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Abstract
Polynomial decomposition expresses a polynomial f as the functional composition
f = g ◦ h of lower degree polynomials g and h, and has various applications. In
this paper, we will show that for a minimal, non-degenerate, simple, binary, linearly
recurrent sequence (Gn(x))∞n=0 of complex polynomials whose coefficients in the
Binet form are constants, if Gn(x) = g(h(x)), then apart from some exceptional
situations that have to be taken into account, the degree of g is bounded by a constant
independent of n. We will build on a general but conditional result of this type that
already exists in the literature. We will then present one Diophantine application of
the main result.
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1 Introduction

In the 1920’s, Ritt [12] studied the functional decomposition f = f1 ◦ · · · ◦ fm of
a complex polynomial f into indecomposable complex polynomials f1, . . . , fm . A
complex polynomial f with deg f > 1 is said to be indecomposable if it cannot be
represented as a composition of two lower degree polynomials. Ritt gave a procedure
for obtaining any decomposition of a complex polynomial from any other by applying
certain transformations. Ritt’s results about polynomial decomposition have applica-
tions to number theory, complex analysis, arithmetic dynamics, finite geometries, etc.
@ See e.g. [11] for an overview of the theory and applications. Of our interest in this
paper are decomposition properties of binary recurrent sequences of polynomials. This
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136 D. Kreso

topic has been studied in several papers [6–8] and relevant results will be mentioned
later in the introduction. For A0(x), A1(x),G0(x),G1(x) ∈ C[x], let (Gn(x))∞n=0 be
a minimal, non-degenerate and simple binary linearly recurrent sequence of polyno-
mials defined by

Gn+2(x) = A1(x)Gn+1(x) + A0(x)Gn(x), n ≥ 0, so that Gn(x) = π1α
n
1 + π2α

n
2 ,

(1.1)
for π1, π2 ∈ L , where L/C(x) is the splitting field of the characteristic polynomial of
the recurrence and α1, α2 ∈ L are its distinct roots (distinct since the recurrence is sim-
ple) such that α1/α2 /∈ C

∗ (since the recurrence is non-degenerate), and furthermore
A1, A0, π1α

n
1 , π2α

n
2 �= 0 (by minimality).

To state our first result, we recall the definitions of cyclic and dihedral polynomials.
These polynomials play a prominent role in Ritt’s theory (more details will be given
in Sect. 2). A polynomial h is said to be cyclic if h(x) = �1(x) ◦ xn ◦ �2(x) for some
n ≥ 2 and �1, �2 linear polynomials and dihedral if h(x) = �1(x) ◦ Tn(x) ◦ �2(x)
for some n ≥ 3 and �1, �2 linear polynomials, where Tn(x) is the n-th Chebychev
polynomial of the first kind given by Tn+2(x) = 2xTn+1(x) − Tn(x), T0(x) = 1,
T1(x) = x .

Theorem 1 Consider the sequence (1.1) such that π1, π2 ∈ C. Assume that for some
n ≥ 0 we have Gn(x) = g(h(x)) for g(x), h(x) ∈ C[x], where h is indecomposable
and neither cyclic nor dihedral. Further asume that we do not have Gm(x) ∈ C[h(x)]
for all m ≥ 0. Then deg g ≤ C for a constant C = C({Ai ,Gi : i = 0, 1}) > 0,
independent of n.

It is well known that Tmk(x) = Tm(x) ◦ Tk(x) for any m, k ∈ N and since for
Chebychev polynomials of the first kind the coefficients in theBinet formare constants,
already these polynomials illustrate that Theorem 1 would not hold if we allow h to be
dihedral. Indeed, for dihedral h(x) ∈ C[x] of any degree there exists n ≥ 0 such that
Tn(x) = g(h(x)) for some g(x) ∈ C[x] whose degree depends on n. Furthermore,
the sequence Tn(h(x)) with h(x) ∈ C[x] is of type (1.1) and its coefficients in the
Binet form are constants, and we clearly cannot bound deg Tn independently of n.
This illustrates why we also have to exclude the case when Gm(x) ∈ C[h(x)] for all
m ≥ 0. Also, for cyclic h(x) ∈ C[x] of any degree there exists a sequence (Gn(x))∞n=0
satisfying (1.1), whose coefficients in the Binet form are constants, such that we do
not have Gm(x) ∈ C[h(x)] for all m, but Gn(x) = g(h(x)) for some n ≥ 0 and
some g(x) ∈ C[x] whose degree depends on n. (Pick e.g. π1 = π2 = 1, A0(x) = x ,
A1(x) = x + 1. Then Gmk(x) = xmk + 1 = (xm + 1) ◦ xk for any k,m ∈ N.)

Corollary 2 Let p(x), q(x) ∈ C[x]be such that p(x)n+q(x)n = g(h(x)) for somen ≥
0 and g(x), h(x) ∈ C[x], where h is indecomposable and neither cyclic nor dihedral.
Then either p(x), q(x) ∈ C[h(x)] or deg g ≤ C for a constant C = C(p, q) > 0,
independent of n.

