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Abstract
We prove the existence of local in time solution to Kolmogorov’s two-equation model
of turbulence in three dimensional domain with periodic boundary conditions. We
apply Galerkin method for appropriate truncated problem. Next, we obtain estimates
for a limit of approximate solutions to ensure that it satisfies the original problem.

Keywords Kolmogorov’s two-equation model of turbulence · Local in time
solution · Galerkin method

Mathematics Subject Classification 35Q35 · 76F02

1 Introduction

Firstly, we will provide a short introduction to turbulence modeling. We introduce
an idea behind RANS (Reynolds Averaged Navier Stokes, see [1–4]) and explain the
necessity of incorporating additional equations to model turbulence. Next, we will
introduce Kolmogorov’s two equation model and its connection to currently used
turbulence models.

Turbulent flow is a fluidmotion characterized by rapid changes in velocity and pres-
sure. These fluctuations cause difficulties mainly in finding solutions using numerical
methods, which require dense mesh and very short time steps to properly reproduce
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the turbulent flow. Additionally, turbulences appear to be self-similar and display a
chaotic behaviour. This bolster a need for precise simulations.

The simplest idea that would decrease the apparent fluctuations of solutions is to
consider the average value of the velocity and of the pressure. This is the case in
RANS, where the average is taken with respect to the time. Now, let us decompose
the velocity v and pressure p:

v(x, t) = v(x, t) + ṽ(x, t), p(x, t) = p(x, t) + p̃(x, t),

where v, p are time-averaged values and ṽ, p̃ are fluctuations. We substitute the
decomposed functions into theNavier Stokes system andwe get (for details see chapter
2 of [1]).

∂tv + v · ∇v − ν div Dv + ∇ p = − div
(

ṽ · ṽ
)

.

The last term on the right hand side can be approximated byBoussinesq approximation
(see [1])

−ṽ · ṽ = νT (∇v + ∇T v) − 2

3
k I ,

where νT = k
ω
, k is the tubulent kinetic energy and ω is the dissipation rate. Finaly,

we obtain

∂tv + v · ∇v − ∇ · ((ν + νT )Dv) + ∇
(

p + 2

3
k

)

= 0. (1)

We see that to close the system we need to introduce additional equations for ω and
k. For further details see [1] and [3].

Nowadays, k−ε and k−ω are two of the most commonly used models to calculate
k and ω. They bear a strong resemblance to Kolmogorov’s turbulence model in the
way they deal with diffusive terms. In both models, the equation on k uses a squared
matrix norm of the symmetric gradient as a source term.

In 1941Kolmogorov introduced following system of equations describing turbulent
flow ( [5], English translation in Appendix A [6])

∂tv + div(v ⊗ v) − 2ν0 div

(

b

ω
D(v)

)

= −∇ p, (2)

∂tω + div(ωv) − κ1 div

(

b

ω
∇ω

)

= −κ2ω
2, (3)

∂t b + div(bv) − κ3 div

(

b

ω
∇b

)

= −bω + κ4
b

ω
|D(v)|2, (4)

div v = 0, (5)
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where v is the mean velocity, ω is the dissipation rate, b represents 2/3 of the mean
kinetic energy, p is the sum of the mean pressure and b. The novelty of Kolmogorov’s
formulation is that it no longer requires prior knowledge of the length scale (size of

large eddies) - it can be calculated as
√
b

ω
. Let us notice that the proposed equation on

velocity highly resembles the Eq. (1), which appeared in RANS. The k − ε and k − ω

systems provide similar equations for ω and b with the addition of a source term in
the equation for ω.

The physical motivation of the proposed system can be found in [6] and [7]. A
mathematical analysis of the difficulties that occur in proving the existence of solutions
of such a system can also be found in [7].

Now, we would like to discus the known mathematical results related to Kol-
mogorov’s two-equation model of turbulence. There are two recent results devoted
to this problem: [7] and [8] (see the announcement [9]) and our result is inspired by
them. In the first one, the Authors consider the system in a bounded C1,1 domain with
mixed boundary conditions for b and ω and a stick-slip boundary condition for the
velocity v. In order to overcome the difficulties related with the last term on the right
hand side of (4) the problem is reformulated and the quantity E := 1

2 |v|2 + 2ν0
κ4

b is
introduced. Then, the Eq. (4) is replaced by

∂t E + div(v(E + p)) − 2ν0 div

(

κ3b

κ4ω
∇b + b

ω
D(v)v

)

+ 2ν0
κ4

bω = 0.

The existence of global-in-time weak solution of the reformulated problem is estab-
lished. It is also worth mentioning that in [7] the assumption related to the initial value
of b tolerates the vanishing of b0 in some points of the domain. More precisely, the
existence of weak solution is proved under the conditions b0 ∈ L1, b0 > 0 a.e. and
ln b0 ∈ L1.

In the article [8] the Authors consider the system (2–5) in a periodic domain. The
existence of global-in-time weak solution is proved, but due to the presence of the
strongly nonlinear term b

ω
|D(v)|2, the weak form of equation (4) has to be corrected

by a positive measure μ, which is zero, if the weak solution is sufficiently regular.
There are also estimates for ω and b (see (4.2) in [8]). These observations are crucial
in our reasoning presented below. Concerning to the initial value of b, the assumption
is that b0 is uniformly positive.

2 Notation andmain result

Assume that � = ∏3
i=1(0, Li ), Li , T > 0 and �T = � × (0, T ). We shall consider

the following problem

∂tv + div(v ⊗ v) − ν0 div

(

b

ω
D(v)

)

= −∇ p, (6)

∂tω + div(ωv) − κ1 div

(

b

ω
∇ω

)

= −κ2ω
2, (7)
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∂t b + div(bv) − κ3 div

(

b

ω
∇b

)

= −bω + κ4
b

ω
|D(v)|2, (8)

div v = 0, (9)

in �T with periodic boundary condition on ∂� and initial condition

v|t=0 = v0, ω|t=0 = ω0, b|t=0 = b0. (10)

Here ν0, κ1, . . . , κ4 are positive constants. For simplicity, we assume further that all
constants except κ2 are equal to one. The reason is that the constant κ2 plays an
important role in the a priori estimates.
We shall show the local-in-time existence of regular solution of problem (6–10) under
some assumption imposed on the initial data.Namely, suppose that there exists positive
numbers bmin, ωmin, ωmax such that

0 < bmin ≤ b0(x), (11)

0 < ωmin ≤ ω0(x) ≤ ωmax (12)

on � and we set

btmin = bmin

(1+κ2ωmaxt)
1
κ2

, ωt
min = ωmin

1+κ2ωmint
,

ωt
max = ωmax

1+κ2ωmaxt
, μt

min = 1
4
btmin
ωt
max

.

(13)

If m ∈ N, then by Vm we denote the space of restrictions to � of the functions, which
belong to the space

{u ∈ Hm
loc(R

3) : u(· + kLi ei ) = u(·) for k ∈ Z, i = 1, 2, 3}, (14)

where {ei }3i=1 form a standard basis in R3. Next, we define

V̇m
div = {v ∈ Vm : div v = 0,

∫

�

vdx = 0}. (15)

We shall find the solution of the system (6–8) such that (v, ω, b) ∈ X (T ), where

X (T ) = L2(0, T ; V̇3
div) × L2(0, T ;V3)) × (L2(0, T ;V3) ∩ (H1(0, T ; H1(�)))5.

