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Abstract

We study weighted (P L B)-spaces of ultradifferentiable functions defined via a weight
function (in the sense of Braun, Meise and Taylor) and a weight system. We charac-
terize when such spaces are ultrabornological in terms of the defining weight system.
This generalizes Grothendieck’s classical result that the space Oy of slowly increasing
smooth functions is ultrabornological to the context of ultradifferentiable functions.
Furthermore, we determine the multiplier spaces of Gelfand-Shilov spaces and, by
using the above result, characterize when such spaces are ultrabornological. In partic-
ular, we show that the multiplier space of the space of Fourier ultrahyperfunctions is
ultrabornological, whereas the one of the space of Fourier hyperfunctions is not.
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1 Introduction

Countable projective limits of countable inductive limits of Banach spaces, called
(P L B)-spaces, arise naturally in functional analysis. Classical examples are the space
of distributions, the space of real analytic functions and the space Oy of slowly
increasing smooth functions. In order to be able to apply functional analytic tools
such as De Wilde’s open mapping and closed graph theorems or the theory of the
derived projective limit functor [30], it is important to determine when such spaces
are ultrabornological. Note that this is a non-trivial matter as the projective limit
of a spectrum of ultrabornological spaces is not necessarily again ultrabornological.
The problem of characterizing when (P L B)-spaces are ultrabornological has been
extensively studied, both from an abstract point of view as for concrete function and
(ultra)distribution spaces; see the survey article [14] and the references therein.

In the last part of his doctoral thesis [ 17, Chap. 2, Théoreme 16, p. 131] Grothendieck
proved that the space Oy is ultrabornological. He showed that Oy is isomorphic
to a complemented subspace of s ® s’ and verified directly that the latter space is
ultrabornological. Later on Valdivia [27] showed that in fact Oy, is isomorphic to
s ®s’. A different proof of the fact that Oy is ultrabornological was given by Larcher
and Wengenroth using homological methods [23].

In this article we study weighted (P L B)-spaces of ultradifferentiable functions.
Our spaces are defined as follows. Let o : [0, 00) — [0, 00) be a weight function
(in the sense of Braun, Meise and Taylor [6]) and set ¢ (x) = w(e*). Denote by
¢*(y) = sup,~o{xy — ¢(x)} the Young conjugate of ¢. Let ¥ = {v, | A € (0, 00)}
be a family of continuous functions vy, : RY — (0, o0) such that 1 < v; < v, forall
< i. We call ¥ a weight system. We then consider the weighted (P L B)-spaces of
ultradifferentiable functions of Beurling and Roumieu type

2@ — im lim 22" 2z .~ Iim lim 2!
) v - v
h(—>_0+)L—TO)+ )\;_ooh:)oo

where iji’h denotes the Banach space consisting of all ¢ € C*°(R¢) such that

@l zo.n :== sup sup W—(X)'
Zv): aeNd xeRd v)\(x)

1
exp <—Z¢*(h|a|)> < 00.

We use Z[[,yaj]] as a common notation for Z((,yaj)) and Z{{;‘;}}. The first main goal of this arti-

cle is to characterize when Z[[;‘j]] is ultrabornological through conditions on ¥". These

conditions will be closely related to the linear topological invariants (DN) and ($2)
for Fréchet spaces [29]. Following Grothendieck, the key idea in our proof is to com-
plement the space Z[[;‘}]] into a suitable weighed (P L B)-space of continuous functions
and, vice versa, to complement a suitable weighted (P L B)-space of sequences into
Z[[;'j] . Hereafter, we shall obtain the desired characterization by applying results from
[1] concerning the ultrabornologicity of such (P L B)-spaces. To achieve the first step,
we use tools from time-frequency analysis [16], specifically, the short-time Fourier
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Weighted (PLB)-spaces of ultradifferentiable functions... 33

transform and Gabor frames. Such techniques have recently proved to be useful in the
study of (generalized) function spaces; see e.g. [2,8,12,28].

Schwartz [25] showed that Oy, is equal to the multiplier space of the space S of
rapidly decreasing smooth functions, i.e.,

Ou={feS ¢ - feSforallp € S}.

Moreover, the natural (P L B)-space topology of Oy coincides with the topology
induced by the embedding

Om = Lp(5.5), fr> (99 ).

The second main goal of this article is to obtain a similar result for a wide class of
Gelfand-Shilov spaces [9]. Given a weight function w and a weight system 7', we
define the Gelfand-Shilov spaces of Beurling and Roumieu type as

() ._ ,h {o} _ w,h
Siyy = lim Sp%, Sy = lim S,
h—0F h—00

where S,‘j‘;’h denotes the Banach space consisting of all ¢ € C*(R?) such that

1
l@llgon = sup sup |o'® (x)[u(x) exp (—E¢*(h|oe|>) < oc.

aeNd xeRd

We shall show that Z[[;j]] is topologically equal to the multiplier space of S[[;'j]] . This
problem has been previously studied for Fourier (ultra)hyperfunctions [21,24,31] and
for general Gelfand-Shilov spaces of non-quasianalytic type [13]. Our main improve-
ment here is that we also consider the quasianalytic case and that, in contrast to the
aforementioned works, we obtain topological and not merely algebraic identities. Fur-
thermore, by using the above results, we are able to determine when such multiplier
spaces are ultrabornological. In particular, Theorem 5.7 below shows that the multiplier
space of the space of the Fourier ultrahyperfunctions is ultrabornological, whereas the
one of the space of Fourier hyperfunctions is not. We mention that analogous results
for convolutor spaces of Gelfand-Shilov spaces have recently been obtained by Vindas
and the first author [11] (see also [26]).

The structure of this article is as follows. In the preliminary Sects. 2 and 3 we
define and study weight functions, weight sequences and weight systems. In Sect.
4 we introduce Gelfand-Shilov spaces and discuss the short-time Fourier transform
and Gabor frames in the context of these function spaces. Our main results are stated
and discussed in Sect. 5. In the auxiliary Sect. 6 we review some results from [1]
about weighted (P L B)-spaces of continuous functions. Finally, the proofs of our
main results are given in Sect. 7. For this we study the short-time Fourier transform
and Gabor frame expansions on various function spaces.
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34 A. Debrouwere, L. Neyt

2 Weight functions and weight sequences

A non-decreasing continuous function w : [0, co) — [0, 00) is called a weight func-
tion (in the sense of Braun, Meise and Taylor [6]) if w(0) = 0 and w satisfies the
following properties:

(@) w2t) = O(w(t)) ast — o0,
(y) logt = o(w(t)) ast — oo;
(8) ¢ : [0, 00) = [0, 00), p(x) = w(e¥), is convex.

We extend o to R? as the radial function w(x) = w(|x]), x € R%. Condition (c)
implies that there is C > 0 such that [6, Lemma 1]

o +y) < Clox) +o() +1), xyeR: (2.1)
A weight function w is called non-quasianalytic if
o0
t
/ wlt) dt < oo.
o 1412

We refer to [6] for more information on these conditions.
The Young conjugate of ¢ is defined as

¢* :[0,00) — [0, 00), $*(y) = sup{xy — ¢ (x)}.

x>0

The function ¢* is convex and increasing, (¢*)* = ¢ and the function y > ¢*(y)/yis
increasing on [0, co) and tends to infinity as y — oco. We shall often use the following
lemma.

