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Abstract
We studyweighted (PLB)-spaces of ultradifferentiable functions defined via a weight
function (in the sense of Braun, Meise and Taylor) and a weight system. We charac-
terize when such spaces are ultrabornological in terms of the defining weight system.
This generalizesGrothendieck’s classical result that the spaceOM of slowly increasing
smooth functions is ultrabornological to the context of ultradifferentiable functions.
Furthermore, we determine the multiplier spaces of Gelfand-Shilov spaces and, by
using the above result, characterize when such spaces are ultrabornological. In partic-
ular, we show that the multiplier space of the space of Fourier ultrahyperfunctions is
ultrabornological, whereas the one of the space of Fourier hyperfunctions is not.
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32 A. Debrouwere, L. Neyt

1 Introduction

Countable projective limits of countable inductive limits of Banach spaces, called
(PLB)-spaces, arise naturally in functional analysis. Classical examples are the space
of distributions, the space of real analytic functions and the space OM of slowly
increasing smooth functions. In order to be able to apply functional analytic tools
such as De Wilde’s open mapping and closed graph theorems or the theory of the
derived projective limit functor [30], it is important to determine when such spaces
are ultrabornological. Note that this is a non-trivial matter as the projective limit
of a spectrum of ultrabornological spaces is not necessarily again ultrabornological.
The problem of characterizing when (PLB)-spaces are ultrabornological has been
extensively studied, both from an abstract point of view as for concrete function and
(ultra)distribution spaces; see the survey article [14] and the references therein.

In the last part of his doctoral thesis [17,Chap. 2,Théorème16, p. 131]Grothendieck
proved that the space OM is ultrabornological. He showed that OM is isomorphic
to a complemented subspace of s ̂⊗ s′ and verified directly that the latter space is
ultrabornological. Later on Valdivia [27] showed that in fact OM is isomorphic to
s ̂⊗ s′. A different proof of the fact thatOM is ultrabornological was given by Larcher
and Wengenroth using homological methods [23].

In this article we study weighted (PLB)-spaces of ultradifferentiable functions.
Our spaces are defined as follows. Let ω : [0,∞) → [0,∞) be a weight function
(in the sense of Braun, Meise and Taylor [6]) and set φ(x) = ω(ex ). Denote by
φ∗(y) = supx≥0{xy − φ(x)} the Young conjugate of φ. Let V = {vλ | λ ∈ (0,∞)}
be a family of continuous functions vλ : Rd → (0,∞) such that 1 ≤ vλ ≤ vμ for all
μ ≤ λ. We call V a weight system. We then consider the weighted (PLB)-spaces of
ultradifferentiable functions of Beurling and Roumieu type

Z(ω)

(V )
:= lim←−

h→0+
lim−→

λ→0+
Zω,h

vλ
, Z{ω}

{V } := lim←−
λ→∞

lim−→
h→∞

Zω,h
vλ

,

where Zω,h
vλ

denotes the Banach space consisting of all ϕ ∈ C∞(Rd) such that

‖ϕ‖Zω,h
vλ

:= sup
α∈Nd

sup
x∈Rd

|ϕ(α)(x)|
vλ(x)

exp

(

−1

h
φ∗(h|α|)

)

< ∞.

We useZ [ω]
[V ] as a common notation forZ(ω)

(V )
andZ{ω}

{V }. The first main goal of this arti-

cle is to characterize when Z [ω]
[V ] is ultrabornological through conditions on V . These

conditions will be closely related to the linear topological invariants (DN ) and (�)

for Fréchet spaces [29]. Following Grothendieck, the key idea in our proof is to com-
plement the spaceZ [ω]

[V ] into a suitable weighed (PLB)-space of continuous functions
and, vice versa, to complement a suitable weighted (PLB)-space of sequences into
Z [ω]

[V ]. Hereafter, we shall obtain the desired characterization by applying results from
[1] concerning the ultrabornologicity of such (PLB)-spaces. To achieve the first step,
we use tools from time-frequency analysis [16], specifically, the short-time Fourier
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Weighted (PLB)-spaces of ultradifferentiable functions... 33

transform and Gabor frames. Such techniques have recently proved to be useful in the
study of (generalized) function spaces; see e.g. [2,8,12,28].

Schwartz [25] showed that OM is equal to the multiplier space of the space S of
rapidly decreasing smooth functions, i.e.,

OM = { f ∈ S ′ | ϕ · f ∈ S for all ϕ ∈ S}.

Moreover, the natural (PLB)-space topology of OM coincides with the topology
induced by the embedding

OM → Lb(S,S), f �→ (ϕ �→ ϕ · f ).

The second main goal of this article is to obtain a similar result for a wide class of
Gelfand-Shilov spaces [9]. Given a weight function ω and a weight system V , we
define the Gelfand-Shilov spaces of Beurling and Roumieu type as

S(ω)

(V )
:= lim←−

h→0+
Sω,h

vh
, S{ω}

{V } := lim−→
h→∞

Sω,h
vh

,

where Sω,h
vh

denotes the Banach space consisting of all ϕ ∈ C∞(Rd) such that

‖ϕ‖Sω,h
vh

= sup
α∈Nd

sup
x∈Rd

|ϕ(α)(x)|vh(x) exp
(

−1

h
φ∗(h|α|)

)

< ∞.

We shall show that Z [ω]
[V ] is topologically equal to the multiplier space of S[ω]

[V ] . This
problem has been previously studied for Fourier (ultra)hyperfunctions [21,24,31] and
for general Gelfand-Shilov spaces of non-quasianalytic type [13]. Our main improve-
ment here is that we also consider the quasianalytic case and that, in contrast to the
aforementioned works, we obtain topological and not merely algebraic identities. Fur-
thermore, by using the above results, we are able to determine when such multiplier
spaces are ultrabornological. In particular, Theorem5.7 belowshows that themultiplier
space of the space of the Fourier ultrahyperfunctions is ultrabornological, whereas the
one of the space of Fourier hyperfunctions is not. We mention that analogous results
for convolutor spaces of Gelfand-Shilov spaces have recently been obtained by Vindas
and the first author [11] (see also [26]).

The structure of this article is as follows. In the preliminary Sects. 2 and 3 we
define and study weight functions, weight sequences and weight systems. In Sect.
4 we introduce Gelfand-Shilov spaces and discuss the short-time Fourier transform
and Gabor frames in the context of these function spaces. Our main results are stated
and discussed in Sect. 5. In the auxiliary Sect. 6 we review some results from [1]
about weighted (PLB)-spaces of continuous functions. Finally, the proofs of our
main results are given in Sect. 7. For this we study the short-time Fourier transform
and Gabor frame expansions on various function spaces.
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34 A. Debrouwere, L. Neyt

2 Weight functions and weight sequences

A non-decreasing continuous function ω : [0,∞) → [0,∞) is called a weight func-
tion (in the sense of Braun, Meise and Taylor [6]) if ω(0) = 0 and ω satisfies the
following properties:

(α) ω(2t) = O(ω(t)) as t → ∞;
(γ ) log t = o(ω(t)) as t → ∞;
(δ) φ : [0,∞) → [0,∞), φ(x) = ω(ex ), is convex.

We extend ω to R
d as the radial function ω(x) = ω(|x |), x ∈ R

d . Condition (α)

implies that there is C > 0 such that [6, Lemma 1]

ω(x + y) ≤ C(ω(x) + ω(y) + 1), x, y ∈ R
d . (2.1)

A weight function ω is called non-quasianalytic if

∫ ∞

0

ω(t)

1 + t2
dt < ∞.

We refer to [6] for more information on these conditions.
The Young conjugate of φ is defined as

φ∗ : [0,∞) → [0,∞), φ∗(y) = sup
x≥0

{xy − φ(x)}.

The functionφ∗ is convex and increasing, (φ∗)∗ = φ and the function y �→ φ∗(y)/y is
increasing on [0,∞) and tends to infinity as y → ∞. We shall often use the following
lemma.

Lemma 2.1 [18, Lemma 2.6] Let ω be a weight function. Then,

(i) For all h, k, l > 0 there are m,C > 0 such that

1

m
φ∗(m(y + l)) + ky ≤ 1

h
φ∗(hy) + logC, y ≥ 0. (2.2)

(ii) For all m, k, l > 0 there are h,C > 0 such that (2.2) holds.

A sequence M = (Mp)p∈N of positive numbers is called a weight sequence [22] if

M1/p
p → ∞ as p → ∞ and M is log-convex, i.e., M2

p ≤ Mp−1Mp+1 for all p ∈ Z+.
We set mp = Mp/Mp−1, p ∈ Z+. We consider the following conditions on a weight
sequence M :

(M .2)′ Mp+1 ≤ CH p+1Mp, p ∈ N, for some C, H > 0;
(M .2) Mp+q ≤ CH p+qMpMq , p, q ∈ N, for some C, H > 0;
(M .2)∗ 2mp ≤ mNp, p ≥ p0, for some p0, N ∈ Z+.
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Weighted (PLB)-spaces of ultradifferentiable functions... 35

Clearly, (M .2) implies (M .2)′. A weight sequence M is called non-quasianalytic if

∞
∑

p=1

1

mp
< ∞.

Conditions (M .2)′ and (M .2) are due to Komatsu [22]. Condition (M .2)∗ was intro-
duced by Bonet et al. [5] without a name; we use here the same notation as in [11].
The most important examples of weight sequences satisfying (M .2) and (M .2)∗ are
the Gevrey sequences p!s , s > 0. The sequence p!s is non-quasianalytic if and only if
s > 1.

