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Abstract
Let M be a compact 2-dimensional Riemannian manifold with smooth boundary and
consider the incompressible Euler equation on M . In the case that M is the straight
periodic channel, the annulus or the disc with the Euclidean metric, it was proved
by T. D. Drivas, G. Misiołek, B. Shi, and the second author that all Arnold stable
solutions have no conjugate point on the volume-preserving diffeomorphism group
Ds

μ(M). They also proposed a question which asks whether this is true or not for any
M . In this article, we give a partial positive answer. More precisely, we show that the
Misiołek curvature of any Arnold stable solution is nonpositive. The positivity of the
Misiołek curvature is a sufficient condition for the existence of a conjugate point.
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1 Introduction

Let (M, g) be a compact 2-dimensional Riemannian manifold possibly with smooth
boundary ∂M and consider the incompressible Euler equation on M :

∂u

∂t
+ ∇uu = − grad p on M,

div u = 0 on M,

g(u, ν) = 0 on ∂M, (1.1)

where ν is a unit normal vector field on ∂M . For the case that M is the straight
periodic channel, the annulus or the disc with the Euclidean metric, it was proved
by T. D. Drivas, G. Misiołek, B. Shi, and the second author [6, Thm. 3] that all
Arnold stable solutions (see Defition 2.5) contain no conjugate points when viewed
as geodesics in the groupDs

μ(M) of volume-preserving Sobolev Hs diffeomorphisms
of M starting from the identity (fluid’s initial configuration). They also proposed a
question [6, Question 2] which asks whether this is true or not for any compact two-
dimensional Riemannian manifold M with smooth boundary. In this article, we give
a partial positive answer. For the precise statement, we recall the Misiołek curvature.
Let μ be the volume form on M and set

〈V ,W 〉 :=
∫
M
g(V ,W )μ, (1.2)

|V |2 := 〈V , V 〉 (1.3)

for any vector fields V ,W on M , which are tangent to ∂M .

Definition 1.1 (cf. [12, (1.3)], [13, Lems. B.6, B.7]) Let u be a stationary solution of
(1.1) and Y a divergence-free vector field on M , which is tangent to ∂M . TheMisiołek
curvature defined as

mcu,Y := −|[u,Y ]|2 − 〈[[u,Y ],Y ], u〉. (1.4)

The importance of the Misiołek curvature is the following. We write TeDs
μ(M) for the

tangent space of Ds
μ(M) at the identity element e ∈ Ds

μ(M). We identify TeDs
μ(M)

with the space of all Sobolev Hs divergence-free vector fields onM , which are tangent
to ∂M .

Fact 1.2 ([10] (see also [12])) Let s > 2 + n
2 and M be a compact n-dimensional

Riemannian manifold, possibly with smooth boundary. Suppose that V ∈ TeDs
μ(M)

is a stationary solution of the Euler Eq. (1.1) on M and take a geodesic η on Ds
μ(M)

satisfying V = η̇ ◦ η−1. Then if we have mcV ,W > 0 for some W ∈ TeDs
μ(M), there

exists a point conjugate to e ∈ Ds
μ(M) along η(t) on 0 ≤ t ≤ t0 for some t0 > 0.

Remark 1.3 This was only proved for the case that M has no boundary in [10] (and
[12]). Thus, we explain how to apply the proof in [10] to the case M has a boundary
in the appendix.
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Arnold stability and Misiołek curvature 413

This fact states that the positivity of the Misiołek curvature ensures the existence of
a conjugate point. This criteria for the existence of a conjugate point by using mc was
first used in [10] by G. Misiołek and recently attracts attention again [6, 12, 13]. We
note that this is only a sufficient condition. In fact, there is a stationary solution having
a conjugate point, whose Misiołek curvature is all nonpositive (see [12, Rem. 3]).
However, philosophically, the nonpositivity of the Misiołek curvature suggests the
nonexistence of a conjugate point.

Our main theorem of this article is the following. See Sect. 2 for unexplained
notions.

Theorem 1.4 Let M be a two-dimensional Riemannian manifold possibly with smooth
boundary, u an Arnold stable solution of (1.1), and Y a divergence-free vector field
on M, which is tangent to ∂M. Suppose that there exist stream functions of u and Y .
Then, we have

mcu,Y ≤ 0.

