⊆ y”).

To this end, let φ ∈ fixG(E) and let x ∈ y. By (3), x has a support E ′ ∈ [A]<ω

relative to G. Let m0 = max{m ∈ ω \ {0} : (E ∪ E ′) ∩ Lm �= ∅}. Hence, for every
a ∈ E ∪ E ′, either a ∈ Lm0 or there is a proper extension of a in Lm0 .

The permutation φ may not be in G (recall G � G), but we construct a permutation
φ′ ∈ fixG (E) which agrees with φ on E ′ as follows: For each a ∈ E ′, the set {φn(a) :
n ∈ Z} is finite since A is identified with 2<ω and φ preserves the lengths of the
elements of 2<ω (indexing atoms). Therefore, since E ′ is finite, so is D = ⋃{{φn(a) :
n ∈ Z} : a ∈ E ′}. Furthermore, E ′ ⊆ D ⊆ ⋃{Ln : 1 ≤ n ≤ m0} and D is closed
under φ.

We define a mapping φ′ : A → A by:

φ′(a) =
{

φ(a), if a ∈ ⋃{Ln : 1 ≤ n ≤ m0};
φ((a1, . . . , am0))�(am0+1, . . . , an), if a ∈ Ln for some n > m0.

Then the following hold:

(4) φ′ ∈ G (since φ′ ∈ G and m0 satisfies (#) for φ′);
(5) φ′ fixes E pointwise (since φ fixes E pointwise);
(6) φ′ agrees with φ on E ′.
By (4) and (5), φ′ ∈ fixG (E), so (by (1)) φ′(y) = y. It follows that φ′(x) ∈ y.
Moreover, (6), together with the facts that φ, φ′ ∈ G (φ′ ∈ G ⊂ G) and E ′ being a
support of x relative to G, gives φ′(x) = φ(x), and hence φ(x) ∈ y, as required.

Conversely, assume that y ∈ N and that y has a support E ′ relative to G. Then
E ′ is a support of y relative to G since G ⊂ G. By the induction hypothesis, every
element of y is in V , and so y ∈ V . This completes the inductive step.

Thus, V = N , as required.

It is unknownwhether any of BPI,ACfin, andAC≤ℵ0 implyKi for some i = 1, . . . , 4;
in particular, in Howard and Rubin [9], it is mentioned as unknown whether any of
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BPI, ACfin, and AC≤ℵ0 imply CAC, which (by Theorem 4(11)) is equivalent to K3. We
address this open problem here and provide a negative answer (in the forthcoming
Theorem 6) for AC≤ℵ0 (and thus for ACfin) in the setting of ZFA, that is, we show
AC≤ℵ0 � Ki in ZFA, for all i = 1, . . . , 4. Hence, our independence result also
resolves (in ZFA) the part of the above open problem of [9] concerning ACfin, AC≤ℵ0

and CAC.
Let us also point out here that it is natural to inquire on the relationship of AC≤ℵ0

with the Ki’s, and especially with K4, in view of Frink’s proof [2] of the extension
of chains in posets to maximal chains, which uses only Zermelo’s formulation of AC
(and not the notion of a well ordering), as well as in view of the fact that all chains in
the posets of interest are countable.

Finally, we recall that BPI → ACfin and, by Theorem 4(8), BPI → K1*. However,
it is an open problem whether or not BPI implies AC≤ℵ0 (see [9]). We also note that, in
view of the above implication and Fact 1(15), if a Fraenkel–Mostowski model satisfies
BPI, then it also satisfies AC≤ℵ0 .

For the independence result of the subsequent Theorem 6, we will need some
terminology and a lemma (which are specific instances of general terminology and
results) from [14]—see also [13, Sect. 7.2, Lemma 7.5 and p. 103].

