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Abstract

In this paper, we establish some Schwarz type lemmas for mappings @ satisfying the
inhomogeneous biharmonic Dirichlet problem A(A(®)) = ginD, ® = f on T and
0,® = h on T, where g is a continuous function on D, f, h are continuous functions
on T, where D is the unit disc of the complex plane C and T = 9D is the unit circle.
To reach our aim, we start by investigating some properties of generalized harmonic
functions called 7;,-harmonic functions. Finally, we prove a Landau-type theorem for
this class of functions, when o > 0.
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1 Preliminaries and main results

Let C denote the complex plane and I the open unit disk in C. Let T = 9D be the
boundary of D, and D = D U T, the closure of D. Furthermore, we denote by C™ (2)
the set of all complex-valued m—times continuously differentiable functions from €2
into C, where €2 stands for a domain of C and m € N. In particular, C(Q) := C°(Q)

denotes the set of all continuous functions in 2.
For areal 2 x 2 matrix A, we use the matrix norm

Al = sup{|Az| : |z] = 1},
and the matrix function
MA) = inf{|Az| : |z] = 1}.

For z = x 4+ iy € C, the formal derivative of a complex-valued function ® = u + iv

is given by
_ [ Ux Uy
Do = (Ux Uy) ’
so that
IDo|l = |®,| + |®z| and A(Dg) = ||| — |Pz]|,
where
1 . 1 .
D, = E(CDX —i®,) and &z = E(dDX +idy).
We use

Jo :=det Dy = |®.|*> — |z

The main objective of this paper is to establish a Schwarz-type lemma for the solu-
tions to the following inhomogeneous biharmonic Dirichlet problem (briefly, IBDP):

A2D = g inD,
® = fonT, (1.1)
0,® = h onT.
where
3% 92
A= —+ —,
dx2 + ay?
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denotes the standard Laplacian and 9, denotes the differentiation in the inward normal
direction, g € C(ID) and the boundary data f and & € C(T).

We would like to mention that in [13,14] the authors have considered similar inho-
mogeneous biharmonic equations but with different boundaries conditions.

In order to state our main results, we introduce some necessary terminologies. For
z,w €D, let

— 2
— (1= 1zHA = jw),

G(iz,w)=|z— w|210g

and

denote the biharmonic Green function and the harmonic Poisson kernel, respectively.
For ¢ € L'(T), we denote by P[¢] the Poisson extension of ¢, defined on D by

1 2 . .
Plpl(@) = /0 P(ze " )g(e?)db.

Riesz representation of (super-)biharmonic functions started with Abkar and
Hedenmalm [2]. By [26, Theorem 1.1], we see that all solutions of IBDP (1.1) are
given by

@ (z) = Fol f1(z) + Holhl(z) — Glgl(2),

where

1o —i0\ 4 i0 1 —i0,  i0
Fo[f](Z)=§ A Fo(ze ") f(e')do, Ho[h](Z)=g A Hy(ze™"7)h(e'”)d0,

1
and G[gl(z) = I DG(z,w)g(w)dA(w),

where d A(w) denotes the Lebesgue area measure in ID. Here the kernels Hy and Fy
are given by

Fo(z) = Ho(z) + K2(2).
1

Ho(2) = (1 = 1ZI*) P (2),

11—z’

Ky (z) = T

Thus, the solutions of the equation (1.1) are given by

1
() =7(0- 12 PLf +h(2) + K2l £1(z) — Glgl(2).
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826 A. Khalfallah et al.

Obviously P[f + h] is a bounded harmonic function, and Heinz [19] proved the
Schwarz lemma for planar harmonic functions: if ® is a harmonic mapping from D
into itself with ®(0) = 0, then for z € D,

4
[P (2)| < - arctan |z].

Hethcote [20] and Pavlovi¢ [34, Theorem 3.6.1] improved Heinz’s result, by remov-
ing the assumption ®(0) = 0, and proved the following.

Theorem A Let @ : D — D be a harmonic function from the unit disc to itself, then

1 —|z|?

P(z) —
(2) 1 22

4
®(0)| < — arctan |z], zeD. (1.2)
T

A higher dimensional version for harmonic functions is proved in [21].

We remark that K[ f] is a bounded 7>-harmonic which is a special type of bihar-
monic functions. So naturally our first aim is to study the class of 7,-harmonic
functions [31]. These functions can be seen as generalized harmonic functions as
To-harmonic functions coincide with classical harmonic functions. Other variants of
generalized (or weighted) harmonic functions and their properties can be found in
[32,33].

First, let us recall the definition of T,-harmonic functions.

Definition 1 [31] Let o € R, and let f € C>(ID). We say that f is T,-harmonic if f
satisfies

T,(f) =0 inD,
where the T;,-Laplacian operator is defined by

2
o _ 1 1—
Ta :_I(l_ |Z|2) (a+1)+§Lo{+§La7

with the weighted Laplacian operator L, is defined by
ad a

Ly=—(1—|z/)%—.

o 82( 1zI) 3z

Remark 1.1 Let f be a T,-harmonic function.

(1) If « = 0, then f is harmonic.
(2) If « = 2n, then f is (n + 1)-harmonic, where n € N, see [1,5,31,32].

