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Abstract
Propagationof periodic stationaryweakly vortical gravitationalwaves on the freewater
surface is considered. Similar wave motion was studied by Gouyon (Ann de la Fac des
Sci de l’Université de Toulouse Sér 4(22):1–55, 1958) in linear and quadratic approx-
imations in small parameter of the wave’s steepness ε for the deep water conditions.
In this paper this result is considered for the water of finite depth. Contrary to Gouyon
who used the Euler approach a study of wave’s motion is performed here basing on the
method of the modified Lagrangian coordinates. The wave’s vorticity� is specified as
a series in the small parameter of steepness ε in the form:� � ∑∞

n�1 εn ·�n(b), where
�n are arbitrary functions of the vertical Lagrangian coordinate b. Explicit expres-
sions for the coordinates of the liquid particle trajectories and pressure distribution are
obtained for the first two orders of perturbation theory. The nonlinear proportional to
ε correction to the wave velocity is determined.

Keywords Water waves · Vorticity · Lagrangian variables

Mathematics Subject Classification 76B15 · 76 B47

1 Introduction

In the theory of water waves the assumption of the potentiality of the flow is used
widely. But in a number of natural phenomena this approximation turns out to be
unjustified. Rotational effects are significant in many circumstances. First of all, this
is relevant to surface waves at the background of shear currents. At the same time,
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when waves are generated by the wind, which is one of the main mechanisms for the
wave formation on water, a shear flow arises in the near-surface layer. It introduces
vorticity into the liquid, so that the waves propagating along the free surface have a
fundamentally vortex character.

It is noteworthy that historically the first analytical description of water waves was
obtained by Gerstner just for vortex waves [17]. The Gerstner wave is a nonlinear
elevation of a free surface of a trochoidal profile running in the horizontal direction
[4, 6, 7, 19, 21, 22, 24]. The depth of the liquid is infinite. Liquid particles move in
circles with a radius exponentially decreasing with depth.

TheGerstnerwave has quite particular kind of vorticity. So, the description ofwaves
with a more general vorticity distribution is required. In a stationary flow the vorticity
along streamlines ψ is preserved and can be defined as an arbitrary function of this
variable. For the case of vorticity the existence of large classes of small amplitude
solutions was proven by Dubreil-Jacotin [15] in 1934 and large-amplitude solutions
by Constantin and Strauss [8].

In 1958 Gouyon turned to the problem of description of periodic stationary weakly
vortical waves in a fluid of infinite depth basing on the method of perturbation theory.
In this case it is convenient to specify vorticities in each of the approximations. Gouyon
suggested that the wave vorticity has the following form [18, 24]:

� �
∞∑

n�1

εn · �n(�). (1)

where ε is the small parameter of the wave steepness This formula is the most general
representation of the vorticity of a stationary plane flow in the absence of a shear flow
(zero approximation vortex). Gouyon suggested a general scheme of the perturbation
theory for periodic waves in the deep water with vorticity distribution (1), proved its
convergence and found explicit solutions for the first two approximations by devel-
oping an original approach to describe flows in variables (x, �) [18, 24] (x is the
horizontal Cartesian coordinate).

The purpose of this work is to develop and supplement the results of [18] for fluid
of finite depth. The vorticity in our description is given as follows:

� �
∞∑

n�1

εn · �n(b), (2)

here b is the vertical Lagrangian coordinate. The properties of Gouyon waves will be
studied on the basis of the modified Lagrangian coordinates method [1, 2]. Instead of
the usual Lagrangian coordinates a newpair of variables q � a+σ(b)t, b is introduced,
where the function σ (b) describes the inhomogeneous drift of liquid particles along
the streamlines (isolines b andψ coincide here). As a result, it is possible to construct a
perturbation theory in the newvariableswithout secular terms. Themethod ofmodified
Lagrangian coordinates was used previously to describe nonlinear Guyon waves in
deepwater [3] (Guyon’s results were generalized to the case of a cubic approximation).
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Gouyon waves in water of finite depth 719

Vorticity can add qualitatively new properties into the structure and properties of a
periodic stationary wave. This was vividly demonstrated in [12], where it was shown
that uniformly vortical waves over a flat bottom could have internal stagnation points
and critical layers. They can also have overturning profiles, that is, profiles that are
not graphs. Such phenomena cannot occur for the much-studied irrotational flows. For
an irrotational steady flow the wave profile is necessarily the graph of a single-valued
function, and there are no interior stagnation points or critical layers (see references
in [12, 13]).