Lemma 2.1 [18, Lemma 2.6] Let w be a weight function. Then,

(i) Forall h,k,l > O there are m, C > 0 such that

5 n(y 4 )+ ky < 767 0) HlogC, 20, 22)

(ii) Forallm,k,l > O there are h, C > 0 such that (2.2) holds.

A sequence M = (M) pen of positive numbers is called a weight sequence [22] if
M,l,/p — ooas p — oo and M is log-convex, i.e., My < M, M, forall p € Z.
We setm, = M,/M,_1, p € Z,. We consider the following conditions on a weight
sequence M:

(M2) Mpy < CH''Mm , p €N, forsome C, H > 0;
(M.2) Myy, <CHPTIM,M,, p,q €N, for some C, H > 0;
(M.2)* 2m, <mpp, p > po, for some py, N € Z.
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Weighted (PLB)-spaces of ultradifferentiable functions... 35

Clearly, (M .2) implies (M.2)". A weight sequence M is called non-quasianalytic if

o0

1
— < o0.
m
p=1"7

Conditions (M.2)" and (M .2) are due to Komatsu [22]. Condition (M.2)* was intro-
duced by Bonet et al. [5] without a name; we use here the same notation as in [11].
The most important examples of weight sequences satisfying (M.2) and (M.2)* are
the Gevrey sequences p!®, s > 0. The sequence p!® is non-quasianalytic if and only if
s > 1.

Given two weight sequences M and N, the relation M C N means that there are
C,H > Osuchthat M, < CH?N,, for all p € N. The stronger relation M < N
means that the latter inequality is valid for every H > 0 and suitable C > 0.

The associated function of a weight sequence M is defined as

tP My
wpy () = sup log , t>0.
peN P

Given another weight sequence N, it holds that N C M if and only if
wy(t) <wn(Ht) +logC, t>0,
for some C, H > 0 [22, Lemma 3.8]. Similarly, N < M if and only if the latter
inequality remains valid for every H > 0 and suitable C > 0 [22, Lemma 3.10].
The next result explains when the weight sequence case can be reduced to the
weight function case.
Lemma 2.2 [5, Proposition 13 and its proof] Let M be a weight sequence satisfying

(M .2). Then, wyy is a weight function if and only if M satisfies (M .2)*. In such a case,
the following properties hold (with ¢p(x) = wpy(er)):

(i) Forall h > O there are k, C > 0 such that
1 *
exp %¢>M(kp) <Ch’M,, peN (2.3)
(ii) Forall h > O there are k, C > 0 such that
1 k
K'Mp = Cexp| 2y (hp) ), peN. (2.4)

(iii) For all k > O there are h, C > 0 such that (2.3) holds.
(iv) Forall k > O there are h, C > 0 such that (2.4) holds.
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36 A. Debrouwere, L. Neyt

3 Weight systems

Let X be a topological space. A family ¥ = {v, | A € (0, c0)} of continuous functions
v, : X — (0, 00) is called a weight system [9] if 1 < vy (x) < v,(x) forall x € X
and u < A. The following two conditions play a crucial role in this article.

Definition 3.1 A weight system ¥ on X is said to satisfy condition (DN) if

MV <AVOe(0,1)Iv<pu3C>0VxeX : v,(x) < Cofx)l ).

Definition 3.2 A weight system ¥ on X is said to satisfy condition (5) if
VAIu>AVo>puVe e (0,1)3C >0Vx € X & v,(x) < Cof (x)v!~?(x).

Remark 3.3 The previous conditions are inspired by and closely related to the linear
topological invariants (DN) and ($2) for Fréchet spaces [29].

Next, we consider weight systems on RY. We write f (1) = f(=1) for reflection about
the origin. Given a weight function system % on R?, we write ¥ = {7 | » € (0, 00)}.
We consider the following conditions on a weight system 7% on R?:

(WM) VAdu <A23C >0Vx € RY . Sup|y|<i v (x +y) < Coy(x);
(WM} Ve ar > p3C > 0Vx € R? : supj, < vi(x +y) < Cvu(x);
(M) VA3u,v<A3C>0Vx,yeR? : v (x+y) < Cvy(x)vy(y);
(M} Vu,v3r > p,v3IC >0Vx,yeRY : vy (x +y) < Cv,(x)vy (3);
(N) VA3u < : v/v, € LY
(N} Vuw3r>p @ v/, € LY
S) VA, uIv < i, nu3dC >0Vx € R4 : v, (), (x) < Coy(x);
{S} VvIr, u>v3IC >0Vx e R?: v, () v, (x) < Coy(x).

Notation 3.4 We employ [wM] as a common notation for (wM) and {wM}. A similar
convention will be used for other notations. In addition, we often first state asser-
tions for the Beurling case followed in parenthesis by the corresponding ones for the
Roumieu case.

Clearly, [M] implies [wM]. A simple induction argument shows that [wM] yields
that

Va>0VA3Ir <i(Va>0VA 3Ir>)N)
3C >0Vx eRY : sup vy (x +y) < Cop(x). (3.1)

[y|<a

By using the above formula twice, we obtain that [wM] implies that

Va>0VAax <avu/ 3p<p (Va>0VA 3IA>AvVudu >w
u+y) CU)J(X)

3C > 0Vx e RY : < )
lyl<a V(X +¥) vy ()
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Weighted (PLB)-spaces of ultradifferentiable functions... 37

Consequently, [wM] and [N] imply that

VA <A (Ve dr>p) - u) (3.2)
|x|—o00 U,L(x)
and
, v (k)
Va>0VA3u <A (Ma>0Vpdrzp : > © <% (3.3)
v
keazd M

We refer to [9] for more information on these conditions.
We end this section by discussing the above conditions for two classes of weight
systems on RY. Given a weight function w, we define

¥, = {7 | A € (0, 00)).

Lemma 3.5 Let w be a weight function. Then,
(i) Y, satisfies [M], [N] and [S].
(ii) ¥, satisfies (DN). .

(iii) ¥,, does not satisfy ().

Proof

(i) Condition [M]is a consequence of (2.1), [N] follows from () and [S] is clear.
(ii) This is obvious.

(iii) Since w(t) — oo ast — 00, (5) for ¥, would imply that

1 6 1-90
YiIp=rVv>=puVoe0,1) : — < -+ ,
n A v
which is false. o
Given a weight sequence M, we define
1,
Yy = {e“’M(A ) | A € (0, 00)}.
Lemma 3.6 Let M be a weight sequence. Then,
(i) Vuy satisfies [M].
(ii) Yy satisfies [N] if and only if M satisfies (M.2)'.
(iii) Vi satisfies [S] if and only if M satisfies (M .2).
(iv) Yy satisfies (DN).
(v) Y satisfies (Q) if and only if
3C >0VN € Zy 3Apo € ZL ¥p = po : myp < Cmyp. 3.4
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38 A. Debrouwere, L. Neyt

Proof

(i) Since wy is increasing, we have that forall H > Oand x, y € R4
op(H((x +y)) < on(2H max{lx|, [y]}) < om(2Hx) + om(2HY).

