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Abstract
In this paper, we study the irrotational periodic equatorial surface travelling waves in
flows without neglecting Coriolis forces due to the Earth’s rotation. The monotonicity
of horizontal velocity and pressure gradient distribution are obtained by the physical
structures for the problem itself and the maximum principles.

Keywords Equatorial flow · Velocity · Pressure gradient · Coriolis forces · Maximum
principles

Mathematics Subject Classification 34B15 · 34D20 · 76B03

1 Introduction

In this paper, we consider a qualitative description of horizontal velocity and pressure
gradient of irrotational equatorial flows without neglecting Coriolis forces due to the
Earth’s rotation, cf. the discussion in the papers [1, 2]. The changeof sign of theCoriolis
force across the Equator produces an effective waveguide, with the Equator acting as a

Communicated by Adrian Constantin.

B JinRong Wang
jrwang@gzu.edu.cn

Qixiang Li
liqixiang_19@163.com

Michal Fečkan
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fictitious wall that forces an azimuthal flow propagation. Relative to the monotonicity
of velocity and to the pressure gradient distribution, refer to the theoretical papers [3,
4], the numerical simulations in [5], and the experiments reported in [6]. The particle
trajectories [7–9] can be controlled by the velocity and pressure in the fluid domain,
which is very important to discuss the monotonicity of velocity, and pressure gradient
distribution. Considering the simple case where Coriolis forces are ignored, many very
nice results for the monotonicity of the horizontal fluid velocities [7, 8, 10], pressure
gradient distribution which refers to [7, 8, 10–12] and references therein, and wave
heights can be estimated from pressure data, see the discussions in [13–15]. More
work on ocean currents, such as constant vorticity flows and geophysical fluid flows,
cf. [16–20] and so on.

As far as we know, without ignoring the Coriolis force, the monotonicity of the
horizontal velocity is only discussed in [9], and the pressure gradient distribution has
not yet been studied. Inspired by the above facts, in the present paper, we study the
monotonicity of horizontal velocity, and pressure gradient distribution of the irrota-
tional equatorial flows without neglecting the Earth’s rotation. The existence can refer
to [21].We firstly use the modified height function in [22] to transform the free bound-
ary value problem into a elliptic boundary value problem. Secondly, inspired by [7,
8, 10], we use the physical properties of the fluid itself and the strong maximum prin-
ciple to obtain the monotonicity of horizontal velocity along every streamlines in the
fluid domain. Our approach is different from [9]. Inspired by [7, 8, 10–12], we further
study the pressure gradient distribution by using appropriate auxiliary function, the
properties of the fluid and the maximum principles. Since we take Coriolis forces into
account, our results complement the existing literature.

The paper is organized as follows. In Sect. 2, we give some preliminary results,
mainly including governing equations and their two equivalent forms. In Sect. 3, we
derive the monotonicity of horizontal fluid velocity, and pressure gradient distribution
through the fluid.

2 Preliminaries

Throughout this section, we collect some preliminary results. Firstly, let L > 0 be
wave period, t be time.We choose the Cartesian coordinate system (x, y) ∈ R

2, where
x-axis is horizontal to the east and y-axis points upwards. Let the free surface of the
water flow denote by y = η(t, x), which satisfies

∫ L/2
−L/2 η(t, x)dx = 0. Set y = 0 be

the mean surface level for the water flow. Let y = −d be the impermeable flat bed
with 0 < d < ∞, which below the free surface y = η(x) of the flow. We assume that
the Earth is a perfect sphere rotating with the speed� = 7.292×10−5 rad/s. Here, the
surface flow is westward due to prevailing westward winds, which implies that c < 0.
The form of the velocity field is (u(x − ct, y), v(x − ct, y)) and the wave surface
profile has the form η(x − ct). Here, we use the transformation (x − ct, y) → (x, y)
in which the origin moves in the direction of propagation of the wave with wave speed
c. In stationary domain Gη := {(x, y) ∈ R

2 : −d ≤ y ≤ η(x)}, we employ the
f -plane approximation to the full governing equations satisfy the Euler equations
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Monotonicity of horizontal fluid velocity and pressure gradient… 807

{
(u − c)ux + vuy + 2�v = − 1

ρ
Px ,

(u − c)vx + vvy − 2�u = − 1
ρ
Py − g

(1)

with equation of mass conservation

ux + vy = 0. (2)

Here P := P(x, y) is the pressure, ρ is the constant density, g ≈ 9.8 m/s is the
acceleration due to gravity. The kinematic boundary conditions are given by

v = (u − c)ηx on y = η(x); v = 0 on y = −d. (3)

And dynamic boundary condition is expressed as

P = Patm on y = η(x), (4)

where Patm is the constant atmospheric pressure. Assumed that the flow is irrotational,
which implies

uy − vx = 0. (5)

Governing Eqs. (1)– (5) see [9, 21, 23] for more details. Furthermore, we assume the
absence of stagnation points, that is u �= c in Gη. Here, we only have to talk about
the case where u is greater than c due to the case where u is less than c is symmetric.
To avoid new notations, we describe the velocity field of the steady motion with the
same symbols

(u − c, v) → (u, v).