In this sense, it is important to note the specific features of Guyon waves differing
from potential waves (Stokes waves). For weakly nonlinear Guyon waves the propor-
tional correction ε to the linear velocity of wave propagation is nonzero [3, 19]. It is
determined by the vorticity of the first approximation�1. For a potential wave�1 � 0,
therefore this correction to the velocity of wave propagation is absent. Another inter-
esting property of Guyon waves is related to the type of trajectories of liquid particles.
They can be either closed or looped with different directions of the averaged drift
velocity under a certain choice of the type of vorticity �1(b) and depend on the depth
of the fluid (value of b) [3]. In this paper these properties of Guyon waves are analyzed
in detail.

The paper is structured as follows. Section 2 gives the formulation of the problem
of the steady periodic Gouyon waves in modified Lagrangian variables. In Sects. 3, 4
linear and quadratic approximations in the small parameter of the wave steepness are
considered respectively. The first correction to the linear velocity of wave propagation
is found. It is shown that taking into account a weak shear flow can qualitatively
change the trajectories of liquid particles in waves, transforming them from the closed
(circular) into loop-like ones.In the Conclusion, the main results of the work are
discussed.

2 The formulation of the problem

Let us consider a stationary plane wave propagating along the free surface of the liquid
at a constant velocity in the positive direction of the OX axis and write the equations
of two-dimensional hydrodynamics in Lagrangian variables in the following form [2,
4, 24]:

XaYb − XbYa � 1, (3)

Xtt � −HaYb + HbYa ; Ytt � −HbXa + HaXb; H � p

ρ
+ gY , (4)

here X(a, b, t),Y (a, b, t) are the coordinates of the trajectory of a liquid particle, a
and b are the horizontal and vertical Lagrangian coordinates (the condition b � 0
specifies a free surface and the condition b � −h corresponds to a bottom), p is the
pressure, ρ is the density, g—acceleration due to gravity (Y axis is directed upwards).
Equation (3) is the condition of fluid continuity, and the relations (4) are equivalent to
the momentum equations.
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720 A. A. Abrashkin

Fig. 1 The picture of a stationary flow in the frame of reference associated with the wave: periodic distur-
bances of the flow with a profile σ (b)

Fig. 2 Trajectories of liquid particles in the linear Gouyon wave in the laboratory frame for the model flow
profile σ1(b) + c1 � γ (b + b∗((b + h), b∗ > 0

When studying thewavemotion, it is convenient to go over to the frame of reference
moving with the wave propagation speed c, where the flow is stationary (see Fig. 1).
In Lagrangian variables, the two-dimensional stationary flow has the form [1, 2, 5]

X � X(q, b),Y � Y (q, b), q � a + σ(b)t, (5)

where σ (b) is an arbitrary function. The easiest way to verify the validity of this
statement is to write down the flow velocity field (5) in Eulerian coordinates. Since
the Lagrangian velocity components Xt � σ Xq ,Yt � σYq , like the functions X,
Y , depend only on two variables q and b, the Euler velocity field Xt (X ,Y ),Yt (X ,Y )
does not explicitly depend on time, which means that it describes a stationary flow.We
note right away that the q coordinate is no longer the mark of an individual particle.
Because of this, the suggested approach can no longer be called Lagrangian. The
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Gouyon waves in water of finite depth 721

relationship between the function σ (b) and the wave velocity is shown in Fig. 1 and
will be explained below.