This implies that ¥}, satisfies [M].
(ii) This is shown in [9, Lemma 3.3].
(iii) This follows from [22, Proposition 3.6].
(iv) Forall H > 0 and 6 € (0, 1) it holds that

P 1/(1=0) z\p
oy (H1) = sup (910g (lMM°> +(1—6)log (M))

peN P M,

<oy () + (1 — Oy (HV=),

for all + > 0. This shows that ¥}, satisfies (DN).
(v) We denote by m the counting function of the sequence (mp)pez, , i.€.,

m(x) = Zl, x> 0.

mp<x

Then, [22, Equation (3.11)]

t
wp (1) :/o m(x)dx, t>0.

X

Hence, ¥ satisfies (6) if and only if

Kt m(x) Ht m(x)
VH >03K < HVL <K : dx =0 dx ), 3.5)
L L

t X t X

while (3.4) holds if and only if
AC > 1 : m(x) = o(m(Cx)). 3.6)
We now show that (3.5) and (3.6) are equivalent. First assume that (3.5) holds. Let

& > 0 be arbitrary. Condition (3.5) with H = 1 and L = K /e implies that for ¢ large
enough

Kt

m(x) L om(x)
m(Kt/e) < / dx < 8/ dx < elog(e/K)m(t),

Ktje X Ktje X

whence (3.6) holds (with C = ¢/K). Conversely, assume that (3.6) holds. Let H > 0
be arbitrary and set K = H/C. Fix L < K. Let ¢ > 0 be arbitrary. Condition (3.6)
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Weighted (PLB)-spaces of ultradifferentiable functions... 39

implies that for all ¢ large enough

Kt Kt Ht Ht
/ m(x)dx < e/ m(Cx)dx = s/ m(x)dx < sf m(x)dx,
Lt X Lt X LCt X Lt X

whence (3.5) holds. O

Example 3.7
(i) Consider the weight sequence M = ((log(p + €))*?) pen, s > 0. Since M is
log-convex and satisfies (M.2), we have that 0 < SuppeNmp/Mlly/p - 0.
Hence, there is C > 0 such that C‘l(log(p +e))* <m, < C(log(p +e))* for

all p € N. This implies that M satisfies (3.4).
(ii) A simple induction argument shows that (M.2)* yields that

VC >03N € Zy Apo € Zy ¥p > po : Cmp < mpp.

Therefore, any weight sequence satisfying (M.2)* does not satisfy (3.4). In particular,
the Gevrey sequence p!*, s > 0, does not satisfy (3.4).

4 Gelfand-Shilov spaces and time-frequency analysis

Let w be a weight function. For # > 0 and a continuous function v : R — (0, 00)
we define S;"’h as the Banach space consisting of all ¢ € C*°(R?) such that

lgll gon == sup sup |o@ (O)]v(x) exp (——¢> <h|a|)) < 00.

aeNd xeRd

Let 7 be a weight system (on R?). We define the Gelfand-Shilov spaces of Beurling
and Roumieu type as

(@) ._ h {o} ._ h
S(,U;) = hm S,‘J‘Z , S{;}} = hm ngl .

h—>0+ h%oo
Then, S((‘;)) is a Fréchet space and S{{;j}} is an (L B)-space. Following Notation 3.4,
we employ 8[7/] as a common notation for S ((f;’/)) and S {{;j}} If 7 satisfies [wM], then
[w]
Sty
all p € [1, oco]. We refer to [9] for more information on S leen another weight

is translation-invariant. If ¥ satisfies [N], then 8[1/] C L' NnL>® c LP for

[w]
function 7, we write 8[,7 S[y/]

Let M and A be two weight sequences. For 1 > 0 we define S%}lh as the Banach
space consisting of all ¢ € C*®(RY) such that

B @

X X

lglgys = sup sup YL
,BeNd xeRd P Mo Ajp|
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We define
M) . M,h M} ._ 1 M. h
S(A) = Lin S S{A} = IEQ San-
h—0t h— o0

Then, S(%) is a Fréchet space and S{{ﬁ/[}} is an (L B)-space.

Lemma 4.1 Let M and A be two weight sequences. Suppose that M satisfies (M .2)
and (M .2)*. Then, S[[%] = S[[;j:”]] as locally convex spaces.

Proof This follows from Lemma 2.2 and the fact that for all 4 > 0
( 1 | |)< | |xP - <1| |> <RI
oA | —|x]) < sup log ——— <wa | —|x] ), X .
A\ Van 5615:1 ® WAL h

Letr,s > 0. We write

ra_ o) _ ot
=S _S(

o ol ol
oy = Sy Sy = S =S

{ p!s l‘l /s } ’

for the classical Gelfand-Shilov spaces [15]. In particular, Ef is the test function space
of the Fourier ultrahyperfunctions [31] and S 11 is the test function space of the Fourier
hyperfunctions [20].

Remark 4.2 The space X} (S}) is non-trivial if and only if r +5 > 1 (r +5 > 1) (cf.
[15, Section 8]). Consequently, given a weight function w and a weight system 7, we

have that S[[;j]] # {0} if w(t) = O(tY/7) and

Va. 3k (Vh 3N : u(x) = O
forsomer+s > 1 (r+s > 1), as these conditions imply that X} C S((f;)) (S5 < S{{f‘y)}}).
In particular, if 7 is another weight function, S|t} # {0} if w(r) = O('/") and
n(t) = O(t'/%) forsomer+s > 1 (r+s > 1). Similarly, given two weight sequences
M and A, S{i # {0}if p" € M and p* C A forsomer +s5 > 1 (r+5 > 1).
In [10, Proposition 2.7, Proposition 4.3 and Theorem 5.9] Vindas and the first author

showed that S{4;! # {0} if and only if (log(p + €))” < A ((log(p + €))” C A).In

general, the characterization of the non-triviality of the spaces S[[fﬁ] and S[%] seems
to be an open problem.

Next, we introduce some tools from time-frequency analysis; see the book [16] for
more information. The translation and modulation operators are denoted by T f () =
f(t—x)and Mg f(t) = 28 £(1), for x, € € R?. The short-time Fourier transform
(STFT) of f € L*(R?) with respect to a window ¢ € L2(R?) is defined as

Vy £, 8) = (f, MeTey) 2 = /R S SOUE=x)e™ ™ dr, - (x,§) e R¥
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We have that [|Vy fll,2 = [I¥[l2]| f1l 2. In particular, Vy, : L>(R?) — L*(R*?) is
continuous. The adjoint of Vy, is given by the weak integral

ViF = // F(x,&)M:Tyydxds, F e L*(R*).
R2d
If y € L*(R?) is such that (y, ¥),2 # 0, then

1 .
WV; o VI/f = lsz(Rd) B (41)

The above reconstruction formula is the basis for the proof of part (a) of Theorem 5.1
below.

Next, we consider Gabor frames. Given a window ¥ € LZ(R9) and lattice param-
eters a, b > 0, the set of time-frequency shifts

G, a,b) == {M,Ti¥ : (k,n) € aZ? x bZ?}

is called a Gabor frame for L2(RY) if there exist A, B > 0 such that

2
Alflz. = Y. [Vyften)| <BIfI7..  feLl*®RY.
(k,n)eaZd xbZ4

We define the Wiener space W as the space consisting of all ¢ € L>(R?) such that

Z 1T Nl oo 0,174y < ©©-

nezd

Given a weight function w and a weight system ¥ satisfying [wM] and [N], we have
that 8[[;)/] C W. This follows from [wM] and the fact that for some u > 0 (for all
u > 0) we have that

Z 1

nezd Vu ()

(the latter is a consequence of (3.3) and the fact that v; > 1forall A > 0). Lety € W.
Then, the analysis operator

Cy = cj;" P LARY) — @z x LY, f > (Vg £k 1) gonyeazd oz
and the synthesis operator
Dy = Dy’ : 1*@Z! x bZY) — L*RY), (k) g myeazi xpze
= Z Ck,nMnTkw

(k,n)eaZd xbZ4
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42 A. Debrouwere, L. Neyt

are continuous [16, Proposition 6.2.2 and Corollary 6.2.3]. Given another window
y € W, we define

Sy i= Dy o Cy : L2 (RY) — L*(RY).