The homogeneous expansion of T, -harmonic functions is giving by
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Theorem B [31] Ler o € R and f € C*(D). Then f is Ty-harmonic if and only if it
has a series expansion of the form

o
— —k+1; 1297,

(z)—chF(— Sik+11aP)z +Zc CF(=5 k=3

k=1
(1.3)

1
Jor some sequence {ci} of complex numbers satisfying lim supyy,_, o, lck| M < 1, where
F is the Gauss hypergeometric function.

For @ > —1, a Poisson type integral representation for 7,-harmonic mappings is
provided by the following theorem.

Theorem C ([31] Theorem 3.3) Let « > —1 and u be a Ty-harmonic in . Assume
that lim1 u, = u* in D'(T). Then u has a form of a Poisson type integral
r—

1 2 ) )
u(z) = Kolul(z) = 5= / Ko(z, e)u* (') db.
2 0
The integral is understood in the sense of distribution theory and

(1—[z])**! _ D(/241)?

Ko(z, €)= ca——ss Ca=
a(z, €)= cq 2 — ei0]a+2 Ca Ma+1)

The factor of normalization ¢, is chosen in order to ensure that the integral means
1 i0
My(r) = Ky(r,e'”)do, rel0,1)
2 T
satisfies
lim My (r) = 1.
r—1

Moreover, the function M,, is increasing on [0, 1), see [31, Theorem 3.1].

It is well known that the Schwarz lemma is one of the most influential results in
many branches of mathematical research for more than a hundred years. We refer the
reader to [6,13,22,29,30] for generalizations and applications of this lemma.

Define

Ua(z) = Kalx1 — x111(2), (1.4)

where
={z€T:Rez>0}, and T ={z € T:Rez < 0}.
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828 A. Khalfallah et al.

U, is a T,-harmonic function on D with values in (—1, 1) such that U, (0) = 0.
First, we establish a Heniz-Hethcote theorem for 7, -harmonic functions.

Theorem 1 Leta > —1 and u : D —> D be a T,-harmonic function, then

(1 _ |Z|2)a+l

M(Z) - (1 + |Z|2)%+l

u(0)| < Ua(lzD),

for all z € D, where Uy is the function defined in (1.4).

In particular, for 7>-harmonic functions, we obtain

Corollary 1.1 Let u : D —> D be a T»-harmonic function, then

(1 -z’ 27 JzI(1 = [z*)

“@ =0y |z|2)2“(0)‘ = n[ ENEE

+ (1 4+ |z|2) arctan |z|].

Next, we prove a sharp estimate of D, (0), where u is a Ty-harmonic function.

Theorem2 Leta > —1 andu : D — D be a Ty -harmonic function, then
2¢q
1D. (O = 7(01 +2). (1.5)

The inequality (1.5) is sharp and Uy, is an extremal function, see (1.4).

Let A(D) the set of all holomorphic functions @ in D satisfying the standard normal-
ization: ®(0) = ®’(0) — 1 = 0. Landau [23] showed that there is a constant r > 0,
independent of elements in A(D), such that ® (D) contains a disk of radius r. Later,
Landau’s theorem has become an important tool in geometric function theory. Indeed,
many authors considered Landau type theorems for harmonic functions i.e., « = 0
(cf. [7-10,12,28]), for biharmonic functions, @ = 2 (cf. [1,27]) and for polyharmonic
functions « = 2(n — 1) (see [4,11]), and in [12], the authors considered the case
a e (—1,0).

Naturally, our next aim is to establish a Landau type theorem for 7, -harmonic func-
tions, for o« > 0.

Theorem 3 Let a > 0, and u € C>(D) be a T,-harmonic function satisfying u(0) =
Ju(0) — 1 =0andsup,cp |u(z)| < M, where M > 0 and J,, is the Jacobian of u. Let
n > 1 be an integer such thatn — 1 < % < n. Then u is univalent on D, where ry

satisfies the following equation

2 2

Za@t2) )y =1, (1.6)
T

Moreover, u(D,,) contains an univalent disk Dg, with

R, > 0a(re)ra
=2

’
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where
()_4Mr_ 6ay N r +(2—a) n=1
oy (r) := T= Taoe 7 r|, ifn=1.
_ AMr[ 24a, 4r .
O'a(r) = . -m+3(¥aa 1+m r+3aa(a—2)r 5 lfl’l:Z
_AMr[(n+D(n—2) g (2n)\r" =2
0o(r) := x| ) (I+r+ (1 —r)2n
aa,(2n —1)! 2nr _ oa—2 .
1 " , > 3.
* nl ( +(n+1)(1—r)"+1)r | =
L% +1
with ay, = y
C(a+1)
Remark 1.2 In particular, for « = 2, we obtain
") 4Mr 3 n a7
o = — . .
= ra—mli=r 7

Now we are in the position to prove some results related to the Dirichlet problem (1.1).