Definition 7 Let K be the class of all structures (P,<,≺), where P is a non-empty,
countable set, < is a partial ordering on P and ≺ is a linear ordering on P . A structure
(P,<,≺) ∈ K is called:

(a) universal if every finite structure (Q,<∗,≺∗) ∈ K (i.e. Q is finite) can be
embedded in (P,<,≺);

(b) homogeneous if whenever E1 and E2 are finite subsets of P , and i is an iso-
morphism of (E1,<,≺) and (E2,<,≺), then i can be extended to an automorphism
of (P,<,≺).

For the existence of a countable universal homogeneous structure in K, the reader
is referred to [14] and [13, Sect. 7.2, Lemma 7.6].

Lemma 1 Let K be as in Definition 7 and also let (P,<,≺) ∈ K be a (countable)
universal homogeneous structure. If (E,<∗,≺∗) is a finite structure in K, E0 ⊆ E,
and if e0 is an embedding of (E0,<

∗,≺∗) into (P,<,≺), then there is an embedding
e of (E,<∗,≺∗) into (P,<,≺) which extends e0.

Theorem 6 ACWO � Ki in ZFA, for all i = 1, . . . , 4. In particular, by Theorem 4(11),
ACWO � CAC in ZFA.

Proof For our independence result, wewill use a Fraenkel–Mostowskimodel byMath-
ias and Pincus, which is labeled as Model N5 in [9]. The description of the model
is as follows: Let the set A of atoms be denumerable, and let < and ≺ be a partial
and a linear ordering on A (so (A,<,≺) ∈ K ∩ M , where M is the ground model of
ZFA + AC) such that (A,<,≺) is a universal homogeneous structure. Let G be the
group of all automorphisms of (A,<,≺) (i.e. G comprises all bijections φ : A → A
which preserve both < and ≺). Let F be the normal filter on G generated by the
subgroups fixG(E), E ∈ [A]<ω. N5 is the Fraenkel–Mostowski model determined
by A, G and F .
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We have <,≺∈ N5 since SymG(<) = SymG(≺) = G ∈ F . Furthermore, it is
known that N5 |� AC≤ℵ0 (see [9]). Since AC≤ℵ0 → ACfin, it follows, by Fact 1(15),
that

N5 |� ACWO.

We show that, in N5, all antichains and all chains in the infinite poset (A,<) are
finite and that every (finite) chain in (A,<) can be extended.

Claim In N5, all antichains and all chains in (A,<) are finite.

Proof Let Z ⊆ A be an antichain in (A,<), which is in N5. Let E ∈ [A]<ω be a
support of Z . We assert that Z ⊆ E . If not, then let a ∈ Z \ E . Let b be an element
ofN5 which is not in A. Let U = E ∪ {a, b}. We define two binary relations <∗ and
≺∗ on U as follows:

(a) <∗� E ∪ {a} =<� E ∪ {a}; for every x ∈ E , b is <∗-related to x iff a is
<-related to x and, in this case, b is <∗-related to x exactly as a is <-related to x ; and
a <∗ b.

(b) ≺∗� E ∪ {a} =≺� E ∪ {a}; for every x ∈ E , b is ≺∗-related to x exactly as a
is ≺-related to x (recall that ≺ is a linear ordering on A, so a is ≺-related to x for all
x ∈ E); and a ≺∗ b.

It is reasonably clear that<∗ and≺∗ are, respectively, a partial and a linear ordering
onU . Let j0 be the identity mapping on E ∪{a}. Then j0 is an embedding of (E ∪{a},
<∗,≺∗) into (A,<,≺). Hence, by Lemma 1, j0 can be extended to an embedding
j of (U ,<∗,≺∗) into (A,<,≺). Thus, j(b) ∈ A, a = j0(a) = j(a) < j(b) and
a ≺ j(b) since a <∗ b, a ≺∗ b, and j is an embedding.

Now we consider the following two finite substructures of (A,<,≺):

V0 = (E ∪ {a},<,≺),

V1 = (E ∪ { j(b)},<,≺).

We define a mapping k0 : V0 → V1 by:

k0(x) =
{
x, if x ∈ E;
j(b), if x = a.