In relation toCorollary 2,we remark that it iswell known (seeLemma5) and follows
from Ritt’s results that if the n-th power of a complex polynomial u is a composite
of a complex polynomial h (more precisely, u is nonconstant and u(x)n ∈ C[h(x)]),
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On decompositions of binary recurrent polynomials 137

where h is indecomposable and neither dihedral nor cyclic, then u is a composite of
h. Moreover, Ritt [12] gave a description of all g(x), h(x) ∈ C[x] whose composition
is an n-th power of a complex polynomial. Cohen [3] described all rational functions
g(x), h(x) ∈ C(x)whose composition is an n-th power inC(x). It would be of interest
to give a full description of all g(x), h(x) ∈ C(x) whose composition is a sum of two
n-th powers in C(x).

Theorem 1 relies on the main result of [8], which is a general but conditional result
for an element of the sequence (1.1) to satisfy Gn(x) = g(h(x)), for g(x), h(x) ∈
C[x], where h is indecomposable and neither cyclic nor dihedral. To state this result
precisely, assume that Gn(x) = g(h(x)), for g(x), h(x) ∈ C[x], where h is inde-
composable. The polynomial h(X) − h(x) ∈ C(h(x))[X ] is clearly separable and
since deg h ≥ 2 by assumption, there exists y �= x such that h(x) = h(y). Then
Gn(x) = Gn(y) and by equating the corresponding Binet forms, we obtain

π1α
n
1 + π2α

n
2 = ρ1β

n
1 + ρ2β

n
2 , (1.2)

where α1, α2 are distinct roots of the characteristic polynomial of the sequence
(Gn(x))∞n=0, β1, β2 are distinct roots of the characteristic polynomial of the sequence
(Gn(y))∞n=0, π1, π2 ∈ L1 and ρ1, ρ2 ∈ L2, where L1 and L2 are the splitting fields
of the corresponding characteristic polynomials over C(x) and C(y), respectively.
According to [8, Thm. 1], there is a constant C > 0, independent of n, with the fol-
lowing property: If Gn(x) = g(h(x)) for some n ≥ 0 and g(x), h(x) ∈ C[x], where h
is indecomposable and neither cyclic nor dihedral, and (1.2) has no vanishing subsum,
then deg g ≤ C . We say that there exists a vanishing subsum of (1.2) if there is a
permutation σ of the set {1, 2} such that πiα

n
i = ρσ(i)β

n
σ(i) for i = 1, 2. With the

above restrictions on h, one can show that this holds if and only if

π1π2A0(x)
n = −G1(x)2 − G0(x)G1(x)A1(x) − A0(x)G0(x)2

A1(x)2 + 4A0(x)
A0(x)

n ∈ C[h(x)].
(1.3)

See Sect. 2 for details. It appears to be difficult to classify all such G0,G1, A0, A1.
In regard to this problem, we mention [10], where the authors solved the equation
g(x) f (x)n = g(h(x))where f , g, h are unknown nonconstant complex polynomials,
n > 1, deg h ≥ 2 and g is separable. We also mention [4], where the authors com-
pletely classified binomials which have a non-trivial factor which is a composition of
two polynomials of degree > 1. We further mention that certain sufficient, but unfor-
tunately not quite illuminating, conditions for (1.2) to have no vanishing subsum were
presented in [8, Thm. 2]. Finally, we mention that the constant C can be effectively
computed; this is done in the proof of [8, Thm. 1].

To the proof of Theorem 1, we will show that under the assumptions of the theorem,
there does not exist a vanishing subsum of (1.2). We will build on the techniques from
[8] and strengthen the arguments, in particular by utilizing a well known result of
Fried (Theorem 6). We will complement Theorem 1 with the following result. It will
be proved using a similar approach.
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138 D. Kreso

Proposition 3 Consider the sequence (1.1) with A0 constant and any of G0,G1, A1
constant. Assume Gn(x) = g(h(x)) for some n ≥ 0 and g(x), h(x) ∈ C[x], where h is
indecomposable and neither cyclic nor dihedral. Further assume that we do not have
Gm(x) ∈ C[h(x)] for all m ≥ 0. Then deg g ≤ C for a constant C = C({Ai ,Gi :
i = 0, 1}).

We will then present some well-understood sequences from the literature exhibit-
ing the decomposition property from Theorem 1 and Proposition 3. These include
Chebyshev polynomials of the first kind, Lucas polynomials, Fibonacci polynomials,
Fermat polynomials, Chebyshev polynomials of the second kind, etc. See Sect. 3 for
precise definitions and for further applications.

We remark that Zannier [15] proved a result similar to Theorem 1 for lacunary
polynomials, i.e. polynomials with a fixed number of terms. Theorem 1 relies on the
main result of [8], which is obtained using techniques similar to Zannier’s. There are
several applications of Zannier’s result, see e.g. [8] for more details . We conclude this
paper by illustrating one Diophantine application of Theorem 1. Consider a minimal,
simple and non-degenerate sequence (Gn(x))∞n=0 satisfying

Gn+2(x) = A1(x)Gn+1(x) + A0(x)Gn(x), n ≥ 0, (1.4)

with G0(x),G1(x), A0(x), A1(x) ∈ Q[x], such that its coefficients in the Binet form
are constants and that there is no h(x) ∈ C[x] such that Gm(x) ∈ C[h(x)] for
all m ≥ 0. Further consider another minimal, simple and non-degenerate sequence
(Hn(x))∞n=0 of the same type

Hn+2(x) = B1(x)Hn+1(x) + B0(x)Hn(x), n ≥ 0, (1.5)

with H0(x), H1(x), B0(x), B1(x) ∈ Q[x], such that its coefficients in the Binet form
are constants and that there is no h(x) ∈ C[x] such that Hm(x) ∈ C[h(x)] for all
m ≥ 0. Recall that P(x) ∈ C[x] is said to be a composite of a cyclic or dihedral
polynomial if it is nonconstant and P(x) = g(h(x)), where h is either cyclic or
dihedral and g(x) ∈ C[x].