Theorem 4 Let g € C(D), f, h € C(T) and suppose that ® € C*(D) N C(D) satisfies
(1.1). Then for z € D,

1(1—1z1%)3 1(1—[z[»)?
‘@(z) - EﬁPm(w - 5%”“ +h]<0>‘
2 2
=[S = 12y arctan z1]1L£ + Bl
2 ) 1= 2P (1= 212
" ;[(1+|z| )arctan|z|+|z|1+|z|2]||f||oo+T||g||oo, (1.8)

where || flloo = supger [f (O] IIf + oo = supger [ (§) + h(§)] and ||gllo =
Sup;ep 18(E)]-

Theorem5 Let g € C(D), f and h € C(T). Suppose that ® € C*(D) is satisfying
(1.1). Then for all z € D,

2+ 5|z|
1—|zI2

2 23
Do ()]l = A+ 1z flloo + (; + |Z|> If +hllo + E”g”oo-(l-g)

Moreover at z = 0, we have

4 2 23
Do) < =l flloc + =l f + Alloc + =18 llo- (1.10)
T T 48
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The classical Schwarz lemma at the boundary is as follows.

Theorem D Suppose f : D —> D is a holomorphic function with f(0) = 0, and
further, f is analytic at z = 1 with f(1) = 1. Then, the following two conditions hold:

(@) /(D) =1;
(b) f'(1) =1ifand only if f(z) = z.

The previous theorem is known as the Schwarz lemma on the boundary, and its
generalizations have important applications in geometric theory of functions (see,
[18,24,35]). Among the recent papers devoted to this subject, for example, Burns and
Krantz [6], Krantz [22], Liu and Tang [29] explored many versions of the Schwarz
lemma at the boundary point of holomorphic functions, Dubinin also applied this latter
for algebraic polynomials and rational functions (see [16,17]). In the present paper, we
refine the Schwarz type lemma at the boundary for @ satisfies (1.1) as an application
of Theorem 4.

Theorem 6 Suppose that ® € C*(D) N C(D) satisfies (1.1), where g € C(D) and f,
h € C(T) such that || flloo < 1, and || f + hllco < 1. Iflim1 |®(rn)| = 1forn €T,
r—>

then
@) — | _

lim inf >1—|f+hlloo-

r—1 1—r
In particular if || f + hl|lco = O, then liminf,_ | W > 1, and this estimate
is sharp.

For g € C(D) and h € C(T), let BF oh (D) denote the class of all complex-
valued functions ® € C*(D) N C(D) satisfying (1.1) with the normalization ®(0) =
Jo(0) —1=0. —

We establish the following Landau-type theorem for & € BF, ,(ID). In particular,
if g =0, then ® € BF, ;(ID) is biharmonic. In this sense, the following result is a
generalization of [1, Theorem 1 and 2].

Theorem 7 Supp&se that M1 > 0, My > 0 and M3 > O are constants, and suppose
that ® € BF g, (D) satisfies the following conditions:

sup [ f(2)| < My, sup|f(z) +h(z)| < Mz, and sup|g(z)| < M3.
zeT zeT zeD

Then @ is univalent in D, and ® (D) contains a univalent disk D g,,where ro satisfies
the following equation:

4 2 23
—Mi+ —My+ — M3 | u(rg) =1,
b4 b4 48

with

101
p(lzl) == (M1 + Mz + —M3)|z| +

120

2M2IZ|[(2— lZD(1 + [z]%) W@
(1 —z])?

aMilzl oo
oo (A D+,
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and

ro
Ry > .
SMy+ Mo+ 2 M5

2 Preliminaries

Here we collect some preliminary facts used in the sequel. The Gauss hypergeometric
function is defined by the power series

o0
b n
Fa,byeiny = @O oy
() n!
n=0
for a,b,c € R, with ¢ # 0,—1,-2,...., where (a)g = 1 and (a), = a(a +

)...(a+n—1)forn=1,2,...are the Pochhammer symbols.
We list few properties, see for instance [3, Chapter 2]

_ I'e)l'(c—a—>b)

F(a,b;c;1) = ifc—a—b>0. 2.1
(a,b;c; 1) F(c—a)l"(c—b)lc a > 2.1
F(a+1,b+1;c+1;l)=;F(a,b;c; ), ifc—a—b>1. (2.2)
c—a—b—1

F(a,b:c;x) = (1 —x) % PF(c—a,c—b;c;x). (2.3)

d b
d—F(a,b;c;x):a—F(a+1,b+l;c+1,x). 2.4)

X c

The following lemma about the monotonicity of hypergeometric functions follows
immediately from the properties (2.3) and (2.4).

Lemma1 [31] Letc > 0,a < ¢, b < cand ab < 0 (ab > 0). Then the function
F(a, b; c; +) is decreasing (increasing) on (0, 1).

The following results are useful to establish a Landau theorem for 7,-harmonic
functions, when o > 0.

Lemma 2 [25, Formula 5.2.2 (9) p. 697] forn > 1 and |x| < 1

n!

Ya(x) =Y (k+ Dk +2)...(k+nx* =
k=0

As a direct application of Lemma 2, it yields

Lemma3 Forr € (0, 1), and n > 1, define the sequence

Su(r) =Y (k+ 1)k +2)...(k+n)yr.
k>1
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832 A. Khalfallah et al.