The coordinates q, bwere introduced for the first time in [1] and called themodified
Lagrangian variables [2]. In the variables q, b, Eqs. (3), (4) will be written as follows:

XqYb − XbYq � 1, (6)

σ 2Xqq � −HqYb + HbYq ; σ
2Yqq � −HbXq + Hq Xb. (7)

Let us assume that

X � q + ξ,Y � b + η,

where the functions ξ , η have the meaning of periodic wave perturbations of the
trajectory of a liquid particle from themodified Lagrangian coordinates. Equations (6),
(7) in this case can be rewritten as follows

ξq + ηb � −D(ξ , η)

D(q, b)
, (8)

σ 2ξqq � −Hq +
D(η, H)

D(q, b)
, (9)

σ 2ηqq � −Hb − D(ξ , H)

D(q, b)
. (10)

These equations should be supplemented with boundary conditions. At the bottom,
the vertical speed should drop to zero:

Yt � σYq � σηq � 0forb � −h (11)

and on the free surface (b � 0), the pressure should be constant, i.e.

H(q, 0) − gη(q, 0) � p0
ρ

� const. (12)

Conditions (11), (12) should also be supplemented with the requirement that the
OX axis corresponds to the average liquid level. It is written like this:

λ∫

0

YdX

∣
∣
∣
∣
∣
∣
b�0

�
∫

η
(
1 + ξq

)
dq

∣
∣
∣
∣
b�0

� 0. (13)

The horizontal velocity of liquid particles is Xt � σ(b) + σ(b)ξq . Here the first
term describes a shear flow with a profile σ(b). The second one is related to wave
perturbations and is a periodic function q. The bottom coincides with the boundary
streamline (see Fig. 1). Liquid particles move along the streamline, and their velocity
consists of a homogeneous drift σ(−h) and an oscillatory horizontal motion at the
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722 A. A. Abrashkin

level Y � −h. The value of the function σ at the bottom is equal to the negative
velocity of a stationary wave:

σ(−h) � −c. (14)

The difference between the shear flow σ(b) and the value σ(−h) has the meaning
of the drift velocity of particles

u(b) � σ(b) − σ(−h) � σ(b) + c. (15)

Our goal is to describe the weakly nonlinear Gouyon waves. The expression for the
vorticity of a plane flow, taking into account Eq. (6), can be represented as follows:

(16)

� � ∂Yt
∂X

− ∂Xt

∂Y
� D (Xt , X )

D (X ,Y )
+
D (Yt ,Y )

D (X ,Y )

� D (Xt , X )

D (a, b)
+
D (Yt ,Y )

D (a, b)
� D

(
σ Xq , X

)

D (q, b)
+
D

(
σYq ,Y

)

D (q, b)
.

After passing over to new unknown functions, this relation will be rewritten as
follows

� � −σ ′(1 + 2ξq
)
+ σ

(
ηqq − ξqb

)
+
D

(
σξq , ξ

)

D(q, b)
+
D

(
σηq , η

)

D(q, b)
.

In the two-dimensional flow, the vorticity of a liquid particle is conserved. For the
stationary flow (5), the vorticity depends only on the variable b. Since the functions
ξ, η are periodic in the variable q, this formula can be simplified by applying the
averaging operation. In this case, the expression for � takes the form

� � −σ ′+

−
D

(
σξq , ξ

)

D(q, b)
+

−
D

(
σηq , η

)

D(q, b)
, (17)

where the bar is the sign of averaging over the variable q at thewavelengthλ � 2π/k, k
is the wavenumber.

We represent the unknown functions ξ, η, u, H , c in the form of series in powers
of the parameter ε:

{ξ, η, u} �
∞∑

n�1

εn{ξn, ηn, un}; H � p0
ρ

+
∞∑

n�1

εnHn ; c �
∞∑

n�0

εncn . (18)

Expression (15) can be rewritten as follows:

σ � −c0 +
∞∑

n�1

εn(un − cn) � σ0 +
∞∑

n�1

εnσn . (19)
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Gouyon waves in water of finite depth 723

Wewill be interested in the first two approximations. Within the framework of such
a description, the vorticity is determined by the relation

� � ε�1(b) + ε2�2(b) + O
(
ε3

)
, (20)

where�1(b),�2(b) are given arbitrary functions. Theywill determine the propagation
specificity of the studied vortex waves.

