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Abstract

We prove the existence of local in time solution to Kolmogorov’s two-equation model
of turbulence in three dimensional domain with periodic boundary conditions. We
apply Galerkin method for appropriate truncated problem. Next, we obtain estimates
for a limit of approximate solutions to ensure that it satisfies the original problem.
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1 Introduction

Firstly, we will provide a short introduction to turbulence modeling. We introduce
an idea behind RANS (Reynolds Averaged Navier Stokes, see [1—4]) and explain the
necessity of incorporating additional equations to model turbulence. Next, we will
introduce Kolmogorov’s two equation model and its connection to currently used
turbulence models.

Turbulent flow is a fluid motion characterized by rapid changes in velocity and pres-
sure. These fluctuations cause difficulties mainly in finding solutions using numerical
methods, which require dense mesh and very short time steps to properly reproduce
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the turbulent flow. Additionally, turbulences appear to be self-similar and display a
chaotic behaviour. This bolster a need for precise simulations.

The simplest idea that would decrease the apparent fluctuations of solutions is to
consider the average value of the velocity and of the pressure. This is the case in
RANS, where the average is taken with respect to the time. Now, let us decompose
the velocity v and pressure p:

v(x,t) =v(x, 1) +V(x,1), p(x,t) = plx,t) + p(x, 1),

where v, p are time-averaged values and v, p are fluctuations. We substitute the
decomposed functions into the Navier Stokes system and we get (for details see chapter
2 of [1]).

HV+7v-Vu—vdivDU+ Vp = —div (V7).

The last term on the right hand side can be approximated by Boussinesq approximation
(see [1])

~ _ r—. 2
—v-v=vr(Vv+V v)—gkl,

where vy = 5, k is the tubulent kinetic energy and w is the dissipation rate. Finaly,
we obtain

8t6+i-VE—V-((v+vT)D6)+V(ﬁ+§k>:O. (1

We see that to close the system we need to introduce additional equations for @ and
k. For further details see [1] and [3].

Nowadays, k — ¢ and k — w are two of the most commonly used models to calculate
k and w. They bear a strong resemblance to Kolmogorov’s turbulence model in the
way they deal with diffusive terms. In both models, the equation on k uses a squared
matrix norm of the symmetric gradient as a source term.

In 1941 Kolmogorov introduced following system of equations describing turbulent
flow ( [5], English translation in Appendix A [6])

b
0:v 4+ div(v ® v) — 2vg div (—D(v)) =—-Vp, )
1)
. . (D 2
orw + div(wv) — k1 div| —Vo | = —ko”, 3)
w
. . (b b )
0:b + div(bv) — k3div | —Vb | = —bw + k4—|D(v)|*, Y
w w
dive =0, 5)

@ Springer



Local in time solution to Kolmogorov's two-equation model 347

where v is the mean velocity, w is the dissipation rate, b represents 2/3 of the mean
kinetic energy, p is the sum of the mean pressure and b. The novelty of Kolmogorov’s
formulation is that it no longer requires prior knowledge of the length scale (size of

f

large eddies) - it can be calculated as ~~. Let us notice that the proposed equation on
velocity highly resembles the Eq. (1), Wthh appeared in RANS. The k — ¢ and k — w
systems provide similar equations for w and b with the addition of a source term in
the equation for w.

The physical motivation of the proposed system can be found in [6] and [7]. A
mathematical analysis of the difficulties that occur in proving the existence of solutions
of such a system can also be found in [7].

Now, we would like to discus the known mathematical results related to Kol-
mogorov’s two-equation model of turbulence. There are two recent results devoted
to this problem: [7] and [8] (see the announcement [9]) and our result is inspired by
them. In the first one, the Authors consider the system in a bounded C L1 domain with
mixed boundary conditions for » and w and a stick-slip boundary condition for the
velocity v. In order to overcome the difficulties related with the last term on the right
hand side of (4) the problem is reformulated and the quantity E := %|v|2 + %b is
introduced. Then, the Eq. (4) is replaced by

. . K3b b 2y V0
o E +divw(E + p)) —2vpdiv| —Vb+ —D()v | + —b =0.
K4 w

The existence of global-in-time weak solution of the reformulated problem is estab-
lished. It is also worth mentioning that in [7] the assumption related to the initial value
of b tolerates the vanishing of by in some points of the domain. More precisely, the
existence of weak solution is proved under the conditions by € L', by > 0 ae. and
Inbg € L.

In the article [8] the Authors consider the system (2-5) in a periodic domain. The
existence of global-in-time weak solution is proved, but due to the presence of the
strongly nonlinear term £|D(v)|2, the weak form of equation (4) has to be corrected
by a positive measure u, which is zero, if the weak solution is sufficiently regular.
There are also estimates for w and b (see (4.2) in [8]). These observations are crucial
in our reasoning presented below. Concerning to the initial value of b, the assumption
is that b is uniformly positive.

2 Notation and main result

Assume that Q = ]_[ —1(0,L;), L;; T > 0and QT = Q x (0, T). We shall consider
the following problem

0;v + div(v ® v) — vg div <2D(v)) = —Vp, (6)
1)

b
0w + div(wv) — k1 div (—Vw) = —Kza)z, @)
w
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b b

0rb + div(bv) — k3 div (—Vb) = —bw + K4—|D(U)|2, ®)
w w

divv =0, 9)

in Q7 with periodic boundary condition on 92 and initial condition
Vjt=0 = V0, ®|1=0 = w0, bjy=0 = bp. (10)

Here vy, k1, . . ., k4 are positive constants. For simplicity, we assume further that all
constants except k> are equal to one. The reason is that the constant k> plays an
important role in the a priori estimates.