Under the above assumptions, we know u > 0 and rewrite (1)–(5) in the new reference
frame as the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uux + vuy + 2�v = − 1
ρ
Px ,

uvx + vvy − 2�u = − 1
ρ
Py − (g − 2�c),

ux + vy = 0,

v = uηx , y = η(x),

v = 0, y = −d.

P = Patm, y = η(x),

uy − vx = 0

(6)

in Gη. Since � is small enough, we assume that g − 2�c > 0. Equatorial waves
satisfying the Eq. (6) conform to the following (See [9, 21, 23]):

(1) u and v only one crest and one trough in per period;
(2) η is strictly monotonous between per successive crest and trough;
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808 Q. Li et al.

(3) η, u and P are symmetric with respect to the crest line, and v is antisymmetric
about the crest line.

For more details, see [7].
By the third relation in (6), we can define the stream function � up to a constant

by

�x = −v, �y = u, (x, y) ∈ Gη. (7)

We see that � is a constant on y = η(x) and y = −d, respectively. Thus, without any
loss of generality, we can choose � = 0 on y = η(x) and � = m on y = −d, where

m = −
∫ η(x)

−d
u(x, y)dy < 0, (x, y) ∈ Gη

satisfies �(x, y) = m + ∫ y
−d u(x, r)dr in Gη.

It is can be seen that �(x, y) is a L-periodic function related x . Then the problem
(6) is equivalent to the free boundary problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�� = 0, −d < y < η(x),
|∇�|2

2 + (g − 2�c)(y + d) + 1
ρ
Patm = Q, y = η(x),

� = 0, y = η(x),

� = m, y = −d,

(8)

where the constant Q > 0 is called total head. It is learned that Clamond [24] deals
with waves without Coriolis effects, a derivation of Bernoulli’s equation (the second
in (8)) in the equatorial context being provided in [25].

On the other hand, from the seventh relation of (6), we define the velocity potential

�(x, y) =
∫ x

0
u(l,−d)dl +

∫ y

−d
v(x, r)dr , (x, y) ∈ Gη

by

�x = u, �y = v, (x, y) ∈ Gη. (9)

Let ζ = ∫ L/2
−L/2 u(x,−d)dx > 0, then � − ζ x/L is L-periodic in x , and � is an odd

function in the x , while

�(Ln, y0) =
∫ Ln

0
u(l, y0)dl = ζn, n = 1, 2, · · ·

for y0 ∈ [−d,min η(x)). From � and � we can perform the conformal hodograph
transformation 	 : Gη → G̃η by

	(x, y) := (q, s)(x, y) :=
(
�(x, y),−�(x, y)

m

)
, (x, y) ∈ Gη. (10)
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Monotonicity of horizontal fluid velocity and pressure gradient… 809

Here G̃η = {(q, s) ∈ R
2 : −1 ≤ s ≤ 0}. The mapping 	 is a diffeomorphism like

such [8].
Because of the periodicity of u, v, P and η, we only need to consider one period.

Thereby, we’re talking about the free region between x = −L/2 and x = L/2. Here,
we represent the interior regions

G− =
{
(x, y) ∈ R

2 : −L/2 < x < 0,−d < y < η(x)
}

,

G+ =
{
(x, y) ∈ R

2 : 0 < x < L/2,−d < y < η(x)
}

,

and their lateral edges

{
(x, y) ∈ R

2 : x = 0,−d ≤ y ≤ η(0)
}

,
{
(x, y) ∈ R

2 : x = ±L/2,−d ≤ y ≤ η(±L/2)
}

.

It also gives the free surface

S− =
{
(x, y) ∈ R

2 : −L/2 < x < 0, y = η(x)
}

,

S+ =
{
(x, y) ∈ R

2 : 0 < x < L/2, y = η(x)
}

,

and the lower boundaries are also given

B− =
{
(x, y) ∈ R

2 : −L/2 < x < 0, y = −d
}

,

B+ =
{
(x, y) ∈ R

2 : 0 < x < L/2, y = −d
}

.

