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Abstract
Extending results from our recent paper in Chekhlov et al. (J Algebra 566(2):187–204,
2021), we define and explore the classes of universally fully transitive and universally
Krylov transitive torsion-free Abelian groups. A characterization theorem is proved in
which numerous interesting properties of such groups are demonstrated. In addition,
we prove the curious fact that these two classes do coincide aswell as that in the reduced
case these groups are just homogeneous separable and thus, in particular, they are both
fully transitive and transitive. Some related results pertaining toH-full transitivity and
H-Krylov transitivity for some special (fixed) groups H which, in particular, can be
viewed as subgroups of a torsion-freeAbelian groupG are also obtained. Our achieved
here results somewhat strengthen those established by Goldsmith and Strüngmann
(Commun Algebra 33(4):1177–1191, 2005).
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1 Introduction and fundamentals

Throughout the rest of the paper, unless specified, all groups will be additively written
torsion-free Abelian groups. We will primarily use the notation and terminology of
[5–7], but we will follow somewhat those from [9,11] as well. We begin with a quick
review of some of the most important.

If a is an element of the group G and p is a prime, we denote the p-height of
a by |a|p, or perhaps |a|G,p if we wish to specify the context in which group the
height is calculated. By a characteristic we mean a sequence χ = (χ1, χ2, . . . ) of
non-negative integers or the symbol ∞. In particular, if P := {p1, p2, . . . } is the set
of all primes, then the height sequence of a ∈ G, χ(a) = χG(a) = (|a|p1 , |a|p2 , . . . ),
is a characteristic.

For a characteristic χ there is clearly a unique subgroup Qχ ⊆ Q such that 1 ∈ Qχ

and χQχ
(1) = χ . And if e is an element of some rank-1 group A, and χ = χA(e),

then we often denote A by Qχe := {qe : q ∈ Qχ }. For the group G and characteristic
χ , we let pχG = {a ∈ G : χG(a) ≥ χ}. Clearly, a ∈ pχG if, and only if, Qχa ⊆ G.

Ifχ is a characteristic and n ∈ Z, thenwe let nχ be the characteristic such that for all
i = 1, 2, . . . , (nχ)i = χi + |n|Z,pi . In particular, if a ∈ G, then χG(na) = nχG(a).
The characteristics χ , χ ′ are equivalent if there are non-zero n, n′ ∈ Z such that
nχ = n′χ ′. It is easy to check this is an equivalence relation. A resulting equivalence
class is called a type; we typically denote this by τ = χ .

If a ∈ G, thenwewrite τ(a) = χ(a). The type set ofG, written τ(G) = {τ(a) | 0 �=
a ∈ G}, is the set of types of all non-zero elements of G. We say G is homogeneous
of type τ , or simply τ -homogeneous, if τ(G) = {τ }.

The natural ordering of characteristics leads to a natural ordering of types. Clearly,
for a type τ = χ and group G, G(τ ) = {a ∈ G | τ(a) ≥ τ } is a pure fully invariant
subgroup of G. It is easy to see that G(τ ) = G if, and only if, G/(pχG) is torsion.

Finally, the group G is separable if every finite subset of G is contained in a
summand C which is a finite rank completely decomposable group. If G is separable,
then �(G) ⊆ τ(G) stands for the set of types of all rank-1 direct summands of G.
Besides, if G is arbitrary, then we set π(G) = {p ∈ P | pG �= G}. And if τ is type,
then we put π(τ) = π(G), where G is rank-1 of type τ .

In his famous book [11], Irving Kaplansky introduced two major properties of
groups as follows:

Definition 1.1 A group G is called transitive if, for any two elements x, y with
χG(x) = χG(y), there exists an automorphism of G mapping x to y, and fully transi-
tive if, for any two elements x, y with χG(x) ≤ χG(y), there exists an endomorphism
φ of G with φ(x) = y.

It is known that these two notions are independent for torsion-free groups, i.e.,
there is a group that is transitive, but not fully transitive, and a group that is fully
transitive, but not transitive (see page 385 of [14] and the references listed there).
Likewise, in [14, pp. 475–476] is announced that Kaplansky actually defined (full)
transitivity in a more global setting, namely for modules over a complete domain of
discrete normalization and thus, in particular, for p-primary groups over some prime
p.
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Both notions in Definition 1.1 were extended by Krylov [13] to the following
concept:

Definition 1.2 A group G is called Krylov transitive if, for any elements x, y ∈ G
with χG(x) = χG(y), there exists an endomorphism of G mapping x to y.

Clearly, a group that is transitive, but not fully transitive, will also be Krylov transi-
tive, but not fully transition. Similarly, a group that is fully transitive, but not transitive,
will also be Krylov transitive, but not transitive.

Turning to the contents of the paper, after this introduction, our results fall into two
related areas. The second section of the paper is devoted to the following notion that
is parallel to a definition in [4] for p-groups.

Definition 1.3 We shall say that the group G is universally fully transitive if, for every
group M and every pair of elements x ∈ G and y ∈ M , if χG(x) ≤ χM (y) then
there is a homomorphism φ : G → M such that φ(x) = y. If this holds whenever
χG(x) = χM (y), the group G is said to be universally Krylov transitive.

Similarly to the p-torsion case considered in [4], we give a complete description
of these two classes (Theorem 2.1). As in the torsion case, though there are groups
that are Krylov transitive without being fully transitive, a group is universally Krylov
transitive if, and only if, it is universally fully transitive. In fact, the groups in this class
are quite familiar; they are precisely those groups that are a direct sum of a divisible
group and a homogeneous separable group.

We pause to note one simple consequence of this characterization. Clearly, if G is
universally fully transitive, then it must be fully transitive. On the other hand, there are
many examples of reduced fully transitive groups that are not separable (for example,
the p-adic integers for some prime p). In particular, such a fully transitive group will
not be universally fully transitive.