(16)

We shall denote by ‖ · ‖k,2 the norm in the Sobolev space, i.e.

‖ f ‖k,2 = (‖∇k f ‖22 + ‖ f ‖22)
1
2 , (17)

where ‖ · ‖2 is L2 norm on �.
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Local in time solution to Kolmogorov’s two-equation model 349

Now, we introduce the notion of solution to the system (6–8).We shall show that for
any v0 ∈ V̇2

div and strictly positive ω0, b0 ∈ V2 there exist positive T and (v, ω, b) ∈
X (T ) such that

(∂tv,w) − (v ⊗ v,∇w) + (μD(v), D(w)) = 0 for w ∈ V̇1
div, (18)

(∂tω, z) − (ωv,∇z) + (μ∇ω,∇z) = −κ2(ω
2, z) for z ∈ V1, (19)

(∂t b, q) − (bv,∇q) + (μ∇b,∇q) = −(bω, q) + (μ|D(v)|2, q) for q ∈ V1, (20)

for a.a. t ∈ (0, T ), where μ = b
ω

and (10) holds. Recall that D(v) denotes the
symmetric part of ∇v and (·, ·) is the inner product in L2(�).

Our main result concerning the existence of local in time regular solutions is as
follows.

Theorem 1 Suppose that ω0, b0 ∈ V2, v0 ∈ V̇2
div and (11), (12) are satisfied. Then

there exist positive t∗ and (v, ω, b) ∈ X (t∗) such that (18–20) hold for a.a. t ∈ (0, t∗)
and (10) is satisfied. Furthermore, for each (x, t) ∈ �×[0, t∗) the following estimates

ωmin

1 + κ2ωmint
≤ ω(x, t) ≤ ωmax

1 + κ2ωmaxt
, (21)

bmin

(1 + κ2ωmaxt)
1
κ2

≤ b(x, t) (22)

hold. The time of existence of the solution is estimated from below in the following
sense: for each positive δ and compact K ⊆ {(a, b, c) : 0 < a ≤ b, 0 < c} there
exists positive t∗K ,δ , which depends only on κ2,�, δ and K such that if

‖v0‖22,2 + ‖ω0‖22,2 + ‖b0‖22,2 ≤ δ and (ωmin, ωmax, bmin) ∈ K , (23)

then t∗ ≥ t∗K ,δ . The Sobolev norm is defined by (17).

We note that the last part of the theorem is needed for proving the existence of global
in time solution for small data. We address this issue in another paper.

In the next section we prove the above theorem by applying Galerkin method for
an appropriate truncated problem. We obtain a priori estimates for the sequence of
approximate solutions and by a weak-compactness argument we get a solution of the
truncated problem. Finally, after proving some bounds for ω and b we deduce that the
obtained solution satisfies the original system of equations.

3 Proof of themain result

The proof of theorem 1 is based on Galerkin method. Hence, we need a basis of the
spaces V1 and V̇1

div. Let {wi }i∈N be a system of eigenfunctions of Stokes operator
in V̇1

div, which is complete and orthogonal in V̇1
div and orthonormal in L2(�) (see

chap. II.6 in [10]). In particular, {wi }i∈N are smooth (see formula (6.17), chap. II in
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[10]). By {λi }i∈N we denote the corresponding system of eigenvalues. Similarly, let
{zi }i∈N be an complete and orthogonal system in V1, which is orthonormal in L2(�),
which is obtained by taking eigenvectors of the minus Laplace operator. The system of
corresponding eigenvalues is denoted by {λ̃i }i∈N. We shall find approximate solutions
of (18–20) in the following form

vl(t, x) =
l

∑

i=1

cli (t)wi (x), ω
l(t, x) =

l
∑

i=1

eli (t)zi (x), b
l(t, x) =

l
∑

i=1

dli (t)zi (x).

(24)

We have to determine the coefficients {cli }li=1, {eli }li=1 and {dli }li=1. In order to define
an approximate problem we have to introduce a few auxiliary functions. For fixed
t > 0 we denote by 
t = 
t (x) a smooth function such that


t (x) =
{ 1

2b
t
min for x < 1

2b
t
min,

x for x ≥ btmin,
(25)

where btmin is defined by (13). We assume that the function 
t also satisfies

0 ≤ 
 ′
t (x) ≤ c0, |
 ′′

t (x)| ≤ c0(b
t
min)

−1, (26)

where, here and c0 is a constant independent on x and t (see in the appendix for details
(formula 107). We also need smooth functions �t , ψt and φt such that

�t (x) =
⎧

⎨

⎩

1
2ω

t
min for x < 1

2ω
t
min,

x for x ∈ [ωt
min, ω

t
max],

2ωt
max for x > 2ωt

max,

(27)

ψt (x) =
{

0 for x < 1
2b

t
min,

x for x ≥ btmin,
(28)

φt (x) =
{

0 for x < 1
2ω

t
min,

x for x ≥ ωt
min.

(29)

We assume that these functions additionally satisfy

0 ≤ �′
t (x) ≤ c0, |�′′

t (x)| ≤ c0(ω
t
min)

−1, (30)

ψt (x) ≤ x for x ≥ 0, 0 ≤ ψ ′
t (x) ≤ c0 for x ∈ R, (31)

φt (x) ≤ x for x ≥ 0, 0 ≤ φ′
t (x) ≤ c0 for x ∈ R, (32)

for some constant c0 (the construction of �t , ψt and φt are similar to argument from
the appendix).
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An approximate solution will be found in the form (24), where the coefficients
{cli }li=1, {eli }li=1 and {dli }li=1 are determined by the following truncated system

(∂tv
l , wi ) − (vl ⊗ vl ,∇wi ) +

(

μl D(vl), D(wi )
)

= 0, (33)

(∂tω
l , zi ) − (ωlvl ,∇zi ) +

(

μl∇ωl ,∇zi
)

= −κ2(φ
2
t (ω

l), zi ), (34)

(∂t b
l , zi ) − (blvl ,∇zi ) +

(

μl∇bl ,∇zi
)

= −(ψt (b
l)φt (ω

l), zi ) + (μl |D(vl)|2, zi ),
cli (0) = (v0, wi ), e

l
i (0) = (ω0, zi ), d

l
i (0) = (b0, zi ), (35)

where i ∈ {1, . . . , l} and we denote

μl = 
t (bl)

�t (ωl)
. (36)

In the computations below, the exponent l systematically refers to thisGalerkin approx-
imation.

Remark 1 We emphasize that in order to control the second derivatives of approx-
imated solutions we need the conditions (30–32). In particular, we can not apply
piecewise linear functions.

Firstly, we note that μl is positive and then, by standard ODE theory the system
(33–35) has a local-in-time solution. Now, we shall obtain an estimate independent
on l.

Lemma 1 The approximate solutions obtained above satisfies the following estimates

d

dt
‖vl‖22 + 2μt

min‖D(vl)‖22 ≤ 0, (37)

d

dt
‖ωl‖22 + 2μt

min‖∇ωl‖22 ≤ 0, (38)

d

dt
‖bl‖22 + 2μt

min‖∇bl‖22 ≤ 2‖bl‖∞‖μl‖∞‖∇vl‖22, (39)

where μt
min is defined by (13).