We shall show the local-in-time existence of regular solution of problem (6-10) under
some assumption imposed on the initial data. Namely, suppose that there exists positive
numbers bmin, @min, @max Such that

0 < bmin < bo(x), (11)
0 < Wmin < wp(x) < Wmax (12)
on 2 and we set
t — bmin t _ ®min
bmin - T > Ppin = 14Kk @mint °
(14+Kk2wmaxt) 2
(13)
2 — ®max t — l b:nin
@max = 1+Kk2@maxt ’ Mmin = 3 Ohpax

If m € N, then by V" we denote the space of restrictions to 2 of the functions, which
belong to the space

{ue H" (R3) :u(-+kLije;) = u(-) fork € Z,i = 1,2, 3}, (14)

loc

where {e; }?zl form a standard basis in R3. Next, we define

Vi ={veV" dive= 0,/ vdx = 0}. (15)
Q

We shall find the solution of the system (6-8) such that (v, w, b) € X (T), where

X(T) = L*0, T; V3,) x L*(0, T; V) x (L*0, T; V¥) n (H'(0, T; H'(Q)))°.
(16)

We shall denote by || - ||x.2 the norm in the Sobolev space, i.e.
1
I flle2 = AVEFI5 + 1F19)2, (17)
where || - ||2 is L norm on .
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Local in time solution to Kolmogorov's two-equation model 349

Now, we introduce the notion of solution to the system (6-8). We shall show that for
any vg € Vgiv and strictly positive wp, by € V2 there exist positive T and (v, w, b) €
X (T) such that

(3v, w) — (v ® v, Vw) + (uD(v), D(w)) = 0 for w € Vi, (18)
(0w, z) — (wv, V) + (WVw,V7) = —Kz(a)z, z) forz € Vl, (19)
(8:b, ) — (bv, Vq) + (uVb, Vq) = —(bw, q) + (u|D(v)|*, q) for g € V', (20)

for a.a. t € (0,T), where u = g and (10) holds. Recall that D(v) denotes the
symmetric part of Vv and (-, -) is the inner product in L3(R).

Our main result concerning the existence of local in time regular solutions is as
follows.

Theorem 1 Suppose that wo, by € V2, vy € f/giv and (11), (12) are satisfied. Then
there exist positive t* and (v, w, b) € X (t*) such that (18-20) hold for a.a. t € (0, t*)
and (10) is satisfied. Furthermore, for each (x, t) € Q2 x [0, t*) the following estimates

_ ®min <w(x, 1) < &’ (21)
1 4+ kowmint 1 4+ kowmaxt
b .
S < b(x, 1) (22)

1+ K2wmaxt)6

hold. The time of existence of the solution is estimated from below in the following
sense: for each positive 6 and compact K C {(a,b,c) : 0 < a < b,0 < c} there
exists positive tg s, which depends only on k3, 2, § and K such that if

lvoll3 5 + llwoli3 5 + 1boll3 5 < 8 and (@min, Omax. bmin) € K., (23)

then t* > ti 5. The Sobolev norm is defined by (17).

We note that the last part of the theorem is needed for proving the existence of global
in time solution for small data. We address this issue in another paper.

In the next section we prove the above theorem by applying Galerkin method for
an appropriate truncated problem. We obtain a priori estimates for the sequence of
approximate solutions and by a weak-compactness argument we get a solution of the
truncated problem. Finally, after proving some bounds for w and b we deduce that the
obtained solution satisfies the original system of equations.

3 Proof of the main result

The proof of theorem 1 is based on Galerkin method. Hence, we need a basis of the
spaces V! and V&iv. Let {w;};en be a system of eigenfunctions of Stokes operator
in V&iv, which is complete and orthogonal in V(iiv and orthonormal in L%(Q2) (see
chap. IL.6 in [10]). In particular, {w;};cn are smooth (see formula (6.17), chap. II in

@ Springer



350 P. Kosewski, A. Kubica

[10]). By {A;}ien we denote the corresponding system of eigenvalues. Similarly, let
{zi}ien be an complete and orthogonal system in V!, which is orthonormal in L?(£),
which is obtained by taking eigenvectors of the minus Laplace operator. The system of
corresponding eigenvalues is denoted by {A; };cn. We shall find approximate solutions
of (18-20) in the following form

l l I
o6, x0) =Y Owi), ol (1,x) =Y el (0zi(x), b (1,x) = Y dl 1)z (x).
i=1 i=1 i=1

(24)

We have to determine the coefficients {cf}ﬁzl, {ef. }le and {d{ }f: 1~ In order to define
an approximate problem we have to introduce a few auxiliary functions. For fixed
t > 0 we denote by ¥; = W, (x) a smooth function such that

11 11
3bmin for x < 5bp. . 25)
X for x = bl ,

Wy (x) :{

!
where by ..

is defined by (13). We assume that the function W, also satisfies
0 < ¥/(x) < co, [/ ()] = o)~ (26)

where, here and ¢ is a constant independent on x and ¢ (see in the appendix for details
(formula 107). We also need smooth functions ®;, ¥, and ¢, such that

