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Abstract
We investigate fractal aspects of elliptical polynomial spirals; that is, planar spirals
with differing polynomial rates of decay in the two axis directions. We give a full
dimensional analysis of these spirals, computing explicitly their intermediate, box-
counting andAssouad-type dimensions. An exciting feature is that these spirals exhibit
two phase transitions within the Assouad spectrum, the first natural class of fractals
known to have this property. We go on to use this dimensional information to obtain
bounds for the Hölder regularity of maps that can deform one spiral into another,
generalising the ‘winding problem’ of when spirals are bi-Lipschitz equivalent to a
line segment. A novel feature is the use of fractional Brownian motion and dimension
profiles to bound the Hölder exponents.
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2 S. A. Burrell et al.

1 Introduction

An infinitely wound spiral is a subset of the complex plane defined by

S(φ) = {φ(t) exp(i t) : 1 < t < ∞}, (1.1)

where φ : [1,∞) → (0,∞), known as a winding function, is continuous, strictly
decreasing and tends to zero as t → ∞. Such forms arise throughout science and the
natural world, from α-models of fluid turbulence and vortex formation to the structure
of galaxies [10, 17, 18, 20, 21]. The self-similarity present within these spirals makes
them natural candidates for fractal analysis, and onemaywish to examine the fine local
structure present at the origin [3, 12]. This may be quantified via a suitable notion of
fractal dimension such as box-counting (Minkowski) dimension [4, 23].

The isotropic classical definition (1.1) may be too restrictive for the mod-
elling of general natural or abstract phenomena. Most naturally occurring spirals
are anisotropic, developing in systems with inherent asymmetry, such as elliptical
whirlpools forming in a flowing body of water. Another simple example arises in
Newtonian mechanics: suppose a weight attached to an elastic band is rotated about
an axis parallel to the ground. At high velocities the centripetal force dominates gravity
and the orbit is circular. However, if the system is allowed to decelerate, the weight
will follow a spiral trajectory that will become increasingly elongated in the vertical
direction as the relative contribution of gravitational force grows.

To account for these scenarios, flexibility may be introduced by controlling the
rate of contraction in each axis and introducing an additional functional parameter.
Thus, for two winding functions φ,ψ : [1,∞) → (0,∞), we define the associated
elliptical spiral to be

S(φ,ψ) = {φ(t) cos t + iψ(t) sin t : 1 < t < ∞}. (1.2)

Our results concern the family of elliptical polynomial spirals Sp,q = S(t−p, t−q),
where 0 < p ≤ q, although our arguments apply more generally. If p = q, then
we write Sp,p = Sp and (1.2) recovers the generalised hyperbolic spirals. Spirals
such as these with polynomial winding functions typically arise in systems with an
underlying dynamical process. On the other hand, spirals emerging from static settings
are generally logarithmic with winding functions of the form exp(−ct) for c > 0 [12].

This paper serves two purposes. First, we offer a dimensional analysis of the
family of elliptical polynomial spirals. This involves calculating the intermediate,
box-counting (Minkowski) and Assouad-type dimensions. For a thorough introduc-
tion to these dimensions we direct the reader to [4, 11]. We begin, in Theorem 2.1, by
considering the intermediate dimensions of Falconer, Fraser and Kempton [7], which
we denote dimθ for θ ∈ [0, 1] and formally define in Sect. 3.2. Roughly speaking,
these dimensions interpolate between the Hausdorff and upper box dimensions in the
sense that

dimH E ≤ dimθ E ≤ dimBE .
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The fractal structure of elliptical polynomial spirals 3

Fig. 1 An elliptical polynomial spiral Sp,q with p = 0.7 and q = 0.75

Fig. 2 A plot of dimθ Sp,q (y-axis) against θ (x-axis) for θ ∈ [0, 1] and dimθ−1
A Sp,q against θ for

θ ∈ [1, 2]. In this example, p = 0.1 and q = 0.8

Intermediate dimensions have already seen surprising applications and properties,
despite their recent introduction. For example, they have been used to establish rela-
tionships between the Hausdorff dimension of a set and the typical box dimension
of fractional Brownian images [1] or orthogonal projections [2]. Other notable works
include [16].

The second major notion of dimension interpolation, the Assouad spectrum of
Fraser and Yu [13], lies between the upper box and Assouad dimensions and is defined
in Sect. 3.3. One important feature of the spectrum of Sp,q is the presence of two
points of non-differentiability, or phase transitions, see Theorem 2.6. The elliptical
polynomial spirals are the first natural example to exhibit this behaviour, found before
only as the product of delicate constructions.

Together, our results show the intermediate dimensions and the Assouad spectrum
provide a continuous interpolation between the two extremes of the dimensional reper-
toire, as illustrated in Fig. 2.