3 Linear approximation

Let us write out, according to (8)–(10), the equations of the first approximation

ξ1q + η1b � 0, (21)

σ 2
0 ξ1qq � −H1q , (22)

σ 2
0 η1qq � −H1b. (23)

Then we will differentiate Eq. (22) with respect to q, Eq. (23) with respect to b and
add. Taking into account (21), we obtain

H1qq + H1bb � 0.

Let us choose a periodic solution of this equation with a period λ in the variable q:

H1 � H∗
1 f1(b)coskq, (24)

here H∗
1 is a constant, k � 2π/λ, a fynkci� f1(b) ydovletvop�et ypavneni�

f ′′
1 − k2 f1 � 0. (25)

Substituting this expression into Eqs. (22), (23), we obtain

ξ1qq � kH∗
1

σ 2
0

f1 sin kq; η1qq � −H∗
1

σ 2
0

f ′
1 cos kq. (26)

For simplicity, it is convenient to put in them H∗
1 � σ 2

0 . Integrating relations (26)
with consideration of the periodicity of the disturbances ξ1, η1 with respect to the
variable q, we find

ξ1 � −1

k
f1 sin kq + l1(b); η1 � 1

k2
f ′
1 cos kq + m1(b). (27)

Substituting these relations into the equation of continuity of this approximation
(21), we obtain
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724 A. A. Abrashkin

∂m1(b)

∂b
� 0,

whence it follows that m1 � const . For the average level to coincide with the
horizontal Y � 0, that is, the condition is fulfilled (see (13))

λ∫

0

η1dq � 0,

constant m1 should be set equal to zero. We will also choose the function l1(b)
equal to zero, but already from completely different considerations given below. Our
flow description can be viewed as a mapping of a certain region of variables q, b onto
the plane of variables X ,Y . If l1 � 0, then the half-band {0 ≤ q ≤ λ,−h ≤ b ≤ 0}
is mapped to the region {0 ≤ X ≤ λ,−h ≤ Y ≤ η1(q, 0)}. If l1 �� 0, the display area
will be shifted by l1(b): at each of the Lagrangian horizons b � const , in the general
case, by a different amount.

The form of the function l1 does not affect the flow velocity, waveform and other
characteristics, therefore, for the calculation simplicity, we will assume it to be zero.
In the Lagrangian description, fluid particles can be relabeled in an infinite number
of ways, but this, obviously, should not affect the mathematical representation of the
flow in any way. Our choice of mapping between the Lagrangian and physical regions
with l1 � 0 was dictated by the convenience of description.

Conditions (11), (12) turn to the following form in the terms of the function f1:

f1
′(−h) � 0; σ 2

0 f1(0) � g

k2
f ′
1(0). (28)

A solution of the boundary-value problem (25), (28) can be written:

f1 � Cchk(b + h)); σ 2
0 � c20 � g

k
thkh, (29)

here C is a constant. The second ratio (29) determines the square of the phase
velocity of the wave in a linear approximation. It coincides with the velocity of lin-
ear potential waves in a fluid of finite depth [21, 22]. Taking into account (29), the
expressions for wave disturbances are determined by the formulas

ξ1 � −C

k
chk (b + h) sin kq; η1 � C

k
shk(b + h) cos kq; (30)

H1 � Cσ 2
0 chk(b + h)cos kq. (31)

The amplitude of the wave in the linear approximation A1 equals to εη1(0) or

A1 � εC

k
shkh.

Let us consider C � 1/sh kh, so the parameter ε � k A1 means the wave’s
steepness.
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Gouyon waves in water of finite depth 725

The expression for the linear Guyonwave in the Lagrangian variables a, b is written
as

X � a − c0t + εσ1(b)t − ε
chk(b + h)

kshkh
sin k[a − c0t + εσ1(b)t];

Y � b + ε
shk(b + h)

k sh kh
cos k[a − c0t + εσ1(b)t]. (32)

In addition to oscillatory motion, liquid particles participate in a non-uniform drift,
which is associated with the function σ1(b). It follows from relation (17) that it is
related to the first approximation vorticity:

σ ′
1 � −�1.