We call (¥, y) a pair of dual windows (on aZ¢ x bZ4) if Sy.y = 1dj2(gay. In such
a case, also S, y = isz(Rd) and both G(y, a, b) and G(y, a, b) are Gabor frames.
Pairs of dual windows are characterized by the Wexler-Raz biorthogonality relations:

Theorem 4.3 [16, Theorem 7.3.1 and the subsequent remark] Let v, y € W and let
a,b > 0. Then, (, y) is a pair of dual windows on aZ® x bZ® if and only if

1 1
(M T, My Tioy) 12 = (ab) 8 w8y (kym), (k') € ~Z% x ZZd’
a

or, equivalently,
1 cl/a1/b

1/a,1/b __
_(ab)d v ODV =id

12($de%2d)‘ 4.2)

The proof of part (b) of Theorem 5.1 below is based on the formula (4.2). For it to be
applicable in our context we need that, given a weight function w and a weight system
Y,y e S[[fZ]] and y € S[[f}]]. Hence, we introduce the following general notion:

Definition 4.4 Let w be a weight function and let ¥ be a weight system. The space
S[[;j]] is called Gabor accessible if there exist { € S[[,‘;,]], y € S[[f}]] and a, b > 0 such

that (y, y) is a pair of dual windows on aZ¢ x bZ<.

The regularity and decay properties of pairs of dual windows is a well-studied topic in
time-frequency analysis; see [16, Chapter 13] and the references therein. We now use

such results to give growth conditions on @ and ¥ which ensure that S[[f;]] is Gabor
accessible.

Proposition 4.5 Let w be a weight function and let V' be a weight system. Then, S[[f;]]
is Gabor accessible if one of the following two conditions is satisfied:

(i) w is non-quasianalytic.
(ii) w(t) = o(t?) and VA Yh : v(x) = 0E"*) (w(t) = O(?) and Vh 3
v.(x) = 0 (")),

Proof Theorem 4.3 implies that if (v, y) € W(R) is a pair of dual windows on
aZ x bZ,a,b > 0,then (Y @ ---Q V¥, Yy @ ---®y) C W(Rd) is a pair of dual
windows on aZ? x bZ?. Now assume that (i) holds. Then, there exists a function
Y : R — R with supp ¥ C [0, 2] such that

1
sup sup [P (x)|exp (—ﬂ*(hp)) <
peNxe€[0,2]
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forall A > 0 and

> Ty =1.

keZ

Fix 0 < b < 1/3. Define
y(x) =by(x)+2by(x+1), xekR

In [7, Theorem 2.2] it is shown that (¥, y) is a pair of dual windows on Z x bZ. By
the remark at the beginning of the proof, we obtain that (Y @ - - - @Y, y ® - - ® y) C

[[;j]] (R N Slw] (RY) is a pair of dual windows on 74 x bZd Next, assume that
1/2

(ii) holds. Thls condltlon implies that S, 72 (RY) C S[[f‘;/]] (RN N S[[;}] (R9). Hence, it
suffices to show that S,/ 12 (Rd ) is Gabor accessible. Moreover, by the remark at the
beginning of the proof it is enough to consider the case d = 1. Set Y (x) = e~ 7 XZ,
x € R. Then, ¥ € S1 ” (R) and Janssen [19, Proposition B and its proof] showed that

for all a, b > 0 with ab < 1 there exists y € 81/2 (R) such that (¢, y) is a pair of
dual windows on aZ x bZ (see also [4, p. 273]). O

Next, we discuss the Gabor accessibility of the spaces 8[[,"”]] and S[%]

Proposition 4.6 Let w and n be two weight functions. Then, S ] is Gabor accessible
if one of the following two conditions is satisfied:

(i) w or n is non-quasianalytic.

(ii) w(t) = o(t?) and n(t) = o(t?) (w(t) = Ot?) and n(t) = O(t)).

Proof If w is non-quasianalytic or (ii) is satisfied, the result is a direct consequence of
Proposition 4.5. Now assume that 1 is non-quasianalytic. Since the Fourier transform

is an isomorphism from S[[ | onto S[[Z)% and (¢, y) C S is a pair of dual windows on
aZ4 x bZ4, a, b > 0 if and only if ({ﬁ\, ) is a pair of dual windows on bZ4 x azd
(as follows from Theorem 4.3 and Plancherel’s theorem), the space S[[;”]] is Gabor

accessible because S[[a")% 1S SO. O

Proposition 4.7 Let M and A be two weight functions satisfying (M .2). Then, S[[%]
is Gabor accessible if one of the following two conditions is satisfied:

(i) M or A is non-quasianalytic.
(ii) p''V2 < M and p!'/* < A (p""2 ¢ M and p!'/? Cc A).

Proof If M is non-quasianalytic or (i7) is satisfied, the result can be shown in the same
way as Proposition 4.5. Now assume that A is non-quasianalytic. Since the Fourier
transform is an isomorphism from S[%] onto S[[;}]], the result can be shown by using

the same argument as in the proof of Proposition 4.6. O
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Proposition4.8 Letr,s > 0. Then, X} (S;) is Gabor accessible if max(r,s) > 1 or
min(r, s) > 1/2 (max(r, s) > 1 or min(r, s) > 1/2).

Proof This follows from Proposition 4.7. O

Finally, we would like to point out the following open problem.

Problem 4.9 Letr, s > 0. Is every non-trivial space S; Gabor accessible? This would
imply that every non-trivial space X} is Gabor accessible. If not, characterize the
Gabor accessibility of the spaces X} and S in terms of r and s.

5 Statement of the main results
Let o be a weight function and let 7 be a weight system (on R?). We define

() . : h {w}
2 = hm hm Si‘)/vh Z (= lim h_r)n ‘Sl/v

h—>0+ )L—>0Jr A—>oo h—00

Then, Zl[;’jlj is a (P L B)-space. The first main result of this article may now be formu-
lated as follows.

Theorem 5.1 Let w be a weight function and let ¥ be a weight system satisfying [M]
and [N]. Consider the following statements:

(i) ¥ satisfies (DN) ((Q)).
(ii) Z[[;j]] is ultrabornological.
(iii) 2\ is barrelled.
Then,
(a) IfSW] # {0}, then (i) = (ii) = (iii).
(b) IfS[[;j]] is Gabor accessible, then also (iii) = (i).

The assumption that S[[;}]] is non-trivial and Gabor accessible in part (a) and part (b)
of Theorem 5.1, respectively, should be interpreted as implicit growth conditions on
w and ¥ under which these results are valid. We refer to Remark 4.2 and Proposition

4.5 for explicit conditions on w and ¥ which ensure that S[[f;]] is non-trivial and Gabor
accessible, respectively.