The second focus is to apply the computed dimensions to determine permissible
α such that there may exist an α-Hölder function f : Sp,q → Sr ,s that deforms one
elliptical polynomial spiral into another. Recall a function f : X → Y is α-Hölder
(0 < α ≤ 1) if there exists c > 0 such that

| f (x) − f (y)| ≤ c|x − y|α (x, y ∈ X).
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4 S. A. Burrell et al.

Such maps may play a role within dynamical systems where spirals form and evolve
over time. The Hölder exponent characterises the regularity of f by quantifying the
degree of distortion at local scales. A number of related questions on regularity have
been explored over the past few decades for different categories of spirals that arise
from winding functions of various canonical forms. Katznelson, Nag and Sullivan
show that the logarithmic spiral satisfies the bi-Lipschitz winding problem [15]. That
is, it may be constructed as the image of a bi-Lipschitz homeomorphism on the unit
interval. However, if φ is decays sub-exponentially, i.e.

logφ(t)

t
→ 0 (t → ∞),

then no such bi-Lipschitz homeomorphismexists [9]. This ledFraser [12] to investigate
Hölder solutions to the winding problem for generalised hyperbolic spirals.

Our methodology is based on the dimension profiles from [1, 2]. Of course, if there
is an α-Hölder map between Sp,q and Sr ,s we immediately obtain

α ≤ dim Sp,q

dim Sr ,s
, (1.3)

where dim denotes Hausdorff or box-counting dimension, since

dim f (E) ≤ 1

α
dim E

for E ⊂ R
n and α-Hölder f : Rn → R

n . However, the upper 2α-dimension profiles,

denoted dim
2α
θ Sp.q and bounded above by dimBSp,q , provide a strictly sharper bound

on α by use of the formula

α ≤ dim
2α
θ Sp,q

dimθ Sr ,s
, (1.4)

derived from Falconer [5, Theorem 2.6] in the case θ = 1 and [1, Theorem 3.1] for
θ ∈ [0, 1].

While this approach seems promising at first sight, the definition of the profiles is
potential-theoretic and rather challenging to compute in the case of Sp,q . This difficulty
is circumvented by instead using the relationship to their fractional Brownian images
given by Theorem [1, Theorem 3.4]. In fact, the method employed here may be used
more generally to estimate the Hölder regularity of a function between any two sets
for which the box or intermediate dimensions of the fractional Brownian images may
be estimated from above.

2 Statement and Discussion of results

This section is divided into two parts. The first offers a complete analysis of the
dimensions of Sp,q , while the second considers applications to the Hölder regularity
of maps that deform one elliptical polynomial spiral into another.
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The fractal structure of elliptical polynomial spirals 5

Fig. 3 A plot of dimθ Sp,q (y-axis) against θ (x-axis) for p = 0.4 and q = 0.7, along with horizontal lines
that indicate dimH Sp,q = 1 and dimB Sp,q = (2 + q − p)/(1 + q)

2.1 Dimensions

For 0 < p ≤ q, the Hausdorff and packing dimensions (see [4]) satisfy

dimH Sp,q = dimP Sp,q = 1,

due to the countable stability of these dimensions and the decomposition (3.1). We
present the remaining dimensions of Sp,q in ascending order, beginning with the
intermediate dimensions.

Theorem 2.1 Let θ ∈ [0, 1] and 0 < p ≤ q. If p < 1, then

dimθ Sp,q = p + q + 2θ(1 − p)

p + q + θ(1 − p)
.

Otherwise, if p ≥ 1, then

dimθ Sp,q = 1.

In proving Theorem 2.1, it is convenient to prove the upper bound in the wider
context of images of elliptical spirals under Hölder transformations. As we shall see,
this becomes especially relevant in Sect. 2.2 when considering fractional Brownian
images and dimension profiles.

Lemma 2.2 Let 0 < p ≤ q, θ ∈ [0, 1] and f : Sp,q → R
2 be α-Hölder (0 < α ≤ 1).

If p < 1, then

dim θ f (Sp,q) ≤
{
2 0 < α ≤ 1/2

p+q+2θ(1−p)
α(p+q)+θ(1−p)

1/2 < α ≤ 1
.

Otherwise, if p ≥ 1, then

dim θ f (Sp,q) ≤
{
2 0 < α ≤ 1/2
1
α

1/2 < α ≤ 1
.
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6 S. A. Burrell et al.

In Sect. 4.1, we prove Lemma 2.2 using a direct covering argument. Theorem 2.1
may then be proven by applying Lemma 2.2 to the identity map, along with a lower
bound that we obtain using themass distribution principle for intermediate dimensions
[7, Proposition 2.2]. By setting θ = 1, Theorem 2.1 also offers the box dimensions of
elliptical polynomial spirals.

Corollary 2.3 Let 0 < p ≤ q. If 0 < p < 1, then

dimB Sp,q = 2 + q − p

1 + q
= 1 + 1 − p

1 + q
.

Otherwise, if p ≥ 1, then

dimB Sp,q = 1.