Proof We multiply (33) by cli , sum over i and we obtain

1

2

d

dt
‖vl‖22 + (μl D(vl), D(vl)) = 0,

where we used (24). Applying the properties of functions 
t , �t and (13) we get

1

2

d

dt
‖vl‖22 + μt

min‖D(vl)‖22 ≤ 0. (40)
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Similarly, we multiply (34) by eli and we obtain

1

2

d

dt
‖ωl‖22 + (μl∇ωl ,∇ωl) = −κ2(φ

2
t (ω

l), ωl).

By the properties of φt the right-hand side is non-positive thus, we obtain (38). Finally,
after multiplying (35) by dli we get

1

2

d

dt
‖bl‖22 + (μl∇bl ,∇bl) = −(ψt (b

l)φt (ω
l), bl) + (μl |D(vl)|2, bl).

We note that ψt (bl)φt (ω
l)bl ≥ 0 hence, we obtain

1

2

d

dt
‖bl‖22 + μt

min‖∇bl‖22 ≤ (μl |D(vl)|2, bl) ≤ ‖bl‖∞‖μl‖∞‖∇vl‖22

and the proof is finished. ��
We also need the higher order estimates.

Lemma 2 There exist positive t∗ and C∗, which depend on bmin, ωmin, ωmax, �, κ2,
c0, ‖v0‖2,2, ‖ω0‖2,2 and ‖b0‖2,2 such that for each l ∈ N the following estimate

‖vl , ωl , bl‖L∞(0,t∗;H2(�)) + ‖vl , ωl , bl‖L2(0,t∗;H3(�))

+‖∂tvl , ∂tωl , ∂t b
l‖L2(0,t∗;H1(�)) ≤ C∗ (41)

holds.
Furthermore, for each positive δ and compact K ⊆ {(a, b, c) : 0 < a ≤ b, 0 < c}

there exists positive t∗K ,δ , which depends only on κ2,�, δ and K such that if

‖v0‖22,2 + ‖ω0‖22,2 + ‖b0‖22,2 ≤ δ and (ωmin, ωmax, bmin) ∈ K , (42)

then t∗ ≥ t∗K ,δ .

Before we go to the proof of Lemma 2we present its idea. First, we test the equation
for approximate solution by its bi-Laplacian. Next, after integration by parts we obtain
(43), (45) and (46). Further, we apply the lower bound for the ”diffusive coefficient”μl

(see 48) and use the Hölder and Gagliardo-Nirenberg inequalities which leads to (60).
To estimate the H2-norm of μl we use the properties of 
t and �t . After applying
the energy estimates from Lemma 1 we obtain (71), which leads to a uniform bound
of the H2-norm of the sequence of approximate solution on the interval (0, t∗) for
some positive t∗ (see 75). Immediately it gives a bound in L2H3. The last step is the
l-independent estimate of the time derivative of the approximate solution.

Proof We multiply the equality (33) by λ2i c
l
i and sum over i

(∂tv
l ,�2vl) − (vl ⊗ vl ,∇�2vl) + (μl D(vl), D(�2vl)) = 0.
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After integrating by parts we obtain

(∂tv
l ,�2vl) = 1

2

d

dt
‖�vl‖22,

(vl ⊗ vl ,∇�2vl) = (�(vl ⊗ vl),∇�vl),

(μl D(vl), D(�2vl)) = (�μl D(vl),�D(vl))

+2(∇μl · ∇D(vl),�D(vl)) + (μl�D(vl),�D(vl)).

Thus, we get

1

2

d

dt
‖�vl‖22+

∫

�

μl |�D(vl)|2dx = −(�(vl ⊗ vl),∇�vl)−(�μl D(vl),�D(vl))

−2(∇μl · ∇D(vl),�D(vl)).

We estimate the right-hand side

|(�(vl ⊗ vl),∇�vl)| ≤ ‖vl‖∞‖∇2vl‖2‖∇3vl‖2 + ‖∇vl‖24‖∇3vl‖2.

Proceeding analogously we obtain

1

2

d

dt
‖�vl‖22 +

∫

�

μl |�D(vl)|2dx
≤ ‖vl‖∞‖∇2vl‖2‖∇3vl‖2 + ‖∇vl‖24‖∇3vl‖2

+
(

‖�μl D(vl)‖2 + 2‖∇μl · ∇D(vl)‖2
)

‖�D(vl)‖2. (43)

Now, we multiply the Eq. (34) by λ̃2i e
l
i and we obtain

(∂tω
l ,�2ωl) − (ωlvl ,∇�2ωl) +

(

μl∇ωl ,∇�2ωl
)

= −κ2(φ
2
t (ω

l),�2ωl).

After integrating by parts we get

(∂tω
l ,�2ωl) = 1

2

d

dt
‖�ωl‖22,

(ωlvl ,∇�2ωl) = (�ωlvl ,∇�ωl) + 2(∇vl∇ωl ,∇�ωl) + (ωl�vl ,∇�ωl),
(

μl∇ωl ,∇�2ωl
)

=
(

�μl∇ωl ,∇�ωl
)

+ 2
(

∇2ωl∇μl ,∇�ωl
)

+
(

μl∇�ωl ,∇�ωl
)

,−(φ2
t (ω

l),�2ωl)

= 2
(

φt (ω
l)φ′

t (ω
l)∇ωl ,∇�ωl

)

(44)
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Thus, we may write

1

2

d

dt
‖�ωl‖22 +

∫

�

μl
∣

∣

∣∇�ωl
∣

∣

∣

2
dx

≤
(

‖�ωlvl‖2 + ‖∇vl∇ωl‖2 + ‖ωl�vl‖2 + ‖�μl∇ωl‖2
+2‖∇2ωl∇μl‖2 + 2κ2‖φt (ω

l)φ′
t (ω

l)∇ωl‖2
)

‖∇�ωl‖2. (45)

Finally, after multiplying (35) by λ̃2i d
l
i we obtain

(∂t b
l ,�2bl) − (blvl ,�2∇bl) +

(

μl∇bl ,∇�2bl
)

= −(ψt (b
l)φt (ω

l),�2bl) + (μl |D(vl)|2,�2bl).

We deal with the terms on the left hand-side as earlier and for the right-hand side terms
we get

−(ψt (b
l)φt (ω

l),�2bl) =
(

ψ ′
t (b

l)φt (ω
l)∇bl ,∇�bl

)

+
(

ψt (b
l)φ′

t (ω
l)∇ωl ,∇�bl

)

,

(μl |D(vl)|2,�2bl) = −(|D(vl)|2∇μl ,∇�bl) − (μl∇(|D(vl)|2),∇�bl).