The class of universally fully/Krylov transitive groups naturally breaks down into
the study of those groupswhose (maximal) reduced parts are τ -homogeneous for some
fixed type τ .We next use some homological machinery to reduce this to the case where
τ is idempotent (i.e., τ = χ where for all k, χk is 0 or ∞ - Theorem 2.10). When τ

is idempotent we obtain a characterization of the class of τ -homogeneous universally
fully transitive groups that parallels the characterization obtained in the torsion case
in [4] (Corollary 2.11).

Continuing as processed in [4], in the third section we explore the notion of full
transitivity and Krylov transitivity when we restrict the element x as well as the
endomorphism φ in Definition 1.1 to a certain subgroup H ofG.We, furthermore, also
extend Definition 1.2 to the following (which slightly differs from the corresponding
definition in the p-primary case stated in [4], where it was not assumed that H is
contained in G).

Definition 1.4 Given H ≤ G, we shall say that the group G is H-fully transitive if,
for every pair of elements x ∈ H and y ∈ G, if χH (x) ≤ χG(y) then there is a
homomorphism f : H → G such that f (x) = y. If this holds when χH (x) = χG(y),
then the group G is said to be H-Krylov transitive.

Of particular interest is where H is actually a pure subgroup of G. When this is
true, then for all x ∈ H , χH (x) = χG(x). If K ⊆ H are both pure subgroups of G, it
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readily follows that if G is H -fully or H -Krylov transitive, then G is also K -fully or
K -Krylov transitive, respectively.

Clearly, G is fully transitive if, and only if, it is G-fully transitive, and similarly
for Krylov transitivity. In particular, G is fully or Krylov transitive if, and only if, it is
H -fully or H -Krylov transitive, respectively, over all possible pure subgroups H of
G.

So, ifG is fully transitive and H is a pure subgroupofG, thenG is H -fully transitive.
On the other hand, such a pure subgroup H may not, itself, be fully transitive. For
example, again suppose G is the p-adic integers, a ∈ G \ pG is transcendental over
Z(p) ⊆ G and H is the smallest pure subgroup of G containing 1 and a. It follows that
χ(1) = χ(a) and multiplication by a is the only homomorphism φ : H → G such
that φ(1) = a. But since φ(a) = a2 /∈ H , it follows that φ is not an endomorphism
of H .

In this third section we also discuss the question of how H -fully transitive groups
and H -Krylov transitive groups behave under direct sums and summands (Proposi-
tion 3.5). In addition, if H is a fully transitive separable pure subgroup of G, we
characterize when G is H -fully transitive (Proposition 3.12). It is worthwhile noticing
that, in proving these two assertions, we do not require H to be necessarily a subgroup
of G and so, analogously to the approach illustrated for p-torsion groups in [4], the
letter H is used here to be any existing group.

We finish off the paper with a list of some open problems which naturally arise for
further work.

2 Universally fully and Krylov transitive groups

We turn to our characterization of universal full and Krylov transitivity in the torsion-
free case (again, the p-primary case was completely characterized in [4]). It can be
treated as a generalization of the well-known results due to Baer (see, e.g., [7, Lemma
4.5]) which say that a homogeneous torsion-free group is separable if, and only if,
every finite rank pure subgroup is a summand and that pure subgroups of homogeneous
separable groups are again separable. Moreover, point (h) listed below is a non-trivial
extension of [7, Proposition 4.8] as well.

It is also worth to notice that our used constructions in the present section (in partic-
ular, in the given below proof of the main result in this section) develop those utilized
in a series of papers/books due to Goldsmith, Strüngmann, Salce and Kaplansky (see
the papers cited in the bibliography list as well as the references therein).

Theorem 2.1 Suppose G is a group and G = R ⊕ D, where R is reduced and D is
divisible. Then the following are equivalent:

(a) G is universally fully transitive;
(b) G is universally Krylov transitive;
(c) Every pure rank-1 subgroup of G is a summand;
(d) Every pure finite-rank subgroup of G is a summand;
(e) Every group M containing G as a subgroup is G-fully transitive;
(f) For every rank-1 group Q, if N = G ⊕ Q ⊇ G, then N is G-fully transitive.
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(g) R is a homogeneous separable group;
(h) There is a type τ = χ such that R is τ -homogeneous and isomorphic to a pure

subgroup of the vector group
∏

i∈I Qχei .

Proof (a) ⇒ (b): This is trivial.
(b)⇒ (c): Suppose J is a rank-1 pure subgroup of G and 0 �= x ∈ J . It follows that

χG(x) = χJ (x), so there a homomorphism φ : G → J which must be the identity on
J . If K is the kernel of φ, it follows that G = J ⊕ K , as required.

(c) ⇒ (a): Suppose x ∈ G, y ∈ M and χG(x) ≤ χM (y). By hypothesis, if J is
the corresponding rank-1 pure subgroup of G containing x , then there is a splitting
G = J ⊕K . Clearly, the assignment x → y extends to a homomorphism φ : J → M .
And setting φ equal to 0 on K , we have established (a).

(c) ⇒ (d): Follows from an obvious induction, while (d) ⇒ (c) is trivial.
(a) ⇒ (e) ⇒ (f): These are automatic.
(f) ⇒ (a): Suppose M is a group, x ∈ G, y ∈ M and χ := χG(x) ≤ χM (y). By

hypothesis, if Q = Qχe and N = G ⊕ Q, then there is a homomorphism θ : G → N
such that θ(x) = e. There is clearly a homomorphism ν : Q → M such that ν(e) = y;
extend ν to all of N by setting it equal to 0 on G. It follows that φ := θ ◦ ν : G → H
satisfies φ(x) = y.

(d) ⇒ (g): Our hypothesis immediately implies that G is separable. If R were not
homogeneous, then we could find characteristics λ and γ with λ �= γ and a summand
L of R with L ∼= Qλe ⊕ Qγ f .

Case 1: Suppose λ and γ are not comparable. If we let ξ = λ ∧ γ , then ξ < λ and
ξ < γ . Consider x := e+ f ∈ G. If J = Qλx is the pure rank-1 subgroup determined
by x , then it follows that J is a summand of G, and hence of L . Let π : L → J be the
corresponding projection. Since ξ < λ, it follows that π(Qλe) = 0, and since ξ < γ ,
it follows that π(Qγ f) = 0. But this would imply that P = π(L) = 0, which is a
contradiction.