By definition of<∗ and≺∗ onU and the fact that j is an embedding, it follows that k0
is an isomoprhism of V0 and V1. Since (A,<,≺) is homogeneous, k0 can be extended
to an automorphism of (A,<,≺), k say.

We have k ∈ fixG(E), so since E is a support of Z , k(Z) = Z . Furthermore,

a ∈ Z ⇒ k(a) ∈ k(Z) ⇒ j(b) ∈ Z .

However, a < j(b), which is impossible since a, j(b) ∈ Z and Z is an antichain
in (A,<). We have thus reached a contradiction, and hence Z ⊆ E , as asserted.
Therefore, every antichain in (A,<), which is in N5, is finite, as required.

123



On a theorem of Kurepa for partially ordered sets and weak choice 663

The second assertion about the chains in (A,<) being finite can be proved similarly
to the above argument, so we only provide a sketch of the proof.

Let C ⊆ A be a chain in (A,<), which is in N5. Let E ∈ [A]<ω be a support of
C . We assert that C ⊆ E (and thus C is finite). Assume the contrary. Let a ∈ C \ E
and also let b ∈ N5 \ A. Let U = E ∪ {a, b} and define a partial ordering <∗ and a
linear ordering ≺∗ on U as follows:

(c) <∗� E ∪ {a} =<� E ∪ {a}; for every x ∈ E , b is <∗-related to x iff a is
<-related to x and, in this case, b is <∗-related to x exactly as a is <-related to x ; and
a, b are <∗-incomparable.

(d) ≺∗� E ∪ {a} =≺� E ∪ {a}; for every x ∈ E , b is ≺∗-related to x exactly as a
is ≺-related to x ; and a ≺∗ b.

Now let j0, j, V0, V1, k0, k be defined as in the first part of the proof. As in that
part, k ∈ fixG(E), so k(C) = C since E is a support of C . Furthermore, as a ∈ C , we
have j(b) ∈ C . However, a and j(b) are <-incomparable, contradicting C’s being a
chain in (A,<). Thus, C ⊆ E , as asserted, and as C was arbitrary, we conclude that
all chains in (A,<) which are in N5 are finite.

The above arguments complete the proof of the claim. ��
Claim Every chain in (A,<), which is in N5, can be extended.

Proof Let C ⊆ A be a chain in (A,<), which is in N5. By the first claim, we know
that C is finite. Let b ∈ N5 \ A, and also let D = C ∪ {b}.

We define two binary relations <∗ and ≺∗ on D as follows:
(e) <∗=<� C ∪ {(x, b) : x ∈ C}.
(f) ≺∗=≺� C ∪ {(x, b) : x ∈ C}.
Clearly, <∗ and ≺∗ are linear orderings on D. Let j0 be the identity mapping on

C . Then j0 is an embedding of (C,<∗,≺∗) into (A,<,≺). Hence, by Lemma 1, j0
can be extended to an embedding j of (D,<∗,≺∗) into (A,<,≺). Thus, j(b) ∈ A
and, for every x ∈ C , x = j(x) < j(b). Let C ′ = C ∪ { j(b)}. Then C ′ is a chain in
(A,<) which properly extends C . Furthermore, C ′ ∈ N5 since C ′ ∈ [A]<ω, and thus
C ′ is a support of itself.

The above arguments complete the proof of the claim. ��
By the first claim and Theorem 4(11), we conclude that K3 is false in N5, and

thus (by Theorem 4[(1), (2)]) so are K1 and K2. Moreover, by the above two Claims,
we deduce that K4 is false in N5. Therefore, Ki is false in N5 for all i = 1, . . . , 4,
finishing the proof of the theorem. ��
Remark 3 Using similar ideas as in the argument for the second Claim of the proof of
Theorem 6, onemay show that, in the Fraenkel–MostowskimodelN5, every antichain
in the poset (A,<), which is inN5, can be extended. Hence, the set of the cardinalities
of antichains in (A,<) is unbounded and, as all antichains of (A,<) inN5 are finite
(by the first Claim of the proof of Theorem 6), the width of (A,<) is (in N5) equal
to ω, and thus is infinite.