Given two weight sequences M and N , the relation M ⊂ N means that there are
C, H > 0 such that Mp ≤ CH pNp for all p ∈ N. The stronger relation M ≺ N
means that the latter inequality is valid for every H > 0 and suitable C > 0.

The associated function of a weight sequence M is defined as

ωM (t) = sup
p∈N

log
t pM0

Mp
, t ≥ 0.

Given another weight sequence N , it holds that N ⊂ M if and only if

ωM (t) ≤ ωN (Ht) + logC, t ≥ 0,

for some C, H > 0 [22, Lemma 3.8]. Similarly, N ≺ M if and only if the latter
inequality remains valid for every H > 0 and suitable C > 0 [22, Lemma 3.10].

The next result explains when the weight sequence case can be reduced to the
weight function case.

Lemma 2.2 [5, Proposition 13 and its proof] Let M be a weight sequence satisfying
(M .2). Then, ωM is a weight function if and only if M satisfies (M .2)∗. In such a case,
the following properties hold (with φM (x) = ωM (ex )):

(i) For all h > 0 there are k,C > 0 such that

exp

(

1

k
φ∗
M (kp)

)

≤ ChpMp, p ∈ N. (2.3)

(ii) For all h > 0 there are k,C > 0 such that

k pMp ≤ C exp

(

1

h
φ∗
M (hp)

)

, p ∈ N. (2.4)

(iii) For all k > 0 there are h,C > 0 such that (2.3) holds.
(iv) For all k > 0 there are h,C > 0 such that (2.4) holds.
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36 A. Debrouwere, L. Neyt

3 Weight systems

Let X be a topological space. A familyV = {vλ | λ ∈ (0,∞)} of continuous functions
vλ : X → (0,∞) is called a weight system [9] if 1 ≤ vλ(x) ≤ vμ(x) for all x ∈ X
and μ ≤ λ. The following two conditions play a crucial role in this article.

Definition 3.1 A weight system V on X is said to satisfy condition (DN) if

∃λ ∀μ ≤ λ ∀θ ∈ (0, 1) ∃ν ≤ μ ∃C > 0 ∀x ∈ X : vμ(x) ≤ Cvθ
λ(x)v1−θ

ν (x).

Definition 3.2 A weight system V on X is said to satisfy condition (�) if

∀λ ∃μ ≥ λ ∀ν ≥ μ ∀θ ∈ (0, 1) ∃C > 0 ∀x ∈ X : vμ(x) ≤ Cvθ
λ(x)v1−θ

ν (x).

Remark 3.3 The previous conditions are inspired by and closely related to the linear

topological invariants (DN ) and (�) for Fréchet spaces [29].

Next, we consider weight systems onRd . We write ˜f (t) = f (−t) for reflection about
the origin. Given a weight function system V onRd , we write ˜V = {̃vλ | λ ∈ (0,∞)}.
We consider the following conditions on a weight system V on R

d :

(wM) ∀λ ∃μ ≤ λ ∃C > 0 ∀x ∈ R
d : sup|y|≤1 vλ(x + y) ≤ Cvμ(x);

{wM} ∀μ ∃λ ≥ μ ∃C > 0 ∀x ∈ R
d : sup|y|≤1 vλ(x + y) ≤ Cvμ(x);

(M) ∀λ ∃μ, ν ≤ λ ∃C > 0 ∀x, y ∈ R
d : vλ(x + y) ≤ Cvμ(x)vν(y);

{M} ∀μ, ν ∃λ ≥ μ, ν ∃C > 0 ∀x, y ∈ R
d : vλ(x + y) ≤ Cvμ(x)vν(y);

(N) ∀λ ∃μ ≤ λ : vλ/vμ ∈ L1;
{N} ∀μ ∃λ ≥ μ : vλ/vμ ∈ L1;
(S) ∀λ,μ ∃ν ≤ λ,μ ∃C > 0 ∀x ∈ R

d : vλ(x)vμ(x) ≤ Cvν(x);
{S} ∀ν ∃λ,μ ≥ ν ∃C > 0 ∀x ∈ R

d : vλ(x)vμ(x) ≤ Cvν(x).

Notation 3.4 We employ [wM] as a common notation for (wM) and {wM}. A similar
convention will be used for other notations. In addition, we often first state asser-
tions for the Beurling case followed in parenthesis by the corresponding ones for the
Roumieu case.

Clearly, [M] implies [wM]. A simple induction argument shows that [wM] yields
that

∀a > 0 ∀λ ∃λ′ ≤ λ (∀a > 0 ∀λ′ ∃λ ≥ λ′)
∃C > 0 ∀x ∈ R

d : sup
|y|≤a

vλ(x + y) ≤ Cvλ′(x). (3.1)

By using the above formula twice, we obtain that [wM] implies that

∀a > 0 ∀λ ∃λ′ ≤ λ ∀μ′ ∃μ ≤ μ′ (∀a > 0 ∀λ′ ∃λ ≥ λ′ ∀μ ∃μ′ ≥ μ)

∃C > 0 ∀x ∈ R
d : sup

|y|≤a

vλ(x + y)

vμ(x + y)
≤ C

vλ′(x)

vμ′(x)
.

123



Weighted (PLB)-spaces of ultradifferentiable functions... 37

Consequently, [wM] and [N] imply that

∀λ ∃μ ≤ λ (∀μ ∃λ ≥ μ) : lim|x |→∞
vλ(x)

vμ(x)
= 0 (3.2)

and

∀a > 0 ∀λ ∃μ ≤ λ (∀a > 0 ∀μ ∃λ ≥ μ) :
∑

k∈aZd

vλ(k)

vμ(k)
< ∞. (3.3)

We refer to [9] for more information on these conditions.
We end this section by discussing the above conditions for two classes of weight

systems on R
d . Given a weight function ω, we define

Vω := {e 1
λ
ω | λ ∈ (0,∞)}.

Lemma 3.5 Let ω be a weight function. Then,

(i) Vω satisfies [M], [N] and [S].
(ii) Vω satisfies (DN).

(iii) Vω does not satisfy (�).

Proof

(i) Condition [M] is a consequence of (2.1), [N] follows from (γ ) and [S] is clear.
(i i) This is obvious.

(i i i) Since ω(t) → ∞ as t → ∞, (�) for Vω would imply that

∀λ ∃μ ≥ λ ∀ν ≥ μ ∀θ ∈ (0, 1) : 1

μ
≤ θ

λ
+ 1 − θ

ν
,

which is false. ��
Given a weight sequence M , we define

VM := {eωM

(

1
λ

·
)

| λ ∈ (0,∞)}.

Lemma 3.6 Let M be a weight sequence. Then,

(i) VM satisfies [M].
(ii) VM satisfies [N] if and only if M satisfies (M .2)′.
(iii) VM satisfies [S] if and only if M satisfies (M .2).
(iv) VM satisfies (DN).

(v) VM satisfies (�) if and only if

∃C > 0 ∀N ∈ Z+ ∃p0 ∈ Z+ ∀p ≥ p0 : mNp ≤ Cmp. (3.4)
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38 A. Debrouwere, L. Neyt

Proof

(i) Since ωM is increasing, we have that for all H > 0 and x, y ∈ R
d

ωM (H(x + y)) ≤ ωM (2H max{|x |, |y|}) ≤ ωM (2Hx) + ωM (2Hy).

This implies that VM satisfies [M].
(i i) This is shown in [9, Lemma 3.3].

(i i i) This follows from [22, Proposition 3.6].
(iv) For all H > 0 and θ ∈ (0, 1) it holds that

ωM (Ht) = sup
p∈N

(

θ log

(

t pM0

Mp

)

+ (1 − θ) log

(

(H1/(1−θ)t)pM0

Mp

))

≤ θωM (t) + (1 − θ)ωM (H1/(1−θ)t),

for all t ≥ 0. This shows that VM satisfies (DN).
(v) We denote by m the counting function of the sequence (mp)p∈Z+ , i.e.,

m(x) =
∑

mp≤x

1, x ≥ 0.

Then, [22, Equation (3.11)]

ωM (t) =
∫ t

0

m(x)

x
dx, t ≥ 0.

Hence, VM satisfies (�) if and only if

∀H > 0 ∃K < H ∀L ≤ K :
∫ Kt

Lt

m(x)

x
dx = o

(∫ Ht

Lt

m(x)

x
dx

)

, (3.5)

while (3.4) holds if and only if

∃C > 1 : m(x) = o(m(Cx)). (3.6)

We now show that (3.5) and (3.6) are equivalent. First assume that (3.5) holds. Let
ε > 0 be arbitrary. Condition (3.5) with H = 1 and L = K/e implies that for t large
enough

m(Kt/e) ≤
∫ Kt

K t/e

m(x)

x
dx ≤ ε

∫ t

K t/e

m(x)

x
dx ≤ ε log(e/K )m(t),

whence (3.6) holds (with C = e/K ). Conversely, assume that (3.6) holds. Let H > 0
be arbitrary and set K = H/C . Fix L ≤ K . Let ε > 0 be arbitrary. Condition (3.6)
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implies that for all t large enough

∫ Kt

Lt

m(x)

x
dx ≤ ε

∫ Kt

Lt

m(Cx)

x
dx = ε

∫ Ht

LCt

m(x)

x
dx ≤ ε

∫ Ht

Lt

m(x)

x
dx,

whence (3.5) holds. ��
Example 3.7

(i) Consider the weight sequence M = ((log(p + e))sp)p∈N, s > 0. Since M is

log-convex and satisfies (M .2), we have that 0 < supp∈N mp/M
1/p
p < ∞.