Theorem 4 Consider sequences (Gn(x))∞n=0 and (Hn(x))∞n=0 satisfying (1.4) and
(1.5), respectively. Then there exists a constant C = C({Ai ,Gi : i = 0, 1}) > 0
with the following property. If Gn(x) and Hm(x) with degGn ≥ deg Hm > C are not
composites of either cylic or dihedral polynomials, and the equation Gn(x) = Hm(y)
has infinitely many integer solutions x, y, then Gn(x) = Hm(�(x)) for a linear
�(x) ∈ C[x].

Theorem 4 is an almost immediate consequence of Theorem 1 and the main result
of [2]. The latter result is a criterion for the finiteness of integer solutions of Dio-
phantine equations of type f (x) = g(y), where f (x), g(x) ∈ Q[x] are nonconstant
polynomials. All details will be given in Sect. 5.
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On decompositions of binary recurrent polynomials 139

2 Auxiliary results

Wenow recall some basic facts about complex polynomial decomposition. For f (x) ∈
C[x] with deg f > 1, we say that two decompositions f = f1 ◦ · · · ◦ fm and f =
g1 ◦ · · · ◦ gn of f are equivalent if m = n and there are linear μ1, . . . , μm−1 ∈ C[x]
such that fi ◦ μi = gi and μ

(−1)
i ◦ fi+1 = gi+1, i = 1, 2, . . . ,m − 1. Here μ

(−1)
i

denotes the inverse of μ with respect to functional composition which clearly exists
exactlywhenμ is a linear polynomial. For a given polynomial f theremay exist several
complete decompositions, that is decompositions into indecomposable polynomials,
but they are all related in the following way: any complete decomposition of f can be
obtained from any other through a sequence of steps, each of which involves replacing
two adjacent indecomposables by two others with the same composition. The only
solutions of the equation a ◦ b = c ◦ d in indecomposable complex polynomials, up
to composing with linear polynomials, are the trivial a ◦ b = a ◦ b and the non-trivial
solutions xm ◦ xr P(xm) = xr P(x)m ◦ xm , Tm(x) ◦ Tn(x) = Tn(x) ◦ Tm(x) where
P(x) ∈ C[x], r ,m, n ∈ N and Tn is the n-th Chebyshev polynomial defined in the
introduction. These results are due to Ritt [12]. There are many interesting results on
various topics (see e.g. [11] for an overview of such results) relying on Ritt’s findings.
In particular, the following corollary of one such more recent result will be repeatedly
used in this paper, [1, Thm. 5.1] which, roughly speaking, states that ‘most’ pairs of
complex polynomials have no common composite; f and h with deg f , deg h > 1
have a common composite if there are nonconstant u, v such that u( f (x)) = v(h(x)).

Lemma 5 Assume that for some f (x), g(x) ∈ C[x] where f is either cyclic or dihe-
dral, we have f (g(x)) ∈ C[h(x)] for an indecomposable h(x) ∈ C[x]which is neither
cyclic nor dihedral. Then g(x) ∈ C[h(x)].
Proof By [1, Thm. 5.1], it follows that if g(x), h(x) ∈ C[x] satisfy deg g > 1,
and h is indecomposable and neither cyclic nor dihedral, then g and h have a com-
mon composite if and only if either g(x) ∈ C[h(x)] or there are linear polynomials
�1(x), �2(x), �3(x) ∈ C[x] such that

g(x) = �1(x) ◦ xm ◦ �3(x), h(x) = �2(x) ◦ xr P(xm) ◦ �3(x),

where r ,m ∈ N, P(x) ∈ C[x], gcd(deg g, deg h) = 1. In particular, if deg g > 1, then
g is either cyclic or g(x) ∈ C[h(x)]. However, for a cyclic polynomial there is clearly
a complete decomposition consisting only of cyclic polynomials (since xmn = xm ◦xn
for anym, n), and for a dihedral polynomial there is clearly a complete decomposition
consisting only of dihedral polynomials and possibly cyclic polynomials of degree 2
(since Tmn(x) = Tm(x) ◦ Tn(x) for any m, n, and T2(x) = 2x2 − 1 is cyclic). More-
over, if one complete decomposition of a complex polynomial consists only of cyclic
and dihedral polynomials, then all complete decompositions consist only of cyclic
and dihedral polynomials (see e.g. [11, Thm. 1.3, Lemma 3.6]). Thus, any complete
decomposition of the polynomial f (g(x)), where f is either cyclic or dihedral and
g is either cyclic or deg g = 1, consists only of cyclic or dihedral polynomials. This
implies that unless g(x) ∈ C[h(x)] or deg g = 0, h must be either cyclic or dihedral,
a contradiction. If g is constant, the statement trivially holds. 	
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140 D. Kreso

Another famous result on the topic of polynomial decomposition that we will make
use of in this paper is the following theorem due to Fried [5].

Theorem 6 For h(x) ∈ C[x] the following assertions are equivalent.