In the special case p = q, Theorem 2.1 may be applied to determine the inter-
mediate dimensions of generalised hyperbolic spirals, which have also been obtained
independently by Tan [19].

Corollary 2.4 Let θ ∈ [0, 1]. If 0 < p < 1, then

dimθ Sp = 2p + 2θ(1 − p)

2p + θ(1 − p)
.

Otherwise, if p ≥ 1, then

dimθ Sp = 1.

A question of interest within the literature on intermediate dimensions has been the
classification of sets that are continuous at θ = 0 [2, 7]. Theorem 2.1 confirms that
the elliptical polynomial spirals are within this class.

Corollary 2.5 Let 0 < p ≤ q. The function θ → dimθ Sp,q is continuous on [0, 1].

Moving on into the realm of Assouad-type dimensions, Theorem 2.6 shows that
these spirals exhibit two phase transitions, that is, points where the spectrum is non-
differentiable. Moreover, these phase transitions are genuine in the sense that their left
and right derivatives are necessarily distinct.

Theorem 2.6 Let 0 < p ≤ q. If 0 < p < 1, then

dimθ
A Sp,q =

⎧⎪⎨
⎪⎩

2+q−p
(1+q)(1−θ)

if 0 ≤ θ < p/(1 + q)
2+q−θ(1+q)
(1+q)(1−θ)

if p/(1 + q) ≤ θ < q/(1 + q)

2 if q/(1 + q) ≤ θ < 1

.
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The fractal structure of elliptical polynomial spirals 7

Fig. 4 A plot of dimθ
A Sp,q (y-axis) against θ (x-axis) for p = 1.1 and q = 1.8

Otherwise, if p ≥ 1, then

dimθ
A Sp,q =

⎧⎪⎨
⎪⎩

p−θ(p−1)
p(1−θ)

if 0 ≤ θ < p/(1 + q)
2+q−θ(1+q)
(1+q)(1−θ)

if p/(1 + q) ≤ θ < q/(1 + q)

2 if q/(1 + q) ≤ θ < 1

.

The reader familiar with [12] may be surprised to see that the first phase transition
occurs at p/(1+q), rather than p/(1+ p). Indeed, this shows an unexpected and subtle
interaction between the parameters. Theorem 2.6 also shows that elliptical polynomial
spirals have maximal Assouad dimension.

Corollary 2.7 For all 0 < p ≤ q, dimA Sp,q = 2.

Lastly, the relationship between elliptical polynomial spirals and concentric ellipses
is worthy of comment. Let us define

C p,q =
⋃
n∈N

E((2πn)−p, (2πn)−q)

where E(x, y) (x ≥ y) denotes the ellipse centred on the origin with major axis of
length 2x and minor axis of length 2y. See Figure 5. It is not surprising that C p,q is
dimensionally equivalent to Sp,q and our arguments apply equally well to such sets,
since it is not too hard to show that the covering number of Sk

p,q is equal to that of
E((2πk)−p, (2πk)−q) up to multiplicative constants depending only on p and q.

Corollary 2.8 Theorems 2.1 and 2.6 hold with Sp,q replaced by C p,q .

Proof This follows immediately upon observing that Sp,q ∩ {z ∈ C : Re(z) < 0} is
bi-Lipschitz equivalent to C p,q ∩ {z ∈ C : Re(z) < 0}. 	


2.2 Applications

In this section we use dimension theoretic information to examine the regularity
of Hölder mappings that deform one elliptical polynomial spiral into another. The
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8 S. A. Burrell et al.

Fig. 5 A family of concentric ellipses C p,q dimensionally equivalent to Sp,q , where p = 0.4 and q = 0.6

behaviour of dimension under Hölder mappings has been widely studied, and offers
insight into permissible α for which there may exist an α-Hölder map transforming
a set X onto a set Y . For example, Corollary 2.3 allows us to glean such information
from the box dimensions of Sp,q and Sr ,s .

Theorem 2.9 Let 0 < p ≤ q and 0 < r ≤ s with r ≤ 1. Suppose f : Sp,q → Sr ,s is
α-Hölder. If p ≤ 1, then

α ≤ (2 + q − p)(1 + s)

(2 + s − r)(1 + q)
.

Otherwise, if p > 1, then

α ≤ 1 + s

2 + s − r
.

Proof Let p ≤ 1. By the standard properties of box-counting dimensions, see [4,
Chapter 2],

2 + s − r

1 + s
= dimB f (Sp,q) ≤ 1

α
dimB Sp,q = 1

α

2 + q − p

1 + q
,

from which the first result follows. The case for p > 1 is similar. 	

Theorem 2.9 provides a non-trivial bound on α when dimB Sr ,s > dimB Sp,q .