Then,

Su(r) = )HH Z(l

In particular,

nlr n+Dr

Sn(r) W[( n+1) —nr ] =< m (2.6)

Proposition2.1 Letn > 1 and n — 1 < 5 < n. Then, we have the following two
estimates

S Th+%+1) @n)trn!
2 k—1 n—2 :
(@) Z W r <r" " Sm-1(r) < m, 2.7
T+ %+ Dk — 2n)! ntl
b) Z ( W=D e o @
(k+1)! (n+ 1! (1 —r)nt!
forr € [0, 1).
Proof The inequality (2.7) follows immediately from (2.6).
Now we prove the inequality (2.8). By assumption, we have
i Fk+%$+Dk-% kbl i Pl+n+DEk=—n+1) g
il (k+1)! = (k+ 1)!
o0
= "INk Dk 0+ 20Kk +n+3) .k + 2k
k=0
Clearly, for k > O and all 2 < j < n, we have
: [ +n :
k+j+n< JT(k-i-]).
Thus
o
2n)!
SO Dk n+ 2k +n+3) . (k4 2k < Yal) _@m)!
n! (n+1)!
k=0
Therefore, by Lemma 2, it yields
i Ck+5+ Dk — %)r“‘ __(Gn it .
- (k+ 1! T+ DA —r)ntl
O
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3 Schwarz and Landau type lemmas for T,-harmonic functions
3.1 Schwarz type lemma for T,-harmonic functions

The main purpose of this section is to prove a Schwarz type lemma for 7 -harmonic
functions.

Proof of Theorem 1 Let O < r = |z| < 1. As u is a T,-harmonic function, then

1 2 a1- r2)a+1 0
— * — koo 1
u(z) = Ky[u™l(z) = g/o CUWM (e')do,

where u* € L°°(T). Thus

(1 — 2ot ‘o (1 — 2yt (1 — 2ot
S s SR )‘ - E/T (1472 —2rcos@) It (14,25
o [ (72 (1 = p2yetl (1 — r2yetl
B E[/_n/z (1472 —2rcos0)5TT 1425+
B /3:1/2 (1 — et A=t 9]
22 (1+r2=2rcos®)2tl  (14+rH% +1

= Kolxt — x1(z]).

To compute U, we need to evaluate the following integral.

J6) = /9 -
“Jo (1472 =2rcosg)? ¢

Easy but tedious computations show that

Lemma4 For0 <6 < m,andr € [0, 1), we have

o 1—r2)3 2r(1 —r2)sin6

J(©O) = =
©) 0 (14+7r2—=2rcosg)? ¢ 1+4r2—2rcosb

1 t 2
+2(1+ r2) arctan ((—0—1;’)721119/)’
—r

and J (7)) = glim J(©O) =71+ 7).
—>7T
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834 A.Khalfallah et al.

1
Proof of Corollary 1.1 By Lemma 4, and using the fact that arctan(1 r) — % =
—r
arctan r, we have
1
Us(r) = —[2](71/2) - J(n):|
2
1 1 —r2 1
=3 |:4r(1+—rr2) +4(1 +7r?) arctan(1 i— :) —m(l+ r2)i|
2[r(1 —r?
= ;|:r(1+—:2) + (1 + r2) arctanr}.
O
Proof of Theorem 2 Near 0, we have
(1=t 1+ (@ +2)cosbr + 02
= o cosOr ro),
(1+7r2—2rcos0)§ +1
2¢ (1—r%3
Ug(r) = 7"‘(a +2)r + 0(r?) and e 14+ 0@?).
Hence from Theorem 1 and (3.1), we get
2¢qy 2
lu(z) —u(0)| < 7(06 +2)|z| + O(lz]). (3.1

Thus
2¢
D, (0)]| < 7“(05 +2).

To show that the last estimate is sharp. Let us consider the 7,-harmonic mapping
defined by

Uy(2) = Kol x1r — X0 1(2).

By [31, Theorem 1.1], we have

9 i (1 —1z]%)“ o  24al—ze i\ _.
a—ZKa(ze )ZCO‘—|1_Ze—iz|2+a —Eze +—2 =" e .

Hence

9 . .
—Ko(ze™)z=0 = C—a(2 +a)e .
0z 2
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As

L o (0)d6 = — /m ~i0gg — /WZ it gp = 2
2w 0 ¢ AT AT N 2 _n/ze 2 T ¢ B ’

we conclude that

U, 2¢y
VU (0)| = 2 0) = —(x+2).
0z b4

3.2 Proof of Theorem 3

First, we need the following theorem which provides some estimates on the coefficients
of T,,-harmonic mappings.

TheoremE [12] For a« > —1, let u € CZ(]D)) be a Ty-harmonic function with the

series expansion of the form (1.3) and sup, .y, [u(z)| < M, where M > 0. Then, for
kell,2,...},

o o aM
(lekl +lexD) F(==,k— = k+1;1) < —, (3.2)
2 2 T

and

ol F(=2, % .y < m (3.3)
CO 2’ 2’ 9 — . .