Next, we discuss our results about multiplier spaces. We need some preparation
Given a weight function @ and a weight system ¥/, we denote by 8[7/] the strong

dual of 8[7/]. We write Cpyq for the space consisting of all f € C (R?) such that
sup,crd | f(x)]/va(x) < oo for some A > O (for all A > 0). Note that Z[[,C‘V)]] C Ciy

Lemma 5.2 Let w be a weight function and let V" be a weight system satisfying [WM]
and [N]. Suppose that S[[,wV]] # {0}. The mapping

Cryy = S e <(/) > /Rd f(x)go(x)dx) (5.1)
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is well-defined and injective. Consequently, we may view Cyy| as a vector subspace
/w]

of 8[7/] .

Proof Condition [N] implies that, for each f € Cyy,

oo = [ rmewar, v esfy),

is a well-defined continuous linear functional on S We now show that the mapping
(5.1) is injective. Let f € Cjy be such that (f, go) =0forall p € S[ly/]] Since the
space S[[;’/]] istranslation-invariant and non-trivial, there exists ¢ € S[[;’/]] withg(0) = 1.
Choose x € D(RY) with x(0) = 1. Set ¢ = ¥ and note that [p, w(x)dx =1 We
write ¥, (x) = n4 Y (nx) forn € N. Lemma 2.1 implies that(pw,, € S for alln € N.

Fix an arbitrary x € R, Since fTyp € C (Rd) N L°°, we have that
J@) = f0)e0) = (fTep)(x) = lim (fTx@) * Y (x) = lim (f, Te(@im)) =0

m}

Let w be a weight function and let 7 be a weight system satisfying the assumptions
of Lemma 5.2. The space 8 [f;’/]] is an algebra under pointwise multiplication and the
mapping S[[f;/]] xS[[f;’/]] ["V]’ (¢, ¥) = @-y is separately continuous. For f € 8/[“)]
and ¢ € S[w] we define ¢ - f € 8[7/] via transp0s1t10n ie,(p- fo¥):=(f,¢0- w)
fory € S Then the mapping S[ ] X S[/E;/”]] [7/], (¢, f) — @- f is separately

contlnuous. We define the multzpller space of S["//]]
Om(Sih) =1(f e S 19 f e Sy} forallp e S}

Fix f € Oy (S (2] ) The closed graph theorem of De Wilde and the continuity of the
mapping S[w] — S/[w @ — @ f imply that the mapping S[w] - Sy w] Lo o f
is continuous. We endow Oum (S[“V]) with the topology 1nduced by the embeddlng

Om (S = Lo(S L S, £ (00 1),
We then have:

Theorem 5.3 Let w be a welghtfunctlon and let V' be a welght [ystem satisfying [M],
[N] and [S]. Suppose that S ;é {0}. Then, Oy (8 as locally convex
spaces.

We end this section by discussing the structural and topological properties of the
multiplier spaces of S[[f;’]] and S[[%]. Given two weight functions w and 7, we write

[w] _ ~low]
Z[n] - Z[“//q]'
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Theorem 5.4 Let w and n be two weight functions. Suppose that S[[:]‘j] # {0}. Then,
Ou (S[[;”]]) = Z[[;;j] as locally convex spaces. Moreover,

(i) Oy (S((;;)) is ultrabornological.

(ii) If S{{;‘)}} is Gabor accessible, then Oy (S{{;)}} ) is not ultrabornological.

Proof This follows from Lemma 3.5, Theorems 5.1 and 5.3. O

We refer to Proposition 4.6 for conditions on @ and n which ensure that S {{;)}} is Gabor
accessible.
Let M and A be two weight sequences. For i, A > 0 we define Z % ’Ah as the Banach

space consisting of all ¢ € C*°(RY) such that

@me )

l@ll zmn := sup sup < 0.
Ad aeNd xeRd h‘alM\Od
We define
M) . g . M.,h My . . . M,h
2y = 1(1r_n 11‘} Za5 2y = Lln h_r)n Zah -
h—0t A—071 A—00 h—00

Then, Z{}{! is a (P LB)-space.

Lemma5.5 Let M and A be two weight sequences. Suppose that M satisfies (M .2)

and (M .2)*. Then, Z[%] = Z[[,%V’]] as locally convex spaces.

Proof This follows from Lemma 2.2. O

Theorem 5.6 Let M be a weight sequence satisfying (M .2) and (M .2)* and let A be a

weight sequence satisfying (M .2). Suppose thatS[%] # {0}. Then, Oy (S[%]) = Z[[%]

as locally convex spaces. Moreover,

(i) Oym (S((%)) is ultrabornological.

(ii) If A satisfies (3.4), then Oy (S{{%}) is ultrabornological. If S{{XI}} is Gabor acces-
sible, the converse holds true as well.

Proof In view of Lemmas 4.1 and 5.5, this follows from Lemma 3.6, Theorems 5.1
and 5.3. |

We refer to Proposition 4.7 for conditions on M and A which ensure that S{%} is
Gabor accessible.

Theorem 5.7 Letr,s > 0be suchthatr+s > 1 (r+s > 1). Then, Oy (X)) = Z((]’:!!Sr))

(Om(S5) = Z{{II:,Y: }} ) as locally convex spaces. Moreover,

(i) Om(Xy) is ultrabornological.
(ii) Ifmax(r,s) > 1 ormin(r, s) > 1/2, then Oy (S)) is not ultrabornological.

Proof This follows from Proposition 4.7 and Theorem 5.6. O
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6 Weighted (PLB)-spaces of continuous functions

Let X be a topological space. A double sequence A = {ay , | N, n € N} consisting of
continuous functions ay , : X — (0, oo) is called a weight grid on X if ay ,41(x) <
an.n(x) < ans1a(x) forall x € X and N,n € N. Following [1], we introduce the
following two conditions:

Definition 6.1 A weight grid A on X is said to satisfy condition (Q) if

VNIM>NanVK >MVm>nVe>03k>m3IC >0Vx € X :
1 e C

< + .
apm(x) ~ aya(x)  agx(x)

If “Ve > 0" is replaced by “Je > 0", then A is said to satisfy condition (w Q).

For a continuous function v : X — (0, co) we denote by C,(X) the Banach space
consisting of all f € C(X) such that || f|l, = sup,cy |f(x)|v(x) < oo. Given a
weight grid A4 on X, we define the (P L B)-space

AC(X) := lim lim Cqy, (X).
NeNneN

We now give two results from [1] that will play an essential role in the proof of Theorem
5.1.

Theorem 6.2 [1, Theorem 3.5] Let A be a weight grid on X. If A satisfies (Q), then
AC (X)) is ultrabornological.

Theorem 6.3 [1, Theorem 3.8(2)] Let A be a weight grid on X. If AC (X) is barrelled,
then A satisfies (w Q).

Let X and Y be two topological spaces. Let ¥ be a weight system on X and let %
be a weight system on Y. We define the following weight grids on X x Y

V1N
Wi/n

Wp
Ay 5:{ |N,nEN}, Ay oy :Z{EIN,neN}.

The following result is inspired by [29, Theorem 4.2 and Theorem 4.3].

Lemma 6.4 Let w be a weight function and let ¥ be a weight system on a topological
space X. Then,

(a) The following statements are equivalent:

(i) Acy, vy on R? x X satisfies (Q).
(ii) Ay, vy on R? x X satisfies (w Q).
(iii) V satisfies (DN).