After conformal transformation, the regions G− and G+ become

G̃− =
{
(q, s) ∈ R

2 : −ζ/2 < q < 0,−1 < s < 0
}

,

G̃+ =
{
(q, s) ∈ R

2 : 0 < q < ζ/2,−1 < s < 0
}

,

respectively. Meanwhile lateral edges are given by

{(q, s) ∈ R
2 : q = 0,−1 ≤ s ≤ 0}, {(q, s) ∈ R

2 : q = ±ζ/2,−1 ≤ s ≤ 0}.
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Fig. 1 The hodograph transform between the free boundary domain Gη and the fixed domain G̃η

The free surface and lower boundaries are shown

S̃− =
{
(q, s) ∈ R

2 : −ζ/2 < q < 0, s = 0
}

,

S̃+ =
{
(q, s) ∈ R

2 : 0 < q < ζ/2, s = 0
}

,

B̃− =
{
(q, s) ∈ R

2 : −ζ/2 < q < 0, s = −1
}

,

B̃+ =
{
(q, s) ∈ R

2 : 0 < q < ζ/2, s = −1
}

.

See Fig. 1.
Next, we will use similar arguments in [8] to show that (8) is equivalent to the

equationwhich related to themodified height function. Nowwe introduce themodified
height function h : G̃η → R by

h(q, s) = y

d
− s, (q, s) ∈ G̃η (11)

in [22]. By the chain rule and (7), (9), (10), (11), it follows that

hq = v

d(u2 + v2)
, hs = −mu

d(u2 + v2)
− 1. (12)

By (7), (9) and (10), we obtain that

∂x = u∂q + v

m
∂s, ∂y = v∂q − u

m
∂s . (13)

Directly calculating (13) and combining with (12), we have

∂q = − d

m
(hs + 1)∂x + dhq∂y, ∂s = dmhq∂x + d(hs + 1)∂y . (14)
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Monotonicity of horizontal fluid velocity and pressure gradient… 811

By (7) and the seventh relation in (6), it follows that

0 = mdhsq [m2h2q + (hs + 1)2][(m2hqq − hss)(hs + 1) − 2m2hq ]
− 2[(hs + 1) + hq ][m2hq(hqq + hqs) + (hs + 1) + (hsq + hs)]
in − 1 < s < 0.

By straightforward calculation, the second Eq. in (8) is equal to

m2[m2h2q + (hs + 1)2] + 2d2
[

d(g − 2�c)(h + s + 1) − Q + 1

ρ
Patm

]

(m2h2q + (hs + 1)2)2 = 0, s = 0.

On the flat bed, it is easy to see that

h = 0, s = −1.

On the other hand, h satisfies

∫ L/2

−L/2
h(q, 0)dq = 0.

Conesquently, the problem (8) is rewritten to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mdhsq [m2h2q + (hs + 1)2][(m2hqq − hss)(hs + 1) − 2m2hq ]
= 2[(hs + 1) + hq ][m2hq(hqq + hqs) + (hs + 1) + (hsq + hs)],
− 1 < s < 0,

m2[m2h2q + (hs + 1)2] + 2d2
[

d(g − 2�c)(h + s + 1) − Q + 1

ρ
Patm

]

(m2h2q + (hs + 1)2)2 = 0, s = 0,

h = 0, s = −1,
∫ L/2

−L/2
h(q, 0)dq = 0.

Next, we give two lemmas, which are important in our discussion.

Lemma 2.1 (See [10]) For u > 0 in Gη, the following inequalities hold:
(a) ux (x,−d) > 0, x ∈ (0, L/2); (b) uy(L/2, y) > 0, y ∈ (−d, η(L/2);
(c) v(x, y) < 0, (x, y) ∈ G+; (d) v(x, y) > 0, (x, y) ∈ G−.

Since the realistic values of u are less than g−2�c
2� , there is a following lemma.

Lemma 2.2 (See [23]) Let function f (x) = u(x, η(x)) + 2�η(x) be monotonically
increasing with respect to x ∈ (0, L/2), that is ∂xu(x, η(x)) + 2�η′(x) > 0 for
x ∈ (0, L/2).
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3 Main results

Theorem 3.1 The horizontal fluid velocity u is a strictly increasing function of x in
G+ and a strictly decreasing function of x in G− along any streamline.

Proof If (x, y(x)) is a parametric equation for a streamline, then ∂x (�(x, y(x))) = 0
by definition. From this, we see �x + y′�y = 0. On the other hand, we notice that
u > 0 in Gη, m < 0 and the second relation in (12) ensure the positive of hs + 1.
Hence, by (7) and (12), we get

dy

dx
= y′ = −�x

�y
= v

u
= − mhq

hs + 1
.