As a corollary, we have the following. Let S1 be the one-dimensional sphere and
I := [−1, 1].
Theorem 1.5 Let M be a two-dimensional Riemannian manifold possibly with smooth
boundary. Suppose that either H1

dR(M) = 0 or M is diffeomorphic to I × S1. Then,
for any Arnold stable solution u of (1.1) and any divergence-free vector field Y on M,
which is tangent to ∂M, we have

mcu,Y ≤ 0.

Remark 1.6 Note that if M is the disc, then we have H1
dR(M) = 0. Moreover, if M is

either the straight periodic channel or the annulus, then M is diffeomorphic to I × S1.

Remark 1.7 It looks like that Theorem 1.5 agrees with the intuitive argument in [6]
before Question 2.

Remark 1.8 Let a > 1 and

Ma :=
{
(x, y, z) ∈ R

3 | x2 + y2 = a2(1 − z2)
}

be a two-dimensional ellipsoid with the Riemannian metric induced by that of R3.
Note that we have H1

dR(Ma) = 0 because Ma is diffeomorphic to S2 for any a > 1.
Thus, Theorem 1.5 implies mcu,Y ≤ 0 for any Arnold stable solution u of (1.1) and
any divergence-free vector field Y on Ma .

On the other hand, Fact 1.10, which is given below, implies that for any zonal
flow u (see Definition 1.9 given below for the definition) on Ma whose support is
contained in Ma\ {(0, 0, 1), (0, 0,−1)}, there exists a divergence-free vector field Y
on Ma satisfyingmcu,Y > 0. This implies that any zonal flow u on Ma whose support
is contained in Ma\ {(0, 0, 1), (0, 0,−1)} never be Arnold stable by the assertion of
the previous paragraph.
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414 T. Tauchi, T. Yoneda

Definition 1.9 ([12, (1.4)]) We say that a vector field Z on Ma is a zonal flow if Z has
the following form

Z = F(z)

(
y

∂

∂x
− x

∂

∂ y

)

for some function F(z) : [−1, 1] → R.
Note that a zonal flow is always a stationary solution of the incompressible Euler

equation (1.1) on Ma .

Fact 1.10 ([12, Thm. 1.2]) Let a > 1. Then, for any zonal flow u on Ma whose support
is contained in Ma\{(0, 0, 1), (0, 0,−1)}, there exists a divergence-free vector field
Y on Ma satisfying mcu,Y > 0.

By V. I. Arnold [1], geodesics onDs
μ(M) correspond to solutions of (1.1). One can

thus speculate that existence of a conjugate point is indicative of Lagrangian stability
of the corresponding solution.

This article is organized as follows. In Sect. 2, we recall the definition and properties
of Arnold stability. In Sects. 3 and 4, we prove Theorems 1.4 and 1.5, respectively. In
Appendix A, we explain how to apply the proof in [10] to the case M has a boundary.
In Appendix B, we state the basic results, which are used in the proof of Theorem 1.4.

2 Arnold stable flow

In this section, we recall that the definition of an Arnold stable flow and its basic prop-
erty. Although almost all the materials in this section are well known, we prove some
results for the convenience. Main references are [2, Sect. II.4.A], [5] and [6, Sect. 5].

Let (M, g) be a compact 2-dimensional Riemannianmanifold possiblywith smooth
boundary ∂M and consider the incompressible Euler Eq. (1.1) on M .

Definition 2.1 Let u be a divergence-free vector field on M , which is tangent to ∂M .
A function ψ on M is called a stream function of u if ψ satisfies

� gradψ = u, (2.1)

where � is the Hodge star. We write

� := div ◦ grad

for the Laplace-Beltrami operator. In the case (2.1), we set

ω := − div � u = �ψ. (2.2)

Lemma 2.2 Let u be a stationary solution of (1.1) on a two-dimensional Riemannian
manifold M possibly with smooth boundary ∂M. Suppose that there exists a functionψ

on M such that u = � gradψ . Then � gradψ and gradω are orthogonal. In particular,
gradψ and gradω are collinear.
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Arnold stability and Misiołek curvature 415

Proof Because u is a time independent solution of (1.1), we have

∇uu = − grad p, div(u) = 0. (2.3)