It is convenient to represent this function as follows

σ1(b) � σ1(−h) −
b∫

−h

�1(b)db � −c1 −
b∫

−h

�1(b)db. (33)

As can be seen, the vorticity distribution �1(b) is insufficient for the complete
determination of the function σ1(b). In the first approximation, it is found accurate to
a constant—a linear correction to the propagation velocity c0, taken with a minus sign.
Its value should be calculated in the following approximation. This feature is inherent
in all other approximations. The integral term in formula (33) corresponds to the drift
velocity of liquid particles

u1(b) � σ1(b) + c1 � −
b∫

−h

�1(b)db.

In eachof the approximations for the givenvorticity, therewill be an inhomogeneous
drift flow, and the correction value to the propagation velocity should be calculated in
the next approximation.

In the laboratory frame of reference, the solution of linear problem (27) has the
form

X � a + ε[σ1(b) + c1]t − ε · chk(b + h)

kshkh
sink[a − c0t + εσ1(b)t];

Y � b + ε · sh k(b + h)

k sh kh
cos k[a − c0t + εσ1(b)t]. (34)

The wave propagates to the right with the speed c0+εc1. In the case σ1 � 0, c1 � 0,
when vorticity is absent, expressions (34) describe the linear potential wave (Stokes
wave). In this case, liquid particles rotate in ellipses [18, 19]
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726 A. A. Abrashkin

(X − a)2

α2 +
(Y − b)2

β2 � 1;

α � chk(b + h)

kshkh
;β � shk(b + h)

kshkh
,

here α, β– are the values of their horizontal and vertical semi-axes respectively. Both
of these values decrease with depth. The value of β for b � −h equals to zero, so that
the liquid particles at the bottom oscillate along a straight lines.

For the Gouyon wave σ1(b) �� 0 (and is not constant), therefore, liquid particles,
in addition to rotating in an ellipse, take part in a non-uniform drift in depth, so that
their trajectory is a loop-like line in general. If σ1(b)+ c1 > 0 the fluid particles move
in the direction of the wave motion, and if the inequality sign is opposite they move
backward. The function σ1(b) in solution (34) describes the shear flow and due to the
arbitrariness of �1(b) can also be arbitrary. Figure 2 shows the trajectories of fluid
particles for the following distribution of the drift velocity

σ1(b) + c1 � γ (b + b∗)(b + h), b∗ > 0,

where γ—is a constant with dimension (cm · c)−1. It is worth noting that in the
laboratory frame of reference, the particles, located on the Lagrangian horizon b �
−b∗ move in ellipses, and at higher and lower horizons—along the loop trajectories,
while the directions of the particle drift, relative to this horizon, are different.

A similar pattern of particle’s paths may be realized in nonlinear potential waves
in the presence of an adverse uniform underlying current [11] as well as in small-
amplitude waves with large positive constant vorticity [16] (where the smallness of
the vorticity is not imposed, in contrast to our case). Some examples of the analytical
description of particle trajectories for these linear waves were obtained in [20].

As it is known, linear waves on the surface of the flow σ0(b)with an inflection point
on the profile are unstable [14]. In our case σ0 � const , the flow profile σ1(b) can be
any. In particular, the flow profile σ1(b) may have an inflection point.

It is necessary to stress one more important fact. In the Lagrangian description of
flows the trajectories of liquid particles are found explicitly. It is an important advantage
of the Lagrangian approach. Let us explain this statement by an example of the linear
Stokes wave. To determine coordinatesX, Y of a trajectory of liquid particles in the
Euler variables a system of two equations of the first order should be solved. In the left
parts of this system there are terms dX

dt and dY
dt , in the right—the expressions for the

horizontal and vertical velocity determined by the potential for the linear wave (see,
for example, [21]). This system is non-linear and non-integrable. For the linear wave,
however, the values ofX, Y on the right-hand sides can be replaced by theirmean values.
In this case the system can be easily integrated and, as a consequence, the classical
result is obtained: liquid particles move over elliptical trajectories. But quite recently
Constantin and Villari paid attention to a very interesting property of solutions of a
complete nonlinear system forX, Y : none of these solutions describes the motions with
closed trajectories of liquid particles [9, 10]. Thus, in the Euler description the liquid

123



Gouyon waves in water of finite depth 727

particle drift is already potentially present in the linear approximation, but definitely
it is the effect of the quadratic approximation. In this case the Lagrangian description
looks simpler and more convenient.