Case 2: Otherwise, we may suppose, without loss of generality, that λ < γ . Let pk
be some prime such that γk �= ∞; so we must also have λk �= ∞. We may clearly
amend e and f so that λ′ := χ(e) < χ(f) := γ ′ and λ′

k = 0 = γ ′
k . Replace λ and γ

by λ′ and γ ′ so that λk = 0 = γk .
Consider x := pk e + f . It is straightforward to check that J := Qλx is pure in L

and G. Again, let π : L → J be a projection, so that if K is the kernel of π , then
L = J ⊕ K .

Since λ < γ , it follows that π(Qγ f) = 0; i.e., Qγ f ⊆ K . And since Qγ f and K
are both pure rank-1 subgroups of L , this implies that Qγ f = K .

However, it is readily observed that

e /∈ p (Qλe) ⊕ Qγ f = J + Qγ f = J + K = L.

This contradiction completes the proof.
(g) ⇒ (h): Suppose R is τ = χ -homogeneous. Let {Qχei }i∈I be the collection of

all rank-1 pure subgroups of R.

123



522 A. R. Chekhlov et al.

For each i ∈ I , there is a projection function πi : R → Qχei. If V := ∏
i∈I Qχei ,

then the diagonal map φ : R → V given by φ(x) = (πi (x))i∈I is clearly a homomor-
phism.

For each i ∈ I , let νi : V → Qχei be the natural projection. It follows that for
each i ∈ I that νi ◦ φ is the identity on Qχei . This readily implies that φ is injective
and that its image R′ := φ(R) is pure in V . And since R is τ -homogeneous, so is R′,
as required.

(h) ⇒ (c): Let J be a rank-1 pure subgroup of G. If J is contained in D, then J
must be divisible, and hence a summand of G.

If J is not contained in D, then it follows that J∩D = 0, so there is a decomposition
G = R ⊕ D, where R is reduced and J ⊆ R. If we can show that J = Qχv is a
summand of R, then it automatically is also a summand of G.

So,wemay assumeG = R is a pure τ -homogeneous subgroup ofV := ∏
i∈I Qχei ;

for each i ∈ I , we let νi : V → Qχei be the usual projection.
Choose some index j ∈ I such that ν j (J ) �= 0. Since J ∼= ν j (J ) and Qχei have

the same type, for all but an infinite number of primes p j we have

|νi (v)|p j = χ j = |ei |p j

(where the heights are computed in either G or V ). If p1, …, pk are the primes where
this does not hold, then we can conclude that χm is finite for m = 1, . . . , k. For each
of this finite collection of primes, by the purity of R in V , we can find an index jm ∈ I
such that

|ν jm (v)|pm = χm = |e jm |pm .

Let S = { j, j1, . . . , jm} ⊆ I and νS : V → ∏
i∈S Qχei = ⊕

i∈S Qχei := W be
the usual projection. We have defined W so that νS(J ) is pure in W . Since W is a
finite rank completely decomposable homogeneous group, by Lemma 86.8 of [6], it
follows that νS(J )will be a summand ofW . Letπ : W → νS(J ) be the corresponding
projection.

Consider the composition

R ⊆ V
νS→W

π→ νS(J )
ν−1
S→ J .

It is elementary to verify that this is the identity when restricted to J . So the group J
must be a summand of the group R, and we thus have verified that point (c) holds, as
claimed. ��

Curiously, we also extract the following statement, which definitely can be viewed
as a common expansion of [8, Lemmas 3.14,3.19; Theorem 3.20].

Corollary 2.2 Universally fully transitive groups are always both fully transitive and
transitive. The converse implication does not hold in general.

Proof The property of being fully transitive follows directly from the Definition 1.3.
Applying now Theorem 2.1 (g), the reduced universally fully transitive groups are
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just separable homogeneous, and the latter ones are known to be transitive (see, for
example, [14, §40]).

About the failure of the reverse part, just take all algebraically compact torsion-free
groups. In accordance with [7] they are simultaneously transitive and fully transitive,
but definitely not separable. ��

There is one situation where the requirement in Theorem 2.1(h) that R be τ -
homogeneous can be dropped.

Corollary 2.3 Suppose τ = χ has the property that for every prime p j , χ j is either 0
or ∞ (i.e., τ is “idempotent"). If G ∼= R ⊕ D, where D is divisible, R is reduced and
G has a pure rank-1 subgroup of type τ , then G is universally fully transitive if, and
only if, R is isomorphic to a pure subgroup of a vector group of the form

∏
i∈I Qχei .

Proof The condition on τ makes it easy to see that any pure subgroup of such a vector
groupwill actually be τ -homogeneous. In fact,Qχ will be a ring and any pure subgroup
of such a vector group will actually be a Qχ -module whose rank-1 submodules are
isomorphic to Qχ . ��

An immediate consequence of Corollary 2.3 is the following:

Corollary 2.4 If G is a pure subgroup of a direct product of copies of Z, then G is
universally fully transitive. In particular, the Baer-Specker group is universally fully
transitive.

If τ is not idempotent, the last two results clearly fail. In fact, for a type τ = χ , it is
readily verified that G = ∏

i∈I Qχei is homogeneous if, and only if, τ is idempotent.
We next use some homological methods to show that the general situation of Theo-

rem2.1 (h) can, up to a categorical equivalence, be reduced to themore straightforward,
but apparently more specialized situation of Corollary 2.3.

We fix some notation we will use for the remainder of the section. Suppose τ = χ

and Qχ is the corresponding subgroup of Q. Let ρ be the characteristic defined by

ρk =
{

∞, when χk = ∞
0, when χk is finite,

and σ = ρ be the corresponding idempotent type. There is clearly a natural isomor-
phism Qρ

∼= Hom(Qχ , Qχ ) where 1 ∈ Qρ corresponds to the identity function in the
later endomorphism ring. In fact, we will tend to identify these two rings.