1 ¢t 1 1t
3 ®pmin for x < FOins

d,(x) = x for x € [l . 0], (27)
20! for x > 20! ..
0 for x < b’
- 2 “min’
Vi () {x for x > bl ., (28)
0 for x < let .
- 2 “min’
1 (x) {x for x > w! ;. (29)
We assume that these functions additionally satisfy
0 < @}(x) < co. [P ()] < col@hy) ™ (30)
Vr(x) < xforx >0,0 < v/(x) <coforx e R, a3
¢e(x) < xforx >0,0 < ¢;(x) <coforx €R, (32)

for some constant cq (the construction of ®;, 1/; and ¢, are similar to argument from
the appendix).
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Local in time solution to Kolmogorov's two-equation model 351

An approximate solution will be found in the form (24), where the coefficients
{cf. }le, {ef}ﬁz | and {d{ }5: | are determined by the following truncated system

@, w) = @' @', Vw) + (4! DY, D(w) ) =0, (33)
@0 2) — @, Vz) + (W V!, V) = —2@? @), 20). (34)
@b 2) = B! Vz) + (W'VB V2 ) = =i 6D @), 20 + G 1D, 20),
¢;(0) = (vo. w). ¢(0) = (@0, 2i). d; (0) = (bo. ), (35)
where i € {1, ..., 1} and we denote

u = % (36)

In the computations below, the exponent / systematically refers to this Galerkin approx-
imation.

Remark 1 We emphasize that in order to control the second derivatives of approx-
imated solutions we need the conditions (30-32). In particular, we can not apply
piecewise linear functions.

Firstly, we note that ! is positive and then, by standard ODE theory the system
(33-35) has a local-in-time solution. Now, we shall obtain an estimate independent
onl.

Lemma 1 The approximate solutions obtained above satisfies the following estimates

d
Envln% +2ul L IID@HI3 <0, (37)
d
Enwlu% +2ul i IVl |13 <0, (38)
d
Enblu% +2ul VB 13 < 208! ool oIV V113, (39)

where ! . is defined by (13).

Proof We multiply (33) by cll., sum over i and we obtain
Ld 02 Iyl !
37, W+ (W D), D) = 0,
where we used (24). Applying the properties of functions W, ®; and (13) we get
1d
527 1V + i ID@HIZ < 0. (40)
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Similarly, we multiply (34) by ef and we obtain

1d
an’n% + W'V, Vol = k2 (¢} (), ).

By the properties of ¢, the right-hand side is non-positive thus, we obtain (38). Finally,
after multiplying (35) by dl? we get

1

We note that ¥, (b')¢; (w')b' > 0 hence, we obtain
1d
Mnbln% + w1l VB3 < (W D@12, b < 16 ool 1o IV 13

and the proof is finished. O

We also need the higher order estimates.

Lemma 2 There exist positive t* and Cy, which depend on buin, @Wmin, ®max, 2, K2,
co, llvoll2.2, llwoll2.2 and ||boll2.2 such that for each | € N the following estimate

”Ul, C()l, bl ”LOO(O,I*;HZ(Q)) + ”Ul, Cl)l, bl ||L2(0,t*;H3(Q))
190!, 80, atbl||L2(o,z*;Hl(gz)) < Cy (41)

holds.
Furthermore, for each positive 5 and compact K C {(a,b,c) :0 <a <b,0 < ¢}
there exists positive tl*<, s5» which depends only on k2, 2, 8 and K such that if

lvoll3 5 + llwoll3 5 + 1bol3., < 8 and (@min, @max. bmin) € K., (42)

* *
then t* >t .

Before we go to the proof of Lemma 2 we present its idea. First, we test the equation
for approximate solution by its bi-Laplacian. Next, after integration by parts we obtain
(43), (45) and (46). Further, we apply the lower bound for the "diffusive coefficient” /,Ll
(see 48) and use the Holder and Gagliardo-Nirenberg inequalities which leads to (60).
To estimate the H2-norm of 1! we use the properties of W, and ®;. After applying
the energy estimates from Lemma 1 we obtain (71), which leads to a uniform bound
of the H%-norm of the sequence of approximate solution on the interval (0, *) for
some positive #* (see 75). Immediately it gives a bound in L?H?. The last step is the
[-independent estimate of the time derivative of the approximate solution.

Proof We multiply the equality (33) by )\izcll. and sum over i
@), A% — ' @, VAR + (W DY, D(A%)) = 0.
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Local in time solution to Kolmogorov's two-equation model 353

After integrating by parts we obtain

1d
2dt
W' @, VAT = (AQ ® V), VA,

@', A%y = ——[|Aav')3,

' D, D(A%V)) = (Ap' DO, ADOY)
+2(Vul - VvD@, ADW)) + (W' ADW'), AD')).

Thus, we get
1d 12 I N2 1 1 ! 1 l I
EE”M ||2+/QM [AD(W)|"dx = —(A(v' ® v'), VAV)—(Apw D(v'), AD(v'))
—2(vul - VDO, ADM)).
We estimate the right-hand side
1A @ V), VAL < [V 1leo V2 1211970 12 + VO 151V 2.