4 Quadratic approximation

Let us write the equations of the second order of the perturbation theory:

ξ2q + η2b � −D(ξ1, η1)

D(q, b)
, (35)

σ 2
0 ξ2qq + 2σ0σ1ξ1qq � −H2q +

D(η1, H1)

D(q, b)
, (36)

σ 2
0 η2qq + 2σ0σ1η1qq � −H2b − D(ξ1, H1)

D(q, b)
. (37)

The unknown functions included in them should satisfy the boundary conditions

(
σ0η2q + σ1η1q

)∣
∣
b�−h

� 0, (38)

λ∫

0

(
η2 + η1ξ1q

)∣
∣
b�0 � 0. (39)

H2(q, 0) � gη2(q, 0), (40)

The quadratic terms in (35)–(37) are easily calculated and equal, respectively,

D(ξ1, η1)

D(q, b)
� −C2

2
[cos 2kq + ch 2k(b + h)]; (41)

D(η1, H1)

D(q, b)
� kσ 2

0C
2

2
sin 2kq; (42)

D(ξ1, H1)

D(q, b)
� −kσ 2

0C
2

2
sh 2k(b + h). (43)

Let us differentiate Eq. (36) with respect to q, Eq. (37) with respect to the variable
b and add them. Taking into account relations (21), (35) and (41)–(43), we obtain

�H2 � 2kCσ0σ
′
1 sh k(b + h)cos kq + k2C2σ 2

0 [3 cos2 kq + ch 2k(b + h)]. (44)

We shall find the solution of this equation in the form:

H2 � σ 2
0 [ f20(b) + f21(b) cos kq + f22(b) cos 2kq], (45)
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728 A. A. Abrashkin

then the proposed functions of b satisfy the following equations

f ′′
20 � k2C2 ch2k(b + h); (46)

f ′′
21 − k2 f21 � 2kC

σ ′
1

σ0
shk(b + h); (47)

f ′′
22 − 4k2 f22 � 3k2C2. (48)

The choice of functions f20, f21, f22 depends on conditions (11)–(13) including
expressions for wave perturbations of the coordinates of the trajectories of liquid par-
ticles. The vertical deviation η2 according to Eq. (37) and equality (43) is determined
by the ratio

η2qq � kC2

2
sh 2k(b + h) − f ′

20 +

[
2σ1
σ0

kC sh k(b + h) − f ′
21

]

cos kq − f ′
22cos 2kq.

(49)

The function η2 ought to be periodic with respect to the variable q, so it follows
from formula (49) that

f20(b) � C2

4
ch 2k(b + h) + C20,

where C20 is a constant. Its value could be found from the boundary condition for
pressure (40). In this case it reduces (see (45)) to the ratio f20(0) � 0, so that

C20 � −C2

4
ch 2kh.

Equation (47) should be added with the boundary condition:

f ′
21(−h) � 0; (50)

which follows from no leakage condition across the bottom (38). The solution
satisfying this condition will be written like this:

f21(b) � C

σ0

⎡

⎣ekb
b∫

−h

σ ′
1e

−kbsh k(b + h)db − e−kb

b∫

−h

σ ′
1e

kbsh k(b + h)db

⎤

⎦. (51)

The expression for f21 does not include the general solution of the homogeneous
Eq. (47), since it has the structure of the function H1, and taking it into account would
lead to a change in the amplitude of the first harmonic only.
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Gouyon waves in water of finite depth 729

The pressure constancy condition for oscillations with a wave number k (see (40))
is written as follows