Let I be the collection of primes p j such that χ j = ρ j = ∞, i.e., such that Qχ is
p j -divisible. So we can think of Qρ as the integers localized at P \ I.

If M is any group, then we can identify the divisible hull of M with D := Q ⊗ M ,
and our arguments will often take place in D. Our next observation is verywell-known,
but we include it here to remind the reader of a standard construction.

Lemma 2.5 If M is a group and x ∈ Qχ ⊗ M, then x = a ⊗m for some a ∈ Qχ and
m ∈ M. If D is a divisible hull of M, then we can identify Qχ ⊗ M with Qχ M ⊆ D.
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Proof Let x = ∑
(ai ⊗ mi ). It follows that there is a single a ∈ Qχ and integers ki

such that ai = kia for each i . If m = ∑
kimi , then

x =
∑

(ai ⊗ mi ) =
∑

(kia ⊗ mi ) = a ⊗
(∑

kimi

)
= a ⊗ m,

as stated.
Now, mapping a ⊗ m → am ∈ D clearly gives the desired identification. ��
If M is a group, let φ(M) = Qχ ⊗ M and μ(M) = Hom(Qχ , M). We have

observed that we can identify φ(M) with Qχ M ⊆ D. Similarly, a homomorphism
f ∈ μ(M) = Hom(Qχ , M) will be completely determined by x := f (1), and such
an x leads to such an f precisely when x ∈ pχ M . In other words, μ(M) can be
identified with pχ M ⊆ M .

Wewill say thatM is I-divisible if it is p-divisible for all p ∈ I; soM is I-divisible
if, and only if, it is an Qρ-module.

Lemma 2.6 Suppose M is an I-divisible group. If D is a divisible hull for M and
Qχ ⊗ M = Qχ M ⊆ D, then there is a short exact sequence

0 → M → Qχ M → T → 0,

where T = ⊕
pk /∈I Tpk is a torsion group with pχk

k Tpk = 0.

Proof We have a short exact sequence

0 → Qρ → Qχ → ⊕pk /∈I(p−χk
k Qρ/Qρ) → 0

Tensoring with the (flat Qρ-module) M gives the result. ��
The next two technical assertions are pivotal for our homological result stated as

Theorem 2.9.

Lemma 2.7 If M is a group, then

�M : M → μ(φ(M)) = Hom(Qχ , Qχ ⊗ M).

given by [�M (m)](a) = a ⊗ m for all a ∈ Qχ and m ∈ M is an isomorphism if, and
only if, M is I-divisible.
Proof If p ∈ I, then it is easy to see that Hom(Qχ , Qχ ⊗ M) is also p-divisible; so
if �M is an isomorphism, then M is I-divisible.

Conversely, assume that M is I-divisible. Using the above interpretations of φ and
μ, what we need to show is that in D we have M = pχ (Qχ M). The inclusion⊆ being
reasonably clear, we consider the reverse. Note that in the sequence of Lemma 2.6 we
have that pχ (Qχ M) maps to

⋂

pk /∈I
pχk
k T = 0.
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This, in turn, implies that pχ (Qχ M) ⊆ M , and thus completes the proof. ��

Continuing with the above notation, recall that for the group N we have N (τ ) = N
if, and only if, N/pχ N is torsion. For example, if M is any group, it is readily checked
that N := φ(M) = Qχ ⊗ M satisfies this condition.

In the following proof we will use the observation that if B is any subgroup of
Q of type ≥ τ , then Qχ ∩ B also has type τ , so that there is an integer s such that
Qχ ∩ B = sQχ .

Lemma 2.8 If N is a group, then

�N : φ(μ(N )) = Qχ ⊗ Hom
(
Qχ , N

) → N ,

given by�N (a⊗ f ) = f (a) for all a ∈ Qχ and f ∈ Hom(Qχ , N ), is an isomorphism
if, and only if, N (τ ) = N.

Proof It follows immediately from the above discussion that if�N is an isomorphism,
then N (τ ) = N . So, assume that N (τ ) = N . It is easy to check that �N must be
injective; in fact, it corresponds to the inclusion Qχ (pχ N ) ⊆ N . Therefore, it is the
other containment that concerns us.

So, suppose x ∈ N is non-zero. Since Qχ x ⊆ QN has type τ and N (τ ) = N ,
it follows that Qχ x ∩ N has the same type as Qχ and Qχ x , namely τ . So for some
integer s we have sQχ x = Qχ x ∩ N .

Since x ∈ Qχ x ∩ N , there is an a ∈ Qχ such that sax = x . Since Qχ (sx) =
sQχ x ⊆ N , we can conclude that sx ∈ pχ N . And since a(sx) = sax = x , we can
conclude that x ∈ Qχ (pχ N ), as required. ��

The last two lemmas can be combined into the following general result.

Theorem 2.9 Let Mρ be the class of all groups that are I-divisible, i.e., the class of
all Qρ-modules, and Nτ be the class of all groups N for which N = N (τ ). Then
φ : Mρ → Nτ and μ : Nτ → Mρ are inverse categorical equivalences.

Again, working in D, what this result is saying is that if M is I-divisible, then
pχ (Qχ M) = M ; and if N (τ ) = N , then Qχ (pχ N ) = N . We now apply this
categorical equivalence to the class of universally fully transitive groups.

Theorem 2.10 The functors M → Qχ ⊗M = Qχ M and N → Hom(Qχ , N ) = pχ N
give categorical equivalences between the classes of universally fully transitive groups
whose reduced parts are σ = ρ-homogeneous (and separable) and those whose
reduced parts are τ = χ-homogeneous (and separable).

Proof Clearly, if Q is divisible, then there are natural isomorphisms Qχ Q ∼= Q ∼=
pχ Q, so our functors preserve the divisible parts of our groups.

In addition, on rank-1 groups this categorical equivalence correspond to the natural
isomorphisms Qχ (Qρe) ∼= Qχe and pχ (Qχe) ∼= Qρe. And since they also preserve
direct sum decompositions, the result is clear. ��
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Notice the fact that Theorem 2.10 states, up to a categorical equivalence, that the
study of torsion-free universally transitive groups reduces to the case where such
groups are separable and homogeneous of idempotent type σ , which we have seen in
Corollary 2.3 is somewhat more straightforward.