Therefore, we obtain the inequality

1

2

d

dt
‖�bl‖22 +

∫

�

μl
∣

∣

∣∇�bl
∣

∣

∣

2
dx ≤

(

‖�blvl‖2 + 2‖∇vl∇bl‖2 + ‖bl�vl‖2
+‖�μl∇bl‖2 + 2‖∇2bl∇μl‖2 + ‖φt (ω

l)ψ ′
t (b

l)∇bl‖2
+‖ψt (b

l)φ′
t (ω

l)∇ωl‖2 + ‖∇μl
∣

∣

∣D(vl)

∣

∣

∣

2 ‖2
+‖μl |D(vl)||∇D(vl)|‖2

)

‖∇�bl‖2.
(46)

We note that

∫

�

∣

∣

∣�D(vl)

∣

∣

∣

2
dx = 1

2

∫

�

∣

∣

∣∇3vl
∣

∣

∣

2
dx . (47)

Indeed, integrating by parts yield

2
∫

�

∣

∣

∣�D(vl)

∣

∣

∣

2
dx =

∑

k,m

∫

�

∣

∣

∣�vlk,xm

∣

∣

∣

2
dx +

∫

�

�vlk,xm · �vlm,xk dx

=
∑

k,m,p,q

∫

�

vlk,xmxpxp · vlk,xmxq xq dx +
∑

k,m,p,q

∫

�

�vlk,xk · �vlm,xm dx
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Local in time solution to Kolmogorov’s two-equation model 355

=
∑

k,m,p,q

∫

�

∣

∣

∣v
l
k,xmxpxq

∣

∣

∣

2
dx,

wherewe applied the condition div vl = 0 and used the tensor notation for components
and derivatives. After applying (13), (25), (27) and (36) we get

μt
min ≤ μl (48)

for each l thus, (43) together with (47) and (48) give

d

dt
‖�vl‖22 + μt

min‖�D(vl)‖22
≤ 32

μt
min

(

‖vl‖2∞‖∇2vl‖22 + ‖∇vl‖44 + ‖�μl D(vl)‖22 + ‖∇μl · ∇D(vl)‖22
)

.

(49)

Applying Gagliardo-Nirenberg interpolation inequality

‖∇vl‖∞ ≤ C‖∇3vl‖
1
2
2 ‖∇vl‖

1
2
6 (50)

and Sobolev embedding inequality we get

‖�μl D(vl)‖22 ≤ ‖�μl‖22‖D(vl)‖2∞ ≤ C‖∇3vl‖2‖vl‖2,2‖μl‖22,2,

where C depends only on �. Again, by Gagliardo-Nirenberg inequality

‖∇2vl‖3 ≤ C‖∇3vl‖
1
2
2 ‖∇2vl‖

1
2
2 (51)

and Hölder inequality we have

‖∇μl · ∇D(vl)‖22 ≤ ‖∇μ‖26‖∇2vl‖23 ≤ C‖∇3vl‖2‖vl‖2,2‖μl‖22,2.

Thus, applying after the Young inequality with exponents (2, 6, 3) we get

‖�μl D(vl)‖22 + ‖∇μl · ∇D(vl)‖22 ≤ ε‖∇3vl‖22 + C

ε
(‖vl‖62,2 + ‖μl‖62,2), (52)

where ε > 0 and C depends only on �. Applying the above inequality and (47) in
(49) we obtain

d

dt
‖∇2vl‖22 + μt

min‖∇3vl‖22 ≤ C

μt
min

(

‖vl‖42,2 + (μt
min)

−2(‖vl‖62,2 + ‖μl‖62,2)
)

, (53)
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where C = C(�). Now, we proceed similarly with (45) and we obtain

d

dt
‖�ωl‖22 + μt

min‖∇�ωl‖22 ≤ C

μt
min

(

‖vl‖2∞‖∇2ωl‖22 + ‖∇vl‖24‖∇ωl‖24
+‖ωl‖2∞‖∇2vl‖22 + ‖�μl∇ωl‖22 + ‖∇2ωl∇μl‖22 + κ2

2 c
2
0‖ωl‖2∞‖∇ωl‖22

)

,

(54)

where we applied (32). We repeat the reasoning leading to (52) and we obtain

‖�μl∇ωl‖22 + ‖∇2ωl∇μl‖22 ≤ ε‖∇3ωl‖22 + C

ε
(‖ωl‖62,2 + ‖μl‖62,2).

Thus, the above inequality and (54) give

d

dt
‖∇2ωl‖22 + μt

min‖∇3ωl‖22
≤ C

μt
min

(

‖vl‖42,2 + (1 + κ4
2c

4
0)‖ωl‖42,2 + (μt

min)
−2(‖ωl‖62,2 + ‖μl‖62,2)

)

, (55)

where C = C(�). Further, from (46) we get

d

dt
‖�bl‖22 + μt

min‖∇�bl‖22 ≤ C

μt
min

(

‖vl‖2∞‖∇2bl‖22 + ‖∇vl‖24‖∇bl‖24
+‖bl‖2∞‖∇2vl‖22 + ‖∇2μl∇bl‖22 + ‖∇2bl∇μl‖22 + c20‖ωl‖2∞‖∇bl‖22
+c20‖bl‖2∞‖∇ωl‖22 + ‖∇μl |D(vl)|2‖22 + ‖μl∇(|D(vl)|2)‖22

)

,

where we applied (31) and (32). Applying integrating by parts and Sobolev embedding
theorem we get

d

dt
‖∇2bl‖22 + μt

min‖∇3bl‖22 ≤ C

μt
min

(

‖vl‖42,2 + ‖bl‖42,2 + ‖∇2μl∇bl‖22
+‖∇2bl∇μl‖22 + c40‖ωl‖42,2 + ‖μl‖62,2 + ‖vl‖62,2 + ‖∇2vl‖23‖μl‖22,2‖vl‖22,2

)

,

(56)

Applying again the Gagliardo-Nirenberg inequality and Young inequality we get

‖∇2μl∇bl‖22 + ‖∇2bl∇μl‖22 ≤ ε‖∇3bl‖22 + C

ε
(‖bl‖62,2 + ‖μl‖62,2).

From (51) we get

‖∇2vl‖23‖vl‖22,2‖μl‖22,2 ≤ C‖∇3vl‖2‖vl‖32,2‖μl‖22,2 ≤ ε‖∇3vl‖22
+C

ε
(‖vl‖102,2 + ‖μl‖102,2).
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hence, from (56) we obtain the following estimate

d

dt
‖∇2bl‖22 + μt

min‖∇3bl‖22 ≤ C

μt
min

(

‖vl‖42,2 + ‖bl‖42,2 + c40‖ωl‖42,2 + ‖μl‖62,2

+‖vl‖62,2
)

+ C

(μt
min)

3

(

‖bl‖62,2 + ‖μl‖62,2 + ‖vl‖102,2 + ‖μl‖102,2
)

+ μt
min

2
‖∇3vl‖22,

(57)

where C = C(�). We sum the inequalities (53), (55), (57) and we obtain

d

dt

(

‖∇2vl‖22 + ‖∇2ωl‖22 + ‖∇2bl‖22
)

+ μt
min

(

‖∇3vl‖22 + ‖∇3ωl‖22 + ‖∇3bl‖22
)

≤ C

μt
min

(

‖vl‖42,2 + ‖bl‖42,2 + (1 + c40 + c40κ
4
2 )‖ωl‖42,2 + ‖μl‖62,2 + ‖vl‖62,2

)

+ C

(μt
min)

3

(

‖vl‖62,2 + ‖bl‖62,2 + ‖ωl‖62,2 + ‖μl‖62,2 + ‖vl‖102,2 + ‖μl‖102,2
)

(58)

for some C , which depends only on �. We note that

μt
min = 1

4

bmin

ωmax
(1 + κ2ωmaxt)

1− 1
κ2 (59)

hence, we have

d

dt

(

‖∇2vl‖22 + ‖∇2ωl‖22 + ‖∇2bl‖22
)

+ μt
min

(

‖∇3vl‖22 + ‖∇3ωl‖22 + ‖∇3bl‖22
)

≤ C

(

ωmax

bmin
+

(

ωmax

bmin

)3
)

(1 + κ2ωmaxt)
β

(

1 + ‖bl‖62,2 + ‖ωl‖62,2 + ‖μl‖102,2 + ‖vl‖102,2
)

, (60)

where β = max{ 1
κ2

− 1, 3
κ2

− 3} and C depends only on �, c0 and κ2.