However, it is possible to do better using dimension profiles. Intuitively, the m-
dimensional profile may be thought of as the dimension of an object when viewed
from an m-dimensional viewpoint. In favour of brevity we omit a thorough introduc-
tion to dimension profiles, which may be found in [2]. In the following lemma, we

bound the upper 2α-profiles of Sp,q , denoted dim
2α
θ Sp,q , by a quantity strictly less

than the dimension for θ > 0, p < 1 and 1/2 < α < 1. This is depicted in Figure 6.

Lemma 2.10 Let 0 < p ≤ q and θ ∈ [0, 1]. If p ≤ 1, then

dim
2α
θ Sp,q ≤

{
2α 0 < α ≤ 1/2
α(p+q+2θ(1−p))
α(p+q)+θ(1−p)

1/2 < α < 1
.
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The fractal structure of elliptical polynomial spirals 9

Fig. 6 A plot of dimθ Sp,q (dashed) and the upper bound of dim
2α
θ Sp,q (y-axis) against θ (x-axis) for

α = 0.7, p = 0.4 and q = 0.6

Fig. 7 Bounds on theHölder exponent of f : Sp,q → Sr ,s against the value ofq (x-axis)when p = 0.6, r =
0.2 and s = 0.1. The bounds derived from the dimension profiles (Theorem 2.11) and the box-counting
dimension (Theorem 2.9) correspond to the solid and dashed lines, respectively

Proof Index-α fractional Brownian motion is almost surely (α − ε)-Hölder for all
ε > 0 [14]. Hence, for each ε > 0, Lemma 2.2 tells us that

dim θ Bα(Sp,q) ≤
{
2 0 < α ≤ 1/2

p+q+2θ(1−p)
(α−ε)(p+q)+θ(1−p)

1/2 < α < 1

almost surely. Then, letting ε → 0, by [1, Theorem 3.4] we have

dim
2α
θ Sp,q = αdim θ Bα(Sp,q) ≤

{
2α 0 < α ≤ 1/2
α(p+q+2θ(1−p))
α(p+q)+θ(1−p)

1/2 < α < 1

almost surely. This concludes the proof, since dim
2α
θ Sp,q has no random component.

	

It is clear from Lemma 2.10 that we may produce a bound strictly superior to

that from Theorem 2.9 for all parameter configurations with p < 1 using dimension
profiles. This improvement is illustrated in Fig. 7. For larger p, the two approaches
are equivalent.
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10 S. A. Burrell et al.

Theorem 2.11 Let 0 < p ≤ q and 0 < r ≤ s. If p ≤ 1, r ≤ 1 and f : Sp,q → Sr ,s is
α-Hölder, then

α ≤ p + q + r + s − pr + qs

(2 + s − r)(p + q)
.

Proof The target bound is strictly greater than 1/2, and sowemay assumewithout loss
of generality that α > 1/2. The discrepancy between the profile and the dimension is
maximised when θ = 1. Thus, set θ = 1, and observe from (1.4), Lemma 2.10 and
Corollary 2.3 that

dim1 Sr ,s = 2 + s − r

1 + s
≤ 1

α
dim

2α
1 Sp,q ≤ p + q + 2(1 − p)

α(p + q) + (1 − p)
,

from which the result follows on re-expressing the inequality in terms of α. 	


Recall that if p = q, then Sp,p = Sp is a generalised hyperbolic spiral. In this case,
Theorem 2.11 offers an appealing upper bound on α.

Corollary 2.12 Let p > q and f : Sp → Sq be α-Hölder. If p ≤ 1, then

α ≤ p + q

2p
.

Proof Apply Theorem 2.11 to f : Sp,p → Sq,q . 	


In [12], it was seen that the Assouad spectrum provided the most information on
Hölder exponents in the context of the winding problem (mapping a line segment to a
spiral). However, it is easily verified that the same tool, [13, Theorem 4.11], provides
only trivial information in our setting (mapping a spiral to a spiral). Conversely, in the
context of the winding problem, dimension profiles provide no new information. Thus,
it is interesting to see that the regimes are inverted in the context of spiral deformation,
with the Assouad spectrum providing the least information and the dimension profiles
the most.

3 Preliminaries

In preparation for the main proofs, we begin this subsection by setting notation and
making a few technical geometric observations. Afterwards, in order to serve as a
reference point, we formally define a selection of the dimension theoretic concepts.
However, we assume basic familiarity with topics such as Hausdorff dimension and
measure, and direct the reader to the classic text [4] for a thorough exposition on the
fundamentals of dimension theory.
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The fractal structure of elliptical polynomial spirals 11

3.1 Decomposition, notation, and geometric observations

Dimension concerns limiting processes for which fixed multiplicative constants are
typically of little consequence. Therefore, we often write x � y when it is clear there
exists a uniform constant c > 0 not depending on x and y such that x ≤ cy. Naturally,
we analogously define �, and write x ≈ y if x � y and x � y. In circumstances
where c is not uniform but depends on certain parameters, say t1, t2, . . . , we write
�t1,t2,..., �t1,t2,... and ≈t1,t2,... to make this clear.