Hence, there is C > 0 such that C−1(log(p+ e))s ≤ mp ≤ C(log(p+ e))s for
all p ∈ N. This implies that M satisfies (3.4).

(i i) A simple induction argument shows that (M .2)∗ yields that

∀C > 0 ∃N ∈ Z+ ∃p0 ∈ Z+ ∀p ≥ p0 : Cmp ≤ mNp.

Therefore, any weight sequence satisfying (M .2)∗ does not satisfy (3.4). In particular,
the Gevrey sequence p!s , s > 0, does not satisfy (3.4).

4 Gelfand-Shilov spaces and time-frequency analysis

Let ω be a weight function. For h > 0 and a continuous function v : Rd → (0,∞)

we define Sω,h
v as the Banach space consisting of all ϕ ∈ C∞(Rd) such that

‖ϕ‖Sω,h
v

:= sup
α∈Nd

sup
x∈Rd

|ϕ(α)(x)|v(x) exp

(

−1

h
φ∗(h|α|)

)

< ∞.

Let V be a weight system (on R
d ). We define the Gelfand-Shilov spaces of Beurling

and Roumieu type as

S(ω)

(V )
:= lim←−

h→0+
Sω,h

vh
, S{ω}

{V } := lim−→
h→∞

Sω,h
vh

.

Then, S(ω)

(V )
is a Fréchet space and S{ω}

{V } is an (LB)-space. Following Notation 3.4,

we employ S[ω]
[V ] as a common notation for S(ω)

(V )
and S{ω}

{V }. If V satisfies [wM], then
S[ω]

[V ] is translation-invariant. If V satisfies [N], then S[ω]
[V ] ⊂ L1 ∩ L∞ ⊂ L p for

all p ∈ [1,∞]. We refer to [9] for more information on S[ω]
[V ]. Given another weight

function η, we write S[ω]
[η] := S[ω]

[Vη].
Let M and A be two weight sequences. For h > 0 we define SM,h

A,h as the Banach

space consisting of all ϕ ∈ C∞(Rd) such that

‖ϕ‖SM,h
A,h

:= sup
α,β∈Nd

sup
x∈Rd

|xβϕ(α)(x)|
h|α|+|β|M|α|A|β|

< ∞.
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40 A. Debrouwere, L. Neyt

We define

S(M)
(A) := lim←−

h→0+
SM,h
A,h , S{M}

{A} := lim−→
h→∞

SM,h
A,h .

Then, S(M)
(A) is a Fréchet space and S{M}

{A} is an (LB)-space.

Lemma 4.1 Let M and A be two weight sequences. Suppose that M satisfies (M .2)
and (M .2)∗. Then, S[M]

[A] = S[ωM ]
[VA] as locally convex spaces.

Proof This follows from Lemma 2.2 and the fact that for all h > 0

ωA

(

1√
dh

|x |
)

≤ sup
β∈Nd

log
|xβ |

h|β|A|β|
≤ ωA

(

1

h
|x |

)

, x ∈ R
d .

��
Let r , s > 0. We write

�r
s := S(p!r )

(p!s ) = S(t1/r )
(t1/s )

, Sr
s := S{p!r }

{p!s } = S{t1/r }
{t1/s } ,

for the classical Gelfand-Shilov spaces [15]. In particular,�1
1 is the test function space

of the Fourier ultrahyperfunctions [31] and S1
1 is the test function space of the Fourier

hyperfunctions [20].

Remark 4.2 The space �r
s (Sr

s ) is non-trivial if and only if r + s > 1 (r + s ≥ 1) (cf.
[15, Section 8]). Consequently, given a weight function ω and a weight system V , we
have that S[ω]

[V ] �= {0} if ω(t) = O(t1/r ) and

∀λ ∃h (∀h ∃λ) : vλ(x) = O(eh|x |1/s )

for some r+s > 1 (r+s ≥ 1), as these conditions imply that�r
s ⊆ S(ω)

(V )
(Sr

s ⊆ S{ω}
{V }).

In particular, if η is another weight function, S[ω]
[η] �= {0} if ω(t) = O(t1/r ) and

η(t) = O(t1/s) for some r+s > 1 (r+s ≥ 1). Similarly, given two weight sequences
M and A, S[M]

[A] �= {0} if p!r ⊂ M and p!s ⊂ A for some r + s > 1 (r + s ≥ 1).
In [10, Proposition 2.7, Proposition 4.3 and Theorem 5.9] Vindas and the first author
showed that S[p!]

[A] �= {0} if and only if (log(p + e))p ≺ A ((log(p + e))p ⊂ A). In

general, the characterization of the non-triviality of the spaces S[ω]
[η] and S[M]

[A] seems
to be an open problem.

Next, we introduce some tools from time-frequency analysis; see the book [16] for
more information. The translation and modulation operators are denoted by Tx f (t) =
f (t − x) and Mξ f (t) = e2π iξ ·t f (t), for x, ξ ∈ R

d . The short-time Fourier transform
(STFT) of f ∈ L2(Rd) with respect to a window ψ ∈ L2(Rd) is defined as

Vψ f (x, ξ) = ( f , MξTxψ)L2 =
∫

Rd
f (t)ψ(t − x)e−2π iξ ·t dt, (x, ξ) ∈ R

2d .
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Weighted (PLB)-spaces of ultradifferentiable functions... 41

We have that ‖Vψ f ‖L2 = ‖ψ‖L2‖ f ‖L2 . In particular, Vψ : L2(Rd) → L2(R2d) is
continuous. The adjoint of Vψ is given by the weak integral

V ∗
ψ F =

∫ ∫

R2d
F(x, ξ)MξTxψdxdξ, F ∈ L2(R2d).

If γ ∈ L2(Rd) is such that (γ, ψ)L2 �= 0, then

1

(γ, ψ)L2
V ∗

γ ◦ Vψ = idL2(Rd ) . (4.1)

The above reconstruction formula is the basis for the proof of part (a) of Theorem 5.1
below.

Next, we consider Gabor frames. Given a window ψ ∈ L2(Rd) and lattice param-
eters a, b > 0, the set of time-frequency shifts

G(ψ, a, b) := {MnTkψ : (k, n) ∈ aZd × bZd}

is called a Gabor frame for L2(Rd) if there exist A, B > 0 such that

A ‖ f ‖2L2 ≤
∑

(k,n)∈aZd×bZd

∣

∣Vψ f (k, n)
∣

∣

2 ≤ B ‖ f ‖2L2 , f ∈ L2(Rd).

We define the Wiener space W as the space consisting of all ψ ∈ L∞(Rd) such that

∑

n∈Zd

‖Tnψ‖L∞([0,1]d ) < ∞.

Given a weight function ω and a weight system V satisfying [wM] and [N], we have
that S[ω]

[V ] ⊂ W . This follows from [wM] and the fact that for some μ > 0 (for all
μ > 0) we have that

∑

n∈Zd

1

vμ(n)
< ∞

(the latter is a consequence of (3.3) and the fact that vλ ≥ 1 for all λ > 0). Letψ ∈ W .
Then, the analysis operator

Cψ = Ca,b
ψ : L2(Rd) → l2(aZd × bZd), f �→ (Vψ f (k, n))(k,n)∈aZd×bZd ,

and the synthesis operator

Dψ = Da,b
ψ : l2(aZd × bZd) → L2(Rd), (ck,n)(k,n)∈aZd×bZd

�→
∑

(k,n)∈aZd×bZd

ck,nMnTkψ
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are continuous [16, Proposition 6.2.2 and Corollary 6.2.3]. Given another window
γ ∈ W , we define

Sψ,γ := Dγ ◦ Cψ : L2(Rd) → L2(Rd).

We call (ψ, γ ) a pair of dual windows (on aZd × bZd ) if Sψ,γ = idL2(Rd ). In such
a case, also Sγ,ψ = idL2(Rd ) and both G(ψ, a, b) and G(γ, a, b) are Gabor frames.
Pairs of dual windows are characterized by the Wexler-Raz biorthogonality relations:

Theorem 4.3 [16, Theorem 7.3.1 and the subsequent remark] Let ψ, γ ∈ W and let
a, b > 0. Then, (ψ, γ ) is a pair of dual windows on aZd × bZd if and only if

(MnTkψ, Mn′Tk′γ )L2 = (ab)dδk,k′δn,n′, (k, n), (k,′ n′) ∈ 1

a
Z
d × 1

b
Z
d ,

or, equivalently,
1

(ab)d
C1/a,1/b

ψ ◦ D1/a,1/b
γ = id

l2
(

1
aZ

d× 1
bZ

d
) . (4.2)

The proof of part (b) of Theorem 5.1 below is based on the formula (4.2). For it to be
applicable in our context we need that, given a weight function ω and a weight system
V , ψ ∈ S[ω]

[V ] and γ ∈ S[ω]
[ ˜V ]. Hence, we introduce the following general notion:

Definition 4.4 Let ω be a weight function and let V be a weight system. The space
S[ω]

[V ] is called Gabor accessible if there exist ψ ∈ S[ω]
[V ], γ ∈ S[ω]

[ ˜V ] and a, b > 0 such

that (ψ, γ ) is a pair of dual windows on aZd × bZd .

The regularity and decay properties of pairs of dual windows is a well-studied topic in
time-frequency analysis; see [16, Chapter 13] and the references therein. We now use
such results to give growth conditions on ω and V which ensure that S[ω]

[V ] is Gabor
accessible.

Proposition 4.5 Let ω be a weight function and let V be a weight system. Then, S[ω]
[V ]

is Gabor accessible if one of the following two conditions is satisfied:

(i) ω is non-quasianalytic.
(ii) ω(t) = o(t2) and ∀λ ∀h : vλ(x) = O(eh|x |2) (ω(t) = O(t2) and ∀h ∃λ :

vλ(x) = O(eh|x |2)).