Now, we shall estimate μl in terms of ωl and bl . Firstly, we note that from (25) and
(27) we have


t (b
l) ≤ max

{

1

2
btmin, b

l
}

,�t (ω
l) ≥ 1

2
ωt
min. (61)

Hence, by definition (36) we get

0 < μl ≤ 2(ωt
min)

−1 max{btmin, b
l} ≤ c1(�)

1

ωmin
(1 + κ2ωmint)

(

bmin + |bl |
)

,

(62)
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where c1 depends only on �. Thus, we obtain

‖μl‖2 ≤ c1
1

ωmin
(1 + κ2ωmint) (bmin + ‖bl‖2). (63)

Now, we have to estimate the derivatives of μl . Direct calculation gives

|∇2μl | =
∣

∣

∣∇2
(


t (b
l) · (�t (ω

l))−1
)∣

∣

∣ ≤ (�t (ω
l))−1

∣

∣

∣∇2(
t (b
l))

∣

∣

∣

+2(�t (ω
l))−2

∣

∣

∣∇(
t (b
l))

∣

∣

∣

∣

∣

∣∇(�t (ω
l))

∣

∣

∣

+2
t (b
l)(�t (ω

l))−3
∣

∣

∣∇(�t (ω
l))

∣

∣

∣

2 + 
t (b
l)(�t (ω

l))−2
∣

∣

∣∇2(�t (ω
l))

∣

∣

∣ .

(64)

Using (26) and (30) we may estimate the derivatives

∣

∣

∣∇(
t (b
l))

∣

∣

∣ ≤ c0
∣

∣

∣∇bl
∣

∣

∣ ,

∣

∣

∣∇(�t (ω
l))

∣

∣

∣ ≤ c0
∣

∣

∣∇ωl
∣

∣

∣ , (65)
∣

∣∇2(
t (bl))
∣

∣ ≤ c0(btmin)
−1

∣

∣∇bl
∣

∣

2 + c0
∣

∣∇2bl
∣

∣ ,
∣

∣∇2(�t (ω
l))

∣

∣ ≤ c0(ωt
min)

−1
∣

∣∇ωl
∣

∣

2 + c0
∣

∣∇2ωl
∣

∣ .
(66)

If we apply estimates (61), (65) and (66) in (64) then we obtain

∣

∣

∣∇2μl
∣

∣

∣ ≤ c2Q1 (1 + κ2ωmaxt)
max{3,1+ 1

κ2
}
[

∣

∣

∣∇bl
∣

∣

∣

2 +
∣

∣

∣∇2bl
∣

∣

∣ + |bl |
∣

∣

∣∇ωl
∣

∣

∣

2

+
∣

∣

∣∇bl
∣

∣

∣ +
∣

∣

∣∇ωl
∣

∣

∣ +
∣

∣

∣∇ωl
∣

∣

∣

2 +
∣

∣

∣bl∇2ωl
∣

∣

∣ +
∣

∣

∣∇2ωl
∣

∣

∣

]

(67)

where c2 depends only on c0 and Q1 = bmin
ωmin

(

1 + b−3
min + ω−3

min

)

. Thus, we obtain

‖∇2μl‖2 ≤ c2Q1 (1 + κ2ωmaxt)
max{3,1+ 1

κ2
} [

‖∇bl‖24 + ‖∇2bl‖2
+‖bl‖∞‖∇ωl‖24 + ‖∇ωl‖24 + ‖∇2ωl‖2 + ‖bl‖∞‖∇2ωl‖2

]

. (68)

If we take into account (63) then we get

‖μl‖2,2 ≤ c3Q1 (1 + κ2ωmaxt)
max{3,1+ 1

κ2
} (

‖bl‖32,2 + ‖ωl‖32,2 + 1
)

, (69)

where c3 = c3(c0,�). Applying the above estimate in (60) we obtain

d

dt

(

‖∇2vl‖22 + ‖∇2ωl‖22 + ‖∇2bl‖22
)

+ μt
min

(

‖∇3vl‖22 + ‖∇3ωl‖22 + ‖∇3bl‖22
)
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≤ CQ2 (1 + κ2ωmaxt)
β̄

(

1 + ‖vl‖22,2 + ‖bl‖22,2 + ‖ωl‖22,2
)15

, (70)

where

Q2 =
[

1 +
(

ωmax

bmin

)3
]

[

bmin

ωmin
(1 + b−3

min + ω−3
min)

10 + 1

]

, β̄

= 10max

{

1 + 1

κ2
, 3

}

+ β

and C depends only on �, c0 and κ2. If we take into account the estimates (37–39)
then we have

d

dt

(

‖vl‖22,2 + ‖ωl‖22,2 + ‖bl‖22,2
)

+ μt
min

(

‖vl‖23,2 + ‖ωl‖23,2 + ‖bl‖23,2
)

≤ CQ3 (1 + κ2ωmaxt)
β̄

(

1 + ‖vl‖22,2 + ‖bl‖22,2 + ‖ωl‖22,2
)15

, (71)

where C = C(c0,�, κ2) and Q3 = Q2
1 + Q2 + 1. If we divide both sides by the last

term and next integrate with respect time variable then we get

(

1 + ‖vl(t)‖22,2 + ‖bl(t)‖22,2 + ‖ωl(t)‖22,2
)−14 ≥

(

1 + ‖vl(0)‖22,2
+‖bl(0)‖22,2 + ‖ωl(0)‖22,2

)−14 − 14CQ3

(β̄ + 1)κ2ωmax

(

(1 + κ2ωmaxt)
β̄+1 − 1

)

≥
(

1 + ‖v0‖22,2 + ‖b0‖22,2 + ‖ω0‖22,2
)−14 − 14CQ3

(β̄ + 1)κ2ωmax

(

(1 + κ2ωmaxt)
β̄+1 − 1

)

,

(72)

where the last estimate is a consequence of Bessel inequality. Now, we define time t∗
as the unique solution of the equality

(

1 + ‖v0‖22,2 + ‖b0‖22,2 + ‖ω0‖22,2
)−14 = 15CQ3

(β̄ + 1)κ2ωmax

(

(1 + κ2ωmaxt
∗)β̄+1 − 1

)

.

(73)

We note that t∗ is positive and depends on ‖v0‖22,2+‖b0‖22,2+‖ω0‖22,2, κ2,�, c0,ωmin,

ωmax andbmin. It is evident that t∗ is decreasing function of‖v0‖22,2+‖b0‖22,2+‖ω0‖22,2.
Moreover, for any δ > 0 and compact K ⊆ {(a, b, c) : 0 < a ≤ b, 0 < c} there
exists t∗K ,δ > 0 such that t∗ ≥ t∗K ,δ for any initial data satisfying ‖v0‖22,2 + ‖b0‖22,2 +
‖ω0‖22,2 ≤ δ and (ωmin, ωmax, bmin) ∈ K . From (73) we deduce that t∗K ,δ depends
only on δ, K , � κ2 and c0.