Therefore for k > 1 and « > —1, using (2.1), we have

B KT (e + 1)
CTE+DIG+4+D

F(=3k=Sik+1:1)

Thus if u is Ty -harmonic such that |u(z)| < M, then by (3.2) it yields

AMay Tk + % +1)

) fork > 1. 3.4

ekl + le—xl =

Proof of Theorem 3 Let us compute u, and uz, for u is a T, -harmonic with « > 0 and
u(0) = co = 0. The power series expansion is provided by

o0 o0
o o o o
=Y aF(—5. k= =ik+ 112+ ) e F(=5, k= =i k+ 15 |2,
u(z) k—ICk ( > > +1; [z]9)z +k_10k ( > 5 +1; 1z]9)z
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836 A. Khalfallah et al.

and the series converges for C°°-topology. Hence

o0 o0
d
uz(z) = chkF(—%,k—%;k—i—l;w)zk_l +ch%F(—g,k—%;k+l;w)sz

k=2 k=1 2
d o o o o
“ e, 2. .o \sk+1 _ Y _%os.
+k2_lc_kdwF( 2,k 2,k+1,a))z + 1 F( 2,1 2,2,50), 3.5)

and

> d o o > o o4 k—
ug(z)=ch%F(fE,kfa;k+l;w)zk+l+Zc,kkF(75,k7§;k+l;a))zk 1
k=1 k=2
+ ic kiF(—g k= Zik+ o)z e F(- 21— 22 0) (3.6)
2 i oR 2 ; - 7 F 2 o)

where w = |z|2.
We have u;(0) = ¢;F(— %,k — %k 4+ 1;0) = ¢y, and similarly uz(0) = c_;.
Thus combining (3.5) and (3. 6) we obtaln

oo

o o —

Uz (2) = uz O + luz(@) = uz () < 3 k(exl +lekDF(= 5.k = Sik+ Lw)lef!
k=2

o]
d o o
+ 23 ekl + lekh | 2= F(= 5ok = Sik+ T 0) 12!

k=1 2 2
o o
+(|C1|+|C—1|)F(—Eal—E;Z;w)—ll.
By (2.4) and (2.3), we see that
d o a|£_k| o o
F(= Sk =Sik+ Lo)| = 22— F(= 2+ Lk=5 + Lk+20),
do (- k- gkt o) 20k + 1) (-5 y Tlhikt20)

as the mapping F( — S+ Lk—=5+1k+2 ) is positive. We denote

o
o o —
Eo(r) =Y k(e + le k) F(— Sok= ik P2kt (3.7)
k=2

Fy(r) _Z(Ick|+|c ) a|3 - |F(—g+1,k—%+1;k+2;r2)rk+{3.8)

P (k+1) 2
o o
Gy(r) = (|c1|+|c]|)‘F(—§,1—§;2; r2)—1 . 3.9
In the sequel, we will estimate each of these expressions. O

@ Springer



Generalized harmonic functions and Schwarz lemma for... 837

Estimate of E,(r)

Lemma5 Letn e N,n > 1land 5 € (n—1,n].
Ifn =1, then

MaaS ) < 24Magyr
r —_—5.
x 2= a =3

4
Eo(r) < (3.10)

Ifn > 2, then

Ey(r) <

_ n—1
4_M|:(n—|—1)(n 2)r+aa(2n)!r i| 3.11)
T

2 (1—r)n

Proof A straightforward application of Lemma 1 implies that the monotonicity prop-
erties of F( — %.k — %k + 1;+) depends on a(% — k). Therefore the function

F(—%, k — %; k + 1; ¢) is decreasing on [0, 1) when « € (0, 4] and k > 2. Thus for
w e [0,1),

F(=Sok=Sik+ 1i0) < F(= S k= Sik+1:0) = 1.

First, we estimate E, (r) for a € (0, 4], then we will consider the case o > 4.
Casel.0 <a <4

The decreasing property of F (—%, k — %; k + 1;+) and (3.4) imply that

o0

o o _

Eo(r) =) kel +leaDF (=5, k = S5k + 1)
k=2

o0
> k(lekl + le—xhr* !
k=2
AMay, STk +%+1
< Ay Z ( 5] )rkfl'
T (k—1)!

IA

k=2

Subcase 1.0 <o <2
Remark that I'(k + 5 +2) < T'(k + 3). Thus

O Tk+%+1 O Tk+%+2 E Tk+3
Do T S TN k0,
k=2 (k — Dt k=1 : k=1 :
Hence
4M 24M
Eq(r) < 208y (r) < —— 1000
T (1l —r)3
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Subcase 2.2 <a <4

Fk+35+1
By Proposition 2.1, for n = 2, it yields Z ﬁ k < $3(r). Therefore,
4May 96Mayr
Eq(r) < ——$3(r) < iz °;4

Case2.2(n — 1) <a <2n,n >3, thatis,n — 1 =[5].

According to the discussion at the beginning of the proof, we see that the function
F( -5 k—=5k+1; ) is increasing for 2 < k < n — 1, and, decreasing, for k > n
on [0, 1).

Consequently, we split E, in two sums according to the monotonicity of F ( -
$,k—%:k+1;+). On one hand, we have

n—1 o o aM n—1
Zk(|6k| +leiDF(—= k — — k+ 1; r2)yrk1 < —— X:kr"_l
k=2 2 2 L ——

2Mr

IA

(n+1D(n—2).