As already mentioned, it is unknown whether or not BPI implies Ki for some
i = 1, . . . , 4. The so-calledMostowski Linearly OrderedModel—ModelN3 in [9]—
satisfies BPI (see Halpern [4]), and thus it is natural to investigate the status of Ki
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(i = 1, . . . , 4) in N3. We show in the next theorem that K1 is true in N3. Since (by
Theorem 4(11)) K3 ↔ CAC, we also obtain that CAC is true in N3. (Recall that K1
implies Ki and Ki∗ for all i = 1, . . . , 4.)

Let us note that the status of CAC in N3 is mentioned as unknown in [9], so our
result fills the gap in the missing information.

Theorem 7 The following hold:

1. K1 is true in the Mostowski Linearly Ordered ModelN3 in [9]. In particular, CAC
is true in N3.

2. K1 implies none of LDF=F, LW, CWF, and CS in ZFA.

Proof (1) For the reader’s convenience, we first recall the description ofN3. We start
with a model M of ZFA+AC with a denumerable set A of atoms using an ordering ≤
on A chosen so that (A,≤) is order-isomorphic to the set Q of the rational numbers
with the usual ordering. Let G be the group of all order automorphisms of (A,≤). Let
F be the normal filter on G generated by the subgroups fixG(E), E ∈ [A]<ω. N3 is
the Fraenkel–Mostowski model determined by M , G and F .

In N3, (A,≤) is a Dedekind-finite, linearly ordered set, and WUT is true (see [9],
[13, Sect. 4.5]); hence, CUT is also true inN3. Furthermore, in Tachtsis [20, Theorem
2.4], it was shown that N3 satisfies RT (Ramsey’s Theorem), and thus (by Fact 1(9))
also satisfies CAC (which is equivalent to K3).

We show that K2 is true inN3. Then, by Theorem 4(5) (or 4(6)), we will obtain that
N3 |� K1, and thus N3 |� Ki ∧ Ki∗, for all i = 1, . . . , 4. We will use the following
lemma from [10].

Lemma 2 ([10, Lemma 3.17]) Every set inN3 is either well orderable or contains a
copy of a bounded open interval in the ordering of A.

Now let (P,�) be a poset inN3 such that, inN3, all antichains in P are finite and
all chains in P are countable. We assert that P is well orderable in N3. Assume the
contrary. By Lemma 2, there is a set X ⊆ P and two atoms a, b ∈ A with a < b such
that X ∈ N3 and, inN3, |X | = |(a, b)|. Hence, X is infinite and, since all antichains
in (X ,�� X) are finite and CAC is true inN3, there is an infinite chain in (X ,�� X),
C say, which is in N3. By our assumption on P , we infer that C is a denumerable
subset of X . This, together with |X | = |(a, b)|, yields (a, b) is Dedekind-infinite in
N3, and thus so is the set A of atoms. But this contradicts A’s being Dedekind-finite
in N3. Thus, P is well orderable in N3, as asserted.

By the above arguments, we conclude that K2 is true inN3, finishing the proof of
(1).

(2) The result follows from (1) and the following facts:
(a) LDF=F is false for the infinite, Dedekind-finite, linearly ordered set A of atoms

of N3; hence, LW is also false in N3, and thus (by Fact 1(11)) so is CWF.
(b) CS is false in N3, as shown by Howard, Saveliev and Tachtsis [10, Theo-

rem 3.9(1)]. ��
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Theorem 8 The following hold:

1. WOAM + CAC → K1. Hence, WOAM + K3 → K1.
2. K1 is true in the Basic Fraenkel Model N1 in [9]. Hence, K1 � “There are no

amorphous sets” in ZFA.
3. K1 � WOAM in ZFA.