A useful trick is to decompose Sp,q into a countable disjoint union of full turns. In
particular, we define

Sp,q :=
⋃
k≥1

Sk
p,q , (3.1)

where

Sk
p,q = {t−p cos t + i t−q sin t : 2πk ≤ t < 2π(k + 1)}.

Note that, for arithmetic convenience, we have removed the part of Sp,q corresponding
to 1 < t < 2π in the definition (1.2) without meaningful loss of generality. The
following geometric observation estimates the sum of the 1-dimensional Hausdorff
measures, or length, over a collection of consecutive turns using standard number
theoretic estimates.

Lemma 3.1 Let 0 < p ≤ q. For k ≥ 1,

H1(Sk
p,q) ≈p k−p (3.2)

Moreover, for sufficiently large integers N , M ∈ N with M < N,

N∑
k=M

H1(Sk
p,q) ≈p

⎧⎪⎨
⎪⎩

N 1−p − M1−p if p < 1

log N − log M if p = 1

M1−p − N 1−p if p > 1

. (3.3)

Proof By comparingH1(Sk
p,q)with the perimeter of a square of sidelength 2(2kπ)−p

centred on the origin we may deduce

(2kπ)−p ≤ H1(Sk
p,q) ≤ 8(2kπ)−p,

from which (3.2) follows immediately. (3.3) may then be deduced in a standard way.
Letting �t denote the integer part of t ∈ R, observe that for p �= 1,

N∑
k=M

H1(Sk
p,q) ≈p

N∑
k=M

k−p =
N∑

k=M

k+1∫
k

�u−p du ≈p
1

1 − p
(N 1−p − M1−p).
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12 S. A. Burrell et al.

The case for p = 1 follows similarly. 	


3.2 Intermediate dimensions

The intermediate dimensions are a family of dimensions, indexed by θ ∈ [0, 1] and
introduced in [7], that interpolate between the Hausdorff and upper box counting
dimensions.

For bounded E ⊂ R
n and 0 < θ ≤ 1, the lower intermediate dimension of E may

be defined as

dim θ E = inf
{
s ≥ 0 : for all ε > 0 and all δ0 > 0, there exists

0 < δ ≤ δ0 and a cover {Ui } of E such that

δ ≤ |Ui | ≤ δθ and
∑

|Ui |s ≤ ε
}

and the corresponding upper intermediate dimension by

dim θ E = inf
{
s ≥ 0 : for all ε > 0, there exists δ0 > 0 such that

for all 0 < δ ≤ δ0, there is a cover {Ui } of E

such that δ ≤ |Ui | ≤ δθ and
∑

|Ui |s ≤ ε
}
,

where |U | denotes the diameter of a set U ⊂ R
n . For θ = 0, define

dim0E = dim0E = dimH E,

while at θ = 1 it is clear that

dimBE = dim1E and dimBE = dim1E .

If dim θ E = dim θ E we say the θ -intermediate dimension of E exists and write
dimθ E .

3.3 The Assouad spectrum and dimensions

The Assouad spectrum of F , a family of dimensions indexed by θ ∈ [0, 1) and intro-
duced in [13], interpolates between the upper box dimension and the quasi-Assouad
dimension. Formally, it is the function θ �→ dimθ

A F defined by

dimθ
A F = inf

{
α ≥ 0 : ∃C > 0 such that, for all 0 < r < 1 and x ∈ F,

Nr
(
B(x, r θ ) ∩ F

) ≤ C(r θ /r)α
}
,

where Nr (E) denotes the smallest number of hypercubes of sidelength r required to
cover E . The Assouad dimension is defined similarly but considers Nr (B(x, R) ∩ F)

for arbitrary 0 < r < R, thus removing the restriction on the precise relationship
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The fractal structure of elliptical polynomial spirals 13

imposed by θ . The limit as θ → 1 is known as the quasi-Assouad dimension and, as
we shall see, in the context of spirals is equal to the Assouad dimension. For a detailed
treatment of Assouad-type dimensions and their various applications we direct the
reader to [11].

4 Proofs

4.1 Proof of Lemma 2.2

Let 0 ≤ s ≤ 2 and 0 < δ < 1. To aid readability when dealing with particularly
complicated exponents, we write t = − log δ.