Because of the importance of this special case, we discuss it in a bit more depth. For
example, the following observation follows directly from Corollary 2.3 and parallels
Corollary 4.1 from [4].

Corollary 2.11 The class of σ -homogeneous universally fully transitive groups is the
smallest class containing Qρ that is closed with respect to direct products and pure
subgroups.

If A is a Qρ-module, then clearly A• := Hom(A, Qρ) is also a Qρ-module. Before
proving our next characterizing result about torsion-free Qρ-modules, we need the
following observation.

Lemma 2.12 If A is an Qρ-module, then A• will be a reduced σ -homogeneous uni-
versally fully transitive Qρ-module.

Proof Let

0 → K → F → A → 0

be a Qρ-free resolution of A. Suppose K = ⊕
j∈J Qρ and F = ⊕

i∈I Qρ . Since
Hom(Qρ, Qρ) ∼= Qρ , we can conclude that K • ∼= ∏

j∈J Qρ and F• ∼= ∏
i∈I Qρ .

Therefore, the left-exact sequence 0 → A• → F• → K • is equivalent to

0 → A• →
∏

i∈I
Qρ →

∏

j∈J

Qρ.

Since
∏

j∈J Qρ is torsion-free, A• is pure in
∏

i∈I Qρ . So, by Corollary 2.11, this
means that A• is a reduced σ -homogeneous universally fully transitive Qρ-module,
as required. ��

If A is a Qρ-module, then in the usual way, the map φA : A → A•• given by
φA(x) = f (x), for each f ∈ A•, defines a natural homomorphism from A to its
second dual. This brings us to the following characterization:

Theorem 2.13 Suppose σ = ρ is an idempotent type. If G is a Qρ-module and G =
R ⊕ D, where D is divisible and R is reduced, then the following are equivalent:

(a) G is universally fully transitive and if R �= 0, then it has a pure submodule
isomorphic to Qρ;

(b) G is universally Krylov transitive and if R �= 0, then it has a pure submodule
isomorphic to Qρ;

(c) R is isomorphic to a pure submodule of some direct product
∏

i∈I Qρ;
(d) Under the natural map φR : R → R••, R maps to a pure submodule of R••.
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Proof Notice that, by Theorem 2.1(g), points (a) and (b) are equivalent to requiring
that R be a σ -homogeneous separableQρ-module. And by using Corollary 2.11, these
are also equivalent to condition (c). So, we need to verify that conditions (a), (b), (c)
are equivalent to (d).

To that goal, note first that, if R satisfies (d), then by Lemma 2.12, R•• = (R•)• is
a reduced σ -homogeneous separable Qρ-module, so that with Corollary 2.11 at hand
so is R, itself.

Conversely, suppose R is a reduced σ -homogeneous separable Qρ-module. For
each x ∈ R there is a cyclic summand K ∼= Qρ of R with x ∈ K ; suppose R = K⊕H .
It follows that there are isomorphisms R• ∼= K • ⊕ H• and

K ⊕ H ∼= R → R•• ∼= K •• ⊕ H••.

Clearly, K •• ∼= Qρ
•• ∼= Qρ

∼= K , which shows that φR(x) ∈ R•• has the same height
sequence as x ∈ R. Therefore, φR(R) will be pure in R••, as required. ��

The following example illustrates that the purity hypotheses in Theorem 2.13(c)
cannot be ignored at all.

Example 2.14 Given such a ring Qρ , let p ∈ Qρ be a prime. Let P = ∏
i∈N Qρei

and S = ⊕i∈NQρei ⊆ P . Consider G := pP + S. It follows from the theory of
slender groups (see, e.g., [7]) that φP : P → P•• is an isomorphism. If we compose
φG : G → G•• with the natural homomorphism G•• → P•• ∼= P , the result is
equivalent to the embedding G ⊆ P . It follows now that φG embeds G as a subgroup
of G••. On the other hand, G is clearly not separable (indeed, it can be shown that the
vector x = (p, p, p, . . . ) ∈ G does not embed in a direct summand ofG, whose proof
we leave to the interested reader). Comparing with Theorem 2.13, this is equivalent
to the observation that the subgroup G ∼= φG(G) is not pure in G ∼= G••.

Classifying the modules in the classes described in Theorem 2.13 is clearly impos-
sible. Even in the case of whereQρ = Z, we are highly unlikely to come even remotely
close to classifying all pure subgroups of a direct product of copies of the integers,
such as the Baer-Specker group.

Remark 2.15 In [3] were considered those groupswhose pure endomorphic images are
always direct summands (see [12] as well). Comparing them with the defined above
universally fully transitive groups we found that there is some similarity in the two
classes, though they are distinct, however. In fact, if A and B are reduced torsion-free
rank-1 groups of incomparable types, then the direct sum A⊕B will have the property
that every pure image is a direct summand, but it will definitely not be universally fully
transitive.

In the other direction, if G is a universally fully transitive torsion-free group whose
reduced part has finite rank, then since itmust be homogeneous and completely decom-
posable, it certainly will have the property that every pure endomorphic image is a
direct summand. This does not hold in general, however. For example, suppose A is a
direct sum of a countable number of copies of the integers, and B be the correspond-
ing direct product (i.e., the Baer-Specker group). In accordance with Theorem 2.1 the
direct sum G = A ⊕ B will be universally fully transitive, but it will not have the
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property that every pure image is a direct summand – indeed, just map A isomorphi-
cally onto a pure subgroup of B and, moreover, map B to 0. Since B does not have a
free summand of infinite rank, this image will not be a summand.

Finally, all homogeneous transitive groups are clearly fully transitive. As to the
converse, in [1,Corollary 7.20] itwas noted that for finite rankhomogeneous groups the
concepts of being transitive and fully transitive do coincide, but there are homogeneous
fully transitive groups of infinite rank which are surely not transitive (cf. [1, §4]).