Proceeding analogously we obtain

1d
— =AY 2+/ HAD@Y Pdx
2a 18V [ waDeh)
< W s V20 201V |2 + 1V 1311730 )]

+(1aw DAY +21V4! - VDO L) IADWY 2. (43)
Now, we multiply the Eq. (34) by Xl.zef and we obtain
B0, A2y — ('), VAZW!) + (M’w’, VAza)l) = —i2(¢2 (o), A%).
After integrating by parts we get

1d
/ 2.1 12
(0", A"0") = EE”AG} 5,
(@', VA% = (Ao, VAW +2(VVI V!, VAW + (0 AV, VAW,
(y]v@’, VAzwl) - (A;ﬁvd, VAa)l) 2 (v%)’vu’, VAwl)

+(1'Vad, VA ), — (8}, A%)

2 (¢, (@)l () Ve, VAa)l) (44)
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Thus, we may write

1d

2
||Aw’||2+/ u"vm&‘ dx
2dt LI S

= (186! v 2 + 190'Vo I + o Av' 2 + | AR V! |2
+2IV2! Vil I + 2620160 (@)@ Vel ) VA2 (45)

2

Finally, after multiplying (35) by %2d’ we obtain

@b, A2ply — (o, A2Vl + (ul v, VAzbl)
= — (W (W) (@), A% + (11D, A%D.

We deal with the terms on the left hand-side as earlier and for the right-hand side terms
we get

— Y9 @), A = (] Bhei @)V VAK ) + (v el @)V, Var'),
WDOHP, A% = —(IDOHPVE!, vab) — (W'V(IDO)HP). VAD).
Therefore, we obtain the inequality
1d 12 l 12 1.1 l ! 1 l
31805+ [ [ab[ dx < (1ab o+ 2090 V8 o+ 16 o'
AR VB 1o + 20V Vil 2 + [l (@), (B VB |12

INAT ol / [ l 2
H i@ Vol Iz + 1V [Dah[ 11

+HIEIDWHITDE12) IV A 2.
(46)

We note that
NG 3017
AD®W)| dx = Vo' dx. (47)
Q 2 Ja
Indeed, integrating by parts yield
INE I
2/ [AD@h| dx:Z/ |Av,
& k,m & o
! I I !
= Z L vk,xmxpxp ’ vksxququx + Z /;2 Avksxk ’ Avmaxm dx

k.m,p.q k.m,p.q

2
[ [
dx + /Q Avp - Avh L dx
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_ 1
- Z /Q‘Uk’xmxpxq

k,m,p.q

2
dx,

where we applied the condition div v/ = 0 and used the tensor notation for components
and derivatives. After applying (13), (25), (27) and (36) we get

ro<ul (48)

for each / thus, (43) together with (47) and (48) give

d
EnAvln% + 1l lAD) 13

32
< S (112N 1 + 199 I + AR DEOIB + V4! - VDWHIB).

min

(49)
Applying Gagliardo-Nirenberg interpolation inequality
! 3,002 1wl 12
[VV'lleo < CIVV I3 VUG (50)
and Sobolev embedding inequality we get
1A' D@HIS < AR IZIDEDIZ, < IV 201 2201113 2.
where C depends only on 2. Again, by Gagliardo-Nirenberg inequality
1 1
1213 < IV 119203 (51)

and Holder inequality we have
IVe! - VDY < IVrIZIVRIE < CIV3Y ol 2 e 13,
Thus, applying after the Young inequality with exponents (2, 6, 3) we get
C
IAL' D@YIZ+ 11V - VDHIE < ell V3|13 + ;(Hvlng,z + 1118 ). (52)

where ¢ > 0 and C depends only on 2. Applying the above inequality and (47) in
(49) we obtain

d C _
TIV2IE + g IV < — (113 2 + Gl 2 1S 2 + 16118 ). (53)

min
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where C = C(2). Now, we proceed similarly with (45) and we obtain

d C
18613 + a8 1B = —— (10! 121V 13 + IV 131 V' 1
t min
o 11V 13 + 1 A1 Vol I3 + V26! Vil I3 + el 1% 196 1))
(54)

where we applied (32). We repeat the reasoning leading to (52) and we obtain
C
|AR' VO3 +1V2 VIS < el V3ol I3 + — (o' 5, + 1413.2).
Thus, the above inequality and (54) give

d
- V213 + 1l V30 113

C -
< —— (1132 + A+ e ol 1 5 + et 2 1S, + 1£18.0)), (59)

min

where C = C(£2). Further, from (46) we get

d C
TNAL I + i IV A1 < —— (121925113 + 1V 151981
min

HIB' BNV I3 + IV VO I3 + V20 V 15 + Gl 1319513
+ 16 12196 13 + VR 1DEOPI3 + 16/ VADWHP)IB).

where we applied (31) and (32). Applying integrating by parts and Sobolev embedding
theorem we get

C

! .
min

d
V2B + a1V 13 = —— (10130 + 1613 5 + 192! V'3

HIVEBI VRS + gl 155 + 115, + 10115 5 + 1V ||§||ul||§,2||vl||§,2),
(56)

Applying again the Gagliardo-Nirenberg inequality and Young inequality we get
C
IV2R! VB + V20Vl I5 < el V2B + — B3 2 + 113 2).
From (51) we get

2 020 n2 1l 112 3 Ll 13 1l 112 3002
IV=vlisliv I3 oMl 15, < CUVU 20l sl 155 < el V7l