(i) (h(x) − h(y))/(x − y) is irreducible in C[x, y],
(ii) h is indecomposable and if n := deg h is an odd prime then h(x) �= αDn(x +

b, a) + c with α, a, b, c ∈ C, with a = 0 if n = 3, where Dn(x, a) is the n-th
Dickson polynomial with parameter a satisfying

Dn(x, 0) = xn, Dn(2ax, a
2) = 2anTn(x), a �= 0 (2.1)

where Tn denotes, as usual, the n-th Chebyshev polynomial of the first kind.

Thus, for an indecomposable h(x) ∈ C[x] which is neither cyclic nor dihedral, we
have that (h(X)−h(Y )/(X −Y )) is an irreducible polynomial inC[X ,Y ]. A detailed
exposition of Fried’s proof of Theorem 6 can be found in [14], along with various
properties of Dickson polynomials.

Next we recall a few auxiliary results recorded in [8] that we will use to prove The-
orem 1. Consider the sequence (1.1) and assume Gn(x) = g(h(x)) for g(x), h(x) ∈
C[x], where h is indecomposable and neither cyclic nor dihedral. Let y �= x be a root
of h(X) − h(x) ∈ C(x)[X ] so that h(x) = h(y) and consequently Gn(x) = Gn(y).
Then (1.2) holds. In [8], we showed that then either C(x) ∩ C(y) = C(x) and
h is cyclic, or C(x) ∩ C(y) = C(h(x)). Indeed, since h(x) = h(y), we have
C(h(x)) ⊆ C(x) ∩ C(y) ⊆ C(x). By Lüroth’s theorem ([13, p. 13]) it follows that
C(x) ∩ C(y) = C(r(x)) for some r ∈ C(x). Moreover, since h is a polynomial, r
can be chosen to be a polynomial as well by [13, p. 16]. Then h(x) ∈ C[r(x)]. Since
h is indecomposable, it follows that either deg r = deg h or deg r = 1, i.e. @ either
C(x) ∩ C(y) = C(h(x)) or C(x) ∩ C(y) = C(x). If C(x) ∩ C(y) = C(x), then
ν(y) = x for some ν(x) ∈ C(x) and hence h(ν(y)) = h(x) = h(y). We deduce
that ν(x) ∈ C[x] and deg ν = 1. One can show that such h must be cyclic (see [8,
Lemma 4]), so that if h is not cyclic, then

C(x) ∩ C(y) = C(h(x)). (2.2)

In [8] we then deduced that if h is not cyclic, there exists a vanishing subsum of (1.2)
if and only if

π1π2A0(x)
n ∈ C(h(x)). (2.3)

This fact will be used repeatedly in the following section. Note that

π1π2 = −G1(x)2 − G0(x)G1(x)A1(x) − A0(x)G0(x)2

A1(x)2 + 4A0(x)
∈ C(x). (2.4)
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On decompositions of binary recurrent polynomials 141

3 Proofs of main results

Proof of Theorem 1 Let y �= x be a root of h(X) − h(x) ∈ C(x)[X ] so that h(x) =
h(y) and consequently Gn(x) = Gn(y), so that (1.2) holds. By assumption we have
π1, π2, ρ1, ρ2 ∈ C.

Note thatα1+α2 = A1(x),α1α2 = −A0(x),β1+β2 = A1(y) andβ1β2 = −A0(y)
by Vieta’s formulae. Further note that α1, α2 are not necessarily polynomials, but
αm
1 + αm

2 is a polynomial for any m ≥ 0. Moreover, we have

αm
1 + αm

2 = Dm(A1(x),−A0(x)) =

m

2 �∑

i=0

m

m − j

(
m − j

j

)
A0(x)

j A1(x)
m−2 j , (3.1)

where Dm(X + Y , XY ) = Xm + Ym for m ≥ 0 defines the m-th Dickson polynomial
Dm(x, a) with parameter a, encountered already in Theorem 6. Likewise,

βm
1 + βm

2 = Dm(A1(y),−A0(y)) ∈ C[y], m ≥ 0. (3.2)

By [8, Thm. 1] it suffices to show that (1.2), that is π1α
n
1 + π2α

n
2 = ρ1β

n
1 + ρ2β

n
2 ,

has no vanishing subsum. Assume the contrary. Since h is by assumption not cyclic,
we can further assume that C(x) ∩ C(y) = C(h(x)), as proved in [8, Lemma 4] and
recalled in (2.2).

Since π1, π2 ∈ C, note that either ρ1 = π1 and ρ2 = π2, or ρ1 = π2 and ρ2 = π1.
Indeed,

G0(x) = π1 + π2 =: c1 ∈ C,
2G1(x) − G0(x)A1(x)

A1(x)2 + 4A0(x)
= (π1 − π2)

2 =: c2 ∈ C.

Then G0(y) = ρ1 + ρ2 = c1 and
2G1(y)−G0(y)A1(y)

A1(y)2+4A0(y)
= (ρ1 − ρ2)

2 = c2 via x �→ y,
and we easily deduce the claim. Assume without loss of generality that ρ1 = π1 and
ρ2 = π2. We next show that the existence of a vanishing subsum of (1.2) implies
π1 = π2.