3 H-fully and H-Krylov transitive groups

We begin with the following observation.

Proposition 3.1 Suppose H is a subgroup of G.

(a) If the reduced part of H is separable and homogeneous, then G is H-fully transi-
tive.

(b) If G is completely decomposable and homogeneous of idempotent type, then G is
H-fully transitive.

Proof Clearly (a) follows immediately from Theorem 2.1. Regarding (b), suppose G
is τ = χ-homogeneous, so that it is a free Qχ -module. Suppose x ∈ H and y ∈ G
with |x |H ≤ |y|G . Clearly F := Qχ H ⊆ G will also be a free Qχ -module, and hence
universally fully transitive. Since we clearly have |x |F ≤ |y|G , it follows that there
is a homomorphism φ : F → G with φ(x) = y. Restricting φ to H shows that G is
also H -fully transitive.

In particular, ifG has rank-1, then any subgroup H ofG satisfies Proposition 3.1(a),
so that G is H -fully transitive.

In the introduction it was observed that if G is fully or Krylov transitive, then it
is, respectively, H -fully or H -Krylov transitive for any pure subgroup H . The next
example shows that the hypothesis of purity is necessary.

Example 3.2 There if a fully transitive group G with a (non-pure) subgroup H such
that G is not H -fully transitive.

Proof Define Q2−∞, Q2−∞,3−∞ ⊆ Q in the usual way and let Q̂ = 〈p−∞ : 5 ≤ p ∈
P〉 ⊆ Q. We let

G = (
Q2−∞,3−∞ a

) ⊕
(
Q̂b

)
:= A ⊕ B ⊆ Q a ⊕ Qb.

We leave it to the reader to verify that G is fully transitive. Let

H = (Q2−∞ a) ⊕ B := A′ ⊕ B ⊆ G.

If x = a + 3b ∈ H and y = b ∈ G, then for every prime p one checks that
|x |p,H = 0 ≤ |y|p. On the other hand, for any homomorphism γ : H → G we must
have γ (A′) ⊆ A and γ (B) ⊆ B. This implies that γ : B → B satisfies γ (3b) = b,
which cannot be true. ��
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ByProposition 3.1(b), if D is divisible, then D is H -fully transitive for any subgroup
H ⊆ D. On the other hand, we have the following elementary observation, whose
proof we lead to the reader.

Proposition 3.3 Suppose G is a group that is contained in the divisible group D. Then
G is universally fully transitive if, and only if, every group of the form M⊕D is G-fully
transitive.

As noticed above, there are G-Krylov transitive groups that are not G-fully tran-
sitive. For the existence in the p-primary case of a Krylov transitive group which is
neither fully transitive nor transitive (in this situation p necessarily equals 2), we refer
the interested reader to [2] for a more detailed information.

However, in our torsion-free case, we need a construction for a proper subgroup.
Specifically, the following is true:

Example 3.4 There exists a group G with a subgroup H such that G is H -Krylov
transitive, but not H-fully transitive.

Proof Let G = A ⊕ B be a reduced group, where A, B are subgroups of G with
r(A) = r(B) = 1, τ(A) > τ(B) > τ(Z) and Z is the infinite cyclic group. Assume
that π : G → B is the usual projection. Also, let H = A⊕C , where 0 �= C ≤ B and
τ(C) < τ(B). Then χG(g) = χH (y) for some 0 �= g ∈ G and, moreover, y ∈ H if
and only if g, y ∈ A. Therefore, there exists f ∈ Hom (H ,G) with f (y) = g, i.e., G
is H -Krylov transitive, as asserted.

Suppose now pA �= A for a prime p and 0 �= a ∈ A \ pA, 0 �= c ∈ C \ pC .
Thus τH (a + pc) < τ(B). So, there will exist 0 �= b ∈ B \ pB with χB(b) >

χH (a + pc). Assume without loss of generality that ϕ ∈ Hom (H ,G) is chosen such
that ϕ(a + pc) = b. Consequently, πϕ(a) + pπϕ(c) = b. But τ(πϕ(a)) > τ(b),
whence τ(πϕ(a)) = 0 and pπϕ(c) = b which contradicts b /∈ pB. This shows that
G is not H -fully transitive, as claimed. ��

Nevertheless, an easier way to construct a proper subgroup with the asked property
in the non-reduced case is as follows: Letting H be transitive and not fully transitive,
we could consider the group G = H ⊕ D, where D �= 0 is a divisible subgroup. The
above example treats the reduced case, however.

For the remainder of this section, by analogy with the approach demonstrated in
[4], we shall consider a more global version of Definition 1.4 by not considering H to
be necessarily a subgroup of the group G; in fact, H will allowed to be an arbitrary
fixed group. With this in mind, we can offer the following construction which is
closely related to the last example. Indeed, we will construct the wanted group as a
subspace of the vector space V over the field of all rational numbers Q. To that goal,
let H = 〈p−∞

1 a, p−∞
2 b, p−∞

3 (a + b)〉 and G = 〈p−∞
3 q−∞c〉, where p1, p2, p3, q

are different prime numbers and a, b, c are independent elements from V . Then one
verifies that τ(H) ∩ τ(G) = ∅. So, G is H -Krylov transitive, but definitely it is
not H -fully transitive, as asked for. In fact, χH (a + b) < χG(c) and there will not
exist f ∈ Hom (H ,G) with f (a + b) = c, because f (a) = f (b) = 0 for any
f ∈ Hom (H ,G). This completes the desired example.
We shall say now that the torsion-free groups G1 and G2 (the equality G1 = G2

is also possible) form a completely transitive pair of the corresponding subgroups
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H1 ≤ G1 and H2 ≤ G2 provided, for each x ∈ Hi ,y ∈ G j with i, j ∈ {1, 2}
satisfying the condition χHi (x) ≤ χG j (y), there exists α ∈ Hom(Hi ,G j ) such that
α(x) = y, i.e., G1 and G2 are H1-fully transitive and H2-fully transitive.