On the other hand, using the estimate of the coefficients (3.4), we have

o0 o
o o
D kleel +leDF(=2 k= Sk + 1 < 3 Thle] + leihrt™!

k=n 2 k=n
_ 4Maq i L+ 5+ D i
B 1 (k— 1!
k=n
Finally, by Proposition 2.1 (a), we conclude
4Mr(n+ 1D —-2) @n)trn!
Ey(r) < [—r aa—].
b4 2 (1 —r)2n
We remark that this formula is still valid for n = 2. O

Estimate of F,(r)

Lemma6 Letn € N, n > land% € (n—1,n].
Ifn =1, then

AMr? ( 1 a)< AMr?

f =200 Sai-n7

T— (3.12)
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Ifn > 2, then

2M AMaay(2n — 1)! 2nr
Fo(r) < 7(n-2)(n+1)r2+ a ) (

T Da ) o G313

Proof We start by investigating the monotonicity of F ( - S+ 1L k=5 + 1 k+2; )
By Lemma 1, we infer that its monotonicity depends on

wn!

(—%+1)(k—%+1), k=1, a>0.

Therefore the function F( — % +1,k— % + 1,k +2; ) is increasing for 0 < o < 2,
and decreasing for 2 < o < 4 on [0, 1).

Casel.0 <« <2.

As the function F( — % +1,k— % + 1;k+2; ) is increasing, we have

F(—%+1,k—%+1;k+2;w)§F(—%+1,k—%+1;k+2; 1)

According to (2.2), we obtain

F(—g,k—%;kvtl;l):

. F —3+1,k—%+1;k+2;1) (3.14)

o
k+1(2

Finally, using (3.2), (3.8) and (3.14), we have

|2 | « a . L)kt
F(r)<Z(|ck|+|c k) ——— &0 F(—5+1,k—5+1,k+2,1)r ,

>~

—_

pnqg

o o o
(= el +lekDF(= 5.k = Sk + 15 1)rk+t

~
Il

1

='|§

> k1 4Mr? 1 o
gk_ = 7T(1—r)< z)'

Case2.2 < <4.
As the function F( — % +1,k— % +1;k+2; ) is decreasing on [0, 1), and using
(3.4), it follows

alk = 5] 4
Fo(r) <;(|ck|+|c DT
=<|01I+IC—1I>W—+Z<|ck|+|c i =8)
4 Pt (k+1)

o0
- 12Maagr? N 4Maay Z N%+k+ k- %)rkﬂ'
T

T (k+ 1)!

k=2
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Using Proposition 2.1 (b) for n = 2, we deduce that F,(r) <

4r
3(1 — r)3)'

Cased.n—1<5<nn=>3

By Lemma 1, we deduce that the function F( — “ 1,k — 7 41 k4+2; )
increasing for 1 < k < n — 2 and decreasing for k > n — 1. We spht the summation
in Fy in two sums according to the monotonicity of F(— % +1,k—§ + 1,k +2;-).

Let us start the first sum. Using (3.14), we get

12Mocaar2<
e (4

T = :X?(Icicl + le—kl) (|k+ 1)|F(— % +1.k— % b1k 2 )k
< §(|Ck| + Ic_kl)(% —k)F(— %,k - %; k+1: 1)rk+1
k=1
< 47M§(% — kyrkt!
= il nf(n—k) (n—2)(n+1)

For the second sum, using Proposition 2.1 (b), we have

o | | o o . L2\ kel
N ._an:l(|ck|+|c )21 ) F(—§+1,k—§+1,k+2,r )r

| 2| k+1
< k;lucuﬂc D~y

- 4Maay Z k- o F(k+ +1)rk+1

Pl 2 (k+ 1)!

- 4dMaay ((Zn +Zk o F(k—i— +1)rk+1>

bid 2 (k+ 1)!

B 4Maay [ (2n — ])!r” N (2n)! pitl '
T n! (n4+ D! (1 —r)ntl

Finally
2M AMaay,(2n — 1)! 2nr
Fo(r) < =—(n -2 r? “ "
a(r) < == =D+ Dris n! < n+ D1 —r)"+1>
We remark that his inequality remains valid for n = 2. O
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Estimate of G, (r)

Lemma7 Letn e N,n>1land 5 € (n—1,n].
Ifn=10rn >3, then

2Mr2|1 — %]
Gu(r) £ ———. (3.15)
b4
Ifn =2, then
24M  « )
Gy(r) < aa(z - Dr=. (3.16)

Proof By the mean value theorem, there exists ¢ € (0, r2) such that

o

Ga(r) = r*(ler] + le-1)) iF(
¢ T dw 2

o
,1—5;2;0)

o

o | o o
=r¥(le1] + e ) —2=—F(1 - 2:2= 5% c).

4

Lemma 1 shows that the function F(1—%,2—%; 3; +) is increasing for 0 < o < 2
or « > 4, and decreasing for 2 < « < 4.