(o
+g(||v’||§?2 + 1 15%).
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Local in time solution to Kolmogorov's two-equation model 357

hence, from (56) we obtain the following estimate

d C
TNV 1B + il V813 = —— (1130 + 161 5 + el 135 + 1a' 1

min

t
/)L .
H1v'15.2) + (18115 2 + 1A/ 2 + W10 + M 1% ) + 2 w23,

('uinin)3
(57)

where C = C(2). We sum the inequalities (53), (55), (57) and we obtain

d
(192013 4+ 1926 1B + 19251 13) + st (1970113 4+ 19613 + 19751 13)

c
= —— (10130 + 18130 + (0 f + el 155 + 1050 + 115,

min

C
s (10182 + 151 2 + o' 1S 2 + e 1S 5 + 10! 13y + e’ 13, )
(Kmin)
(58)
for some C, which depends only on 2. We note that
1 b 1—L
I‘Linin = — (1 + k2wmaxt) *2 (59)
4 wmax

hence, we have

d
(192013 + 192613 + 1928 13) + s (192015 + 192615 + 192015

3
w W
<C —= + (ﬁ) 1+ KZCUmaxt)ﬁ
brmin bmin
(1 1518 2+ 10 1S 5 + e 13y + I 135 ) (60)

where 8 = max{Kl—2 —1, 3—2 — 3} and C depends only on €2, ¢ and «3.

Now, we shall estimate /1,’ in terms of ' and &'. Firstly, we note that from (25) and
(27) we have

min*

/ 1 t ! ! 1 t
W (b") = max Ebmin,b ,¢z(w)25w (61)

Hence, by definition (36) we get

l t —1 t l 1
0 < = 2wy, max{b b'} <ci1(RQ)

m min’

(1 + k2wmint) (bmin + |bl|) ,
(62)

Wmin
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where ¢| depends only on 2. Thus, we obtain

1

lullla < e (1 4 K20mint) (bmin + 116']]2). (63)

min

Now, we have to estimate the derivatives of y,l . Direct calculation gives
V20l = |92 (90 - @) )| = (@) [P @)
+2(®; (@) 72 |V (W, )| V(@ )|

2
+20, () (@, (@) 7 | V@, @]+ W@ )2 [P (@)

(64)
Using (26) and (30) we may estimate the derivatives
V)] = o [V [V(@i @] < o [Vl (65)
V2 )] < o)™ [VH] 4o [V2]. (66)
_ 2
|V2(@, ()] < co(@ly) ™ V! |+ co [ V2|
If we apply estimates (61), (65) and (66) in (64) then we obtain
2.1 max{3, 14} 1)? 2,1 I 1)?
V2| = 201 (1 + Kooma) 2|l 4 [V | 4 18] |
2
+‘Vbl’+‘le’+‘le‘ +)b’v2w’)+’v2w”] 67)
where ¢, depends only on cp and Q1 = % (1 + b;fn + w;lfn) Thus, we obtain

VB |15 + 11V 1

3,144
19212 < €201 (1 4 Kaomant) ™ 75 |

15 oIV I + 196 I + 1926 2 + 1811926 2] (68)
If we take into account (63) then we get
I 2.2 < €301 (1 + Koty ™15 (B2 + 1013, +1). (69)
where ¢3 = ¢3(cop, 2). Applying the above estimate in (60) we obtain
E (713 + 1926013 + 1926'13) + it (193013 + 19613 + 19°8113)

@ Springer



Local in time solution to Kolmogorov's two-equation model 359

2 15
= CO2 (1 + Kaomaxt)? (14 1013, + 18113, + 1 13,) (70)

where

3
, bmi _ _ ~
o= 1+ (Gem) | G o et ] 5
1
= IOmax{l + —,3} + B
K2

and C depends only on €2, co and k. If we take into account the estimates (37-39)
then we have

d
(013 2+ 10152 4+ 111B.2) + st (1011 2 + 1015 2+ 16'13.2)

_ 15
< COs (1 + Kaomaxt)” (141013, + 18113, + 1 132) an

where C = C(cq, 2, k2) and Q3 = Q% + Q> + 1. If we divide both sides by the last
term and next integrate with respect time variable then we get

—14
(14 W OB, + 1 O3 + 16 O13,) = (1410 013,
14C 5
o lacos (1 + oman ! = 1)
(B + DK2omax
14C Q3
(B + Draomax

—14
1K O)13 5 + I O3,

—14 _
= (1+ 11wl 5 + bol3 + llowl.2) (0 + k2ot = 1),

(72)

where the last estimate is a consequence of Bessel inequality. Now, we define time ¢*
as the unique solution of the equality

15C Q3

, ) 5\ 4
(1 wol.2 + Ib0l3 2 + llwol3) = (B + Diomax
2Wmax

((1 + ’meaxt*)BJrl - 1) .

(73)

We note that * is positive and depends on [|vo|3 5+ [1b0ll3 , + o3 5. €2, 2. €0, Omin,
@max and bpin. Itis evident that t* is decreasing function of [|vo |5 , +11bo 13 5+ llwo I3 5-
Moreover, for any § > 0 and compact K < {(a,b,c) : 0 < a < b,0 < c} there
exists t1*<,5 > 0 such that t* > t;k(,a for any initial data satisfying ||v0||%’2 + ||bo||%2 +
||a)0||% 5 =< 8 and (Wmin, ®max, bmin) € K. From (73) we deduce that tl*( s depends
only on §, K, Q2 k7 and cp.