(b) The following statements are equivalent:
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(i) Ay v, on X x R? satisfies (Q).
(ii) Ay 9,y on X x RY satisfies (w Q).
(iii) V satisfies (Q).
Proof We only show (a) as (b) can be shown similarly. The implication (i) = (ii) is

trivial. Next, we show (ii) = (iii). Condition (w Q) implies that there exists H > 0
such that

MV <A <pdC>0VxreXVr>0: v, §C<vx(x)eHw(t)+v:—(::))>.
e

Since w(0) = 0, w is continuous and w(t) — oo as t — 00, we obtain that

IV <A <pu3iC>0Vxe XVr>0: vu(x)§C<vA(x)rH+U"_(x)).
r

By calculating the minimum for r > 0 (with x € X fixed) of the right-hand side of
the above inequality, we find that

e 1)IVe <rFv<pdIC>0VreX : v,x) < Col )0 x).
An induction argument now shows that 7 satisfies (DN). Finally, we show (iii) = (i).
Let N € N be arbitrary and set M = N + 1. Since ¥ satisfies (DN), there isn € N
such that

Vm >nV0 € (0,1) Ik >m3IC >0Vx € X : vy/m(x) < CU?/n(x)v}/—,f(x). (6.1)

Let K > M, m > n and ¢ > 0 be arbitrary. Set0 = (K — N —1)/(K — N) € (0, 1)
and note that M = ON + (1 — 0)K. Choose k and C as in (6.1). Then,

vim() (svun(x))@ ((Ce—9>1/<1—9>v1/k(x>>1_9

eMa)(l) - er(t) eKa)(t)

IA

Ul/n(x) —0\1/(1-6) Ul/k(x)
max {8 er(t) s (CS ) eKTf)

_ &Vn (x)  (Ce=HV =Dy 4 (x)
eNo) Kol ’

forall+ > 0 and x € X, whence Ay, v satisfies (Q). O

7 Proof of the main results

The proof of part (a) of Theorem 5.1 is based mapping properties of the STFT on
Z[[;‘j]]. We start with the following three general results:
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Lemma 7.1 Let w be a weight function. Let v; : RY — (0,00), 1 = 1,2,3,4, be
continuous functions such that

v(x +1) < Covi (X)W(r), x,teRY,

for some Co > 0 and v4/v3 € L. Leth; >0,i =1,2,3, be such that

1

1
——————¢*(max{hy, h3}(y + 1)) + (logv/d)y < —¢*(hay) +1ogCy, y >0,
max{hy, h3} ho

for some Cy > 0. Let y € S ha . Then, the mapping

y SOt — ¢ R

e 2

is continuous.

Proof Lety € Syy 1 pe arbitrary. Forall y > 0 and (x, &) € R*? with |&| > 1 it holds
that

€)Y Vyo(x, S)lvz(x)
< max \/_ [E%Vyp(x, £)va(x)

Ia\—

< max (f /h)'“'Z( )vz(x) f P Oy Pt — x)|de

la|=Ty
B=a

< Co max (f d/2m)"! Z( ) / POy @ = x)lua(t — x)de
R

p<a

< Collgll g 1l o 1ua /w311
U]

1 1
x max (/2 ) ( )exp <h—¢*(hllﬂ|) + " (sl — ﬂl))
lee|=Ty1 e 1 3
< VAColill gon 11| gors llva/v3] 1
V] v3
1
x exp | —————¢*(max{hy, h3}(y + 1)) + (log Vd)y
max{hy, h3)
1
< VACoClI@ || gom 11| oty llva/v3 1l 1 exp (h—¢*(h2y>) :
vl v3 2
Hence,

Vo, ©)lv2(6) < VACOC gl o 1V gorts 4 /03111 inf
v| v3 y>0

1
exp (h—2¢*(h2y) — (log IEI)y>
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1
—py;0 ()
= VACoC1 Il gy 17| g 1va /w3 e 72,
vl v3

For all (x, £) € R* with |&| < 1 we have that

1 1
Vyo(x, ©)lu2)e”® < eV ) Ad oI (& — x)|dr

L)

= Coe™2 @l gon IV 1l g l1va/v3ll L1
1 3

This shows that Vy, : Sfj)l’h‘ —-C Lo (R}%dé) is continuous. O
1®e 2 ’

Lemma 7.2 Let w be a weight function. Choose Cq, L > 0 such that
w(2nt) < Lo(t) + log Co, t > 0. (7.1
Letv; : RY — (0, 00), i = 2,3, 4, be continuous functions such that
v +1) < Clus(x)(t), x,teRY, (7.2)
for some C1 > 0. Let h; > 0,1 = 1, 2, 3, be such that

1

1
——————¢*(max{hy, h3}y)+(og2)y < —¢*(hay)+logCz, y =0, (7.3)
max{hy, h3} hy

for some Cy > 0. Then, there is C > 0 such that

L
IMe Tl o < Cll Il o va)e T (x, ) € R,
v v3

forall y € 8.

Proof Let ¢ € S&% and (x, £) € R be arbitrary. For all @ € N and 1 € RY it
holds that

|(MeToy)® (Do) < Y (g><2n|s|>'ﬂ'|w<“—ﬂ)<z — x)[va()
B=a

< Croa(x) ) (Z) QgD Py =P — )3t — x)

B=a

< Clllyll s va() 3 (;)

B=a

1
exp ((10g27TI§|)|/3| - h—1¢>*(h1|/3|)>
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1 1
X exp <h—3¢*(h3|a - BD+ —1¢*(h1|ﬁ|))

=G ”‘:”” » h; U4(x)ehl o (27§)

X exp <m¢ (max{hy, h3}la]) + (10g2)|a|>

EoE L,
§C0C1C2||1ﬂ||53hsv4(x)€‘ exp h—2¢ (h2la]) ).

This shows the result. O

Lemma 7.3 Let w be a weight function. Choose Cy, L > 0 such that (7.1) holds. Let
Vi - RY — 0,00), i = 1,2, 3,4, be continuous functions such that (7.2) holds for
some C1 > 0 and vq/v) € L. Leth; > 0,i = 1,2,3, be such that (7.3) holds for
some Cr > 0. Let y € Sfj;’h3. Then, the mapping

Vi€ SR — soh

vi®e
is continuous.
Proof This follows from Lemma 7.2. O

Given a weight function @ and a weight system #’, we define

2d \ . 1: : 2d

Cz;;g(Rx,s) = lim lim C, o (RY),
h—0t A—=01t U

z (st) lim lim cl® ,(R%).
)»—)oohaoo )

We then have:

Proposition 7.4 Let w be a weight functlon and let V' be a weight system satisfying
[M] and [N]. Let ¢ € S[[,z andy € S[ ~ . Then, the mappings

. zlo] 2d ® . zlol
Vy i 25y = Czia RED), V) Cat (RY) —~ 27
are continuous. Moreover, if (y, ¥)r2 # 0O, then
! V \% id (7.4)
o = 1d s[o] . .
oz 7T A

Proof Tt suffices to show that

Vh 3k VA I (Y IAVEk 3h) 0 Vy Si‘)/’f_A - C 1 ek (R ) is continuous,

n
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and

1 3 (u
U

Vh 3k Va3 (Y IAVk3h) 1 V) C (R §) — S]/U is continuous.