We have that either π1α
n
1 = π1β

n
1 and π2α

n
2 = π2β

n
2 , or π1α

n
1 = π2β

n
2 and

π2α
n
2 = π1β

n
1 . Assume first that the former holds. Then αn

1 +αn
2 = βn

1 +βn
2 , and thus

by (3.1) and (3.2) we have that αn
1 + αn

2 ∈ C(x) ∩ C(y) = C(h(x)), and moreover
clearly αn

1 + αn
2 ∈ C[h(x)]. Since by assumption Gn(x) = π1α

n
1 + π2α

n
2 ∈ C[h(x)],

it follows that (π1 − π2)α
n
1 ∈ C[h(x)] and (π1 − π2)α

n
2 ∈ C[h(x)]. We conclude that

either π1 = π2 or αn
1 , α

n
2 ∈ C[h(x)]. In the latter case we easily check that if n > 0,

then we must have α1, α2 ∈ C[x]. Then α1, α2 ∈ C[h(x)] by Lemma 5 and hence
Gm(x) ∈ C[h(x)] for any m ≥ 0, a contradiction. If n = 0, the theorem trivially
holds. Now assume π1α

n
1 = π2β

n
2 and π2α

n
2 = π1β

n
1 . Then

αn
1 + αn

2 = (π1 + π2)(π1β
n
1 + π2β

n
2 ) − π1π2(β

n
1 + βn

2 )

π1π2

= (π1 + π2)Gn(y) − π1π2(β
n
1 + βn

2 )

π1π2
.
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142 D. Kreso

Since π1, π2 ∈ C, by (3.1) and (3.2) we have αn
1 + αn

2 ∈ C(x) ∩ C(y) = C(h(x)),
and moreover αn

1 + αn
2 ∈ C[h(x)]. Since also π1α

n
1 + π2α

n
2 ∈ C[h(x)], it follows that

either π1 = π2 or αn
1 , α

n
2 ∈ C[h(x)], as in the former case. The latter possibility we

exclude as before. It remains to consider the case π1 = π2.
If π1 = π2 =: π , then Gn(x) = π(αn

1 + αn
2 ) = π(βn

1 + βn
2 ) = Gn(y). By

assumption there exists a vanishing subsum of this sum, and we may assume without
loss of generality thatαn

1 = βn
1 andαn

2 = βn
2 . Thus,α1 = ζβ1 andα2 = μβ2 for ζ, μ ∈

C such that ζ n = μn = 1. Since then A0(x) = −α1α2 = −ζβ1μβ2 = ζμA0(y), it
follows that A0(x) ∈ C(x) ∩ C(y) = C(h(x)). Moreover, clearly A0(x) ∈ C[h(x)].
Since then A0(x) = A0(y), it follows that ζμ = 1. A short calculation shows that

A1(x) =
(
ζ + 1

ζ

)
A1(y) +

(
ζ − 1

ζ

) √
A1(y)2 + 4A0(y)

2
, (3.3)

and hence

A1(x)
2 −

(
ζ + 1

ζ

)
A1(x)A1(y) + A1(y)

2 −
(

ζ − 1

ζ

)2

A0(x) = 0.

Denote

H1(X ,Y ) : = A1(X)2 −
(

ζ + 1

ζ

)
A1(X)A1(Y ) + A1(Y )2

−
(

ζ − 1

ζ

)2

A0(X) ∈ C[X ,Y ]. (3.4)

Recall that by assumption h(x) = h(y). Since h is neither cyclic nor dihedral, by The-
orem 6 it follows that H(X ,Y ) = (h(X) − h(Y ))/(X − Y ) ∈ C[X ,Y ] is irreducible.
Since H1(x, y) = 0, it follows that H(X ,Y ) | H1(X ,Y ). (We clearly also have

H(X ,Y ) | A1(X)2 −
(

ζ + 1

ζ

)
A1(X)A1(Y ) + A1(Y )2 −

(
ζ − 1

ζ

)2

A0(Y ),

but this follows from (3.4) and A0(x) ∈ C[h(x)], which is what we will use instead.) It
follows that the highest homogenous part of H(X ,Y ) divides the highest homogenous
part of H1(X ,Y ). (A similar argument appeared in [15, Lemma 3].) If deg A0 >

2 deg A1, then

Xdeg h − Y deg h

X − Y
| Xdeg A0 ,

which is clearly a contradiction. If 2 deg A1 > deg A0, then

Xdeg h − Y deg h

X − Y
| X2 deg A1 −

(
ζ + 1

ζ

)
Xdeg A1Y deg A1 + Y 2 deg A1 .
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It follows that δ2 deg A1 −
(
ζ + 1

ζ

)
δdeg A1 + 1 = 0 for all δ satisfying δ �= 1 and

δdeg h = 1. Thus for all such δ we have that either δdeg A1 = ζ or δdeg A1 = ζ−1. Then
either ζ = ±1 or {1, ζ, 1/ζ } is a cyclic subgroup of order 3 of the group of k-th roots
of unity, where k = deg h. If ζ = ±1, then A1(x) = ±A1(y) by (3.3), and hence
A1(x) ∈ C(x)∩C(y) = C(h(x)), and moreover clearly A1(x) ∈ C[h(x)]. Since then
A0(x), A1(x),G0(x),G1(x) ∈ C[h(x)] from the recurrence relation it follows that
Gm(x) ∈ C[h(x)] for all m ≥ 0, a contradiction. In the latter case we have ζ 3 = 1,
and hence α3

1 + α3
2 = β3

1 + β3
2 from α1 = ζβ1 and α2 = 1

ζ
β2. By (3.1) and (3.2) we

conclude that

A1(x)
3 + 3A0(x)A1(x) = α3

1 + α3
2 ∈ C(x) ∩ C(y) = C(h(x)).