Casel.0 <a <2ora >4

As the function F(l — %, 2— %; 3; ) is increasing on [0, 1), and using (3.14), we
get

o o o o o
F(l—=,2——=3¢)<F(1—-=,2——3;1)=—-F(—=,1——=;2;1).
(152333 s F(1=2.2- 553 ) = 2P (= 5, 1= 53 2:1)
By (3.2), we have
22—«
a_
Ga(r) = r2(ler] + le-1]) '42 'F(l—%,z—%;3;c)
2 0‘|1_%|2 o o
< )—=—-F(—=,1——;2;1
< r-(leil + e=1D 1 a( > > )
2 ]
re|l — 3 o o
= _iDF(—=,1—=;2;1
3 (et + le—1D F( 5 > )
2
<2Mr|1—%|'
- T

Case2.2 <a <4
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As the function F(1 — %,2 — %; 3;+) is decreasing on [0, 1) and using (3.4), we

21
get
a(% —1)
Go(r) < r*(lei1] + le— ')2T
o
< r¥(jerl + le-ih(G = 1)
< %,ﬁ(g - 1.
T 2
O
Finally, combining (3.10-3.16), we conclude that
1Dy () — Du(0)|| < Eq(Iz]) + Fo(lz]) + Ga(lz]) < 0a(lz]), (3.17)

where oy, is defined in Theorem 3.
It is clear that oy, is strictly increasing on [0, 1) for all « > 0. Applying Theorem
2 (1.5), we get

Degla +2)M
1= J,(0) = [ Dy(0)[|34(0) < %Au(m.

Therefore,

T
2y (0) > m. (3.18)

We will prove that u is univalent in D, , where r,, satisfies the following equation:

2¢q 2
MMU(M) = 1.
b4

Indeed, let z;, zp € D, such that z; # z» and [z1, z2] denote the line segment from
z1 to 7, by using (3.17) and (3.18), we get

lu(z1) —u(z2)| = / uz(z)dz +uz(z)dz
[z1.22]

v

/ u;(0)dz + uz(0)dz
[z1,22]

- / (uz(z) —u(0)) dz + (uz(z) — uz(0)) dz
[z1,22]

T

M@ +2) U(r“)}

> IZz—le{

=0.
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Thus u(z1) # u(z2). The univalence of u follows from the arbitrariness of z; and z5.

This implies that u is univalentin D, . As the mapping %lf‘) is increasing, we deduce

0u(re)ra

/ ou(zDldz] < 5
[0,£]

For any & € 0D, we have

lu(®)| = / uz(2)dz + uz(z)dz
[0.€]

A%

f uz(0)dz + uz(0)dz
[0.6]

- / (= (2) — 1 (0))dz + (=(z) — u=(0))dZ
[0,€]

= MDu(0)ra —/ ou([z])ldz]
[0.€]

04 (Fe)ra 0u(re)re
> 0 (rg)re — =

2 2

Hence u(DD,,) contains a univalent disk Dg, with Ry > %

4 Schwarz-type lemmas for solutions to inhomogeneous biharmonic
equations

Proof of Theorem 4 The solution of (1.1) can be written in the following form

1
() =70- 2 PLf + hl(2) + K2 £1(z) — Glgl(2).

As z —> K[ f1(z) is Tr-harmonic function, then by Theorem 1, we have

(1—z1?)? 2 ) lz1(1 — |z|)
K ———K 0) < —|(1 t —_— .
‘ 2LA1Q) = 5y KelAO) = 2| A Py aretan 2]+ =25 {11 e
“4.1)
Using the estimate (1.2) for the harmonic mapping P[ f + k], we get
1 —|z|? 4
PLf +h](z) — 5 PLf +1](0)| = —arctan |z || f + 7l oc- 4.2)
14 |z| T
In addition, using [13, inequality 2.3], we obtain
(1—z1»)?
IGlgl(@)] = T”g”oo- 4.3)
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1
Finally as K>[f](0) = EP[ f1(0), then the inequality (1.8) follows directly from
(4.1-4.3). O

Proof of Theorem 5 The solution of (1.1) can be written in the following form

1
P() =50 - ) PLf + h](z) + Kal f1(2) — Glgl(z).

Therefore,

1
1D = 5(1 = 2P IDpr4m @ + 21 PLf + B1@)] + [ Dk 1D + 1 Digi(2)-

By Colonna [15], we have

4 1
Dpir < — hlso- 44
I Dprr+m @I < . |Z|2IIJ”r lloo 4.4)
It follows from [26, Lemma 2.5], that
23
DG = E”g”om 4.5)

since
23 23
/DIGz(z,w)g(w)IdA(w) < g”g”oo and /DIGz(Z,w)g(w)ldA(w) < g”g”oo-

In addition by [12, Theorem 1], we have

Q2+ 5z (1 + 1z1%)
1—|z)?