If 0 < α ≤ 1/2, the bound is trivial. Thus, hereafter assume 1/2 < α ≤ 1.
Choose M ∈ N to be the smallest integer satisfying

M ≥ exp

(
t(s − (1/α) + θ(2 − s))

1 − p + α(p + q)

)
, (4.1)

and note that by (3.2) from Lemma 3.1,

Nδ1/α (Sk
p,q) ≈p

k−p

δ1/α
. (4.2)

Let the uniform constant associated with the Hölder property of f be c > 0. Then, for
k ≤ M , by considering the image of a cover satisfying (4.2) under f , we may obtain
a cover of f (Sk

p,q) by at most

≈p
k−p

δ1/α

balls of diameter c2α/2δ. It follows that there exists a constant dc,p,α , depending only
on c, p and α, such that we may cover f (Sk

p,q) by

dc,p,α

k−p

δ1/α
≈c,p,α

k−p

δ1/α

balls of diameter δ. The remaining region will be covered by balls of diameter δθ . For
k > M , ⋃

k>M

f (Sk
p,q) ⊂ f ([−M−p, M−p] × [−M−q , M−q ])

⊆ [−cM−pα, cM−pα] × [−cM−qα, cM−qα],

and such a rectangle may be covered by

≈c
M−(p+q)α

δ2θ

123



14 S. A. Burrell et al.

balls of diameter δθ . Summing over this cover, that we denote {Ui }i , gives

∑
|Ui |s ≈c,p,α

(
M−α(p+q)

δ2θ

)
δθs + δs

M∑
k=1

k−p

δ1/α
. (4.3)

If p ≤ 1, then (4.1) and (4.3) imply

∑
|Ui |s ≈c,p,α M−α(p+q)δθs−2θ + M1−pδs−(1/α)

≈c,p,α 2 exp

(
−t

s(α(p + q) + θ(1 − p)) − (p + q + 2θ(1 − p))

1 − p + α(p + q)

)
.

(4.4)

Hence,
∑ |Ui |s → 0 as δ → 0 providing

s >
p + q + 2θ(1 − p)

α(p + q) + θ(1 − p)
,

and so

dimθ f (Sp,q) ≤ p + q + 2θ(1 − p)

α(p + q) + θ(1 − p)
.

Note that if p = 1 this bound equals 1/α, as required. On the other hand, if p > 1,
then (4.3) implies

∑
|Ui |s ≈c,p,α M−α(p+q)δθs−2θ + δs−(1/α)

≈c,p,α exp

(
−t

s(α(p+q)+θ(1− p))−(p+q+2θ(1− p))

1 − p + α(p + q)

)
+δs−(1/α).

Clearly,

1 − p + α(p + q) ≥ 1 − p + 1

2
(p + p) = 1,

and so the left-hand term converges to 0 as δ → 0 if

s >
p + q + 2θ(1 − p)

α(p + q) + θ(1 − p)
,

while the right hand term requires s > 1/α. Hence

dimθ f (Sp,q) ≤ max

{
p + q + 2θ(1 − p)

α(p + q) + θ(1 − p)
,
1

α

}
= 1

α
.
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The fractal structure of elliptical polynomial spirals 15

4.2 Proof of Theorem 2.1

The upper bound follows from Lemma 2.2 applied to the identity mapping. If p ≥ 1,
the upper bound coincides with the trivial lower bound, and so it suffices to assume
0 < p < 1. Let 0 < δ < 1, and define M ∈ N to be the smallest integer satisfying

M ≥ exp

(
t(s − 1 + θ(2 − s))

1 + q

)
,

recalling t = − log δ. Next, define

s = p + q + 2θ(1 − p)

p + q + θ(1 − p)
,

and construct a measure μδ supported on S+
p,q by

μδ = δs−1
M∑

k=1

H1
∣∣
S+,k

p,q
, (4.5)

where H1
∣∣
S+,k

p,q
denotes the restriction of 1-dimensional Hausdorff measure to S+,k

p,q .

It is easy to see that

μδ(S+
p,q) = δs−1

M∑
k=1

H1(S+,k
p,q ) �p δs−1

M∑
k=1

k−p ≈p M1−pδs−1 ≈p 1,

with the final calculation similar to that which obtained (4.4).
Next, in order to apply the mass distribution principle for intermediate dimensions,

we must estimate μδ(U ) for arbitrary Borel sets U satisfying δ ≤ |U | ≤ δθ . First,
observe that

(
1

(k − 1)q
− 1

kq

)
−

(
1

(k − 1)p
− 1

k p

)
= 1 − (k − 1)q−p

(k − 1)q
− kq−p − 1

kq
≤ 0

for k > 1, since p ≤ q. Hence, up to multiplicative constants depending only on p
and q, consecutive turns of the spiral are separated by at least

1

(k − 1)q
− 1

kq
.

An application of the mean value theorem then gives

1

(k − 1)q
− 1

kq
≥ q

kq+1 ≥ q

M1+q

123



16 S. A. Burrell et al.

for 2 ≤ k ≤ M . It follows that a set U satisfying δ ≤ |U | ≤ δθ may intersect at
most |U |M1+q turns that contain mass, up to a constant depending only on p and
q. Moreover, for each turn it intersects, U may cover a region of mass at most δs−1

multiplied by the circumference of a ball of diameter U . Hence

μδ(U ) �p,q (|U |δs−1)(|U |M1+q)

= |U |2δs−1δ−s+1−θ(2−s)

= |U |2δθ(s−2)

≤ |U |2|U |s−2( since s < 2 and |U | ≤ δθ )

= |U |s .