From this and the first relation in (14), we have

∂x (u(x, y(x))) = ux + y′uy = ux − mhq
hs + 1

uy = − m

d(hs + 1)
uq . (15)

From the third and seventh relations in (6), we can see that
(x,y)u = 0 and
(x,y)v =
0. They are also harmonic in (q, s) ∈ R

2 for (10) is conformal change of variables.
Thus, we get 
uq = 0. Considering the restriction of uq to G̃+, by (14) and (12), we
obtain that

uq = 1

u2 + v2
(uux + vuy). (16)

Note that v is odd and periodic in x , we can see v = 0 on the crest line {(x, y) : x =
0,−d < y < η(0)} and trough line {(x, y) : x = ±L/2,−d < y < η(0)}. Due to
the images under (10) of the crest and trough lines, then we obtain

uq = ux
u

= −vy

u
= 0 for q = 0,±ζ/2 (17)

by (16) and u > 0 in Gη. Note that v = 0 in B̃+, by (16) and Lemma 2.1(a), we have

uq = ux
u

> 0 on B̃+. (18)

From Lemma 2.2, we can see that

∂xu(x, η(x)) > −2�η′(x) > 0, x ∈ (0, L/2). (19)

Thus, by (16), the fourth relation of (6) and (19), we obtain

uq = u

u2 + v2
∂x (u(x, η(x))) > 0 on S̃+. (20)

By (17), (18), (20), and applying the strong maximum principle to the harmonic
function uq , we obtain that uq > 0 in G̃+. But together with hs + 1 > 0 and m < 0,
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Monotonicity of horizontal fluid velocity and pressure gradient… 813

by (15), it follows that ∂x (u(x, y(x))) > 0 in G+. Hence, u increases strictly along
every streamline with respect to x in G+. Being even in the x-variable, u is a strictly
decreasing function of x along every streamline in G−. This completes the proof of
Theorem 3.1. ��
Remark 3.2 Wefind the results inTheorem3.1 is same as [10,Claim1],which indicates
that the Coriolis force does not affect the monotonicity of the horizontal fluid velocity.
It makes sense mathematically.

The pressure gradient distribution results are given below. From a physical point of
view, the realistic values of v are bounded, so we can define M− := min

(x,y)∈G+
v(x, y)

and M+ := max
(x,y)∈G−

v(x, y) by (c), (d) of Lemma 2.1.

Theorem 3.3 Assume ηx (x) is bound for R. The pressure gradient Px at a point in
fluid depends on the position of the point with respect to the crest line: Px = 0
below the crest, Px < 0 on S+ ∪ B+, Px > 0 on S− ∪ B−, Px < −2�ρM− in G+,
Px > −2�ρM+ in G−; the component Py < 0 on B+∪S+∪{x = ±L/2}∪B−∪S−,
Py < ρ(g − 2�c) in G+ ∪ {x = 0} ∪ G−.

Proof We firstly show the distribution case of Px . Using the first relation in (6) and
(16), it follows that

Px = −ρ((u2 + v2)uq + 2�v), x ∈ R. (21)

(18) and the fifth relation in (6) imply that Px < 0 on B+. Similarly, we obtain that
Px > 0 on B−. On the free surface S+ ∪ S−, Px is rewritten

Px = −ρu(ux + uyηx + 2�ηx ) = −ρu(∂xu(x, η(x)) + 2�η′(x)),
x ∈ (−L/2, 0) ∪ (0, L/2).

By Lemma 2.2 we see that Px < 0 on S+. Similarly, we can figure out Px > 0 on S−.
Note that v is odd and periodic in x , we can see v = 0 on the crest line {(x, y) :

x = 0,−d < y < η(0)} and trough line {(x, y) : x = ±L/2,−d < y < η(0)}, by
(17) and (21) we have Px = 0 on the crest and trough line.
By (21) andLemma2.1(c), andwe also knowuq > 0 inG+ fromproof ofTheorem3.1,
it follows that Px < −2�ρM− in G+. Similarly, we have Px > −2�ρM+ in G−.

Next, we give the distribution case of Py . Now we show that

d

dx
(−uv|y=η(x)) < g − 2�c, x ∈ (−L/2, 0) ∪ (0, L/2). (22)

As a matter of fact, by the third, fourth and seventh relations in (6), we obtain

d

dx
(−u(x, η(x))v(x, η(x)) = −uvx (1 + η2x ), x ∈ (−L/2, 0) ∪ (0, L/2). (23)
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On the other hand, by differentiating the second expression in (8), and using the
seventh, third and fourth relations in (6), we have

0 = u(ux + uyηx ) + v(vx + vyηx ) + (g − 2�c)ηx

= −uvy(1 − η2x ) + 2vvx + (g − 2�c)ηx , y = η(x).