1Dk, 1D < , forall z € D. (4.6)

Therefore, combining (4.4-4.6), we obtain

1
Do) =< 5(1 - |Z|2)|IDP[f+h](Z)H + [ZIIPLf + @] + 1Dk, [ 1@ + 1 D12l

2 +51zD + |z1%)

2 23
< =IPLf + hllloo + l2lllL.f + Rlloo + 5 1flloo + 5 llglloo
T 11—zl 48
2 Q@+5zDA + 1212 23
S (=+12DIf +hlo + ————5—fllo + £ l1gllco-
e 1— |z 48
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Proof of Theorem 6 Suppose that |z| = r, it follows from Theorem 4 that

1 2 1—,2
[®) — Do) = 1= (1= rDIf +hlloo — 7[02 + Darctanr + al ’2 )]
2 T 1+7r
llglloo (1 — )2 1(1—r2)3 1(1=r2)?
- 64 =2 g2 PV = 3 = IPL - HO)

Divide by 1 — r and used the Hospital rule, we obtain

_ 1_2 2 1 t _ .2
®G) = @m| 1= 202+ Darctanr 2 r(1— 1)

lim inf > im—-—-
r—1 1—r r—1 1—r r=1m (1=r)(1+7r?)
1.
— 5 him 1+ ) f + hlleo
2r—1

, 2
=¢ ()= == If +hle,
T

where ¢ (r) = %(r2 + 1) arctan r. Hence liminf, w >1—|f+hlco-
O

5 A Landau-type theorem for solutions to inhomogeneous
biharmonic equations

First, let us recall the following result.

Theorem F ([11], Lemma 1) Suppose [ is a harmonic mapping of D into C such that

|f(2)| <M forallzeDand f(z) =Y vogan?” + > pey buZ".

Then |ag] < M and for alln > 1, |a,| + |by| < aM

b/

Proof of Theorem 7 The solution of (1.1) can be written in the following form

@ (2) = Holf + h](2) + K2[ f1(2) — G[gl(z),

where
1
Holf +hl(z) = 5(1 — 12 PLf + A1) (5.1

Since P[f + h]is harmonic in D, we have P[f +h](z) = Y 00 g anz" + Y ooy buZ".
As |P[f + h](2)| < M; for all z € D, by Theorem F, we have

4M
| + bal < 72 forn > 1. (5.2)
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Using the chain rule and by (5.1) and (5.2), we have

| Drot f+11(2) — Dagr+m (O]l

1 1
= [zIIP[f +hl(2)| + §||DP[f+h](Z) — Dpiy+m Ol + §|Z|2||DP[f+h](Z)||

1 _ 1 _
< Malzl+ 5 D nllanl +1BaDIl" ™ + 12 Y nllan] + balel"™

n>2 n>1

1 _ 1
< Malzl+ S+ 12P) 3 nllan] + b1~ + S 12 (lar] + b))

n>2

(5.3)

_ 2
< Molz| + 2M2|Z|[(2 lzD(1 + |z]9) " Izl}.

(1—lzh?

Since K> is Tp-harmonic, then

o o
Ky@) =) aF(=1k=1k+1; 122 + ) e xF(=1k— Lk +1; z)z"
k=0 k=1

Let us denote
K[ f1(2) == Ka(2) — coF (—1, =15 1; [z*) = K2[f1(z) — co(1 + |z?).
Hence

Kol f1= KI[f1(z) + co1 + z1),

and
IDk1/12) = Diai 1O < 1Dk 1) = Doy sy O + 2ozl

By (3.3), we have 2|co| < M. On the other hand, as Kg(f) is a T»-harmonic function
with K9(0) = 0, it yields

IDko51(2) = Dy sy O = 02(r),

where o is defined by 07 (r) = H?IMJﬁ (r2(1 — r) + 3), see Remark 1.2. Thus

4M |z|
1Dk, £1(z) — Do 11 (O) || < -

m(mz(l ) 43)+ Mzl (5.4

Let

1
Yi(z) = F/ 8(@)(G:(z,0) — G;(0, ))dA(w)|,
7T Jp
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and
1
Y2(z2) = F/g(w)(Gz(z,w)—Gz(O, w))dA(w)‘-
T JD

Then by [13, Inequality (3.6)], we have

- 1—z|> 43 55
max(¥1(z), ¥2(z)) < T +@ llglloolzl. (5.5

Now, it follows from (5.3)—(5.5) that

Do (z) = Do(0)| = Ma|z| +

2M>z [<2 — 2D (1 + [z]?) N m]
(1— |z])?

+ o2(Iz]) + Mq|z| + ¥1(2) + ¥2(2)

< n(lzl),

where

101
=M +M+—M
(el = (My + Mz + oo Ma)lz| +

2M>|z| [<2 —lzZD 1+ [z]?) N m}
(1—1z)?
4M|z|

—_— 2 —
+ - |Z|)3(|Z| (I —1lz)) +3).

w(lzl)

Remark that not only . (|z]) is increasing but also is increasing with respect to

|z] in [0, 1). By Theorem 5, we obtain that

4 2 23
1 =Jo(0) =D (0)[[1(Ds(0)) < /\(ch(O))(;Ml + oM+ EM3>

yields A(Dg (0)) > W As in Theorem 3, we prove that ® is univalent

23
2 M3
78
in ID,,,, where r( satisfies (%Ml + %Mz + %Mg)y,(ro) =1, and ®(ID,,) contains an
. . . . . 48, - ro
univalent disk Dg, with the radius Ry satisfying Ry > Ly TneLyye O
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