Moreover, in conjunction with [10], we shall say that the system {Gi }i∈I of torsion-
free groups satisfies the monotonic condition with respect to the characteristics of
the subgroups {Hi ≤ Gi }i∈I if, for every 0 �= y ∈ Gi , the condition χHi1

(a1) ∧
· · · ∧ χHim

(am) ≤ χGi (y), where a j ∈ Hi j ; i j �= is if j �= s; j, s = 1, . . . ,m
implies the existence of the elements b1, . . . , br ∈ Gi equipped with the properties
b1 +· · ·+br = y and, for any bl with (l = 1, . . . , r) among the elements a1, . . . , am ,
there exists at least one element as such that χGi (bl) ≥ χHis

(as).
A non-trivial concrete example of the last concept is the following one: If all torsion-

free groups Gi are homogeneous of the same type, then the system {Gi }i∈I satisfies
the required property of monotonic condition with respect to the characteristics of
the subgroups {πi (H)}i∈I for any H ≤ G, where πi : ⊕

i∈I Gi → Gi are the
corresponding projections for all indices i from the index set I .

The next statement somewhat refines [10, Lemma 2.19] like this:

Proposition 3.5 Let G = ⊕
i∈I Gi be a torsion-free group, where πi : G → Gi are

the corresponding projections, and let H ≤ G be an invariant subgroup, compara-
tively on the system {πi }i∈I , i.e., H = ⊕

i∈I Hi , where Hi = πi (H). Then G is a
H-fully transitive if, and only if, the system {Gi }i∈I satisfies the monotonic condi-
tion with respect to the characteristics of the subgroups {Hi }i∈I and, for all indices
i, j ∈ I , the groups Gi ,G j form a completely transitive pair of the corresponding
subgroups Hi , Hj .

Proof To prove necessity, assume that χGi (y) ≥ χH (x) for some y ∈ Gi , x ∈ H .
Assume also as in the given above notion that

χGi (y) ≥ χH (a1 + · · · + am) = χHi1
(a1) ∧ · · · ∧ χHim

(am).

Therefore, if ϕ(a1+· · ·+am) = y for ϕ ∈ Hom(H ,G), then one sees that πiϕ(a j ) ∈
Gi and χGi (πiϕ(a j )) ≥ χHj (a j ), j = 1, . . . ,m, as required. Furthermore, the fact
that the groups Gi and G j form a completely transitive pair of the subgroups Hi and
Hj is pretty evident, so we omit its verification.

To prove sufficiency, assume χG(y) ≥ χH (x) for some 0 �= y ∈ G, 0 �= x ∈ H .
We have x = x1 + · · · + xm , y = y1 + · · · + yn , where x j ∈ Hi j , yq ∈ Giq
with j = 1, . . . ,m; q = 1, . . . , n. We will show that, for each yq , there will exist
ϕq ∈ Hom(H ,G) such thatϕq(x) = yq . If so, itwill follow that (ϕ1+· · ·+ϕn)(x) = y,
as required.

In fact, to establish that, if for yq there exists such a x j having the propertyχG(yq) ≥
χH (x j ), then ϕ j (x j ) = yq for some ϕ j ∈ Hom(Hi j ,Giq ). Setting ϕq | Hj = ϕ j and
ϕq(His ) = 0 for is �= i j , we obtain that ϕq(x) = yq , as asked for.

So, assume now that χG(yq) � χH (x j ) for all j = 1, . . . ,m. Since χG(yq) ≥
χG(y) ≥ χH (x) = χH (x1) ∧ · · · ∧ χH (xm), by what we stated above there exist
such elements b1, . . . , br ∈ Giq that b1 + · · · + br = yq , where, for every bl with
l = 1, . . . , r , there is such a xs with s ∈ {1, . . . ,m} that χG(bl) ≥ χH (xs). Hence
ψs(xs) = bl for some ψs ∈ Hom(His ,Gil ). By putting ψ s(Hi j ) = 0 when i j �= is ,
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we deduce that ψ s(x) = bl , where ψ s ∈ Hom(H ,G). As this holds for any element
bl in the decomposition yq = b1 + · · · + br , we therefore elementarily derive that yq
is a homomorphic image of x , as desired. ��

As consequences to the last statement, we obtain the following ones:

Corollary 3.6 Let G = ⊕
i∈I Gi be a torsion-free group and H = ⊕

i∈I Hi , where
Hi ≤ Gi . If G is a H-fully transitive group, then, for every ∅ �= J ⊆ I , the group⊕

j∈J G j is
⊕

j∈J Hi -fully transitive.

Corollary 3.7 Suppose G = D(G) ⊕ A, where D(G) is the divisible part of G and
suppose H = F ⊕ R is a subgroup of G, where F ≤ D(G),R ≤ A. If G is H-
fully transitive, then A is both R-fully transitive and F-fully transitive. The converse
implication fails in general.

Proof The first part-half follows directly from the previous proposition. As for the
failure of the reverse part, suppose F and R are reduced rank-1 groups of different
types. It follows by application of Theorem 2.1 that H = F ⊕ R is not universally
fully transitive. Therefore, there is a group C and elements x ∈ H , y ∈ C such that
|x |H ≤ |y|C , but no homomorphism H → C will exist taking x to y. Moreover,
letting D be the divisible hull of F (and so F ∼= Q) and A = R ⊕C , one obtains that
G = D ⊕ A. Since both F and R are trivially universally fully transitive, one has that
A is both F-fully transitive and R-fully transitive. However, the same homomorphism
that shows C is not H -fully transitive also shows that G is not H -fully transitive, as
wanted.

Corollary 3.8 Let G = ⊕
i∈I Gi be a torsion-free group and H = ⊕

i∈I Hi , where
Hi ≤ Gi . If G is a H-fully transitive group and Hom(Hj ,Gi ) = 0, then, for every
prime number p, if pHj �= Hj then every element from Hi has infinite p-height in Gi

for all i ∈ I .