Proof Theorem 4.3 implies that if (ψ, γ ) ⊂ W (R) is a pair of dual windows on
aZ × bZ, a, b > 0, then (ψ ⊗ · · · ⊗ ψ, γ ⊗ · · · ⊗ γ ) ⊂ W (Rd) is a pair of dual
windows on aZd × bZd . Now assume that (i) holds. Then, there exists a function
ψ : R → R with suppψ ⊆ [0, 2] such that

sup
p∈N

sup
x∈[0,2]

|ψ(p)(x)| exp
(

−1

h
φ∗(hp)

)

< ∞
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for all h > 0 and

∑

k∈Z
Tkψ = 1.

Fix 0 < b ≤ 1/3. Define

γ (x) = bψ(x) + 2bψ(x + 1), x ∈ R.

In [7, Theorem 2.2] it is shown that (ψ, γ ) is a pair of dual windows on Z × bZ. By
the remark at the beginning of the proof, we obtain that (ψ ⊗· · ·⊗ψ, γ ⊗· · ·⊗γ ) ⊂
S[ω]

[V ](R
d) ∩ S[ω]

[ ˜V ](R
d) is a pair of dual windows on Z

d × bZd . Next, assume that

(i i) holds. This condition implies that S1/2
1/2 (R

d) ⊆ S[ω]
[V ](R

d) ∩ S[ω]
[ ˜V ](R

d). Hence, it

suffices to show that S1/2
1/2 (R

d) is Gabor accessible. Moreover, by the remark at the

beginning of the proof, it is enough to consider the case d = 1. Set ψ(x) = e−πx2 ,
x ∈ R. Then, ψ ∈ S1/2

1/2 (R) and Janssen [19, Proposition B and its proof] showed that

for all a, b > 0 with ab < 1 there exists γ ∈ S1/2
1/2 (R) such that (ψ, γ ) is a pair of

dual windows on aZ × bZ (see also [4, p. 273]). ��

Next, we discuss the Gabor accessibility of the spaces S[ω]
[η] and S[M]

[A] .

Proposition 4.6 Let ω and η be two weight functions. Then, S[ω]
[η] is Gabor accessible

if one of the following two conditions is satisfied:

(i) ω or η is non-quasianalytic.
(ii) ω(t) = o(t2) and η(t) = o(t2) (ω(t) = O(t2) and η(t) = O(t2)).

Proof If ω is non-quasianalytic or (i i) is satisfied, the result is a direct consequence of
Proposition 4.5. Now assume that η is non-quasianalytic. Since the Fourier transform
is an isomorphism from S[ω]

[η] onto S[η]
[ω] and (ψ, γ ) ⊆ S is a pair of dual windows on

aZd × bZd , a, b > 0 if and only if (̂ψ, γ̂ ) is a pair of dual windows on bZd × aZd

(as follows from Theorem 4.3 and Plancherel’s theorem), the space S[ω]
[η] is Gabor

accessible because S[η]
[ω] is so. ��

Proposition 4.7 Let M and A be two weight functions satisfying (M .2). Then, S[M]
[A]

is Gabor accessible if one of the following two conditions is satisfied:

(i) M or A is non-quasianalytic.
(ii) p!1/2 ≺ M and p!1/2 ≺ A (p!1/2 ⊂ M and p!1/2 ⊂ A ).

Proof If M is non-quasianalytic or (i i) is satisfied, the result can be shown in the same
way as Proposition 4.5. Now assume that A is non-quasianalytic. Since the Fourier
transform is an isomorphism from S[M]

[A] onto S[A]
[M], the result can be shown by using

the same argument as in the proof of Proposition 4.6. ��
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Proposition 4.8 Let r , s > 0. Then, �r
s (Sr

s ) is Gabor accessible if max(r , s) > 1 or
min(r , s) > 1/2 (max(r , s) > 1 or min(r , s) ≥ 1/2).

Proof This follows from Proposition 4.7. ��
Finally, we would like to point out the following open problem.

Problem 4.9 Let r , s > 0. Is every non-trivial space Sr
s Gabor accessible? This would

imply that every non-trivial space �r
s is Gabor accessible. If not, characterize the

Gabor accessibility of the spaces �r
s and Sr

s in terms of r and s.

5 Statement of themain results

Let ω be a weight function and let V be a weight system (on R
d ). We define

Z(ω)

(V )
:= lim←−

h→0+
lim−→

λ→0+
Sω,h
1/vλ

, Z{ω}
(V )

:= lim←−
λ→∞

lim−→
h→∞

Sω,h
1/vλ

.

Then, Z [ω]
[V ] is a (PLB)-space. The first main result of this article may now be formu-

lated as follows.

Theorem 5.1 Let ω be a weight function and let V be a weight system satisfying [M]
and [N]. Consider the following statements:

(i) V satisfies (DN) ((�)).
(ii) Z [ω]

[V ] is ultrabornological.
(iii) Z [ω]

[V ] is barrelled.
Then,

(a) If S[ω]
[V ] �= {0}, then (i) ⇒ (i i) ⇒ (i i i).

(b) If S[ω]
[V ] is Gabor accessible, then also (i i i) ⇒ (i).

The assumption that S[ω]
[V ] is non-trivial and Gabor accessible in part (a) and part (b)

of Theorem 5.1, respectively, should be interpreted as implicit growth conditions on
ω and V under which these results are valid. We refer to Remark 4.2 and Proposition
4.5 for explicit conditions on ω and V which ensure that S[ω]

[V ] is non-trivial and Gabor
accessible, respectively.

Next, we discuss our results about multiplier spaces. We need some preparation.
Given a weight function ω and a weight system V , we denote by S ′[ω]

[V ] the strong

dual of S[ω]
[V ]. We write C[V ] for the space consisting of all f ∈ C(Rd) such that

supx∈Rd | f (x)|/vλ(x) < ∞ for some λ > 0 (for all λ > 0). Note that Z [ω]
[V ] ⊂ C[V ].

Lemma 5.2 Let ω be a weight function and let V be a weight system satisfying [wM]
and [N]. Suppose that S[ω]

[V ] �= {0}. The mapping

C[V ] → S ′[ω]
[V ] , f �→

(

ϕ �→
∫

Rd
f (x)ϕ(x)dx

)

(5.1)
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is well-defined and injective. Consequently, we may view C[V ] as a vector subspace

of S ′[ω]
[V ] .

Proof Condition [N] implies that, for each f ∈ C[V ],

〈 f , ϕ〉 =
∫

Rd
f (x)ϕ(x)dx, ϕ ∈ S[ω]

[V ],

is a well-defined continuous linear functional on S[ω]
[V ]. We now show that the mapping

(5.1) is injective. Let f ∈ C[V ] be such that 〈 f , ϕ〉 = 0 for all ϕ ∈ S[ω]
[V ]. Since the

spaceS[ω]
[V ] is translation-invariant and non-trivial, there existsϕ ∈ S[ω]

[V ] withϕ(0) = 1.

Choose χ ∈ D(Rd) with χ(0) = 1. Set ψ = χ̂ and note that
∫

Rd ψ(x)dx = 1. We

writeψn(x) = ndψ(nx) for n ∈ N. Lemma 2.1 implies that ϕ˜ψn ∈ S[ω]
[V ] for all n ∈ N.

Fix an arbitrary x ∈ R
d . Since f Txϕ ∈ C(Rd) ∩ L∞, we have that

f (x) = f (x)ϕ(0) = ( f Txϕ)(x) = lim
n→∞( f Txϕ) ∗ ψn(x) = lim

n→∞〈 f , Tx (ϕ˜ψn)〉 = 0.

��
Let ω be a weight function and let V be a weight system satisfying the assumptions
of Lemma 5.2. The space S[ω]

[V ] is an algebra under pointwise multiplication and the

mappingS[ω]
[V ]×S[ω]

[V ] → S[ω]
[V ], (ϕ, ψ) �→ ϕ·ψ is separately continuous. For f ∈ S ′[ω]

[V ]
and ϕ ∈ S[ω]

[V ] we define ϕ · f ∈ S ′[ω]
[V ] via transposition, i.e., 〈ϕ · f , ψ〉 := 〈 f , ϕ · ψ〉

for ψ ∈ S[ω]
[V ]. Then, the mapping S[ω]

[V ] ×S ′[ω]
[V ] → S ′[ω]

[V ] , (ϕ, f ) �→ ϕ · f is separately
continuous. We define the multiplier space of S[ω]

[V ] as

OM (S[ω]
[V ]) := { f ∈ S ′[ω]

[V ] | ϕ · f ∈ S[ω]
[V ] for all ϕ ∈ S[ω]

[V ]}.

Fix f ∈ OM (S[ω]
[V ]). The closed graph theorem of De Wilde and the continuity of the

mapping S[ω]
[V ] → S ′[ω]

[V ] , ϕ �→ ϕ · f imply that the mapping S[ω]
[V ] → S[ω]

[V ], ϕ �→ ϕ · f
is continuous. We endow OM (S[ω]

[V ]) with the topology induced by the embedding

OM (S[ω]
[V ]) → Lb(S[ω]

[V ],S[ω]
[V ]), f �→ (ϕ �→ ϕ · f ).

We then have:

Theorem 5.3 Let ω be a weight function and let V be a weight system satisfying [M],
[N] and [S]. Suppose that S[ω]

[V ] �= {0}. Then, OM (S[ω]
[V ]) = Z [ω]

[V ] as locally convex
spaces.