Now recall that h is indecomposable and thus from C(h(x)) ⊆ C(A1(x), h(x)) ⊆
C(x) by Lüroth’s theorem ([13, p. 13]) it follows that there are no intermedi-
ate fields between C(h(x)) and C(x). Thus, either C(h(x)) = C(A1(x), h(x)) or
C(A1(x), h(x)) = C(x). Since A1(x)3 + 3A0(x)A1(x) ∈ C(h(x)) and A0(x) ∈
C(h(x)) we have that A1(x) is a root of a cubic polynomial over C(h(x)), and hence
either C(A1(x), h(x)) = C(h(x)) or deg h = [C(x) : C(h(x)] = [C(A1(x), h(x)) :
C(h(x))] ≤ 3. However, any polynomial of degree 2 is cyclic and of degree 3 either
cyclic or dihedral (ax3 + bx + c + d ∈ C[x] with a �= 0 is cylic if b2 = 3ac, and
dihedral otherwise). IfC(A1(x), h(x)) = C(h(x)), then clearly A1(x) ∈ C[h(x)] and
then Gm(x) ∈ C[h(x)] for all m ≥ 0, a contradiction.

If 2 deg A1 = deg A0, then

Xdeg h − Y deg h

X − Y
| a21

(
X2 deg A1 −

(
ζ + 1

ζ

)
Xdeg A1Y deg A1 + Y 2 deg A1

)

−a0

(
ζ − 1

ζ

)2

Y 2 deg A1 ,

where a1 is the leading coefficient of A1 and a0 is the leading coefficient of A0. It
follows that for any δ �= 1 such that δdeg h = 1, we have

a21

(
δ2 deg A1 −

(
ζ + 1

ζ

)
δdeg A1 + 1

)
− a0

(
ζ − 1

ζ

)2

= 0. (3.5)

Since A0(x) ∈ C[h(x)] and deg A0 = 2 deg A1 > 0 (A0 and A1 are nonconstant since
otherwise the sequence is constant, which would violate the minimality assumption),
it follows that deg h | 2 deg A1. Therefore δ2 deg A1 = 1 and hence δdeg A1 = ±1. We
deduce

−a21

(
ζ + 1

ζ
± 2

)
= a0

(
ζ + 1

ζ
− 2

)(
ζ + 1

ζ
+ 2

)

Recall that ζ is an n-th root of unity. It follows that either ζ = ±1, or ζ 3 = 1 (and a1
and a0 are related in a certain way). In the former case, A1(x) = ±A1(y) by (3.3), and
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hence A1(x) ∈ C(x)∩C(y) = C(h(x)) and moreover A1(x) ∈ C[h(x)], so as before
we conclude that Gm(x) ∈ C[h(x)] for all m ≥ 0, a contradiction. In the latter case,
we conclude that A1(x)3 + 3A0(x)A1(x) ∈ C(h(x)). We eliminate this possibility
using the same argument as in the case 2 deg A1 > deg A0. 	

Proof of Corollary 2 If p(q) = ±q(x), or one of p and q is a zero polynomial, or
p(x)m = q(x)m for some m ≥ 1, then the statement follows from Lemma 4, since
p(x)n + q(x)n is a constant times p(x)n . Otherwise, consider the sequence (1.1) with
A0(x) = −p(x)q(x), A1(x) = p(x)+q(x),G0(x) = 2 andG1(x) = A1(x), which is
minimal, non-degenerate and simple, and Gm(x) = p(x)m +q(x)m for allm ≥ 0. By
Theorem 1 it follows that either Gm(x) ∈ C[h(x)] for all m ≥ 0 or deg g ≤ C(p, q).
If the former holds, then p(x) + q(x) ∈ C[h(x)] and p(x)2 + q(x)2 ∈ C[h(x)], so
also p(x)q(x) ∈ C[h(x)], and thus A0(x), A1(x) ∈ C[h(x)]. Furthermore, clearly
either

p(x) = A1(x) + √
A1(x)2 + 4A0(x)

2
, q(x) = A1(x) − √

A1(x)2 + 4A0(x)

2
,

or vice versa. Since p and q are polynomials, we have that A1(x)2+4A0(x) = D(x)2

for some D(x) ∈ C[x]. It follows that D(x)2 ∈ C[h(x)]. By Lemma 5 we have
D(x) ∈ C[h(x)], and hence p(x), q(x) ∈ C[h(x)]. 	

Proof of Proposition 3 As in the proof of Theorem 1, let y �= x be a root of h(X) −
h(x) ∈ C(x)[X ] so that h(x) = h(y) and consequently Gn(x) = Gn(y). Then (1.2)
holds. Also as in the proof of Theorem 1, wemay assume thatC(x)∩C(y) = C(h(x))
since h is not cyclic. As before, by [8, Thm. 1] it suffices to show that (1.2) has no
vanishing subsum. We assume the contrary.