Recall that div(·) = �d�(·)	, where d is the exterior derivative and 	 is the musical
isomorphism. We note that the Hodge star � commutes with 	 and �2 = −1 as an
operator on the space of vector fields. Thus, applying the operator � ◦ div ◦ � = d(·)	
to the first equation of (2.3), we have

d(∇uu)	 = 0 (2.4)

by (grad p)	 = dp and d2 = 0. Recall (cf. [2, Thm. 1.17 in Sect. IV.1.D])

(∇uu)	 = Lu(u
	) − 1

2
d (g(u, u)) ,

where Lu is the Lie derivative. Thus, (2.4) implies

Lu(d(u	)) = 0 (2.5)

by [Lu, d] = 0. On the other hand, the assumption u = � gradψ implies

d(u	) = d(�(gradψ)	)

= div(gradψ)μ

= ωμ

by �μ = 1 and (2.2). Thus, (2.5) implies

0 = Lu(d(u	))

= Lu(ωμ).

By Lu(μ) = div(u)μ = 0 and the Leibniz rule of Lu , this is equal to

= Lu(ω)μ

= g(u, gradω)μ,

which completes the proof by u = � gradψ . 	

Lemma 2.3 Let M be a two-dimensional Riemannian manifold possibly with smooth
boundary ∂M and u a stationary solution of (1.1) on M having ψ as its stream
function. Set ω := �ψ . Then, there exits a (possibly multivalued) function F on R

satisfying

ω(x) = F(ψ(x)) for any x ∈ M .
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Proof By Lemma 2.2, gradψ and gradω are collinear. Thus, there exits a (possibly
multivalued) function f on R satisfying

gradω(x) = f (ψ(x)) gradψ(x) for any x ∈ M .

Take a primitive function F of f (as a function on R). By the chain rule, we have

grad(F(ψ)) = F ′(ψ) gradψ = f (ψ) gradψ = gradω. (2.6)

Note that the difference of functions which have the same gradient must be a constant
function. Thus, adding a suitable constant to F (as a function on R) if necessary, we
have the lemma. 	

Corollary 2.4 Let M be a two-dimensional Riemannian manifold possibly with smooth
boundary ∂M and u be a stationary solution of (1.1) on M having ψ as its stream
function. Set ω := �ψ . Then, the function F in Lemma 2.3 satisfies

F ′(ψ) = gradω

gradψ
= grad�ψ

gradψ
. (2.7)

Proof This is a consequence of (2.6). Note that by the collinearity of gradω and gradψ

(see Lemma 2.2), the fraction of (2.7) makes sense. 	

Write λ1 > 0 for the first eigenvalue of −�. Therefore, we have

� f ≤ −λ1 f (2.8)

for any function f on M satisfying
∫
M f μ = 0 (resp. f |∂M = 0) if ∂M is empty

(resp. nonempty), where μ is the volume form on M .

Definition 2.5 ([1, Sect. 10], or [2, Thm. 4.3 in Sect. II.4.A].) Let M be a two-
dimensional Riemannian manifold possibly with smooth boundary ∂M . We say that
a stationary solution u of (1.1) is Arnold stable if the corresponding function F in
Lemma 2.3 satisfies

− λ1 < F ′(ψ) < 0, or 0 < F ′(ψ) < ∞. (2.9)

Lemma 2.6 ([5, Prop. 1.1])Let M bea two-dimensionalRiemannianmanifold possibly
with smooth boundary ∂M and u an Arnold stable stationary solution of (1.1) with
stream function ψ . Suppose that there exits a Killing vector field X on M, which is
tangent to ∂M. Then we have Xψ = 0.

Proof Note that �LX = LX� as an operator on the space of functions because X is
Killing, where LX is the Lie derivative. By the definition (see (2.2) and Lemma 2.3),
we have

�ψ = F(ψ).
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Arnold stability and Misiołek curvature 417

The chain rule and LX� = �LX imply

(� − F ′(ψ))Xψ = 0.

Thus (2.8) and (2.9) imply the lemma in the case ∂M = ∅ because Xψ |∂M = 0 by
the assumption that ψ is the stream function of u. In the case ∂M = ∅, we note that∫
M Xψμ = ∫

M LX (ψ)μ = 0 by LX (μ) = div(X)μ = 0, the Leibniz rule of the Lie
derivative, and the Stokes thoerem. Thus, (2.8) and (2.9) also imply the lemma in this
case. 	