From (72) and (73) we have

CO3

-1
(1 @B+ W @B+ 1 01a) 2 g
2Wmax

(01 + k20ma) ™ = 1)
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for ¢ € [0, t*] hence,

==

CcQ "
W O3 + 16/ D135 + 0! D135 < [m (01 + k2ot P! = 1)]

(74)
for t € [0, t*]. In particular, there exists C* = C*(¢*) such that
oy + 160 vy + 16 oy < €5 (79)
uniformly with respect to [ € N. Next, from (59), (71) and (75) we get the bound
10 20,0003, ) 10l 20,05508) + 16l 20,13) < C. (76)
where C, depends on t*, k2, bmin, @max and C*. It remains to show the estimate of

time derivative of solution. We do this by multiplying the equality (33) by %cﬁ and
after summing it over i we get

@', 9,0") — ' @ v', Vi) + (W' DY), DB = 0.

Thus, by after integration by parts and applying Holder inequality we have

18013 < 1 divee! @ V)29 12 + 1V (1! D) 130!
By applying Young inequality we get

190013 < 20 divee! @ W13 + 21V (1! D) 1B,
Next, Holder inequality gives us
10,01 = (Vo 13113 + 194 BIDEHIE + 14! 11V D@HIB).
Finally, Sobolev embedding theorem leads us to the following inequality
190013 = € (15,0 + 1 B2 10113 2)

where C depends only on 2. If we apply (69) and (75) then we get

||31Ul||Loo(o,z*;L2(Q)) <C,, (77)

where C, depends on 2, ¢, t*, k2, bmin, @Wmax and C*.
Now, we shall consider (34). Proceeding as earlier we get

30! 13 < 41V’ - V'3 + 41 V(' Vo' 13 + 4 ll9? (@) 13
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<4 121V 15 + 8IVE IZIV' 15 + 8l 12,1 V20 13 + 4zl 113
where we applied (32). Thus, using (69) and (75) we get
19:0 | 200 0,012 (g2)) < Co (78)
where C, is as earlier. It remains to deal with (35). In similar way we obtain

18,6113 < 4IVH' (13 + 41V (' VB I3 + 411w, ) (@) 13 + 41 DD 13
< 4|V 131012 + 8IVE IGIVEIE + 8l 1211V 13
AL 12 et 13 + 4l 12 190 1S

Applying again (69) and (75) we obtain
19:5" | oo 0,14 2223 < Co (79)

where C, depends on €, cq, t*, k2, bmin, ®max and C*.
Now, we prove the higher order estimates for time derivative of approximate solu-
tion. Firstly, we multiply the equality (33) by —2; %cf and sum over i

@0, = A3y + (0 @, vAadY) — (W DY, DAY = 0.
After integration by parts we get
IVa!|2 = — <A (v’ ® u’) , va,v’) n (A (,ulD(vl)> , D(a,ul)) .
If we apply Holder and Young inequalities, then we get
1V 13 <214 (v @ ') I3 + 1A (' D) 13,
where we used the equality 2|| D (d;v') ||% = ||Vo,v! ||§. We estimate further

Va3 < 81 1211V 113 + 81Vl |13 + 411 12 1A DY 113
+16IVL IIVD@HIZ + 4l An 131D Y 1.

Using Sobolev embedding we obtain
199,013 = € (0152 + 1 1320012 + 113000 ),
where C depends only on 2. Applying (69), (75) and (76) we get
V3l 20,05 12(2) < Co (80)
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where C, depends on cg, 2, *, k2, bmin, ®max and C*. Proceeding analogously we
get

||V3;a)l||L2(07,*;L2(Q)) < C* (81)

It remains to estimate V9, 5!. If we multiply the equality (35) by —A; %d} and sum
over i, then we get

Ob', —Adb) + (B!, VAL — (le;l, VAa,bl>
= (Wi (W) (@), MDD — (DN, AdibY).
Integrating by parts and Holder inequality lead to
1V 13 < 14 (50! ) 120930 12 + 14 (1! V8) 121V a,8' 2
HIV (1@ @) 120988 2 + IV (1 1D@HE) 121V 80b 2.
After applying Young inequality we get
1Va:b'13 < 414 (b'') 13 + 418 (' 90') 13
41V (v 8D ) 13+ 419 (11D 3.
Using Holder inequality we obtain

IVa,b 13 < 16]|AB 311012, + 3201 VB 131V 15 + 16161211V 20" 13

o0
+ 161 AL 3IVE 12 + 320V 151V 13 + 160112, 11V A |3
+ 81V I3l (@) 12, + 81V B 13,1V (¢ (@))113
+ 81V IIZID@OHIIE + 1611 12 ID@HI3IVD Y2

(82)

After applying (31) and (32) we get ||/ (b)) oo < 16! [loo, 1¥1 (") loo < ll@! [l and

IV (¢ (@Nll2 = ¢, (@) Vo' [l2 < coll V' |12,
IV (@)lla = 1y, (B)YVa |2 < coll VB 2.

Using these inequalities in (82) we obtain
IVa,b'113 < c(nbl 13200' 13 5 + 1 1351167135 + 1B 3110113 5 + 1Vl 1316713,
HI I3 210 02 + 1 1321 121013 )
where C = C(€2, ¢p). Finally, from (69), (75) and (76) we obtain

IV3:b' Nl 20,0 12(2) < Co (83)
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where C, depends on cg, 2, t*, k2, bmin, @max and C*. The estimates (75-79), (80),
(81) and (83) give (41) and the proof of lemma 2 is finished. O

Now, we draw the idea of the remain part of the proof of theorem 1. From the /-
independent estimate (41) we deduce the existence of a subsequence, which converges
weakly in some spaces (see 84-85). Next, by applying Aubin-Lions lemma we get
strong convergence of the approximate solution, see (87), (88). Further, we prove the
convergence of “diffusive coefficient” w1 (89), which allows us to take the limit in the
approximate problem. As a result, we obtain (91-93). In the last step we prove a series
of inequalities (94-96), (98), (101), which show that the truncated problem is in fact
the original one.