By Lemma 2.1 and the fact that ¥ satisfies [M] and [N], this follows from Lemma 7.1
and Lemma 7.3, respectively. We now show (7.4). Let ¢ € Z be arbitrary. Since ¥

satisfies [N] and w satisfies (), the continuous functions <p_T 1// and Vy@(x, -), with
x € R4 fixed, both belong to L'. As Vyo(x, &) = F(eT¥)(§), we obtain that

/ / Vyo(x, &)Mg Ty y (t)dxdé = / ( / Vyo(x, £)e*™ s ‘ds) Tyy (r)dx
R2d RY \JR4

— (1) /R LTy 0dx = (7, 92000

forall t € RY. o

Lemma7.5 Letw bea wel[ght ﬁmctlon and let V" be a weight system satisfying [WM].
fS[“’] # {0}, then also S| e 57 L] | #{0).

Proof Since the space S[[;i]] is translation-invariant and non-trivial, there exists ¢ €

S[) with ¢(0) # 0. Then, ¥ = ¢ € S5}, N S[[f;] and ¥ (0) = ¢2(0) # 0. o

Proof of part (a) of Theorem 5.1 The implication (ii) = (iii) holds for any locally

convex space. We now show (i) = (ii). By Lemma 7.5, there exists ¥ € S[[“;]]
S[[;‘;]\{O} Proposition 7.4 (with y = ) implies that Z[“//] is isomorphic to a comple-
mented subspace of C (Rz ). Note that

Cze R3%) = Ay, v CRE), z (R2 W) = Ay, CR).

Hence, C Z[w] (]R ) is ultrabornological by Theorem 6.2 and Lemma 6.4. The result
3

now follows from the fact that a complemented subspace of an ultrabornological space
is again ultrabornological.

The proof of part (b) of Theorem 5.1 is based on the mapping properties of the analysis
and synthesis operator on Z[[f;’]]. Given a weight function w, a weight system 7" and
a,b > 0, we define

(aZ X bZd) = hm llm C, %w(afo be?),
h—>OJr )\—>0+ Ui 7 8
(azd x bZ{) := lim lim C Lg 1, (aZ{ x bZY).

A—)oo h—>oo U

Z(w)
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Proposition 7.6 Let w be a weight function, let ¥ be a weight system satisfying [M]
and [N] and leta,b > 0. Let € 8[[5;}]] andy € S[[;;]. Then, the mappings

ab . o] d d b . d d [w]
CW : Z[y/] — CZ[[fZ]J(aZX X bZé), D‘; : CZl[;;]J(aZx X bZS) — ZW/]

are continuous. Moreover, if (W, y) is a dual pair of windows on aZ4 x bZ¢, then

1 C]/a,l/b o D}l,/a’l/b —id

G (7.5)

1 1rpd *
C i (324x327)
71
Proof Tt suffices to show that

Vh 3k Va3 (Y IAVk 3h) 0 CYP STy — €1, (a@Zd x bZ{) is continuous,
A %@ghw X &

m

and

Vh 3k Va3 (Y IAVE 3h) 0 DEPC |y (aZd x bZE) — 5;”/’5 is continuous.
E@ek "

By Lemma 2.1 and the fact that ¥ satisfies [M] and [N], the first statement follows
from Lemma 7.1 while the second statement follows from Lemma 7.2 together with
(3.3) (cf. Lemma 7.3). Since, by (3.2), the set of finite sequences on aZf X ng is

dense in C Zlo] (afo X bZ‘g ), the identity (7.5) follows from Lemma 4.3. O
1

Proof of part (b) of Theorem 5.1 As S[[;)/]J is Gabor accessible, Proposition 7.6 implies

that there are a, b > 0 such that Cz[w] (%Zﬁ X %Zg’) is isomorphic to a comple-
]

mented subspace of Z[[;j]]. Since a complemented subspace of a barrelled space is

again barrelled, we may conclude that C lo] (éfo X %Zg) is barrelled. Note that
]
IZd lzd =A IZd lzd
Czo \ g% X % ) = AvizinianC | 5% * ;2 )
1

1 d 1 d 1 d d
CZ((;)} <(_IZX X EZE> = A{'V%Zd»/y/w'%Zd}C <(_IZX X EZE .

Hence, A(n,/w‘ 174 y\174) (A{ﬂ,/l 174 4, %Zd}) satisfies (w Q) by Theorem 6.3. Properties
(2.1) and (3.1) imply that then also Ay, ) (A{«//,y/w}) satisfies (w Q). The result now
follows from Lemma 6.4. O

Finally, we show Theorem 5.3. We need various results in preparation.
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Lemma 7.7 Let w be a weight function. Let v; : RY — 0,00), i = 1,2,3, be
continuous functions such that

v (x) < Covi(X)v3(x), x €RY,

for some Co > 0. Let h; > 0,1 =1, 2, 3, be such that

1

1
——————¢"(max{hy, h3}y) + (log2)y < —¢*(hay) +1logC1, y =0,
max{hy, h3} ho

for some C1 > 0. Then, the mapping
Sl‘fl’h1 X Sl‘)‘;’h3 — Sf)‘)z’hz, (o, V)= @Y
is continuous.

Proof Let ¢ € 82 and ¢ € 82" be arbitrary. For all « € N¢ and x € R it holds
that

|(@y) @ () v2(x)
<Gy (Z)w(ﬂ)(x)wl(xnw(“‘ﬁ) () v3(x)

B=a

o r ., r .,
< Co||<Pllszol.h1 IIIPIISIaghg Z <’3) exp (Ed) (h1lBD) + E(ﬁ (h3la — ﬂl))

B=a

< Collglgom 11 ot exp ( ¢* (max{hy. hala) + <log2>|a|)

max{hy, h3}
1
< C0C1”§0”85’1~h1 IIWIISﬁhs exp (Eq)*(hzlal)) .

This shows that the mapping Sf)”l’h] X Sf,’;’h3 — Sf,‘;’hz, (¢, ¥) — @ - is continuous.
O

Next, we extend the STFT and its adjoint to S, /E;) I Given a weight function w and a
weight system ¥ satisfying [M] and [N], we define

2d N . 13 2d
CSEE;}’))(RXf) = h_r)n CL®6*%M(RX§)’

h—0t Vh
2d N . 15 2d
C3££;>)(Rx,g) = l(ln CL@,E*%‘U(RLQ'
h—o00 Vh

The STFT of an element f € S[’[;’]] with respect to ¢ € 8[[5‘;/]] is defined as
Vy @, 8) = (f MeToy), (v, 6) e R¥.
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We define the adjoint STFT of F € C /[a)] (R E) with respectto y € S[ 7] as

(VIF,¢) = (F,W>://RMF(x,g)vw(x,—g)dxds, <pes[[f;]].