Remark 2.7 The equation �LX = LX� is also true as an operator on the
space of p-forms if we interpret that � is the Laplace-de Rham operator � :=
(−1)n(p+1)+1(d�d� + �d�d), where n := dim M . This is because LX commutes
the Hodge star operator if X is Killing (see [14, (14)], for example).

3 Proof of Theorem 1.4

In this section, we prove Theorem 1.4. In the proof, we use freely lemmas in
Appendix B.

Proof of Theorem 1.4 By Lemma B.16, (M, g, ω, �) is an almost Kähler manifold,
where � is the Hodge star operator. We write H f for the Hamiltonian vector field of a
function f on M (Definition B.1). By the assumption, there exist functions ψ and φ

satisfying

u = � gradψ, Y = � grad φ ∈ Xt (M),

where Xt (M) is the space of vector fields on M , which are tangent to ∂M . Then,
Lemma B.10 implies

u = Hψ, Y = Hφ ∈ Xt (M).

Thus, we have

|[u,Y ]|2 = 〈[Hψ, Hφ], [Hψ, Hφ]〉
= 〈H{ψ,φ}, H{ψ,φ}〉
= −

∫
M

{ψ, φ}�{ψ, φ}μ (3.1)

by Lemmas B.8 and B.19, where 〈, 〉 is given by (1.2) and {, } is the Poisson bracket.
On the other hand, we have

〈[[u,Y ],Y ], u〉 = 〈[[Hψ, Hφ], Hφ], Hψ 〉
= 〈H{{ψ,φ},φ}, Hψ 〉
=

∫
M

−{{ψ, φ}, φ}�ψμ
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by Lemmas B.8 and B.19. By Lemmas B.12 and B.17, this is equal to

= −
∫
M

{ψ, φ}{φ,�ψ}

=
∫
M

{ψ, φ}{�ψ,φ}μ (3.2)

by Lemmas B.5.
The definition (1.4) of mc and Eqs. (3.1), (3.2) imply

mcu,Y =
∫
M

{ψ, φ} (�{ψ, φ} − {�ψ,φ})

=
∫
M
Hψ(φ)

(
�Hψ − Hω

)
(φ)μ (3.3)

by Lemma B.6 and (2.2). On the other hand, there exists a function F satisfying

F ′(ψ) gradψ = gradω

by the Arnold stable assumption (Lemma 2.3). Applying the Hodge star, we have

F ′(ψ)Hψ = Hω (3.4)

by Lemma B.10. Thus, (3.3) and (3.4) imply

mcu,Y =
∫
M
Hψ(φ)

(
�Hψ − F ′(ψ)Hψ

)
(φ)μ

=
∫
M
Hψ(φ)

(
� − F ′(ψ)

)
Hψ(φ)μ.

Note that Hψ(φ)|∂M = {ψ, φ}|∂M = 0 by Lemma B.17. Therefore, the theorem is a
consequence of (2.8) and (2.9) in the case ∂M = ∅. Moreover, if ∂M = ∅, we have

∫
M
Hψ(φ)μ =

∫
M
LHψ (φμ)

=
∫
M
d(ιHψ (φμ))

= 0

by div(Hμ) = 0 (Lemma B.3) and the Stokes theorem. Thus, (2.8) and (2.9) also
imply the theorem in this case. 	
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Arnold stability and Misiołek curvature 419

4 Proof of Theorem 1.5

In this section, we prove Theorem 1.5. Let M be a two-dimensional Riemannian
manifold possibly with smooth boundary ∂M . Recall that Xt (M) is the space of
vector fields on M , which are tangent to ∂M . For the notational simplicity, we set

Xt
μ(M) := {Y ∈ Xt (M) | div(Y ) = 0},

Xt
μ(M)str := {Y ∈ Xt

μ(M) | Y has a stream function},
Xt

μ(M)no := Xt
μ(M)/Xt

μ(M)str .

Moreover, we write

H1
dR(M) := {α ∈ E1(M) | dα = 0}/d(C∞(M)). (4.1)

for the 1st de Rham cohomology, where E1(M) is the space of one-forms onM . Before
proving Theorem 1.5, we need a lemma.