Having the estimate (41) from lemma 2 we may apply weak-compactness argument
to the sequence of approximate solutions and we obtain a subsequence (still numerated
by superscript /) weakly convergent in appropriate spaces. To be more precise, there
exist v, w and b such that

v e L0, 1% V3,) N L0, 1% V1), dv € L20, r*; H(Q))
w,b e L*0,*: V) N L>®0, *;:V?), 0, b € L*0, t*; H (Q))

and

vl —=vin L2(0, 1*; V3). v/ v in L0, 1% V3, ' —d,v in L2(0, 1*; H'(Q)),

(84)
(@', B))=(w, b) in LX(0, t*: V3), (&, b)Y (w, b) in L=(0, *; V?), (85)
(3, 3;b")—(8,w, 8;b) in L*(0, *; H'(Q)). (86)

Thus, by the Aubin-Lions lemma there exists a subsequence (again denoted by /) such
that

W', o, by — (v, w, b) in L*(0, t*; H*(Q)) fors < 3, (87)
and
W, &', by — (v, w,b) in C([0, *]; H1(Q)) for ¢ < 2. (88)

Now, we characterize the limits of nonlinear terms. Firstly, we note that for fixed (x, )
we may write

la
! _ [ 4 ! _
W, (b (x,t))—qz,(b(x,t))_/o — [\11, (sb 0+ s)b(x,t))]ds
1
= f W/ (b (x, 1) + (1 — s)b(x, 1))ds - [b' (x, 1) — b(x, 1)].
0

Taking into account (26) we get

W, (b (x, 1)) — W, (b(x, 1))] < colb' (x, 1) — b(x, 1)].
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Similarly we obtain
D, (' (x, 1) — D (@(x, 1)) < cole (x, 1) — w(x, 1)
and
@ (b(x, )] < co(|b(x, )] + blyy)-

Therefore, applying (27) we obtain

v, b)  Wb
o = | = 4k [0 @) — W)+ B0 ) - 0,6 ]

< 4@hin) 2 [20malb! = bl + co(b] + Byl — o]
From (88) and the above estimate we have

Wi (b)
@ (@)

w — Uy, @, = uniformly on Q x [0, *]. (89)

Now, we shall take the limit / — oo in the system (33-35). First, we multiply (33) by
a; and sumoveri € {1, ..., [} and after integrating with respect time variable we get

t t t
/(Btvl,w)dt—f (vl®vl,Vw)dt~|—/ <M1D(v1),D(w))dt=0,
0 0 0

I
where w = Y a;w; and ¢ € (0, t*). We note that from (88) we have for some A > 0
i=1

o', o, by — (v, w, b) in C([0, t*]; CO*(Q)) (90)

hence, (85), (88) and (89) imply that

t t t
/ 0rv, w)dt — / (v ® v, Vw)dt + / (qu;tq>,D(v), D(w)) dt =0
0 0 0

l .
forz € (0,1*) and w = Y a;w;. By density, the above identity holds for w € V(}iv.
i=1
As a consequence, we obtain

I 153 2
/ (0;v, w)dt — / (v® v, Vw)dr + / (/Lq;lcptD(v), D(w)) dt =0
1 3] 3|

forO0 <t < <t*andw € V(}iv. After dividing both sides by |, — 1] and taking
the limit 1, — #; we get

(0iv,w) — (v ®uv, Vw) + (;Lq,,q>,D(v), D(w)) =0forw € Véiv o1
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for a.a. t € (0, *). Further, we have
Ui (B —> Y (b), ¢ (@) —> ¢ (') uniformly on Q x [0, £*]

thus, using (34) and (35) and arguing as earlier we obtain

(3, 2) — (©v, V2) + (w0, Vo, VZ) = k2 (2 (@), 2) for z € V', (92)
(@b, q) — (bv, Vq) + (kw,0, Vb, Vq) = =1 (D)1 (@), @) + (nw,0, IDO)I* . q)
for g € V! (93)

fora.a.t € (0, t%).

Now, we shall prove the bounds for b and w. The proof is similar to one found in
[8]. We denote by b (b_) the positive (negative resp.) part of b. Then b = by + b_.
We shall show that

b>0inQ x [0, ¥]. (94)
For this purpose we test the Eq. (93) by b_ and we obtain

(3b,b_) — (bv, Vb_) + (w,e, Vb, Vb_)
= — (W (D) (@), b-) + (1w, a, IDW)*, b-).

We note that from (89) we have 0 < g, , and by (28) we obtain v, (b)b_ = O thus,
we get

(0b—, b_) — (b—v, Vb_) + (1w,0,Vb_, Vb_) <0

and then

d

—b-13 < 0.

b=z =
By the assumption (11) the negative part of initial value of b is zero hence, b_ = 0
and we obtained (94).