We end this section by discussing the structural and topological properties of the
multiplier spaces of S[ω]

[η] and S[M]
[A] . Given two weight functions ω and η, we write

Z [ω]
[η] = Z [ω]

[Vη].
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Theorem 5.4 Let ω and η be two weight functions. Suppose that S[ω]
[η] �= {0}. Then,

OM (S[ω]
[η] ) = Z [ω]

[η] as locally convex spaces. Moreover,

(i) OM (S(ω)
(η) ) is ultrabornological.

(ii) If S{ω}
{η} is Gabor accessible, then OM (S{ω}

{η} ) is not ultrabornological.

Proof This follows from Lemma 3.5, Theorems 5.1 and 5.3. ��
We refer to Proposition 4.6 for conditions on ω and η which ensure that S{ω}

{η} is Gabor
accessible.

Let M and A be two weight sequences. For h, λ > 0 we defineZM,h
A,λ as the Banach

space consisting of all ϕ ∈ C∞(Rd) such that

‖ϕ‖ZM,h
A,λ

:= sup
α∈Nd

sup
x∈Rd

|ϕ(α)(x)|e−ωA

(

1
λ
|x |

)

h|α|M|α|
< ∞.

We define

Z(M)
(A) := lim←−

h→0+
lim−→

λ→0+
ZM,h

A,λ , Z{M}
{A} := lim←−

λ→∞
lim−→
h→∞

ZM,h
A,λ .

Then, Z [M]
[A] is a (PLB)-space.

Lemma 5.5 Let M and A be two weight sequences. Suppose that M satisfies (M .2)
and (M .2)∗. Then, Z [M]

[A] = Z [ωM ]
[VA] as locally convex spaces.

Proof This follows from Lemma 2.2. ��
Theorem 5.6 Let M be a weight sequence satisfying (M .2) and (M .2)∗ and let A be a
weight sequence satisfying (M .2). Suppose thatS[M]

[A] �= {0}. Then,OM (S[M]
[A] ) = Z [M]

[A]
as locally convex spaces. Moreover,

(i) OM (S(M)
(A) ) is ultrabornological.

(ii) If A satisfies (3.4), then OM (S{M}
{A} ) is ultrabornological. If S{M}

{A} is Gabor acces-
sible, the converse holds true as well.

Proof In view of Lemmas 4.1 and 5.5, this follows from Lemma 3.6, Theorems 5.1
and 5.3. ��
We refer to Proposition 4.7 for conditions on M and A which ensure that S{M}

{A} is
Gabor accessible.

Theorem 5.7 Let r , s > 0 be such that r+s > 1 (r+s ≥ 1). Then,OM (�r
s ) = Z(p!r )

(p!s )
(OM (Sr

s ) = Z{p!r }
{p!s } ) as locally convex spaces. Moreover,

(i) OM (�r
s ) is ultrabornological.

(ii) If max(r , s) > 1 or min(r , s) ≥ 1/2, then OM (Sr
s ) is not ultrabornological.

Proof This follows from Proposition 4.7 and Theorem 5.6. ��
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6 Weighted (PLB)-spaces of continuous functions

Let X be a topological space. A double sequenceA = {aN ,n | N , n ∈ N} consisting of
continuous functions aN ,n : X → (0,∞) is called a weight grid on X if aN ,n+1(x) ≤
aN ,n(x) ≤ aN+1,n(x) for all x ∈ X and N , n ∈ N. Following [1], we introduce the
following two conditions:

Definition 6.1 A weight grid A on X is said to satisfy condition (Q) if

∀N ∃M ≥ N ∃n ∀K ≥ M ∀m ≥ n ∀ε > 0 ∃k ≥ m ∃C > 0 ∀x ∈ X :
1

aM,m(x)
≤ ε

aN ,n(x)
+ C

aK ,k(x)
.

If “∀ε > 0" is replaced by “∃ε > 0", then A is said to satisfy condition (wQ).

For a continuous function v : X → (0,∞) we denote by Cv(X) the Banach space
consisting of all f ∈ C(X) such that ‖ f ‖v = supx∈X | f (x)|v(x) < ∞. Given a
weight grid A on X , we define the (PLB)-space

AC(X) := lim←−
N∈N

lim−→
n∈N

CaN ,n (X).

Wenowgive two results from [1] thatwill play an essential role in the proof of Theorem
5.1.

Theorem 6.2 [1, Theorem 3.5] Let A be a weight grid on X. If A satisfies (Q), then
AC(X) is ultrabornological.

Theorem 6.3 [1, Theorem 3.8(2)] LetA be a weight grid on X. IfAC(X) is barrelled,
then A satisfies (wQ).

Let X and Y be two topological spaces. Let V be a weight system on X and letW
be a weight system on Y . We define the following weight grids on X × Y

A(V ,W ) :=
{

v1/N

w1/n
| N , n ∈ N

}

, A{V ,W } :=
{

wn

vN
| N , n ∈ N

}

.

The following result is inspired by [29, Theorem 4.2 and Theorem 4.3].

Lemma 6.4 Let ω be a weight function and let V be a weight system on a topological
space X. Then,

(a) The following statements are equivalent:

(i) A(Vω,V ) on R
d × X satisfies (Q).

(ii) A(Vω,V ) on R
d × X satisfies (wQ).

(iii) V satisfies (DN).

(b) The following statements are equivalent:
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(i) A{V ,Vω} on X × R
d satisfies (Q).

(ii) A{V ,Vω} on X × R
d satisfies (wQ).

(iii) V satisfies (�).

Proof We only show (a) as (b) can be shown similarly. The implication (i) ⇒ (i i) is
trivial. Next, we show (i i) ⇒ (i i i). Condition (wQ) implies that there exists H > 0
such that

∃λ ∀μ ≤ λ ∃ν ≤ μ ∃C > 0 ∀x ∈ X ∀t ≥ 0 : vμ(x) ≤ C

(

vλ(x)e
Hω(t) + vν(x)

eω(t)

)

.

Since ω(0) = 0, ω is continuous and ω(t) → ∞ as t → ∞, we obtain that

∃λ ∀μ ≤ λ ∃ν ≤ μ ∃C > 0 ∀x ∈ X ∀r > 0 : vμ(x) ≤ C

(

vλ(x)r
H + vν(x)

r

)

.

By calculating the minimum for r > 0 (with x ∈ X fixed) of the right-hand side of
the above inequality, we find that

∃θ ∈ (0, 1) ∃λ ∀μ ≤ λ ∃ν ≤ μ ∃C > 0 ∀x ∈ X : vμ(x) ≤ Cvθ
λ(x)v1−θ

ν (x).

An induction argument now shows thatV satisfies (DN). Finally,we show (i i i) ⇒ (i).
Let N ∈ N be arbitrary and set M = N + 1. Since V satisfies (DN), there is n ∈ N

such that

∀m ≥ n ∀θ ∈ (0, 1) ∃k ≥ m ∃C > 0 ∀x ∈ X : v1/m(x) ≤ Cvθ
1/n(x)v

1−θ
1/k (x). (6.1)

Let K > M , m ≥ n and ε > 0 be arbitrary. Set θ = (K − N − 1)/(K − N ) ∈ (0, 1)
and note that M = θN + (1 − θ)K . Choose k and C as in (6.1). Then,

v1/m(x)

eMω(t)
≤

(

εv1/n(x)

eNω(t)

)θ
(

(Cε−θ )1/(1−θ)v1/k(x)

eKω(t)

)1−θ

≤ max

{

ε
v1/n(x)

eNω(t)
, (Cε−θ )1/(1−θ) v1/k(x)

eKω(t)

}

≤ εv1/n(x)

eNω(t)
+ (Cε−θ )1/(1−θ)v1/k(x)

eKω(t)
,

for all t ≥ 0 and x ∈ X , whence A(Vω,V ) satisfies (Q). ��

7 Proof of themain results

The proof of part (a) of Theorem 5.1 is based mapping properties of the STFT on
Z [ω]

[V ]. We start with the following three general results:
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Lemma 7.1 Let ω be a weight function. Let vi : R
d → (0,∞), i = 1, 2, 3, 4, be

continuous functions such that

v2(x + t) ≤ C0v1(x )̃v4(t), x, t ∈ R
d ,

for some C0 > 0 and v4/v3 ∈ L1. Let hi > 0, i = 1, 2, 3, be such that

1

max{h1, h3}φ
∗(max{h1, h3}(y + 1)) + (log

√
d)y ≤ 1

h2
φ∗(h2y) + logC1, y ≥ 0,

for some C1 > 0. Let ψ ∈ Sω,h3
v3 . Then, the mapping

Vψ : Sω,h1
v1

→ C
v2⊗e

1
h2

ω
(R2d

x,ξ )

is continuous.

Proof Let ϕ ∈ Sω,h1
v1 be arbitrary. For all y ≥ 0 and (x, ξ) ∈ R

2d with |ξ | ≥ 1 it holds
that

|ξ |y |Vψϕ(x, ξ)|v2(x)
≤ max|α|=�y�

√
d

|α||ξαVψϕ(x, ξ)|v2(x)

≤ max|α|=�y�(
√
d/2π)|α| ∑

β≤α

(

α

β

)

v2(x)
∫

Rd
|ϕ(β)(t)||ψ(α−β)(t − x)|dt

≤ C0 max|α|=�y�(
√
d/2π)|α| ∑

β≤α

(

α

β

) ∫

Rd
|ϕ(β)(t)|v1(t)|ψ(α−β)(t − x)|v4(t − x)dt

≤ C0‖ϕ‖Sω,h1
v1

‖ψ‖Sω,h3
v3

‖v4/v3‖L1

× max|α|=�y�(
√
d/2π)|α| ∑

β≤α

(

α

β

)

exp

(

1

h1
φ∗(h1|β|) + 1

h3
φ∗(h3|α − β|)

)

≤ √
dC0‖ϕ‖Sω,h1

v1
‖ψ‖Sω,h3

v3
‖v4/v3‖L1

× exp

(

1

max{h1, h3}φ
∗(max{h1, h3}(y + 1)) + (log

√
d)y

)

≤ √
dC0C1‖ϕ‖Sω,h1

v1
‖ψ‖Sω,h3

v3
‖v4/v3‖L1 exp

(

1

h2
φ∗(h2y)

)

.