Lemma 4.1 Let M be a two-dimensional Riemannian manifold possibly with smooth
boundary ∂M and j : ∂M ↪→ M the inclusion. Then, Xt

μ(M)no is isomorphic to the

kernel of j∗ : H1
dR(M) → H1

dR(∂M), where j∗ is the pull back. (We set H1
dR(∂M) :=

0 if ∂M = ∅.)
Remark 4.2 The kernel j∗ : H1

dR(M) → H1
dR(∂M) is isomorphic to the relative de

Rham cohomology H1( j), see [4, Sect. 6 of Ch. 1] or [15, Sect. 8.2], for example.

Proof of Lemma 4.1 Let Y be a vector field on M (which is not necessarily tangent to
∂M). Note that

div(Y ) = �d(�Y 	).

Thus, Y is divergence-free if and only if the one-form �Y 	 is closed. Therefore, we
have

Xμ(M) � {α ∈ E1(M) | dα = 0}
Y �→ �Y 	, (4.2)

where Xμ(M) is the space of divergence-free vector fields (which are not necessarily
tangent to ∂M). Moreover, by definition, Y has a stream function if and only if

Y = � grad φ

for some function φ on M . Applying the musical isomorphism 	 and the Hodge
operator �, we have

�Y 	 = −dφ.
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420 T. Tauchi, T. Yoneda

Thus, Y has a stream function if and only if the one-form �Y 	 is exact. Therefore, we
have an isomorphism

{Y ∈ Xμ(M) | Y has a stream function} � d(C∞(M))

Y �→ �Y 	. (4.3)

Moreover, Y is tangent to ∂M if and only if

g(�Y ,W )|∂M = 0

for any vector fields W on ∂M because � is the π
2 rotation operator. This equation is

equivalent to

�Y 	(W )|∂M = 0

for any vector fields W on ∂M . Thus, we have an isomorphism

Xt (M) � {α ∈ E1(M) | j∗(α) = 0}
Y �→ �Y 	. (4.4)

Then, the lemma is a consequence of (4.2), (4.3), and (4.4) by the definition (4.1) of
H1
dR(M). 	

We prove Theorem 1.5 by using this lemma.

Proof of Theorem 1.5 By Theorem 1.4, it is enough to showXt
μ(M)no = 0. Moreover,

by Lemma 4.1, it is enough to show j∗ : H1
dR(M) → H1

dR(∂M) is injective. In
the case H1

dR(M) = 0, this is obvious. Therefore, we only consider the case that
M is diffeomorphic to I × S1. Then, the de Rham cohomology only depends on the
differentiable structure ofM , it is enough to prove the theorem in the caseM = I×S1.
Thus, we have to show that if α ∈ E1(I × S1) satisfy dα = 0 and j∗α = 0, then, there
exists a function φ on I × S1 such that dφ = α. For this end, we take a coordinate
(r , θ) ∈ I × S1 and α ∈ E1(I × S1) satisfying dα = 0 and j∗α = 0. Write

α = f (r , θ)dr + h(r , θ)dθ. (4.5)

Then, dα = 0 implies

(−∂θ f + ∂r h)dr ∧ dθ = 0.

Thus, by considering the Fourier series

f (r , θ) =
∑
n∈Z

fn(r)e
inθ , h(r , θ) =

∑
n∈Z

hn(r)e
inθ ,
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Arnold stability and Misiołek curvature 421

we have

in fn(r) = ∂r hn(r) (4.6)

for all n ∈ Z. In particular, we have

∂r h0(r) = 0. (4.7)

On the other hand, j∗(α) = 0 implies

h(±1, θ) =
∑
n∈Z

hn(±1)einθ = 0

for any θ ∈ S1 because j is the inclusion ∂(I × S1) = {±1} × S1 ↪→ I × S1. In
particular, we have

h0(±1) = 0. (4.8)

Thus, (4.7) and (4.8) imply

h0 = 0. (4.9)

Take a primitive function F0(r) of f0(r) and define a function φ on I × M by

φ(r , θ) := F0(r) +
∑
n∈Z
n =0

hn(r)

in
einθ .

Then, (4.5) and (4.6) imply

dφ = α.