Note that η′(x) < 0 in (0, L/2) and η′(x) > 0 in (−L/2, 0), so from the above and
the four relation in (6), we get

u

[
vy

ηx
(1 − η2x ) − 2vx

]

= g − 2�c on S+. (24)

By Lemma 2.2 and the third, fourth and seventh relations in (6), we can obtain vy <

vxηx on S+, which implies

vy

ηx
(1 − η2x ) − 2vx > −vx (1 + η2x ) on S+. (25)

Here, 1 − η2x (x) > 0 in [7].
Combine (23), (24) and (25), we see (22) in (0, L/2) holds. Further, we notice that
u is symmetric and v is antisymmetric with respect to x = 0, then (22) in (−L/2, 0)
holds. In order to talk about Py in G+, analogous to the considerations in [7], we
define

F(x, y) = −u(x, y)v(x, y) − (g − 2�c)x, (x, y) ∈ Gη. (26)

Using the third and seventh relations in (6), it is can be seen that 
(x,y)F = 0. By
(10), we see 
(q,s)F = 0, then we have 
Fq = 0 in G̃+. By the first relation in (14),
the third and seventh relations in (6), we have

Fq = −vx − (g − 2�c)u

u2 + v2
, (q, s) ∈ G̃η. (27)

Since the fourth relation in (6), v = uηx on S+ ∪ S− ∪ {(0, η(0))} and (27), we see
that

Fq = −vx − g − 2�c

u(1 + η2x )
along s = 0.

Invoking again (22) and (23), we obtain

Fq < 0 for s = 0. (28)

Note that v = 0 on {(ζ/2, s) : −1 < s < 0}, and by Lemma 2.1(b), (27), we obtain
that

Fq = −vx − g − 2�c

u
< 0 for q = ζ/2.
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Monotonicity of horizontal fluid velocity and pressure gradient… 815

Since v = 0, vx = 0 and u > 0 on the flat bed, by (27), it follows that

Fq = −g − 2�c

u
< 0 for s = −1. (29)

Since Fq is even in the q-variable and satisfies 
Fq = 0 in [−ζ/2, ζ/2] × [−1, 0],
by (28), (29) and the maximum principle, we can get

Fq = −vx − (g − 2�c)u

u2 + v2
< 0 in [−ζ/2, ζ/2] × [−1, 0]. (30)

On the other hand, from the second relation in (6), we obtain

Py = ρ[2�u − (g − 2�c) − uvx − vvy], (x, y) ∈ Gη. (31)

We know uq > 0 in S̃+ ∪ B̃+ ∪ G̃+ by Theorem 3.1. Combing (16), the third and
seventh relations of (6), we get uvy < vvx in S+ ∪ B+ ∪ G+. Hence, from this and
(31) we obtain

Py < ρ(2�u − (g − 2�c)) − ρvx
u2 + v2

u
, (x, y) ∈ G+. (32)

Due to u <
g−2�c
2� , and combine (32), (30) we can see that Py < ρ(g − 2�c) in G+.

Similarly, Py < ρ(g − 2�c) in G−.
By the fifth relation in (6), (31) and 2�u < g − 2�c, we have

Py = ρ(2�u − (g − 2�c)) < 0 on y = −d.

From (6) we can see that �P ≤ 0, then the minimum value of P is obtained on the
free surface y = η(x). Hence, by (31) and Hopf’s maximum principle, Py < 0 on
S+ ∪ S− ∪{(0, η(0))}. Because of 0 < u <

g−2�c
2� , (31) and Lemma 2.1(b), it follows

that

Py = ρ(2�u − (g − 2�c) − uvx ) < 0 on x = L/2.

Similarly, we can get Py < 0 on x = −L/2. On the crest line x = 0, by (27), we can
see that

uFq(0, s) = −(uvx + g − 2�c). (33)

Recalling v = 0, and combine (31), (33), it follows that

Py = ρu[2� + Fq(0, s)] on x = 0.
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816 Q. Li et al.

Invoking (30) and 2�u < g − 2�c, we obtain that

Py < ρ(g − 2�c) on x = 0.

The proof is completed. ��
Remark 3.4 We find the results in Theorem 3.3 is different from [10,Claim 3], which
indicates that the Coriolis force affect the distribution of the pressure gradient. It is
easily obtainable that Px and Py in (6) depend on u, v and their partial derivatives. On
the other hand, Coriolis force also depends on u and v, so the Coriolis force causes
changes in Px and Py , which is mathematically reasonable.
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