σ 2
0 f21(0) � g

k2

[

f ′
21(0) − 2σ1(0)

σ0
k

]

. (52)

The value σ1(0) follows from this expression as

σ1(0) �
0∫

−h

σ ′
1(b)

sh k(b + h)

sh2kh
db. (53)

When taking into account the following relation

σ1(b) � σ1(−h) +

b∫

−h

σ ′
1(b)db � −c1 −

b∫

−h

�1(b)db,

we find the value of the correction to the linear wave velocity

c1 �
0∫

−h

�1(b)

[
sh2k(b + h)

sh2kh
− 1

]

db. (54)

In the case of deep water kh � 1 and this expression takes the form

c1 �
0∫

−h

�1(b)
[
e2kb − 1

]
db,

which is equivalent to the result obtained by Gouyon (see [3]).
It remains to define expressions for secondharmonic perturbations in k. As it follows

from conditions (38), (40), (45), (49), the function f22(b) should satisfy the following
boundary conditions

f ′
22(−h) � 0;

σ 2
0 f22(0) � g

4k2
f ′
22(0).

When solving Eq. (48) with their consideration we obtain
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f22(b) � 3

4sh2kh

[

1 − ch 2k(b + h)

sh2kh

]

. (55)

Expressions for second-order wave perturbations ξ2, η2 could be found from rela-
tions (36), (37) and in the final form will be written as follows:

ξ2 � −2σ1
σ0

ξ1 − f21
k

sin kq − 1

2k

(

f22 +
1

4sh2 kh

)

sin2 kq; (56)

η2 � 1

2k th kh
+
1

k

[
f ′
21

k
− 2σ1sh k(b + h)

σ0sh kh

]

coskq +
f ′
22

4k2
cos 2kq. (57)

The first term in Eq. (57) is caused by the requirement of zero average liquid level
(condition (39)).

In the Lagrangian coordinates, the second approximation solution is written as
follows:

X � a − c0t + ε(σ1t + ξ1) + ε2(σ2t + ξ2) + O
(
ε3

)
; (58)

Y � b + εη1 + ε2η2 + O
(
ε3

)
. (59)

The variable q in the expressions for ξ1, η1 should be taken equal to a−(c0 − εσ1)t ,
and in the expressions for ξ2, η2 equal to a − c0t . In this approximation, a term
containing the function σ2(b) is added to the shear flow. It is related to the quadratic
approximation vorticity (see (17)):

σ ′
2 � −�2(b) + kc0

sh 2k(b + h)

sh2 kh
, (60)

let us recall that the form of �2 is assumed to be given. The function σ2(b) is
determined up to a constant, the value of which, and hence the value of the correction
c2 to the wave phase velocity, is calculated in the following approximation. The case
for �2 � 0 relate to a potential wave [23].

5 Conclusion

For a long time, researchers did not pay due attention to the Gouyon waves. Of the
numerous monographs on the theory of water waves, they are described only in the
book [24]. The present paper calls for more status to be given to the Gouyon model.
We generalized Gouyon’s result for the fluid of finite depth. Gouyon used the Euler
approach, and performed calculations in the variables “x-coordinate—stream function
ψ”. Our approach is based on calculations in the modified Lagrangian variables and
can be called “quasi-Lagrangian”.

The main result of this work is the formulation of the first nonlinear correction
to the phase velocity of wave propagation. Its value is determined by the vorticity
distribution�1(b). This function may be arbitrary, and therefore the solution obtained
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in this work defines a wide class of nonlinear wave oscillations with their properties
differing from the Stokes wave qualitatively.

We have shown the effectiveness of the modified Lagrangian coordinate method.
Thismethod allows one to solve equation systems of higher approximations effectively
and to find the terms of series (18), (19) in higher orders of the perturbation theory.
The only difficulty on this path is the calculation cumbersomeness. The numerical
analysis of the systems (6), (7) should become an important addition to the suggested
perturbation theory method. Only on its basis it will be possible to study the structure
of highly nonlinear vortex waves.
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