This completes the proof. 	
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Appendix: A sufficient criterion of Misiołek

In this appendix, we explain how to apply the proof of Fact 1.2 in [10] to the case M
has a boundary.
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422 T. Tauchi, T. Yoneda

A.1 Ds
�(M) in the caseM has a boundary

In this subsection, we recall briefly the theory of volume-preserving diffeomorphism
group Ds

μ(M) in the case that M has a boundary. Main reference is [7].
Let M be a compact n-dimensional Riemannian manifold with smooth boundary,

Ds
μ(M) the group of all diffeomorphisms of Sobolev class Hs preserving the volume

form on M . Then, the tangent space TeDs
μ(M) of Ds

μ(M) at the identity element
e ∈ Ds

μ(M) is identified with the space of divergence-free vector fields on M which
are tangent to ∂M . If s > n

2 +1,Ds
μ(M) has an infinite-dimensional Hilbert manifold

structure with the right-invariant L2 Riemannian metric given by

〈X ,Y 〉 :=
∫
M
g(X ,Y )μ,

where X ,Y ∈ TeDs
μ(M).

By V. I. Arnold [1], a solution u of the incompressible Euler Eq. (1.1) on M
corresponds to a geodesic η onDs

μ(M) starting at e ∈ Ds
μ(M) via u = η̇ ◦ η−1. Thus,

it is important to study of the geometry of Ds
μ(M). In particular, the existence of a

conjugate point on a geodesic has attractive considerable attention because it is related
to the Lagrangian stability of the corresponding solution.

A.2 Sketch of the proof of Fact 1.2

In this subsection, we explain how to apply the proof of Fact 1.2 in [10] to the case
that M has a boundary. For the convenience, we rewrite Fact 1.2.

Fact 1.2 Let M be a compact n-dimensional Riemannianmanifoldwith smooth bound-
ary and s > 2 + n

2 . Suppose that V ∈ TeDs
μ(M) is a stationary solution of the Euler

Eq. (1.1) on M and take a geodesic η on Ds
μ(M) satisfying V = η̇ ◦ η−1. Then if

we have mcV ,W > 0 for some W ∈ TeDs
μ(M), there exists a point conjugate to

e ∈ Ds
μ(M) along η(t) on 0 ≤ t ≤ t0 for some t0 > 0.

Sketch of the proof of Fact 1.2 Because the Riemannian metric of Ds
μ(M) is right

invariant, Theorem B.5 in [13] shows that there exist t0 > 0 and a vector field W̃
on η satisfying W̃ (0) = W̃ (t0) = 0 and

E ′′(η)
t0
0 (W̃ , W̃ ) < 0 (A.1)

by the assumption mcV ,W > 0. Here E ′′(η)
t0
0 (W̃ , W̃ ) is the second variation of the

energy function Et0
0 (η) of η:

Et0
0 (η) := 1

2

∫ t0

0
〈η̇, η̇〉dt .

On the other hand, the same argument of [10, Lem. 3] gives

E ′′(η)
t0
0 (Z , Z) ≥ 0 (A.2)
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Arnold stability and Misiołek curvature 423

for any vector field Z(t) on η with Z(0) = Z(t0) = 0 if there exists no conjugate
point on η(t) (0 ≤ t ≤ t0). The essential point of the argument of [10, Lem. 3] is
that the differential of the exponential map is bounded operator, which is deduced by
the boundedness of the curvature ofDs

μ(M) in [10, Lem. 3]. This boundedness of the
curvature is also guaranteed for the case that M has a boundary by [9, Prop. 3.6]. Thus,
the same argument is valid in the case that M has a boundary and the contradiction of
(A.1) to (A.2) gives the desired result. 	


B Some basic results

In this section, we recall basic results on symplectic and almost Kähler manifolds.
Although almost all thematerials in this section are well known, we prove some results
for the convenience. Main references are [3, Sect. 4], [8, Sect. 22] and [11, Sect. 2].

B.1 Symplectic manifold with boundary

Let (M, ω) be a compact symplectic manifold possibly with smooth boundary ∂M .
We write X(M) (resp. Xt (M)) for the space of vector fields on M (resp. which are
tangent to ∂M).