The lower bound then follows from the mass distribution principle for intermediate
dimensions, see [7, Proposition 2.2]. 	


It is worth remarking that measures of a form similar to (4.5) could be useful for
a wide range of sets E with a spiral structure. For example, we might consider the
image of a spiral under a map f that distorts the local geometry while preserving the
general form. If it were the case that dimH f (Sk

p,q) = t for all k ∈ N, then measures
of the form

μδ = δs−t
M∑

k=1

Ht
∣∣

f (Sk
p,q )

(4.6)

may be good candidates for use with [7, Proposition 2.2].

4.3 Proof of Theorem 2.6

If p = q, then the result is [12, Theorem 4.4], so let 0 < p < q. For each 0 < δ < 1,
define L p, Lq ∈ N to be the largest integers such that

δ ≤ 1

(π + 2π L p)p
− 1

(π + 2π(L p + 1))p
(4.7)

and

δ ≤ 1

( 3π2 + 2π Lq)q
− 1

( 3π2 + 2π(Lq + 1))q
. (4.8)

Geometrically, L p and Lq are the maximal indices k, such that Sk
p,q is separated on the

horizontal and vertical axes by at least δ, respectively. In addition, define the integers l p

and lq to be the minimal k such that Sk
p,q intersects the ball B(0, δθ ) on the horizontal

and vertical axes, respectively. In particular,

(
π + 2πl p

)−p ≤ δθ <
(
π + 2π(l p − 1)

)−p

123
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and (
3π

2
+ 2πlq

)−q

≤ δθ <

(
3π

2
+ 2π(lq − 1)

)−q

.

Throughout, we use the fact that

Sp,q ∩ B(0, δθ ) ⊆
∞⋃

k=lq

Sk
p,q ∩ B(0, δθ ).

The ordering of L p, Lq , l p and lq depends on θ , and gives rise to phase transitions
within the spectrum. To determine the order based on a value of θ , first note that

lt ≈t δ−θ/t (4.9)

for t ∈ {p, q}. Then, for t ∈ {p, q}, it follows from an application of the mean value
theorem applied to f (x) = x−t that

t

(k + 1)1+t
≤ 1

kt
− 1

(k + 1)t
≤ t

k1+t
.

This, along with the fact L p and Lq are the maximal integers satisfying (4.7) and (4.8),
respectively, implies

Lt ≈t δ− 1
1+t . (4.10)

It is immediate that l p �p,q lq and L p �p,q Lq for all θ ∈ [0, 1) since p < q,
but we must divide into cases to learn more. By continuity of the Assouad spectrum
[13, Corollary 3.5] and [13, Corollary 3.6], it suffices to consider θ in the ranges
0 ≤ θ < p/(1 + q) and p/(1 + q) < θ < q/(1 + q). Throughout, we use the
estimate

Nδ(Sp,q ∩ B(z, δθ )) �p,q Nδ(Sp,q ∩ B(0, δθ )) (4.11)

for all z ∈ C. This reduction in intuitively clear, since the origin is the densest part
of the set Sp,q and can be shown via a similar argument to [12, Theorem 4.4], which
covers the case p = q. In particular, if |z| < 2δθ , then subsequent arguments with
B(0, δθ ) are easily modified up to uniform constants since B(z, δθ ) ⊆ B(0, 3δθ ). On
the other hand, if |z| ≥ 2δθ and B(z, δθ ) ∩ Sk

p,q �= ∅ for some k ≥ 1, then k−p � δθ

or k−q � δθ , recalling the intersections of Sk
p,q with the horizontal and vertical axes

are (up to constants) k−p and k−q , respectively. Since p ≤ q, both conditions hold if
k � δ−θ/p and δ < 1. Summing over permissible k ≥ 1 implies

Nδ(B(z, δθ ) ∩ Sp,q) �p,q

(
δ
− θ

p

) δθ

δ
=

(
δθ

δ

) p−(p−1)θ
(1−θ)p

123



18 S. A. Burrell et al.

as in [12]. This is sufficient to prove (4.11), since the below proofs show

Nδ(B(0, δθ ) ∩ Sp,q) �p,q

(
δθ

δ

) p−(p−1)θ
(1−θ)p

in all cases.

Case 1: suppose p
1+q < � < q

1+q .

In order to simplify some geometric estimates, it is convenient to adopt an equivalent
definition of the Assouad spectrum in this case. Specifically, we consider minimal
coverings of the set D(0, δθ ) ∩ Sp,q , where D(0, δθ ) is a square centred on the origin
of sidelength 2δθ and orientated with the co-ordinate axes. By (4.9) and (4.10), for
sufficiently small δ > 0,

l−p
p < L−p

q < l−p
q .