If A0 and A1 are constants, then clearly α1, α2, β1, β2 ∈ C, and consequently
π1, π2 ∈ C[x] and ρ1, ρ2 ∈ C[y]. Since there exists a vanishing subsum of (1.2), we
have that either π1α

n
1 = ρ1β

n
1 and π2α

n
2 = ρ2β

n
2 , or π1α

n
1 = ρ2β

n
2 and π2α

n
2 = ρ1β

n
1 .

In either case,

π1α
n
1 , π2α

n
2 ∈ C(x) ∩ C(y) = C(h(x))

and moreover clearly π1α
n
1 , π2α

n
2 ∈ C[h(x)]. Thus π1, π2 ∈ C[h(x)] and hence

Gm(x) = π1α
m
1 + π2α

m
2 ∈ C[h(x)] for all m ≥ 0, a contradiction.

Now ssume A0(x) = a0 and Gm(x) = c for m ∈ {0, 1}, with a0, c ∈ C. Then
also A0(y) = a0 and Gm(y) = c via x �→ y. Note that the statement of the theorem
trivially follows for n ≤ 3. We may thus assume n > 3. Since, by assumption, there
exists a vanishing subsum of (1.2), by multiplication and Vieta’s formulae it follows
that π1π2A0(x)n = ρ1ρ2A0(y)n , and hence π1π2 = ρ1ρ2. Then also π1π2α

m
1 αm

2 =
ρ1ρ2β

m
1 βm

2 since (−α1α2)
m = A0(x)m = am0 = A0(y)m = (−β1β2)

m . Since we
also have Gm(x) = Gm(y) = c, it follows that π1α

m
1 + π2α

m
2 = ρ1β

m
1 + ρ2β

m
2 .

We conclude that either π1α
m
1 = ρ1β

m
1 and π2α

m
2 = ρ2β

m
2 or π1α

m
1 = ρ2β

m
2 and

π2α
m
2 = ρ1β

m
1 . Without loss of generality we may assume that the fomer holds.

Since there exists a vanishing subsum of (1.2), we have that either π1α
n
1 = ρ1β

n
1 and
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π2α
n
2 = ρ2β

n
2 , or π1α

n
1 = ρ2β

n
2 and π2α

n
2 = ρ1β

n
1 . We now show that in either case

Dn−m(A1(x),−A0(x)) = Dn−m(A1(x),−a0) = αn−m
1 + αn−m

2 ∈ C[h(x)].

Recall that by assumption n > 3 and thus n − m > 2. In the former case, from
π1α

m
1 = ρ1β

m
1 and π1α

n
1 = ρ1β

n
1 , we conclude αn−m

1 = βn−m
1 , and likewise from

π2α
m
2 = ρ2β

m
2 and π2α

n
2 = ρ2β

n
2 , that α

n−m
2 = βn−m

2 . Then αn−m
1 +αn−m

2 = βn−m
1 +

βn−m
2 and by (3.1) and (3.2)we conclude thatαn−m

1 +αn−m
2 ∈ C(x)∩C(y) = C(h(x)),

and hence Dn−m(A1(x),−A0(x)) ∈ C[h(x)]. If on the other hand π1α
n
1 = ρ2β

n
2 and

π2α
n
2 = ρ1β

n
1 , then from π1α

m
1 = ρ1β

m
1 and π2α

m
2 = ρ2β

m
2 we deduce

αn−m
1 + αn−m

2 = ρ2β
n
2

ρ1β
m
1

+ ρ1β
n
1

ρ2β
m
2

= G0(y)Gm+n(y) − ρ1ρ2(β
m+n
1 + βm+n

2 )

ρ1ρ2(−A0(y))m
.

By (2.4), it follows that ρ1ρ2 ∈ C(y), and thus by (3.1) and (3.2) we conclude that
αn−m
1 + αn−m

2 ∈ C(x) ∩ C(y) = C(h(x)), and hence Dn−m(A1(x),−A0(x)) =
αn−m
1 +αn−m

2 ∈ C[h(x)]. Now, since A0(x) = a0 ∈ C and n−m > 2 by assumption,
from (2.1) we have that Dn−m(X ,−a0) is either dihedral (if a0 �= 0) or cyclic (if
a0 = 0). By Lemma 5, from Dn−m(A1(x),−a0) ∈ C[h(x)], it follows that A1(x) ∈
C[h(x)]. Sinceπ1π2 = ρ1ρ2 ∈ C(x)∩C(y) = C(h(x)) and A0(x), A1(x) ∈ C[h(x)],
by (2.4) it follows that

G1(x)
2 − G0(x)G1(x)A1(x) − a0G0(x)

2 ∈ C[h(x)].

Ifm = 0 and thusG0(x) = c, then a0G0(x)2 is constant andG1(x)2−cG1(x)A1(x) ∈
C[h(x)]. Since also A1(x) ∈ C[h(x)], we deduce that (2G1(x)−cA1(x))2 ∈ C[h(x)].
By Lemma 5 it follows that 2G1(x) − cA1(x) ∈ C[h(x)] and hence G1(x) ∈
C[h(x)]. If m = 1, we analogously conclude that G0(x) ∈ C[h(x)]. Therefore
G0(x),G1(x), A0(x), A1(x) ∈ C[h(x)] in either case, so Gm(x) ∈ C[h(x)] for all
m ≥ 0, a contradiction. 	