Hence,

|Vψϕ(x, ξ)|v2(x) ≤ √
dC0C1‖ϕ‖Sω,h1

v1
‖ψ‖Sω,h3

v3
‖v4/v3‖L1 inf

y≥0

exp

(

1

h2
φ∗(h2y) − (log |ξ |)y

)
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= √
dC0C1‖ϕ‖Sω,h1

v1
‖ψ‖Sω,h3

v3
‖v4/v3‖L1e

− 1
h2

ω(ξ)
.

For all (x, ξ) ∈ R
2d with |ξ | ≤ 1 we have that

|Vψϕ(x, ξ)|v2(x)e
1
h2

ω(ξ) ≤ e
1
h2

ω(1)
v2(x)

∫

Rd
|ϕ(t)||ψ(t − x)|dt

≤ C0e
1
h2

ω(1)‖ϕ‖Sω,h1
v1

‖ψ‖Sω,h3
v3

‖v4/v3‖L1 .

This shows that Vψ : Sω,h1
v1 → C

v2⊗e
1
h2

ω
(R2d

x,ξ ) is continuous. ��

Lemma 7.2 Let ω be a weight function. Choose C0, L > 0 such that

ω(2π t) ≤ Lω(t) + logC0, t ≥ 0. (7.1)

Let vi : Rd → (0,∞), i = 2, 3, 4, be continuous functions such that

v2(x + t) ≤ C1v3(x)v4(t), x, t ∈ R
d , (7.2)

for some C1 > 0. Let hi > 0, i = 1, 2, 3, be such that

1

max{h1, h3}φ
∗(max{h1, h3}y)+ (log 2)y ≤ 1

h2
φ∗(h2y)+ logC2, y ≥ 0, (7.3)

for some C2 > 0. Then, there is C > 0 such that

‖MξTxψ‖Sω,h2
v2

≤ C‖ψ‖Sω,h3
v3

v4(x)e
L
h1

ω(ξ)
, (x, ξ) ∈ R

2d ,

for all ψ ∈ Sω,h3
v3 .

Proof Let ψ ∈ Sω,h3
v3 and (x, ξ) ∈ R

2d be arbitrary. For all α ∈ N
d and t ∈ R

d it
holds that

|(MξTxψ)(α)(t)|v2(t) ≤
∑

β≤α

(

α

β

)

(2π |ξ |)|β||ψ(α−β)(t − x)|v2(t)

≤ C1v4(x)
∑

β≤α

(

α

β

)

(2π |ξ |)|β||ψ(α−β)(t − x)|v3(t − x)

≤ C1‖ψ‖Sω,h3
v3

v4(x)
∑

β≤α

(

α

β

)

exp

(

(log 2π |ξ |)|β| − 1

h1
φ∗(h1|β|)

)
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× exp

(

1

h3
φ∗(h3|α − β|) + 1

h1
φ∗(h1|β|)

)

≤ C1‖ψ‖Sω,h3
v3

v4(x)e
1
h1

ω(2πξ)

× exp

(

1

max{h1, h3}φ
∗(max{h1, h3}|α|) + (log 2)|α|

)

≤ C0C1C2‖ψ‖Sω,h3
v3

v4(x)e
L
h1

ω(ξ)
exp

(

1

h2
φ∗(h2|α|)

)

.

This shows the result. ��
Lemma 7.3 Let ω be a weight function. Choose C0, L > 0 such that (7.1) holds. Let
vi : Rd → (0,∞), i = 1, 2, 3, 4, be continuous functions such that (7.2) holds for
some C1 > 0 and v4/v1 ∈ L1. Let hi > 0, i = 1, 2, 3, be such that (7.3) holds for
some C2 > 0. Let γ ∈ Sω,h3

v3 . Then, the mapping

V ∗
γ : C

v1⊗e
2L
h1

ω
(R2d

x,ξ ) → Sω,h2
v2

is continuous.

Proof This follows from Lemma 7.2. ��
Given a weight function ω and a weight system V , we define

CZ(ω)
(V )

(R2d
x,ξ ) := lim←−

h→0+
lim−→

λ→0+
C

1
vλ

⊗e
1
h ω

(R2d
x,ξ ),

CZ{ω}
{V }

(R2d
x,ξ ) := lim←−

λ→∞
lim−→
h→∞

C
1
vλ

⊗e
1
h ω

(R2d
x,ξ ).

We then have:

Proposition 7.4 Let ω be a weight function and let V be a weight system satisfying
[M] and [N]. Let ψ ∈ S[ω]

[V ] and γ ∈ S[ω]
[ ˜V ]. Then, the mappings

Vψ : Z [ω]
[V ] → CZ [ω]

[V ]
(R2d

x,ξ ), V ∗
γ : CZ [ω]

[V ]
(R2d

x,ξ ) → Z [ω]
[V ]

are continuous. Moreover, if (γ, ψ)L2 �= 0, then

1

(γ, ψ)L2
V ∗

γ ◦ Vψ = idZ [ω]
[V ]

. (7.4)

Proof It suffices to show that

∀h ∃k ∀λ ∃μ (∀μ ∃λ ∀k ∃h) : Vψ : Sω,k
1/vλ

→ C
1

vμ
⊗e

1
h ω

(R2d
x,ξ ) is continuous,
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and

∀h ∃k ∀λ ∃μ (∀μ ∃λ ∀k ∃h) : V ∗
γ : C

1
vλ

⊗e
1
k ω

(R2d
x,ξ ) → Sω,h

1/vμ
is continuous.

By Lemma 2.1 and the fact that V satisfies [M] and [N], this follows from Lemma 7.1
and Lemma 7.3, respectively. We now show (7.4). Let ϕ ∈ Z [ω]

[V ] be arbitrary. Since V
satisfies [N] and ω satisfies (γ ), the continuous functions ϕTxψ and Vψϕ(x, · ), with
x ∈ R

d fixed, both belong to L1. As Vψϕ(x, ξ) = F(ϕTxψ)(ξ), we obtain that

∫ ∫

R2d
Vψϕ(x, ξ)MξTxγ (t)dxdξ =

∫

Rd

(∫

Rd
Vψϕ(x, ξ)e2π iξ ·t dξ

)

Txγ (t)dx

= ϕ(t)
∫

Rd
Txψ(t)Txγ (t)dx = (γ, ψ)L2ϕ(t)

for all t ∈ R
d . ��

Lemma 7.5 Let ω be a weight function and let V be a weight system satisfying [wM].
If S[ω]

[V ] �= {0}, then also S[ω]
[V ] ∩ S[ω]

[ ˜V ] �= {0}.

Proof Since the space S[ω]
[V ] is translation-invariant and non-trivial, there exists ϕ ∈

S[ω]
[V ] with ϕ(0) �= 0. Then, ψ = ϕϕ̃ ∈ S[ω]

[V ] ∩ S[ω]
[ ˜V ] and ψ(0) = ϕ2(0) �= 0. ��

Proof of part (a) of Theorem 5.1 The implication (i i) ⇒ (i i i) holds for any locally
convex space. We now show (i) ⇒ (i i). By Lemma 7.5, there exists ψ ∈ S[ω]

[V ] ∩
S[ω]

[ ˜V ]\{0}. Proposition 7.4 (with γ = ψ) implies that Z [ω]
[V ] is isomorphic to a comple-

mented subspace of CZ [ω]
[V ]

(R2d
x,ξ ). Note that

CZ(ω)
(V )

(R2d
x,ξ ) = A(Vω,V )C(R2d

ξ,x ), CZ{ω}
{V }

(R2d
x,ξ ) = A{V ,Vω}C(R2d

x,ξ ).

Hence, CZ [ω]
[V ]

(R2d
x,ξ ) is ultrabornological by Theorem 6.2 and Lemma 6.4. The result

now follows from the fact that a complemented subspace of an ultrabornological space
is again ultrabornological.

The proof of part (b) of Theorem 5.1 is based on themapping properties of the analysis
and synthesis operator on Z [ω]

[V ]. Given a weight function ω, a weight system V and
a, b > 0, we define

CZ(ω)
(V )

(aZd
x × bZd

ξ ) := lim←−
h→0+

lim−→
λ→0+

C
1
vλ

⊗e
1
h ω

(aZd
x × bZd

ξ ),

CZ{ω}
{V }

(aZd
x × bZd

ξ ) := lim←−
λ→∞

lim−→
h→∞

C
1
vλ

⊗e
1
h ω

(aZd
x × bZd

ξ ).
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Proposition 7.6 Let ω be a weight function, let V be a weight system satisfying [M]
and [N] and let a, b > 0. Let ψ ∈ S[ω]

[V ] and γ ∈ S[ω]
[ ˜V ]. Then, the mappings

Ca,b
ψ : Z [ω]

[V ] → CZ [ω]
[V ]

(aZd
x × bZd

ξ ), Da,b
γ : CZ [ω]

[V ]
(aZd

x × bZd
ξ ) → Z [ω]

[V ]

are continuous. Moreover, if (ψ, γ ) is a dual pair of windows on aZd × bZd , then

1

(ab)d
C1/a,1/b

ψ ◦ D1/a,1/b
γ = id

CZ[ω]
[V ]

(

1
aZ

d
x× 1

bZ
d
ξ

) . (7.5)

Proof It suffices to show that

∀h ∃k ∀λ ∃μ (∀μ ∃λ ∀k ∃h) : Ca,b
ψ : Sω,k

1/vλ
→ C

1
vμ

⊗e
1
h ω

(aZd
x × bZd

ξ ) is continuous,

and

∀h ∃k ∀λ ∃μ (∀μ ∃λ ∀k ∃h) : Da,b
γ : C

1
vλ

⊗e
1
k ω

(aZd
x × bZd

ξ ) → Sω,h
1/vμ

is continuous.