Definition B.1 Let f ∈ C∞(M). Then, the Hamilton vector field H f ∈ X(M) of f is
defined by the equation

ιH f ω = d f (B.1)

where d is the exterior derivative and ιH f is the interior derivative.

We always take

μ := 1

n!ω
n := 1

n! ω ∧ · · · ∧ ω︸ ︷︷ ︸
n times

. (B.2)

as the volume form on M , where n := dim M
2 .

Definition B.2 Let V ∈ X(M). The divergence of V is defined by

div(V )μ = LV (μ)

where LV is the Lie derivative.

Lemma B.3 Let f ∈ C∞(M). Then, we have

div(H f ) = 0.

123



424 T. Tauchi, T. Yoneda

Proof By (B.2) and the Cartan magic formula LH f = d ◦ ιH f + ιH f ◦ d, we have

n!LH f (μ) = d(ιH f (ω
n))

because dω = 0. By the graded Leibniz rule of the interior derivative and (B.1), this
is equal to

= nd(d f ∧ ωn−1).

By the Leibniz rule of d, and d2 = 0, this is equal to

= n
(
dd f ∧ ωn−1 − d f ∧ (dωn−1)

)

= 0,

which completes the proof. 	

Definition B.4 Let f , g ∈ C∞(M). The Poisson bracket of f and g is defined by

{ f , g} := −ω(H f , Hg) = ω(Hg, H f ). (B.3)

Lemma B.5 For f , g ∈ C∞(M), we have

{ f , g} = −{g, f }.

Proof By the skew-symmetry of ω and the definition (B.3), this lemma is obvious. 	

Lemma B.6 For f , g ∈ C∞(M), we have

{ f , g} = −d f (Hg) = −Hg( f ) = dg(H f ) = H f (g).

Proof This is obvious from (B.1), (B.4) and the definition of the exterior derivative d.
	


Lemma B.7 For f , g ∈ C∞(M), we have

{ f , gh} = { f , g}h + { f , h}g. (B.4)

Proof Lemma B.6 implies

{ f , gh} = d(gh)(H f )

= hdg(H f ) + gdh(H f )

by the Leibniz rule of d. This completes the proof by Lemma B.6. 	

Lemma B.8 For f , g ∈ C∞(M), we have

[H f , Hg] = H{ f ,g}.
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Proof Recall that the Lie derivative and the interior derivative satisfy

ι[V ,W ] = LV ◦ ιW − ιW ◦ LV , (B.5)

LV = ιV ◦ d + d ◦ ιV (B.6)

for any V ,W ∈ X(M). Thus, we have

ι[H f ,Hg](ω) = (LH f ◦ ιHg − ιHg ◦ LH f )(ω)

= (ιH f ◦ d + d ◦ ιH f )(ιHg (ω)) − ιHg ◦ LH f (ω)

Moreover, we have

dιHg (ω) = ddg

= 0,

LH f (ω) = (ιH f ◦ d + d ◦ ιH f )(ω)

= 0

by dω = 0. These impliy

ι[H f ,Hg](ω) = d ◦ ιH f ◦ ιHg (ω)

= d(dg(H f )).

This completes the proof by Definition B.1 and Lemma B.6. 	


B.2 Almost Kähler manifold

Let (M, g, ω, J ) be a almost Kähler manifold possibly with smooth boundary ∂M .
Namely, g is a Riemannian metric on M , ω is a symplectic form on M , and J is an
operator on the tangent bundle T M on M satisfying

J 2 = −1, (B.7)

g(V ,W ) = ω(JV ,W ) (B.8)

for any V ,W ∈ X(M).

Lemma B.9 Let V ,W ∈ X(M). Then, we have

g(JV , JW ) = g(V ,W )

for any V ,W ∈ X(M).

Proof By (B.7), (B.8), and the skew-symmetry of ω, we have

g(JV , JW ) = −ω(V , JW ) = ω(JW , V ) = g(W , V ) = g(V ,W ).

This completes the proof. 	
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Lemma B.10 Let f ∈ C∞(M). Then, we have

H f = J grad f .

Proof By the definition of the gradient, we have

d f (·) = g(grad f , ·).

This implies the lemma by Definition B.1 and (B.8). 	

Lemma B.11 Let f , g ∈ C∞(M). Then, we have

∫
M

{ f , g}μ = −
∫

∂M
f ιHg (μ).