Proof (1) Assume that WOAM + CAC is true. Let (P,≤) be a poset such that all of
its antichains are finite and all of its chains are countable. We assert that P is well
orderable. Assume the contrary. ByWOAM, P has an amorphous subset, A say. Since
(A,≤� A) is an infinite poset such that all of its antichains are finite, it follows, by
CAC, that A has an infinite chain, C say. By our hypothesis that all chains in P are
countable, we have that C is a denumerable subset of A. But this contradicts the fact
that A is amorphous. Therefore, P is well orderable, as asserted.

By the above arguments, we conclude that K2 is true. Furthermore, since (by Fact
1(7))WOAM → CUT, Theorem 4(5) yields K1 is also true.

(2) This follows from (1) and the fact that WOAM + CAC + “There exists an
amorphous set” is true in N1 (see [9]).

(3) By Theorem 7(1), K1 is true in the Mostowski Linearly Ordered Model N3.
On the other hand, it is known that WOAM is false in N3 (see [9]). The above two
facts yield the required independence result. ��
Remark 4 With regards to Theorem 8(2), a different argument of the statement ‘K1
holds in the Basic Fraenkel Model’ can be found in [1, Remark 4.4]. But as an
application of the fact ‘WOAM + CAC → K1 in ZF’, the proof of Theorem 8(2) is
itself interesting.

Theorem 9 The following hold:

1. Wℵ1 + CUT → K1. Hence, by Fact 1(16),

DCℵ1 → K1.

2. Wℵ1 + “ℵ1 is regular” → K1. Hence, in every Fraenkel–Mostowski model,
Wℵ1 → K1.

3. Wℵ1 → K3.
4. K1 does not imply ACLO2 in ZFA, and hence neither does it imply ACfin (and hence

AC≤ℵ0 ) and DT.
5. BPI+K1 � DC∨Wℵ1 in ZFA. Hence (in view of Fact 1(16)), K1 � DCℵ1 in ZFA.

Proof (1) Assume that Wℵ1 + CUT is true. Fix a poset (P,≤) such that all of its
antichains are finite and all of its chains are countable. ByWℵ1 , ℵ1 ≤ |P| or |P| ≤ ℵ1.
In the first case, P has a subset Q with cardinality ℵ1. Hence, Q is well orderable, and
thus by the proof of Theorem 4(5), we deduce that the poset (Q,≤� Q) is countable,
which is impossible. Therefore, the first of the above two possibilities cannot occur,
so |P| ≤ ℵ1, and thus P is well orderable. Again, invoking the proof of Theorem 4(5),
we conclude that P is countable. Since (P,≤) was arbitrary, we infer that K1 is true.

(2) This can be proved similarly to (1), taking into account the proof of Theorem
4(6).
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(3) This is straightforward.
(4) We will use a Fraenkel–Mostowski model constructed in [13, Proof of Theo-

rem 8.3]. The set A of atoms has cardinality ℵ2 and it is a disjoint union of ℵ2 pairs:
A = ⋃{Pξ : ξ < ℵ2}, where |Pξ | = 2 for all ξ < ℵ2 and Pν ∩ Pξ = ∅ for every two
distinct ν, ξ < ℵ2. LetG be the group of all permutations φ of A such thatφ(Pξ ) = Pξ

for all ξ < ℵ2. Let F be the normal filter on G generated by the subgroups fixG(E),
E ⊂ A and |E | < ℵ2. Let V be the Fraenkel–Mostowski model determined by A, G
and F .10

Jech [13, Proof of Theorem 8.3] proves that DCℵ1 is true in V , and hence (by (1)
of this theorem) K1 is true in V . On the other hand, the family {Pξ : ξ < ℵ2} has
no choice function in V (see [13]), and thus ACLO2 is false in V . By Fact 1(13)(b), we
conclude that DT is also false in the model V .