From (72) and (73) we have

(

1 + ‖vl(t)‖22,2 + ‖bl(t)‖22,2 + ‖ωl(t)‖22,2
)−14 ≥ CQ3

(β̄ + 1)κ2ωmax

(

(1 + κ2ωmaxt)
β̄+1 − 1

)
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for t ∈ [0, t∗] hence,

‖vl(t)‖22,2 + ‖bl(t)‖22,2 + ‖ωl(t)‖22,2 ≤
[

CQ3

(β̄ + 1)κ2ωmax

(

(1 + κ2ωmaxt
∗)β̄+1 − 1

)

]− 1
14

(74)

for t ∈ [0, t∗]. In particular, there exists C∗ = C∗(t∗) such that

‖vl‖L∞(0,t∗;V̇2
div)

+ ‖ωl‖L∞(0,t∗;V2) + ‖bl‖L∞(0,t∗;V2) ≤ C∗ (75)

uniformly with respect to l ∈ N. Next, from (59), (71) and (75) we get the bound

‖vl‖L2(0,t∗;V̇3
div)

+ ‖ωl‖L2(0,t∗;V3) + ‖bl‖L2(0,t∗;V3) ≤ C∗, (76)

where C∗ depends on t∗, κ2, bmin, ωmax and C∗. It remains to show the estimate of
time derivative of solution. We do this by multiplying the equality (33) by d

dt c
l
i and

after summing it over i we get

(∂tv
l , ∂tv

l) − (vl ⊗ vl ,∇∂tv
l) + (μl D(vl), D(∂tv

l)) = 0.

Thus, by after integration by parts and applying Hölder inequality we have

‖∂tvl‖22 ≤ ‖ div(vl ⊗ vl)‖2‖∂tvl‖2 + ‖∇
(

μl D(vl)
)

‖2‖∂tvl‖2.

By applying Young inequality we get

‖∂tvl‖22 ≤ 2‖ div(vl ⊗ vl)‖22 + 2‖∇
(

μl D(vl)
)

‖22.

Next, Hölder inequality gives us

‖∂tvl‖22 ≤ C
(

‖∇vl‖24‖vl‖24 + ‖∇μl‖24‖D(vl)‖24 + ‖μl‖2∞‖∇D(vl)‖22
)

.

Finally, Sobolev embedding theorem leads us to the following inequality

‖∂tvl‖22 ≤ C
(

‖vl‖42,2 + ‖μl‖22,2‖vl‖22,2
)

,

where C depends only on �. If we apply (69) and (75) then we get

‖∂tvl‖L∞(0,t∗;L2(�)) ≤ C∗, (77)

where C∗ depends on �, c0, t∗, κ2, bmin, ωmax and C∗.
Now, we shall consider (34). Proceeding as earlier we get

‖∂tωl‖22 ≤ 4‖∇ωl · vl‖22 + 4‖∇(μl∇ωl)‖22 + 4κ2‖φ2
t (ω

l)‖22
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≤ 4‖vl‖2∞‖∇ωl‖22 + 8‖∇μl‖24‖∇ωl‖24 + 8‖μl‖2∞‖∇2ωl‖22 + 4κ2‖ωl‖44,

where we applied (32). Thus, using (69) and (75) we get

‖∂tωl‖L∞(0,t∗;L2(�)) ≤ C∗, (78)

where C∗ is as earlier. It remains to deal with (35). In similar way we obtain

‖∂t bl‖22 ≤ 4‖∇blvl‖22 + 4‖∇(μl∇bl)‖22 + 4‖ψt (b
l)φt (ω

l)‖22 + 4‖μl |D(vl)|2‖22
≤ 4‖∇bl‖22‖vl‖2∞ + 8‖∇μl‖24‖∇bl‖24 + 8‖μl‖2∞‖∇2bl‖22

+4‖bl‖2∞‖ωl‖22 + 4‖μl‖2∞‖∇vl‖44.

Applying again (69) and (75) we obtain

‖∂t bl‖L∞(0,t∗;L2(�)) ≤ C∗, (79)

where C∗ depends on �, c0, t∗, κ2, bmin, ωmax and C∗.
Now, we prove the higher order estimates for time derivative of approximate solu-

tion. Firstly, we multiply the equality (33) by −λi
d
dt c

l
i and sum over i

(∂tv
l ,−�∂tv

l) + (vl ⊗ vl ,∇�∂tv
l) − (μl D(vl), D(�∂tv

l)) = 0.

After integration by parts we get

‖∇∂tv
l‖22 = −

(

�
(

vl ⊗ vl
)

,∇∂tv
l
)

+
(

�
(

μl D(vl)
)

, D(∂tv
l)

)

.

If we apply Hölder and Young inequalities, then we get

‖∇∂tv
l‖22 ≤ 2‖�

(

vl ⊗ vl
)

‖22 + ‖�
(

μl D(vl)
)

‖22,

where we used the equality 2‖D(∂tv
l)‖22 = ‖∇∂tv

l‖22. We estimate further

‖∇∂tv
l‖22 ≤ 8‖vl‖2∞‖∇2vl‖22 + 8‖∇vl‖44 + 4‖μl‖2∞‖�D(vl)‖22

+16‖∇μl‖23‖∇D(vl)‖26 + 4‖�μl‖22‖D(vl)‖2∞.

Using Sobolev embedding we obtain

‖∇∂tv
l‖22 ≤ C

(

‖vl‖42,2 + ‖μl‖22,2‖vl‖22,2 + ‖μl‖22,2‖vl‖23,2.
)

,

where C depends only on �. Applying (69), (75) and (76) we get

‖∇∂tv
l‖L2(0,t∗;L2(�) ≤ C∗, (80)
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where C∗ depends on c0,�, t∗, κ2, bmin, ωmax and C∗. Proceeding analogously we
get

‖∇∂tω
l‖L2(0,t∗;L2(�)) ≤ C∗. (81)

It remains to estimate ∇∂t bl . If we multiply the equality (35) by −λ̃i
d
dt d

l
i and sum

over i , then we get

(∂t b
l ,−�∂t b

l) + (blvl ,∇�∂t b
l) −

(

μl∇bl ,∇�∂t b
l
)

= (ψt (b
l)φt (ω

l),�∂t b
l) − (μl |D(vl)|2,�∂t b

l).

Integrating by parts and Hölder inequality lead to

‖∇∂t b
l‖22 ≤ ‖�

(

blvl
)

‖2‖∇∂t b
l‖2 + ‖�

(

μl∇bl
)

‖2‖∇∂t b
l‖2

+‖∇
(

ψt (b
l)φt (ω

l)
)

‖2‖∇∂t b
l‖2 + ‖∇

(

μl |D(vl)|2
)

‖2‖∇∂t b
l‖2.

After applying Young inequality we get

‖∇∂t b
l‖22 ≤ 4‖�

(

blvl
)

‖22 + 4‖�
(

μl∇bl
)

‖22
+4‖∇

(

ψt (b
l)φt (ω

l)
)

‖22 + 4‖∇
(

μl |D(vl)|2
)

‖22.

Using Hölder inequality we obtain

‖∇∂t b
l‖22 ≤ 16‖�bl‖22‖vl‖2∞ + 32‖∇bl‖24‖∇vl‖24 + 16‖bl‖2∞‖∇2vl‖22

+ 16‖�μl‖22‖∇bl‖2∞ + 32‖∇μl‖24‖∇2bl‖24 + 16‖μl‖2∞‖∇�bl‖22
+ 8‖∇(ψt (b

l))‖22‖φt (ω
l)‖2∞ + 8‖ψt (b

l)‖2∞‖∇(φt (ω
l))‖22

+ 8‖∇μl‖26‖D(vl)‖46 + 16‖μl‖2∞‖D(vl)‖23‖∇D(vl)‖26.