Proceeding similarly we introduce the decomposition @ = w4 + w_ and test the
Eq. (92) by w—

(0w, w—) — (wv, Vo) + (u\p,q>ti, Va)_) = —(qb?(a)), w_).

We note that by (29) the right-hand side of the above equality vanishes thus, we get
j—, lw— II% < 0 and by assumption (12)

> 0in Q x [0, *]. (95)
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Now, we shall prove that

Wmin

a)(xt)_mfor(x l)eQX[Ot] (96)

We test the equation (92) by (w — ' ; )_ and we obtain

min

0w, (0 — &l )-) — (v, V(o — o)) + (/Mp@,V&) V(o — whin) )
=~ (¢} (@), (@ — wl;)-). (97)

Using (13) we get

(atw9 ((1) - w;nln)—) = %%”((I) - a)fnin)— ||% ((a)mln) ((1) wmln) )

hence, using inequality 0 < g, o, and divv = 0 in (97) we obtain

1
——II(w hin) -3 — ((wmm) (0 — i) — )§—Kz(¢f(w),(w—wﬁlin)7).

We write the above inequality the form

1
——Il(w i) =113 < =2 (B (@) — wlyy) (P (@) + &), (@ — 0hin)—)-

We note that —k) ((¢; (w) + wfnin), (w — wfnin),) is nonnegative thus, using (32) we
get ¢ (w) < w we have

1d

Far e Ohin) 113 < =2 (@ = i) (@ (@) + i), (@ = Olyin) )

= —i2 (¢ (@) + i), |(@ — i) -|7) <0

Therefore, we obtain % [[ (@ — a)fnin)_ ||% < 0 and by (12) we get (96). Now, we shall
prove that

w(x, t)_ﬁfor(x I)EQX[OI] (98)

Indeed, firstly we note that from (13), (29) and (96) we have
¢i(w) = o 99)

hence, if we test the equation (92) by (v — ', .. )+ then we obtain

max
0, (© = Oy 4) = @V, V(@ = 0fpg) 1) + (10,0, Y0, V (0 = 0hy) )
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= —K2(Cl)2, (C() - a)fnax)-i-)'
Proceeding as earlier, we get
2L (00— )~ 2 (@), @ = 0fgag)t) £ K200 (@ = W),
2 dt max/+ 112 2 \ (Wpax max/+ 2 max/+

and

sl @)+ 13 < (@ — ol ) (@ + 0l (@ — 0l)+)

= —i2((@ + @), (@ — @) +17)

hence, we obtain

L@ — o)+ 113 < 0. (100)

N =

By (12) we get (98). We shall prove that
b(x,t) > bmm for (x, 1) € Q x [0, t*]. (101)

For this purpose we test the equation (93) by (b — b Then we get

mm)— :

(3, (b = bpyin)—) — (b, V((b — b)) + (1w,0, Vb, V(b — bpyin)-))
=~ (D), (b — b)) + (w0, D), (b = b))

The first term on the left-hand side is equal to

1d WmaxbPmi
52716 = Bhin) - ||%—< L (b - bmm>)

1+ wmax/(Zt)K2
The second term of the left-hand side vanishes and the third is nonnegative. Thus, we
get
1d ®maxbmin
5 710 = brin) 113 = (1 (b = blyin) ) ~(Wr B, (b = b))

(1 + wmaxk2t) 2

Using (98) we get

1d ®WmaxbPmi
5771 = bruin)—13 — ( S (b = biyig)- )

(1 + @wmaxkat) Kz

- W (b), (b= Brmin)—)

Wmax

1 + wmaxk2
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and by definition (13) we obtain

1d

ﬁn(b—b’ I3 < =M (g b) — B (b — B ).

. sy .
min 1+ wmaszt min min

From (94) and (31) we have v (b) < b so, we obtain

1d w
3201 = Uhin)=l = =75 (b = B (b = b))
X
(Wmax 2
=—— = Wb -b.)_
1 + a)maszt ||( mln) ||2

and then %H(b — b )_||% < 0. Using (11) and (13) we get (101).

min

Note that from (28) and (101) we get
Y (b) = b. (102)

Further, (25) and (101) give W, (b) = b. Finally, (13), (27), (96) and (98) yield &, (w) =
w. Thus,
(b)) b

@) o (103)

w0, =

Applying (99), (102) and (103) we deduce that system (91)-(93) has the following
form

b )
v, w) — (v v, Vw) + (—D(v), D(w)) =0forw e V(}iv, (104)
w
b
(0w, 7) — (wv, V) + <—Va), Vz> = —kr(w?, z) forz € V', (105)
w

(0;b,q) — (bv, Vq) + <£Vb, Vq) = —(bw, q) + <g |D(v)|2 , q) forg € Pl
(106)

fora.a. t € (0, t%).
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Appendix

The function ¥; may be defined as follows. We set f(x) = e V¥ for x > 0 and zero
elsewhere. We put g(x) = x — e /¥ forx < 0and g(x) = x for x > 0. Then we set

1 X
i) = - / FOVF(—y + Ddy,
cJo
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where ¢ = fol f ) f(—y + 1)dy. Function 7 is smooth function, which vanishes for
negative x and is equal to one for x > 1. Next, we put

1
n(x) =02 = ) h(x) = (1 =n(0)) f(x) +n(x)gx).

Finally, we define

bl . bt. 2 bl .
U, (x) = Qi min g, — _mm ) 107
1 (x) > + > (bfnin (x > )) (107)
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