Proof By Lemma B.6, we have

∫
M

{ f , g}μ = −
∫
M
Hg( f )μ

= −
∫
M
LHg ( f )μ.

Note div(H f ) = 0 by Lemma B.3. Thus, this is equal to

= −
∫
M
LHg ( f μ)

= −
∫
M
d

(
ιHg ( f μ)

)

by the Leibniz rule of the Lie derivative and the Cartan magic formula (B.6). Thus,
the Stokes theorem implies the lemma. 	

Lemma B.12 For any f , g, h ∈ C∞(M), we have

∫
∂M

f hιHg (μ) =
∫
M

(−{ f , g}h + f {g, h}) μ.

In particular, if f h|∂M = 0, we have

∫
M

{ f , g}hμ =
∫
M

f {g, h}μ.

Proof By Lemma B.7, we have

∫
M

{g, f h}μ =
∫
M

({g, f }h + f {g, h}) μ.

By Lemmas B.5 and B.11, we have the lemma. 	
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Lemma B.13 For f , g ∈ C∞(M), we have

∫
M
g(H f , Hg)μ =

∫
M
g (grad f , grad g) μ.

Proof This is obvious by Lemmas B.9 and B.10. 	


B.3 L2 inner product on almost Kähler manifold

Let (M, g, ω, J ) be an almost Kähler manifold possibly with smooth boundary ∂M .
Set

〈V ,W 〉 :=
∫
M
g(V ,W )μ, (B.9)

|V |2 := 〈V , V 〉 (B.10)

for any V ,W ∈ X(M).

Definition B.14 The Laplace-Beltrami operator is defined by

� := div ◦ grad .

Lemma B.15 Let f , g ∈ C∞(M). Then, we have

〈H f , Hg〉 =
∫

∂M
f ιgrad g(μ) −

∫
M

f �(g)μ.

In particular, if f |∂M = 0, we have

〈H f , Hg〉 = −
∫
M

f �(g)μ

Proof We have

〈H f , Hg〉 =
∫
M
g(H f , Hg)μ

=
∫
M
g(grad f , grad g)μ

=
∫
M
Lgrad g( f )μ
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by Lemma B.13 and the definition of the gradient. By the Leibniz rule of the Lie
derivative, this is equal to

=
∫
M
Lgrad g( f μ) − f Lgrad g(μ)

=
∫
M
d ◦ ιgrad g( f μ) − f �(g)μ.

This completes the proof by the Stokes theorem. 	


B.4 2D Riemannianmanifold

Let M be an orientable two-dimensional Riemannian manifold possibly with smooth
boundary ∂M . Note that dim M = 2 implies that the Hodge star operator � satisfies

�2 = −1

as an operator on X(M).

Lemma B.16 Define a two-form ω on M by

ω(V ,W ) := g(�V ,W ),

where V ,W ∈ X(M). Then, (M, g, ω, �) is an almost Kähler manifold.

Proof This follows from the definition. 	

Lemma B.17 Let f , g ∈ C∞(M) with H f , Hg ∈ Xt (M). Then, we have

{ f , g}|∂M = 0.

Proof Note that H f and Hg are tangent to ∂M by the assumption. Therefore, we have

g(�H f , Hg)|∂M = 0

because � is the π
2 rotation operator. On the other hand, we have

{ f , g} = −ω(H f , Hg)

= g(�H f , Hg)

by Definition B.4 and (B.8). This completes the proof. 	

Lemma B.18 Let f , g, h ∈ C∞(M) with H f , Hg, Hh ∈ Xt (M). Then, we have

{{ f , g}, h}|∂M = 0.
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Proof By Lemma B.17, { f , g} is constant on ∂M . Thus, we have the lemma because
Hh is tangent to ∂M and {{ f , g}, h} = −Hh({ f , g}) by Lemma B.6. 	

Lemma B.19 Let f , g, h ∈ C∞(M) with H f , Hg ∈ Xt (M). Then, we have

〈H{ f ,g}, Hh〉 = −
∫
M

{ f , g}�(h)μ,

〈H{{ f ,g},g}, Hh〉 = −
∫
M

{{ f , g}, g}�(h)μ.

Proof This follows from Lemmas B.15, B.17, and B.18. 	
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