By Lemma 2.1 and the fact that V satisfies [M] and [N], the first statement follows
from Lemma 7.1 while the second statement follows from Lemma 7.2 together with
(3.3) (cf. Lemma 7.3). Since, by (3.2), the set of finite sequences on aZd

x × bZd
ξ is

dense in CZ [ω]
[V ]

(aZd
x × bZd

ξ ), the identity (7.5) follows from Lemma 4.3. ��

Proof of part (b) of Theorem 5.1 As S[ω]
[V ] is Gabor accessible, Proposition 7.6 implies

that there are a, b > 0 such that CZ [ω]
[V ]

(

1
aZ

d
x × 1

bZ
d
ξ

)

is isomorphic to a comple-

mented subspace of Z [ω]
[V ]. Since a complemented subspace of a barrelled space is

again barrelled, we may conclude that CZ [ω]
[V ]

(

1
aZ

d
x × 1

bZ
d
ξ

)

is barrelled. Note that

CZ(ω)
(V )

(

1

a
Z
d
x × 1

b
Z
d
ξ

)

= A(Vω| 1bZd ,V | 1aZd )C

(

1

b
Z
d
ξ × 1

a
Z
d
x

)

,

CZ{ω}
{V }

(

1

a
Z
d
x × 1

b
Z
d
ξ

)

= A{V | 1aZd ,Vω| 1bZd }C
(

1

a
Z
d
x × 1

b
Z
d
ξ

)

.

Hence,A(Vω| 1bZd ,V | 1aZd ) (A{V | 1aZd ,Vω| 1bZd }) satisfies (wQ) byTheorem6.3. Properties

(2.1) and (3.1) imply that then alsoA(Vω,V ) (A{V ,Vω}) satisfies (wQ). The result now
follows from Lemma 6.4. ��
Finally, we show Theorem 5.3. We need various results in preparation.

123



54 A. Debrouwere, L. Neyt

Lemma 7.7 Let ω be a weight function. Let vi : R
d → (0,∞), i = 1, 2, 3, be

continuous functions such that

v2(x) ≤ C0v1(x)v3(x), x ∈ R
d ,

for some C0 > 0. Let hi > 0, i = 1, 2, 3, be such that

1

max{h1, h3}φ
∗(max{h1, h3}y) + (log 2)y ≤ 1

h2
φ∗(h2y) + logC1, y ≥ 0,

for some C1 > 0. Then, the mapping

Sω,h1
v1

× Sω,h3
v3

→ Sω,h2
v2

, (ϕ, ψ) �→ ϕ · ψ

is continuous.

Proof Let ϕ ∈ Sω,h1
v1 and ψ ∈ Sω,h3

v3 be arbitrary. For all α ∈ N
d and x ∈ R

d it holds
that

|(ϕψ)(α)(x)|v2(x)
≤ C0

∑

β≤α

(

α

β

)

|ϕ(β)(x)|v1(x)|ψ(α−β)(x)|v3(x)

≤ C0‖ϕ‖Sω,h1
v1

‖ψ‖Sω,h3
v3

∑

β≤α

(

α

β

)

exp

(

1

h1
φ∗(h1|β|) + 1

h3
φ∗(h3|α − β|)

)

≤ C0‖ϕ‖Sω,h1
v1

‖ψ‖Sω,h3
v3

exp

(

1

max{h1, h3}φ
∗(max{h1, h3}|α|) + (log 2)|α|

)

≤ C0C1‖ϕ‖Sω,h1
v1

‖ψ‖Sω,h3
v3

exp

(

1

h2
φ∗(h2|α|)

)

.

This shows that the mapping Sω,h1
v1 ×Sω,h3

v3 → Sω,h2
v2 , (ϕ, ψ) �→ ϕ ·ψ is continuous.

��
Next, we extend the STFT and its adjoint to S ′[ω]

[V ] . Given a weight function ω and a
weight system V satisfying [M] and [N], we define

CS ′(ω)
(V )

(R2d
x,ξ ) := lim−→

h→0+
C

1
vh

⊗e− 1
h ω

(R2d
x,ξ ),

CS ′{ω}
{V }

(R2d
x,ξ ) := lim←−

h→∞
C

1
vh

⊗e− 1
h ω

(R2d
x,ξ ).

The STFT of an element f ∈ S ′[ω]
[V ] with respect to ψ ∈ S[ω]

[V ] is defined as

Vψ f (x, ξ) := 〈 f , MξTxψ〉, (x, ξ) ∈ R
2d .
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We define the adjoint STFT of F ∈ CS ′[ω]
[V ]

(R2d
x,ξ ) with respect to γ ∈ S[ω]

[ ˜V ] as

〈V ∗
γ F, ϕ〉 := 〈F, Vγ ϕ〉 =

∫ ∫

R2d
F(x, ξ)Vγ ϕ(x,−ξ)dxdξ, ϕ ∈ S[ω]

[V ].

Proposition 7.8 Let ω be a weight function and let V be a weight system satisfying
[M] and [N]. Let ψ ∈ S[ω]

[V ] and γ ∈ S[ω]
[ ˜V ]. Then, the mappings

Vψ : S ′[ω]
[V ] → CS ′[ω]

[V ]
(R2d

x,ξ ), V ∗
γ : CS ′[ω]

[V ]
(R2d

x,ξ ) → S ′[ω]
[V ]

are continuous. Moreover, if (γ, ψ)L2 �= 0, then

1

(γ, ψ)L2
V ∗

γ ◦ Vψ = idS ′[ω]
[V ]

. (7.6)

Proof By Lemma 2.1 and the fact that V satisfies [M], Lemma 7.2 implies that
Vψ : S ′{ω}

{V } → CS ′{ω}
{V }

(R2d
x,ξ ) is continuous and that Vψ : S ′(ω)

(V )
→ CS ′(ω)

(V )

(R2d
x,ξ )

maps bounded sets into bounded sets. Since S ′(ω)

(V )
is bornological, we obtain that also

Vψ : S ′(ω)

(V )
→ CS ′(ω)

(V )

(R2d
x,ξ ) is continuous. Next, we treat V

∗
γ . We define

CS(ω)
(V )

(R2d
x,ξ ) := lim←−

h→0+
C

vh⊗e
1
h ω

(R2d
x,ξ ), CS{ω}

{V }
(R2d

x,ξ ) := lim−→
h→∞

C
vh⊗e

1
h ω

(R2d
x,ξ ).

We claim that the mapping

S[ω]
[V ] → CS[ω]

[V ]
(R2d

x,ξ ), ϕ �→ Vγ ϕ(x,−ξ),

is continuous. It suffices to show that

∀h ∃k (∀k ∃h) : Sω,k
vk

→ C
vh⊗e

1
h ω

(R2d
x,ξ ), ϕ �→ Vγ ϕ(x,−ξ) is continuous.

By Lemma 2.1 and the fact that V satisfies [M] and [N], this follows from Lemma 7.1.
Hence, the continuity of V ∗

γ : CS ′[ω]
[V ]

(R2d
x,ξ ) → S ′[ω]

[V ] is a consequence of the continuity
of the mapping

CS ′[ω]
[V ]

(R2d
x,ξ ) → (CS[ω]

[V ]
(R2d

x,ξ ))
′
b, F �→

(

f �→
∫ ∫

R2d
F(x, ξ) f (x, ξ)dxdξ

)

.

Finally, we show (7.6). TheHahn-Banach theorem and the fact thatS[ω]
[V ] is reflexive

(as it is nuclear [9, Theorem 5.1]), imply that L2 is dense in S ′[ω]
[V ] . Hence, (7.6) follows

from (4.1). ��
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We also need the following result about the projective description of CZ [ω]
[V ]

(R2d
x,ξ ).

Lemma 7.9

(i) Let V be a weight system satisfying [wM] and [N]. Set

V (V) := {v : Rd → (0,∞) continuous | sup
x∈Rd

v(x)vλ(x) < ∞ for all λ > 0}.

Then,

CZ(ω)
(V )

(R2d
x,ξ ) = lim←−

h→0+
lim←−

v∈V (V)

C
v⊗e

1
h ω

(R2d
x,ξ ).

(ii) Let ω be a weight function. Set

V ω := {σ : [0,∞) → [0,∞) weight function | σ = o(ω)}.

Then,

CZ{ω}
{V }

(R2d
x,ξ ) = lim←−

λ→∞
lim←−

σ∈Vω

C 1
vλ

⊗eσ (R2d
x,ξ ).

Proof In view of [3, Theorem 1.3], (i) follows from (3.2) and [3, Proposition, p. 112,
and its proof] and (i i) follows from [6, Lemma 1.7 and Remark 1.8]. ��
Proof of Theorem 5.3 We first show that Z [ω]

[V ] is continuously included in OM (S[ω]
[V ]).