Proof Assume that |x |Hi ,p = 0 and that |y|Hj ,p = 0 for some x ∈ Hi and y ∈ Hj .
Hence χGi (x) ≥ χH (pnx)∧χH (y) for every n ≥ 1. By assumption, x = b1+· · ·+br
and, for each bl ∈ Gi with (l = 1, . . . , r), it follows that eitherχGi (bl) ≥ χHi (p

nx) or
χGi (bl) ≥ χHj (y). But χGi (bl) � χHj (y) since Hom(Hj ,Gi ) = 0, so that χGi (bl) ≥
χHi (p

nx) for every l = 1, . . . , r . Consequently, |x |G,p is infinite, as claimed. ��
Corollary 3.9 Let G = ⊕

i∈I Gi be a torsion-free group and H = ⊕
i∈I Hi , where

Hi ≤ Gi andGi are homogeneous of the same type. ThenG is H-fully transitive if, and
only if, the groups Gi and G j form a completely transitive pair of the corresponding
subgroups Hi and Hj for all i, j ∈ I .

Corollary 3.10 Let G = ⊕
i∈I Gi be a torsion-free homogeneous group and H =⊕

i∈I Hi , where Hi ≤ Gi and Gi ∼= A, Hi ∼= B for some groups A,B. Then G is
H-fully transitive if, and only if, A is B-fully transitive.

We shall deal now with vector groups. To that goal, let G = ∏
i∈I Gi be a vector

group, where r(Gi ) = 1 for all indices i . From the already proved assertions above, it
follows that τ(Gi ) = τ(G j ) for all indexes i, j ∈ I . If I is infinite and τ(Gi ) is a non
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idempotent, then there exists such an element x ∈ G that τ(x) < τ(Gi ). But if now
r(H) = 1 and τ(H) = τ(x), then Hom (Gi , H) = {0}. So, appealing to [6, Lemma
96.1], we deduce that Hom (G, H) = {0}, i.e., G is non universally fully transitive.

We, thereby, arrive at the following assertion:

Proposition 3.11 A vector group is universally fully transitive if, and only if, all of the
rank 1 groups forming the direct product are of the same idempotent type.

Let us notice also that this can be directly deduced from Corollary 2.3 and the
ensuing statement: For a type τ = χ , it is readily verified that G = ∏

i∈I Qχei is
homogeneous if, and only if, τ is an idempotent.

Proposition 3.12 Let G be a reduced group and H a fully transitive separable pure
subgroup of G. Then G is H-fully transitive if, and only if, for every τ ∈ τ(G) with
τ ≥ τ1∧· · ·∧τn, where τ1, . . . , τn ∈ �(H), the inclusionG(τ ) ⊆ G(τ1)+· · ·+G(τn)

holds.

Proof To prove necessity, let g ∈ G, 0 �= x1, . . . , xn ∈ H and xi ∈ Xi , where Xi

are rank 1 direct summands of H , τ(xi ) = τi for i = 1, . . . , n and . It is possible
to consider the case when τi �= τ j with i �= j . Since H is fully transitive, by what
we have already commented above, one deduces that π(Xi ) ∩ π(X j ) = ∅ when
i �= j . So, X1 ⊕ · · · ⊕ Xn is a direct summand of G. Let τ(x) ≤ τ = τ(g), where
x = x1 + · · · + xn . It is also possible to choose xi such that χ(x) ≤ χ(g). Then,
one follows that f (x1 + · · · + xn) = g for some f ∈ Hom (H ,G). Thus, g =
f (x1)+· · ·+ f (xn) ∈ G(τ1)+· · ·+G(τn), and hence G(τ ) ⊆ G(τ1)+· · ·+G(τn),
as asserted.

To prove sufficiency, let χ(x) ≤ χ(g) for some 0 �= x ∈ H , g ∈ G. Since H
is separable, one has that x = x1 + · · · + xn , where xi ∈ Xi and X1 ⊕ · · · ⊕ Xn

is a direct summand of G. If τ(xi ) = τi , then τ = τ(g) ≥ τ(x) = τ1 ∧ · · · ∧ τn .
Indeed, for example, if τ(x1) = τ(x2), then the sum x1 + x2 can be embedded in a
rank 1 direct summand of H . Furthermore, it is possible to get that τi �= τ j when
i �= j . Under the stated condition g = y1 + · · · + yn , where yi ∈ G(τi ) for i =
1, . . . , n, some of the elements yi could be zero. However, note that if yi �= 0, then
τ(yi ) ∈ {τ1, . . . , τn}. In fact, if τ(yi ) ≥ τ ′ for some τ ′ ∈ �(H) \ {τ1, . . . , τn} and
p ∈ π(τ(yi )), then p /∈ π(τi ), but this disagrees the condition τ(yi ) ≥ τi . So, the
conditions τ(yi ) ≥ τi = τ(xi ) and π(τi ) ∩ π(τ j ) = ∅ for i �= j with i, j = 1, . . . , n
imply that χ(yi ) ≥ χ(xi ), whence there exists f ∈ Hom (H ,G) such that f (x) = g,
as required. ��

4 Concluding discussion and open problems

It is obvious that there are too many possible interesting questions in the subject, so
that we conclude our discussion with some selection of them.

The first query is devoted to the p-mixed case, that is, the only torsion is p-torsion
for some prime p. If, in addition, the group is q-divisible for any prime q �= p, we
have in mind p-locality.
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Problem 1 Examine for any prime p the p-local universally fully transitive groups by
determining their structure.

When every torsion-free element has at most a finite number of gaps in its height
the problem can be settled without a big difficulty by following the methods developed
by us in [4] and in the present work. However, it is not so clear what to do in the case
where there are an infinite number of gaps in the height.

The next question is related to Corollary 2.2.

Problem 2 Does it follow, in general, that universally fully transitive groups (possibly
p-primary or mixed) are always transitive?

Problem 3 Determine those subgroups H ≤ G for which the properties of being
H-Krylov transitive and H-fully transitive coincide.

Problem 4 IfG is a reduced groupwith the property that any two elements ofG can be
embedded in a countable (homogeneous completely decomposable) direct summand
of G, is then G transitive?
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