(82)

After applying (31) and (32) we get ‖ψt (bl)‖∞ ≤ ‖bl‖∞, ‖ψt (ω
l)‖∞ ≤ ‖ωl‖∞ and

‖∇(φt (ω
l))‖2 = ‖φ′

t (ω
l)∇ωl‖2 ≤ c0‖∇ωl‖2,

‖∇(ψt (ω
l))‖2 = ‖ψ ′

t (b
l)∇ωl‖2 ≤ c0‖∇bl‖2.

Using these inequalities in (82) we obtain

‖∇∂t b
l‖22 ≤ C

(

‖bl‖22,2‖vl‖22,2 + ‖μl‖22,2‖bl‖23,2 + ‖∇bl‖22‖ωl‖22,2 + ‖∇ωl‖22‖bl‖22,2
+‖μl‖22,2‖vl‖42,2 + ‖μl‖22,2‖vl‖22,2‖vl‖23,2

)

,

where C = C(�, c0). Finally, from (69), (75) and (76) we obtain

‖∇∂t b
l‖L2(0,t∗;L2(�)) ≤ C∗, (83)

123



Local in time solution to Kolmogorov’s two-equation model 363

where C∗ depends on c0,�, t∗, κ2, bmin, ωmax and C∗. The estimates (75–79), (80),
(81) and (83) give (41) and the proof of lemma 2 is finished. ��

Now, we draw the idea of the remain part of the proof of theorem 1. From the l-
independent estimate (41) we deduce the existence of a subsequence, which converges
weakly in some spaces (see 84–85). Next, by applying Aubin-Lions lemma we get
strong convergence of the approximate solution, see (87), (88). Further, we prove the
convergence of ”diffusive coefficient” μl (89), which allows us to take the limit in the
approximate problem. As a result, we obtain (91–93). In the last step we prove a series
of inequalities (94–96), (98), (101), which show that the truncated problem is in fact
the original one.

Having the estimate (41) from lemma 2wemay apply weak-compactness argument
to the sequence of approximate solutions andwe obtain a subsequence (still numerated
by superscript l) weakly convergent in appropriate spaces. To be more precise, there
exist v, ω and b such that

v ∈ L2(0, t∗; V̇3
div) ∩ L∞(0, t∗; V̇2

div), ∂tv ∈ L2(0, t∗; H1(�))

ω, b ∈ L2(0, t∗;V3) ∩ L∞(0, t∗;V2), ∂tω, ∂t b ∈ L2(0, t∗; H1(�))

and

vl⇀v in L2(0, t∗; V̇3
div), v

l ∗
⇀v in L∞(0, t∗; V̇2

div), ∂tv
l⇀∂tv in L2(0, t∗; H1(�)),

(84)

(ωl , bl)⇀(ω, b) in L2(0, t∗;V3), (ωl , bl)
∗
⇀(ω, b) in L∞(0, t∗;V2), (85)

(∂tω
l , ∂t b

l)⇀(∂tω, ∂t b) in L2(0, t∗; H1(�)). (86)

Thus, by the Aubin-Lions lemma there exists a subsequence (again denoted by l) such
that

(vl , ωl , bl) −→ (v, ω, b) in L2(0, t∗; Hs(�)) for s < 3, (87)

and

(vl , ωl , bl) −→ (v, ω, b) in C([0, t∗]; Hq(�)) for q < 2. (88)

Now, we characterize the limits of nonlinear terms. Firstly, we note that for fixed (x, t)
we may write


t (b
l(x, t)) − 
t (b(x, t)) =

∫ 1

0

d

ds

[


t

(

sbl(x, t) + (1 − s)b(x, t)
)]

ds

=
∫ 1

0

 ′

t (sb
l(x, t) + (1 − s)b(x, t))ds · [bl(x, t) − b(x, t)].

Taking into account (26) we get

|
t (b
l(x, t)) − 
t (b(x, t))| ≤ c0|bl(x, t) − b(x, t)|.
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Similarly we obtain

|�t (ω
l(x, t)) − �t (ω(x, t))| ≤ c0|ωl(x, t) − ω(x, t)|.

and

|�t (b(x, t))| ≤ c0(|b(x, t)| + btmin).

Therefore, applying (27) we obtain

∣

∣

∣

∣


t (bl)

�t (ωl)
− 
t (b)

�t (ω)

∣

∣

∣

∣

≤ 4(ωt
min)

−2
[

|�t (ω)||
t (b
l) − 
t (b)| + |
t (b)||�t (ω) − �t (ω

l)|
]

≤ 4(ωt
min)

−2
[

2ωmax|bl − b| + c0(|b| + btmin)|ω − ωl |
]

.

From (88) and the above estimate we have

μl −→ μ
t�t ≡ 
t (b)

�t (ω)
uniformly on � × [0, t∗]. (89)

Now, we shall take the limit l → ∞ in the system (33–35). First, we multiply (33) by
ai and sum over i ∈ {1, . . . , l} and after integrating with respect time variable we get

∫ t

0
(∂tv

l , w)dt −
∫ t

0
(vl ⊗ vl ,∇w)dt +

∫ t

0

(

μl D(vl), D(w)
)

dt = 0,

where w =
l

∑

i=1
aiwi and t ∈ (0, t∗). We note that from (88) we have for some λ > 0

(vl , ωl , bl) −→ (v, ω, b) in C([0, t∗];C0,λ(�)) (90)

hence, (85), (88) and (89) imply that

∫ t

0
(∂tv,w)dt −

∫ t

0
(v ⊗ v,∇w)dt +

∫ t

0

(

μ
t�t D(v), D(w)
)

dt = 0

for t ∈ (0, t∗) and w =
l

∑

i=1
aiwi . By density, the above identity holds for w ∈ V̇1

div.

As a consequence, we obtain

∫ t2

t1
(∂tv,w)dt −

∫ t2

t1
(v ⊗ v,∇w)dt +

∫ t2

t1

(

μ
t�t D(v), D(w)
)

dt = 0

for 0 < t1 < t2 < t∗ and w ∈ V̇1
div. After dividing both sides by |t2 − t1| and taking

the limit t2 → t1 we get

(∂tv,w) − (v ⊗ v,∇w) + (

μ
t�t D(v), D(w)
) = 0 for w ∈ V̇1

div (91)
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for a.a. t ∈ (0, t∗). Further, we have

ψt (b
l) −→ ψt (b), φt (ω

l) −→ φt (ω
l) uniformly on � × [0, t∗]

thus, using (34) and (35) and arguing as earlier we obtain

(∂tω, z) − (ωv,∇z) + (

μ
t�t∇ω,∇z
) = −κ2(φ

2
t (ω), z) for z ∈ V1, (92)

(∂t b, q) − (bv,∇q) + (

μ
t�t∇b,∇q
) = −(ψt (b)φt (ω), q) + (μ
t�t |D(v)|2 , q)

for q ∈ V1 (93)

for a.a. t ∈ (0, t∗).
Now, we shall prove the bounds for b and ω. The proof is similar to one found in

[8]. We denote by b+ (b−) the positive (negative resp.) part of b. Then b = b+ + b−.
We shall show that

b ≥ 0 in � × [0, t∗]. (94)

For this purpose we test the Eq. (93) by b− and we obtain

(∂t b, b−) − (bv,∇b−) + (

μ
t�t∇b,∇b−
)

= −(ψt (b)φt (ω), b−) + (μ
t�t |D(v)|2 , b−).