For lq ≤ k ≤ Lq , the set Sk
p,q ∩ D(0, δθ ) contains at least one arc A such that

H1(A) ≈ δθ ,

and so

Nδ(A) ≈ δθ

δ
.

Turns in the range lq ≤ k ≤ Lq are separated by at least δ on the vertical and
horizontal axes, and thus any square of sidelength δ may intersect at most two of the
corresponding arcs.

It follows that, recalling (4.9) and (4.10),

Nδ(Sp,q ∩ D(0, δθ )) �
Lq∑

k=lq

δθ−1

≈p,q δθ−1
(
δ
− 1

1+q − δ
− θ

q

)

�p,q

(
δθ

δ

) 2+q−θ(1+q)
(1+q)(1−θ)

. (4.12)

Hence

dimθ
A Sp,q ≥ 2 + q − θ(1 + q)

(1 + q)(1 − θ)
.
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On the other hand, observe

∞⋃
k=Lq

Sk
p,q ∩ D(0, δθ ) ⊆ [−δθ , δθ ] × [−(2π Lq)−q , (2π Lq)−q ],

and such a rectangle may be covered by

≈q
δθ L−q

q

δ2

squares of sidelength δ. The remaining portion may be covered in a similar manner as
in (4.12), and we conclude

Nδ(Sp,q ∩ B(0, δθ )) �q
δθ L−q

q

δ2
+

Lq∑
k=lq

δθ−1

≈p,q

(
δθ

δ

) 2+q−θ(1+q)
(1+q)(1−θ)

+
(

δθ

δ

) 2+q−θ(1+q)
(1+q)(1−θ)

= 2

(
δθ

δ

) 2+q−θ(1+q)
(1+q)(1−θ)

.

Case 2: suppose 0 ≤ � < p
1+q .

By (4.9) and (4.10), for sufficiently small δ > 0,

L−p
p < L−p

q < l−p
p < l−p

q ,

with the gaps between the four integers L p, Lq , l p and lq arbitrarily large. Then, for
k = l p + 1, . . . , Lq , we have

Sk
p,q ⊂ B(0, δθ ),

while the turns in this region are separated by at least δ on the horizontal and vertical
axes. Therefore they should be covered individually by at least

H1(Sk
p,q)

δ
≈p

k−p

δ

squares of sidelength δ.
Hence

Nδ(Sp,q ∩ B(0, δθ )) �p

Lq∑
k=l p

k−p

δ
. (4.13)
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20 S. A. Burrell et al.

This sum may be estimated using Lemma 3.1. If p < 1, then

Nδ(Sp,q ∩ B(0, δθ )) �p
L1−p

q − l1−p
p

δ

≈p,q δ
p−1
1+q −1

=
(

δθ

δ

) 2+q−p
(1+q)(1−θ)

.

On the other hand, if p = 1, then

Nδ(Sp,q ∩ B(0, δθ )) �p
log(Lq) − log(l p)

δ

≈p,q δ−1| log(δ)|

≥
(

δθ

δ

) 1
(1−θ)

. (4.14)

Finally, if p > 1, then

Nδ(Sp,q ∩ B(0, δθ )) �p
l1−p

p − L1−p
q

δ

≈p,q δ
(p−1)θ

p −1

=
(

δθ

δ

) p−θ(p−1)
p(1−θ)

.

In each case we obtain the desired lower bound.
For the upper bound, we consider a cover of three parts. First, cover turns indexed

by k ≥ Lq by covering the rectangle

[ − (2π Lq)−p, (2π Lq)−p] × [−(2π Lq)−q , (2π Lq)−q ]

by

≈p,q
L−p

q L−q
q

δ2

squares of sidelength δ. The remaining two portions may then be covered as in (4.12)
and (4.13). Hence

Nδ(Sp,q ∩ B(0, δθ )) �p,q
L−p

q L−q
q

δ2
+

Lq∑
k=l p

k−p

δ
+

l p∑
k=lq

δθ−1.
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We now apply Lemma 3.1 in each case. If p < 1, then

Nδ(Sp,q ∩ B(0, δθ )) �p,q δ
p

1+q + q
1+q −2 + δ−1(L1−p

q − l1−p
p ) + δθ−1(l p − lq)

�p,q

(
δθ

δ

) 2+q−p
(1−θ)(1+q)

.

On the other hand, if p = 1, then

Nδ(Sp,q ∩ B(0, δθ )) �p,q δ
p

1+q + q
1+q −2 + δ−1(log Lq − log l p) + δθ−1(l p − lq)

�p,q

(
δθ

δ

) 1
1−θ

.

Finally, if p > 1, then

Nδ(Sp,q ∩ B(0, δθ )) �p,q δ
p

1+q + q
1+q −2 + δ−1(l1−p

p − L1−p
q ) + δθ−1(l p − lq)

�p,q

(
δθ

δ

) p−(p−1)θ
(1−θ)p

,

which completes the proof. 	
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