Proposition 7.8 Ler w be a weight functton and let V" be a weight system satisfying
[M] and [N]. Let ¢ € S[[ andy € S[ 77 Then, the mappings

. ¢/lw] 2d . 2d o]
Vy . S[Y/] — CS[/[;/H]] (Rx)g), Vy : CS[’[;’]] (Rx,é) = Spy
are continuous. Moreover, if (y, V)2 # 0O, then
! VioV, id (7.6)
_ o =1d o] . .
oz 7T S

Proof By Lemma 2.1 and the fact that 7 satisfies [M], Lemma 7.2 implies that
Vy - S{/E;f}} — C w) (Rx E) is continuous and that Vy, : S(/E;U)) - C S(’Eﬁ”) (Rﬁflg)
maps bounded sets mto bounded sets. Since S/ R 1/) is bornological, we obtain that also

Vy - SEE;”)) — C ,@J) (R é) is continuous. Next, we treat V* We define

2d N . 1 2d 2d N . 1 2d
Cg((;’))(Rx,E) = l(ln th®e%“’(Rx’§)’ CS{(;j)}(RX,S) = h_r)n th®e%w(Rx’$).
h—0t h— o0

We claim that the mapping
Sl — Cool R2), ¢ > Vyp(x, —§)
17 S Bag) @ 7 Vy@tx, =),
is continuous. It suffices to show that

Vh 3k (Vk 3h) : S,‘j’k’k — C b (]R2 ‘6), ¢ = Vyo(x, —§) is continuous.
U

By Lemma 2.1 and the fact that satisﬁes [M] and [N], this follows from Lemma 7.1.
Hence, the continuity of V;‘ : /[w] (R ) — 8[7/] is a consequence of the continuity

of the mapping
2d 2d
Capy B2 = Cn @y, £ (100 [ [ P pana )

Finally, we show (7.6). The Hahn-Banach theorem and the fact that S [f"y]] is reflexive

(asitis nuclear [9, Theorem 5.1]), imply that L2 is dense in 8/[“’ Hence, (7.6) follows
from (4.1). O
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We also need the following result about the projective description of C (RZdS)
Lemma 7.9

(i) Let ¥ be a weight system satisfying [WM] and [N]. Set

V) :={v: R? — (0, 00) continuous | sup v(x)v,(x) < oo forall A > 0}.
xeRd

Then,

2d
Z(w) (Rx ) = l1m hm C ®e%w(Rx’§).
h—>0+ UGV(V)

(ii) Let w be a weight function. Set
Vo = {0 : [0, 00) — [0, 00) weight function | ¢ = o(w)}.
Then,

Z(a) (RX 5) = hm hm C1 e“(R )

A—)oo aeV
Proof In view of [3, Theorem 1.3], (i) follows from (3.2) and [3, Proposition, p. 112,

and its proof] and (i7) follows from [6, Lemma 1.7 and Remark 1.8]. O

Proof of Theorem 5.3 We first show that Z[[;j]] is continuously included in Oy (S[[;‘j]]).
To this end, it suffices to show that

Vh 3k VYA I (Y AN VK 3h) - S“’ Mo Si‘)/f — 8" (¢, ¥) > ¢ - ¥ is continuous.

v

By Lemma 2.1 and the fact that ¥ satisfies [S], this follows from Lemma 7.7. Next,
we show that Oy (S [o] ) is contlnuously included in Z["V] By Lemma 7.5, there exists

x € S[‘”] N 3[“’] \{0} Set ¥ = S[[‘;] 3[[4”;]]\{0}. Proposition 7.4 and the
reconstructlon formula (7.6) (with w = y) imply that it suffices to show that the
mapping

Vy : On(S[) — C g (RYY)
is continuous. We start by showing that
Vy f(x,€) = / (TP) - @O dr, (x,8) e RY,
R4
forall f e (’)M(S[w]) As ¥ = x2, we have that

Vy fx,8) = (f, MeToyr) = (f, (Mg T x) - (Tix)) = (TiX) - f, (Mg T x))
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2/ (T30 - HOTx (e 78 dr = / (T9) - )@)e 2 5 dr
R4 R4

for all (x, &) € R??. In the rest of the proof we treat the Beurling and Roumieu case
separately. We first consider the Beurling case. By Lemma 7.9(i), it suffices to show
that for all 4 > 0 and v € V() there is a bounded subset B C S((f;)), n > 0 and
k, C > 0 such that

v, <Cs N ok € Oy (S, 7.7
Vil g o S €5l Fllggs. € OuS) (7.7)

Set
B = {T yv(x) | x € R}

We claim that B is a bounded subset of S((;})). Let 4, A > 0 be arbitrary. Condition
(M) yields that there are k, v < A and C > 0 such that v, (y) < Cv,(y — x)v, (x) for
allx,y € R4, Hence,

sup || 7% WU(x)IISwh = sup sup sup [ (y — x)|vi(y)exp (——d) (h|a|)> v(x)

xeRd xeR4 aeN9 yeRd

<C ||1ﬁ||8mh sup v(x)vy(x) < oo.
xeRd

Next, choose (4 > 0 such that 1/v,, € L' (as v;, > 1forall A > 0 this is possible by
(N)). By Lemma 2.1(i), there are k, C > 0 such that

1 1
97 (kG + 1) + (og Vdyy < 97 (hy) +logC. y=0.

Forall y > 0 and (x, £) € R?? with |£| > 1 it holds that

&1 IVy £ (x, §)|v(x)
< max «/_‘ v(x) |&

T lel=ly1

< max_(vd/Q2m))"v(x) / (T W) - 1)@ (0)]dr
le|=[y1 R4

" / (T W) - f)(t)e "5 ds
]Rd

1
< 11 /vullpr sup llg - fllgor max (vad/@r) exp (—¢*<k|a|>)
peB v Ja|=[y] k
1
< Vd|[1 /vl Sup 1« f ll g exp <z¢*(k(y + 1) + (log x/Z)y)
pe "

1
< VdC|[1 /vyl sup g - Sl gox exp (Fl’*(h)’)) .
eB Ui
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Hence,

1
Vg f(x, )lv(x) < VdC|[1/v, I Sup lle - fllgwA inf eXp( ¢ (hy)—(loglél)Y>

= dC|1/v I sup le - fllsore —ie®),

For all (x, &) € R2 with |&| < 1 it holds that

VoG Oete® < koo [ 1) Ho
R

1
Tw(l
< eFO 10,11l sup g - £l gos-
p€eB Ui

This shows (7.7). Next, we consider the Roumieu case. By Lemma 7.9(ii), it suffices

to show that for all 4 > 0 and o € V, there is a bounded subset B C S{{;j}},

continuous seminorm p on S {{f;)/}} and C > 0 such that

Vil Lo <Csupply-f).  fe Ou(S{5). (7.8)
pe
Set
T d}
R
{ nen €

We claim that B is a bounded subset of S{//} Let 4, u > O be such that ¥ € ng;h.
Condition {M} yields that there are v > A, u and C > 0 such that v, (y) < Cv,(y —
x)vy (x) for all x, y € R?. Hence,

Iy

v;.(x)

sup
xeRd

vy 1
— sup sup sup [P @(y — 0|2 ¢ (‘z"’*(”'““)

8o xeRd geNd yeRd UNES )
< C ||'lp||8m,h < OQ.
im

This shows that B is a bounded subset of S‘” ! and thus also of S {{1/}} Next, by Lemma
2.1(7), there are k, C > 0 such that

1, *
85 k(v + 1)) + (log Vdyy < ¢t(y) +1logC, vy > 0.

where ¢ denotes the Young conjugate of the function ¢, (x) = o (e*). Define

1
p(p) = sup o1 exp <——¢ (k|a|>) g eS8y

aeNd
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Then, p is a continuous seminorm on 8{{7“;}}. One can now show (7.8) in the same way
as (7.7) was shown in the Beurling case. O
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