We note that from (89) we have 0 ≤ μ
t�t and by (28) we obtain ψt (b)b− ≡ 0 thus,
we get

(∂t b−, b−) − (b−v,∇b−) + (

μ
t�t∇b−,∇b−
) ≤ 0

and then

d

dt
‖b−‖22 ≤ 0.

By the assumption (11) the negative part of initial value of b is zero hence, b− ≡ 0
and we obtained (94).

Proceeding similarly we introduce the decomposition ω = ω+ + ω− and test the
Eq. (92) by ω−

(∂tω,ω−) − (ωv,∇ω−) + (

μ
t�t∇ω,∇ω−
) = −(φ2

t (ω), ω−).

We note that by (29) the right-hand side of the above equality vanishes thus, we get
d
dt ‖ω−‖22 ≤ 0 and by assumption (12)

ω ≥ 0 in � × [0, t∗]. (95)
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Now, we shall prove that

ω(x, t) ≥ ωmin

1 + κ2ωmint
for (x, t) ∈ � × [0, t∗]. (96)

We test the equation (92) by (ω − ωt
min)− and we obtain

(∂tω, (ω − ωt
min)−) − (ωv,∇(ω − ωt

min)−) +
(

μ
t�t∇ω,∇ (

ω − ωt
min

)

−
)

= −κ2(φ
2
t (ω), (ω − ωt

min)−). (97)

Using (13) we get

(∂tω, (ω − ωt
min)−) = 1

2

d

dt
‖(ω − ωt

min)−‖22 − κ2

(

(ωt
min)

2, (ω − ωt
min)−

)

hence, using inequality 0 ≤ μ
t�t and div v = 0 in (97) we obtain

1

2

d

dt
‖(ω − ωt

min)−‖22 − κ2

(

(ωt
min)

2, (ω − ωt
min)−

)

≤ −κ2(φ
2
t (ω), (ω − ωt

min)−).

We write the above inequality the form

1

2

d

dt
‖(ω − ωt

min)−‖22 ≤ −κ2((φt (ω) − ωt
min)(φt (ω) + ωt

min), (ω − ωt
min)−).

We note that −κ2((φt (ω) + ωt
min), (ω − ωt

min)−) is nonnegative thus, using (32) we
get φt (ω) ≤ ω we have

1

2

d

dt
‖(ω − ωt

min)−‖22 ≤ −κ2((ω − ωt
min)(φt (ω) + ωt

min), (ω − ωt
min)−)

= −κ2
(

(φt (ω) + ωt
min),

∣

∣(ω − ωt
min)−

∣

∣

2 ) ≤ 0.

Therefore, we obtain d
dt ‖(ω − ωt

min)−‖22 ≤ 0 and by (12) we get (96). Now, we shall
prove that

ω(x, t) ≤ ωmax

1 + κ2ωmaxt
for (x, t) ∈ � × [0, t∗]. (98)

Indeed, firstly we note that from (13), (29) and (96) we have

φt (ω) = ω (99)

hence, if we test the equation (92) by (ω − ωt
max)+ then we obtain

(∂tω, (ω − ωt
max)+) − (ωv,∇(ω − ωt

max)+) +
(

μ
t�t∇ω,∇ (

ω − ωt
max

)

+
)
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= −κ2(ω
2, (ω − ωt

max)+).

Proceeding as earlier, we get

1

2

d

dt
‖(ω − ωt

max)+‖22 − κ2

(

(ωt
max)

2, (ω − ωt
max)+

)

≤ −κ2(ω
2, (ω − ωt

max)+).

and

1

2

d

dt
‖(ω − ωt

max)+‖22 ≤ −κ2((ω − ωt
max)(ω + ωt

max), (ω − ωt
max)+)

= −κ2((ω + ωt
max), |(ω − ωt

max)+|2)

hence, we obtain

1

2
d
dt ‖(ω − ωt

max)+‖22 ≤ 0. (100)

By (12) we get (98). We shall prove that

b(x, t) ≥ btmin for (x, t) ∈ � × [0, t∗]. (101)

For this purpose we test the equation (93) by (b − btmin)−. Then we get

(∂t b, (b − btmin)−) − (bv,∇((b − btmin)−)) + (

μ
t�t∇b,∇((b − btmin)−)
)

= −(ψt (b)ω, (b − btmin)−) + (μ
t�t |D(v)|2 , (b − btmin)−).

The first term on the left-hand side is equal to

1

2

d

dt
‖(b − btmin)−‖22 −

(

ωmaxbmin

(1 + ωmaxκ2t)
1
κ2

+1
, (b − btmin)−

)

.

The second term of the left-hand side vanishes and the third is nonnegative. Thus, we
get

1

2

d

dt
‖(b − btmin)−‖22 −

(

ωmaxbmin

(1 + ωmaxκ2t)
1
κ2

+1
, (b − btmin)−

)

≤ −(ψt (b)ω, (b − btmin)−).

Using (98) we get

1

2

d

dt
‖(b − btmin)−‖22 −

(

ωmaxbmin

(1 + ωmaxκ2t)
1
κ2

+1
, (b − btmin)−

)

≤ − ωmax

1 + ωmaxκ2t
(ψt (b), (b − btmin)−)
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and by definition (13) we obtain

1

2

d

dt
‖(b − btmin)−‖22 ≤ − ωmax

1 + ωmaxκ2t
(ψt (b) − btmin, (b − btmin)−).

From (94) and (31) we have ψt (b) ≤ b so, we obtain

1

2

d

dt
‖(b − btmin)−‖22 ≤ − ωmax

1 + ωmaxκ2t
(b − btmin, (b − btmin)−)

= − ωmax

1 + ωmaxκ2t
‖(b − btmin)−‖22

and then d
dt ‖(b − btmin)−‖22 ≤ 0. Using (11) and (13) we get (101).

Note that from (28) and (101) we get

ψt (b) = b. (102)

Further, (25) and (101) give
t (b) = b. Finally, (13), (27), (96) and (98) yield�t (ω) =
ω. Thus,

μ
t�t = 
t (b)

�t (ω)
= b

ω
. (103)

Applying (99), (102) and (103) we deduce that system (91)-(93) has the following
form

(∂tv,w) − (v ⊗ v,∇w) +
(

b

ω
D(v), D(w)

)

= 0 for w ∈ V̇1
div, (104)

(∂tω, z) − (ωv,∇z) +
(

b

ω
∇ω,∇z

)

= −κ2(ω
2, z) for z ∈ V1, (105)

(∂t b, q) − (bv,∇q) +
(

b

ω
∇b,∇q

)

= −(bω, q) +
(

b

ω
|D(v)|2 , q

)

for q ∈ V1

(106)

for a.a. t ∈ (0, t∗).
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Appendix

The function 
t may be defined as follows. We set f (x) = e−1/x for x > 0 and zero
elsewhere. We put g(x) = x − e−1/x for x < 0 and g(x) = x for x > 0. Then we set

η̃(x) = 1

c

∫ x

0
f (y) f (−y + 1)dy,
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where c = ∫ 1
0 f (y) f (−y + 1)dy. Function η̃ is smooth function, which vanishes for

negative x and is equal to one for x > 1. Next, we put

η(x) = η̃(2(x − 1

4
)), h(x) = (1 − η(x)) f (x) + η(x)g(x).

Finally, we define


t (x) = btmin

2
+ btmin

2
h

(

2

btmin

(

x − btmin

2

))

. (107)
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