(5) By Theorem 7(1), K1 is true in the Mostowski Linearly Ordered Model N3 in
[9]. The conclusion now follows from the fact that N3 |� BPI + ¬DC + ¬Wℵ1 (see
[9]). ��
Remark 5 We note that Theorems 5(1) and 9(1) provide a new proof of the known fact
that ACWO does not imply DCℵ1 or Wℵ1 in ZFA set theory. For the direct proof of the
latter ZFA-independence result, which is transferable into ZF, the reader is referred to
Jech [13, Theorem 8.9].

5 Summary of results

We summarizemain results of the paper in the form of a diagram—Diagram 1 below—
and a list of further implications/non-implications. Some clarifications about Diagram
1 are in order:

1. A dashed arrow from A to B means that A implies B, but the implication is not
reversible in ZFA.

2. If proposition A is equivalent to proposition B, then we use a thick left-right arrow
between A and B,

3. A negated left-right arrow between two principles means that those principles are
independent of each other in ZFA.

4. Some implications/non-implications between certain principles in Diagram 1 are
known and corresponding references can be found either in Fact 1 of Sect. 2 or in
Howard–Rubin [9] or in Jech [13].

10 Actually, V is a specific member of a class of Fraenkel–Mostowski models constructed in the proof of
[13, Theorem 8.3], where each of those models corresponds to a regular aleph used for its construction.
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DC DCℵ1 ACWO

K3

ACWO

K4

ACℵ0
fin

K4∗

K4∗

∀n ∈ ω \ {0, 1}(PACℵ0
n )

MC

AC≤ℵ0 K1 K2 K3 CAC ACℵ0
fin

ACℵ0
DLO,≤ℵ0

ACℵ0
DLO,≤ℵ0

vDCPℵ0 WACℵ1
fin

BPI DT K1∗ K2∗ K3∗ RT

K3 ∨ K4 K3∗ ∧ K4∗ ∀n ∈ ω \ {0, 1}(PACℵ0
n )

DF=F

MC + ACℵ0
fin

/

/

/
/

/

//

/ /

/

/

/

/

/

Diagram 1: Results of the paper

List of further results:

1. K2+ P →K1,where P ∈ {CUT, cf(ℵ1) = ℵ1} (where ‘cf(ℵ1) = ℵ1’ abbreviates
‘ℵ1 is regular’).

2. Wℵ1 + P → K1, where P ∈ {CUT, cf(ℵ1) = ℵ1}.
3. Wℵ1 → K3 (↔ CAC).
4. WOAM + CAC → K1. Hence, WOAM + K3 → K1.
5. K4 + DC → K1.
6. K4* + CUT → K1*. (We recall here that, by Tachtsis [21, Theorem 3.4], DT �

ACℵ0
fin in ZFA, and thus DT � K4* + CUT in ZFA.)

7. K1 � Wℵ1 ∨ CUT in ZFA.
8. K1 � WOAM in ZFA.
9. BPI + K1 � DC in ZFA.

10. LW + DF=F + ACWO
fin + K1 � MCℵ0ℵ0

in ZFA.
11. CS � K1 and K1 � CS in ZFA, and thus K1 implies none of LDF=F, LW, and

CWF in ZFA.
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6 Open questions

1. Does either of K2 and K4 imply K1?
2. Does BPI imply Ki for some i = 1, . . . , 4?
3. Does ACLO imply (in ZFA) Ki for some i = 1, . . . , 4? (Recall that, in ZF, ACLO is

equivalent to AC.)
4. Does WOAM imply Ki for some i = 1, . . . , 4?
5. Does Wℵ1 imply Ki for some i = 1, 2, 4?
6. Does MC + CAC imply Ki for some i = 1, 2, 4?
7. Is there a model of ZFA or of ZF in which K4* is true but K1* is false?
8. Does either of BPI+DC and BPI+ACℵ0 imply K1? (Where ACℵ0 is the Axiom of

Countable Choice (Form 8 in [9]): Every denumerable family of non-empty sets
has a choice function.)
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