4 Some remarks in relation to our main results

In Table 1 we list some well-studied binary recurrent sequences of polynomials that
our main results can be applied to. All of these polynomials are generated by the Lucas
polynomial sequence. Note that for each polynomial sequence in the second column
we haveGm(x) = αm

1 +αm
2 for allm ≥ 0, where α1, α2 are such that A1(x) = α1+α2

and A0(x) = −α1α2, and therefore Theorem 1 can be applied. All the sequences in
the first column have constant G0 and A0, and therefore Proposition 3 can be applied.

Furthermore, consider the sequence

Gn(x) = (Ax + B)Gn−1(x)+ DGn−2(x), n ≥ 1, G−1(x) = 0, G0(x) = g1 �= 0,
(4.1)

where the coefficients A, B, D ∈ C satisfy A, D �= 0 and do not depend on n. Fuchs,
Pethő and Tichy [9] considered this sequence while studying a problem related to ours.
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Table 1 (Gn(x))∞n=0 satisfying Gn+2(x) = A1(x)Gn+1(x) + A0(x)Gn(x), n ≥ 0

Sequence (Gn(x))∞n=0
with G0(x) = 0,
G1(x) = 1

Sequence (Gn(x))∞n=0
with G0(x) = 2,
G1(x) = A1(x)

A1(x) A0(x)

Fibonacci polynomials Lucas polynomials x 1

Pell polynomials Pell–Lucas polynomials 2x 1

Fermat polynomials Fermat–Lucas polynomials 3x −2

Chebyshev polynomials
of the second kind

Chebyshev polynomials
of the first kind 2Tn(x)

2x −1

Jacobsthal–Lucas polynomials 1 2x

xn + 1 x + 1 −x

Table 2 Standard pairs

Kind Standard pair (or switched) Parameter restrictions

First (xm , axr p(x)m ) r < m, gcd(r ,m) = 1, r + deg p > 0

Second (x2,
(
ax2 + b)p(x)2

)
–

Third
(
Dm (x, an), Dn(x, am )

)
gcd(m, n) = 1

Fourth (a
−m
2 Dm (x, a),−b

−n
2 Dn(x, b)) gcd(m, n) = 2

Fifth
(
(ax2 − 1)3, 3x4 − 4x3

)
–

Under certain assumptions, they gave a bound on the number of distinct n,m ≥ 0 such
thatGn(x) = Gm(P(x)) for a fixed nonconstant P(x) ∈ C[x]. Note that degGm = m,
so Proposition 3 gives an upper bound onm and n such that Gn(x) = Gm(P(x)) for a
fixed nonconstant polynomial P ∈ C[x] if P is not a composite of a cyclic or a dihedral
polynomial, or such that Gm(x) and P(x) are composites of the same polynomial of
degree > 1 for all m ≥ 0.

5 Proof of Theorem 4

As mentioned in the introduction, Theorem 4 is an almost immediate consequence of
Theorem 1 and the main result of [2]. To state the latter result we define the so called
standard pairs of polynomials. In what follows a, b ∈ Q\0, m, n ∈ N, r ∈ N ∪ {0},
p(x) ∈ Q[x] is nonzero and Dm(x, a) is them-th Dickson polynomial with parameter
a, defined in Theorem 6 (Table 2).

Theorem 7 Let f (x), g(x) ∈ Q[x] be non-constant polynomials. Then the equation
f (x) = g(y) has infinitely many rational solutions with a bounded denominator
if and only if f (x) = φ ( f1 (λ(x)), g(x) = φ (g1 (μ(x))), where φ(x) ∈ Q[x],
λ(x), μ(x) ∈ Q[x] are linear polynomials, and ( f1, g1) is a standard pair over Q
such that the equation f1(x) = g1(y) has infinitely many rational solutions with a
bounded denominator.
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The proof of Theorem 7 in [2] relies on Siegel’s classical theorem on integral points
on curves, and is consequently ineffective. Thus, Theorem 4 is also ineffective. We
remark that among the ingredients in the proof of Theorem 7 were Ritt’s decomposi-
tions results.

Proof of Theorem 4 Assume that the equation Gn(x) = Hm(y) has infinitely many
solutions in integers x, y. Then Gn(x) = φ ( f1 (λ(x)) and Hm(x) = φ (g1 (μ(x))),
where φ(x) ∈ Q[x], λ(x), μ(x) ∈ Q[x] are linear polynomials, and ( f1, g1) is a
standard pair over Q, according to Theorem 7. Note that φ is nonconstant since Gn

and Hm are by assumption nonconstant. From the table we see that if both deg f1 > 1
and deg g1 > 1, then either Gn or Hm is a composite of an either cyclic or dihedral
polynomial, a contradiction. Since degGn ≥ deg Hm by assumption, it follows that
either deg g1 = 1 and deg f1 > 1, or both f1 and g1 are linear polynomials. If the latter
holds, then clearly φ(x) = Hm(�1(x)) for linear �1, and thus Gn(x) = Hm(�(x)) for
linear �(x) ∈ Q[x]. If deg g1 = 1 and deg f1 > 1, then clearly φ(x) = Hm(�(x)) for
linear �(x) ∈ Q[x], and hence Gn(x) = Hm(�( f1(λ(x))). Since by assumption there
does not exist h(x) ∈ C[x] such that Gm(x) ∈ C[h(x)] for all m ≥ 0 and Gn is also
not a composite of a cyclic or a dihedral polynomial, by Theorem 1 it follows that
deg Hm < C({Ai ,Gi : i = 0, 1}). 	
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