To this end, it suffices to show that

∀h ∃k ∀λ ∃μ (∀μ ∃λ ∀k ∃h) : Sω,μ
vμ

× Sω,k
1/vλ

→ Sω,h
vh

, (ϕ, ψ) �→ ϕ · ψ is continuous.

By Lemma 2.1 and the fact that V satisfies [S], this follows from Lemma 7.7. Next,
we show thatOM (S[ω]

[V ]) is continuously included inZ [ω]
[V ]. By Lemma 7.5, there exists

χ ∈ S[ω]
[V ] ∩ S[ω]

[ ˜V ]\{0}. Set ψ = χ2 ∈ S[ω]
[V ] ∩ S[ω]

[ ˜V ]\{0}. Proposition 7.4 and the

reconstruction formula (7.6) (with ψ = γ ) imply that it suffices to show that the
mapping

Vψ : OM (S[ω]
[V ]) → CZ [ω]

[V ]
(R2d

x,ξ )

is continuous. We start by showing that

Vψ f (x, ξ) =
∫

Rd
((Txψ) · f )(t)e−2π iξ ·tdt, (x, ξ) ∈ R

2d ,

for all f ∈ OM (S[ω]
[V ]). As ψ = χ2, we have that

Vψ f (x, ξ) = 〈 f , MξTxψ〉 = 〈 f , (MξTxχ) · (Txχ)〉 = 〈(Txχ) · f , (MξTxχ)〉
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=
∫

Rd
((Txχ) · f )(t)Txχ(t)e−2π iξ ·tdt =

∫

Rd
((Txψ) · f )(t)e−2π iξ ·tdt

for all (x, ξ) ∈ R
2d . In the rest of the proof we treat the Beurling and Roumieu case

separately. We first consider the Beurling case. By Lemma 7.9(i), it suffices to show
that for all h > 0 and v ∈ V (V) there is a bounded subset B ⊂ S(ω)

(V )
, μ > 0 and

k,C > 0 such that

‖Vψ f ‖
v⊗e

1
h ω

≤ C sup
ϕ∈B

‖ϕ · f ‖Sω,k
vμ

, f ∈ OM (S(ω)

(V )
). (7.7)

Set

B = {Txψv(x) | x ∈ R
d}.

We claim that B is a bounded subset of S(ω)

(V )
. Let h, λ > 0 be arbitrary. Condition

(M) yields that there are κ, ν ≤ λ and C > 0 such that vλ(y) ≤ Cvκ(y − x)vν(x) for
all x, y ∈ R

d . Hence,

sup
x∈Rd

‖Txψv(x)‖Sω,h
vλ

= sup
x∈Rd

sup
α∈Nd

sup
y∈Rd

|ψ(α)(y − x)|vλ(y) exp

(

−1

h
φ∗(h|α|)

)

v(x)

≤ C ‖ψ‖Sω,h
vκ

sup
x∈Rd

v(x)vν(x) < ∞.

Next, choose μ > 0 such that 1/vμ ∈ L1 (as vλ ≥ 1 for all λ > 0 this is possible by
(N)). By Lemma 2.1(i), there are k,C > 0 such that

1

k
φ∗(k(y + 1)) + (log

√
d)y ≤ 1

h
φ∗(hy) + logC, y ≥ 0.

For all y ≥ 0 and (x, ξ) ∈ R
2d with |ξ | ≥ 1 it holds that

|ξ |y |Vψ f (x, ξ)|v(x)

≤ max|α|=�y�
√
d

|α|
v(x)

∣

∣

∣

∣

ξα

∫

Rd
((Txψ) · f )(t)e−2π iξ ·tdt

∣

∣

∣

∣

≤ max|α|=�y�(
√
d/(2π))|α|v(x)

∫

Rd
|((Txψ) · f )(α)(t)|dt

≤ ‖1/vμ‖L1 sup
ϕ∈B

‖ϕ · f ‖Sω,k
vμ

max|α|=�y�(
√
d/(2π))|α| exp

(

1

k
φ∗(k|α|)

)

≤ √
d‖1/vμ‖L1 sup

ϕ∈B
‖ϕ · f ‖Sω,k

vμ
exp

(

1

k
φ∗(k(y + 1)) + (log

√
d)y

)

≤ √
dC‖1/vμ‖L1 sup

ϕ∈B
‖ϕ · f ‖Sω,k

vμ
exp

(

1

h
φ∗(hy)

)

.
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Hence,

|Vψ f (x, ξ)|v(x) ≤ √
dC‖1/vμ‖L1 sup

ϕ∈B
‖ϕ · f ‖Sω,k

vμ
inf
y≥0

exp

(

1

h
φ∗(hy) − (log |ξ |)y

)

= √
dC‖1/vμ‖L1 sup

ϕ∈B
‖ϕ · f ‖Sω,k

vμ
e− 1

h ω(ξ).

For all (x, ξ) ∈ R
2d with |ξ | ≤ 1 it holds that

|Vψ f (x, ξ)|v(x)e
1
h ω(ξ) ≤ e

1
h ω(1)v(x)

∫

Rd
|((Txψ) · f )(t)|dt

≤ e
1
h ω(1)‖1/vμ‖L1‖ sup

ϕ∈B
‖ϕ · f ‖Sω,k

vμ
.

This shows (7.7). Next, we consider the Roumieu case. By Lemma 7.9(i i), it suffices
to show that for all λ > 0 and σ ∈ V ω there is a bounded subset B ⊂ S{ω}

{V }, a
continuous seminorm p on S{ω}

{V } and C > 0 such that

‖Vψ f ‖ 1
vλ

⊗eσ ≤ C sup
ϕ∈B

p(ϕ · f ), f ∈ OM (S{ω}
{V }). (7.8)

Set

B =
{

Txψ

vλ(x)
| x ∈ R

d
}

.

We claim that B is a bounded subset of S{ω}
{V }. Let h, μ > 0 be such that ψ ∈ Sω,h

vμ
.

Condition {M} yields that there are ν ≥ λ,μ and C > 0 such that vν(y) ≤ Cvμ(y −
x)vλ(x) for all x, y ∈ R

d . Hence,

sup
x∈Rd

∥

∥

∥

∥

Txψ

vλ(x)

∥

∥

∥

∥Sω,h
vν

= sup
x∈Rd

sup
α∈Nd

sup
y∈Rd

|ψ(α)(y − x)|vν(y)

vλ(x)
exp

(

−1

h
φ∗(h|α|)

)

≤ C ‖ψ‖Sω,h
vμ

< ∞.

This shows that B is a bounded subset of Sω,h
vν

and thus also of S{ω}
{V }. Next, by Lemma

2.1(i), there are k,C > 0 such that

1

k
φ∗

σ (k(y + 1)) + (log
√
d)y ≤ φ∗

σ (y) + logC, y ≥ 0.

where φ∗
σ denotes the Young conjugate of the function φσ (x) = σ(ex ). Define

p(ϕ) = sup
α∈Nd

‖ϕ(α)‖L1 exp

(

−1

k
φ∗

σ (k|α|)
)

, ϕ ∈ S{ω}
{V }.
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Then, p is a continuous seminorm on S{ω}
{V }. One can now show (7.8) in the same way

as (7.7) was shown in the Beurling case. ��
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14. Domański, P.: Classical (PLS)-spaces: spaces of distributions, real analytic functions and their rela-
tives, pp. 51–70, in: Orlicz Centenary Volume, Banach Center Publications, Warszawa, (2004)

15. Gel’fand, I.M., Shilov, G.E.: Generalized functions. Vol. 2: Spaces of fundamental and generalized
functions. Academic Press, New York-London, (1968)

16. Gröchenig, K.: Foundations of time-frequency analysis. Birkhäuser Boston Inc, Boston, MA (2001)
17. Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16,

(1955)
18. Heinrich, T., Meise, R.: A support theorem for quasianalytic functionals. Math. Nachr. 280, 364–387

(2007)
19. Janssen, A.J.E.M.: Signal analytic proofs of two basic results on lattice expansions. Appl. Comp.

Harmonic Anal. 1, 350–354 (1994)
20. Kawai, T.: On the theory of Fourier hyperfunctions and its applications to partial differential equations

with constant coefficients. J. Fac. Sci. Univ. Tokyo, Sec. IA 17, 467–517 (1970)
21. Kim, D., Kim, K.W., Lee, E.L.: Convolution and multiplication operators in Fourier hyperfunctions.

Integral Transforms Spec. Funct. 17, 53–63 (2006)
22. Komatsu, H.: Ultradistributions I. Structure theorems and a characterization. J. Fac. Sci. Univ. Tokyo

Sect. IA Math. 20, 25–105 (1973)
23. Larcher, J., Wengenroth, J.: A new proof for the bornologicity of the space of slowly increasing

functions. Bull. Belg. Math. Soc. Simon Stevin 5, 887–894 (2014)
24. Morimoto, M., Convolutors for ultrahyperfunctions, Internat. Sympos. Math. Problems in Theoret.

Phys. (Kyoto,: Lecture Notes in Phys., vol. 39. Springer-Verlag 1975, 49–54 (1975)
25. Schwartz, L.: Théorie des distributions. Hermann, Paris (1966)

123



60 A. Debrouwere, L. Neyt

26. Soloviev, M.A.: Inclusion theorems for the Moyal multiplier algebras of generalized Gelfand-Shilov
spaces. Integr. Equ. Oper. Theory 93, 52 (2021). https://doi.org/10.1007/s00020-021-02664-2

27. Valdivia, M.: A representation of the space OM . Math. Z. 77, 463–478 (1981)
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